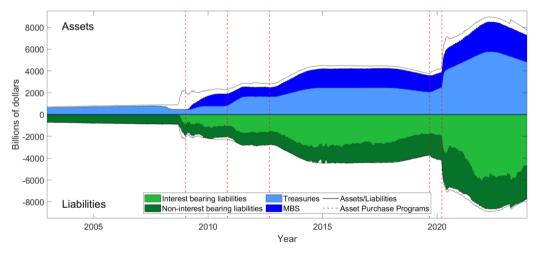
Central bank balance sheet size, net interest income, and policy rate amplification

Joseph Kachovec


Reserve Bank of Australia

January 3, 2026

Joseph Kachovec 0 / 10

References

Federal Reserve balance sheet (scarce vs abundant reserves)

Detailed Liabilities

Introduction

•000

Joseph Kachovec 1 / 10

Monetary policy implementation: scarce vs. abundant reserves

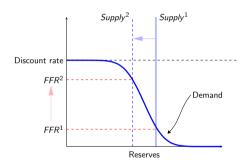


Figure: Fed funds targeting

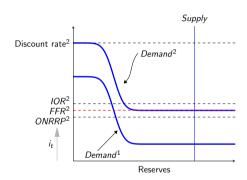


Figure: Administered rates

Joseph Kachovec 2 / 10

Correlation between policy rates and central bank income

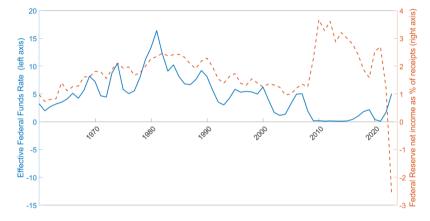


Figure: Federal Reserve net income and federal funds rate

Model

Introduction

3 / 10

Summary of paper

Introduction

- Identical interest rate moves have larger real effects under abundant reserves
 - not dependent on the type of aggregate shock
- Interest rate tightening with abundant reserves:
 - increasing interest rates
 - increases interest expense on central bank liabilities
 - decreases central bank net income
 - tightens the aggregate government budget constraint
- Contribution:
 - fixed size for the central bank balance sheet
 - conditional statements on the real impacts of interest rate policy (Assumption)
 - mechanisms of interest rate policy in the NK model are amplified under abundant reserves

Joseph Kachovec 4 / 10

Model setting

- NK model with 5 types of agents
 - 1 representative household (Household problem)
 - 2 continuum of firms producing differentiated goods (Firm problem)
 - 3 central bank (Fiscal authority problem)
 - Taylor interest rate rule
 - balance sheet w/ net income
 - 4 passive fiscal authority (Fiscal authority problem)
 - consumes a fraction of output
 - taxation w/ output costs
 - issuance of fixed or floating rate bonds
 - 5 representative financial intermediary (Fl problem)
 - portfolio choice problem w/ three types of one-period assets
 - deposit withdraw uncertainty → interest rate spreads
- Exogenous shocks
 - aggregate supply, preference shock, government spending shock

Joseph Kachovec 5 / 10

Counterfactual design

Introduction

- Question: What are the real impacts of interest rate policy in response to aggregate shocks?
- Experiment:
 - keep model conditions constant (Baseline calibration)
 - 2 change the size of the central bank balance sheet (λ)
 - hit different λ -economies with same shocks $(\varepsilon_t^{\xi}, \varepsilon_t^A, \varepsilon_t^F)$
 - measure aggregate fluctuations in prices and output in each λ -economy compared to a pre-QE counterfactual of $\Lambda = .06$, $\lambda = 0$? (Measurement Description)

$$\underbrace{B_t^{CB} + L_t^{CB}}_{Assets} = \underbrace{.06P_tY_{ss} + \lambda P_tY_{ss}}_{Assets} = \underbrace{RE_t}_{Liabilitie}$$

Joseph Kachovec 6 / 10

Model mechanism IRFs (1% Preference Shock)

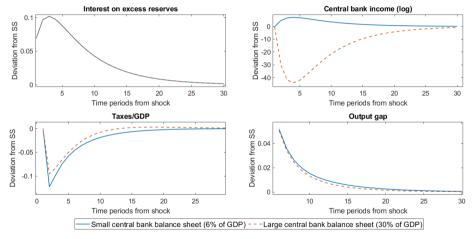


Figure: "Fiscal effect" of central bank net income

Joseph Kachovec 7 / 10

Periods of stability in the Fed's balance sheet

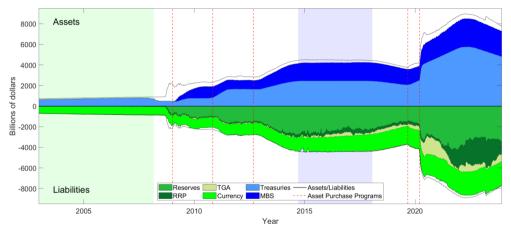


Figure: Periods of relative stability in size of CB balance sheet

Joseph Kachovec 8 / 10

Point estimate of 2018 results compared to 2005

Model

Introduction

Table: Cum. fluctuations from 1% log deviation

Shock	Output Gap	Inflation
$-\xi_t$	4.5% lower	3.4 % lower
A_t	2.07 % higher	7.8 % lower

Table: Gov. spending shock 1% of GDP

Shock	Output Gap	Inflation	
F_t	0.54% lower	1.08% lower	

• 1% gov spending shock is bigger in 2018 economy ($\gamma^{2018}=.22>.2=\gamma^{2005}$)

Joseph Kachovec 9 / 10

Concluding remarks

- This paper:
 - 1 analyzes the central bank problem at time t
 - @ model the correlation between policy rates and central bank income
- Key Findings:
 - under abundant reserves, central bank income amplifies the real effects of interest rate policy in the NK model
 - ② swings in central bank income have different implications for the fiscal authority's budget constraint, which has real impacts ($\sim 4\%$ of the cycle)
- Conclusion: A policy setting committee ignoring central bank income would be a mistake
 - coefficients of monetary rules could be miscalibrated
 - central bank income is a factor to consider when evaluating interest rate decisions

Joseph Kachovec 10 / 10

Introduction Model Quantitative Exercise 1 Quantitative Exercise 2 Conclusion References

Works Cited I

- Alvarez and Jermann (2004). "Using Asset Prices to Measure the Cost of Business Cycles". Journal of Political Economy 112 (6), pp. 1223–1256.
- Barlevy (2004). "The Cost of Business Cycles Under Endogenous Growth". *American Economic Review* 94 (4), pp. 964–990.
- Barro (1979). "On the Determination of the Public Debt". *Journal of Political Economy* 87, pp. 940–971.
- Bhattarai, Eggerston, and Gafarov (2022). "Time Consistency and the Duration of Government Debt: A Model of Quantitative Easing". *Review of Economic Studies* 0, pp. 1–41.

Joseph Kachovec 10 / 10

Introduction Model Quantitative Exercise 1 Quantitative Exercise 2 Conclusion References

Works Cited II

- Bianchi and Bigio (2022). "Banks, liquidity management, and monetary policy". *Econometrica* 90 (1), pp. 391–454.
- Lucas (2003). "Macroeconomic Priorities". American Economic Review 93 (1), pp. 1–14.
- Poole (1968). "Commercial Bank Reserve Management in a Stochastic Model: Implications for Monetary Policy". *The Journal of Finance* 23 (5), pp. 769–791.
- Rotemberg (1982). "Sticky Prices in the United States". *Journal of Political Economy* 90, pp. 1187–1211.

Joseph Kachovec 10 / 10

Nominal Central Bank Net Income

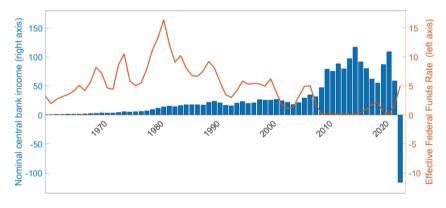
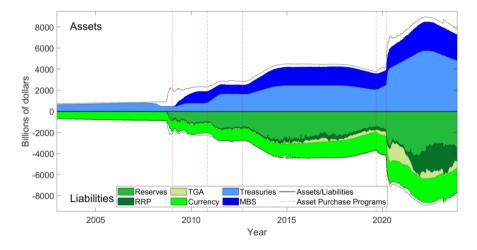



Figure: Federal Reserve profits and federal funds rate

Joseph Kachovec 1 / 26

Federal Reserve Balance Sheet (scarce vs. abundant reserves)

Joseph Kachovec 2 / 26

Correlation is not a coincidence

return

- Balance Sheet of the Federal Reserve:

 - (1) pre-QE: $B_t^{CB} = M_t$ (4) post-QE: $B_t^{CB} + B_t^{CB,QE} = M_t + RE_t$

	Scarce reserves/	Abundant reserves/	
	FF targeting	Administered rates	
Assets:	(1)	(2)	
Short Duration $i_t^{short} - 0$		$i_t^{short} - i_t^{policy}$	
	$Corr(i_t^{policy}, CBI_t) > 0$	$\mathit{Corr}(i_t^{\mathit{policy}},\mathit{CBI}_t) \sim 0$	
Assets :	(3)	(4)	
Long Duration	$i_t^{long} - 0$	$i_t^{long} - i_t^{policy}$	
	$Corr(i_t^{policy}, CBI_t) > \sim 0$	$Corr(i_t^{policy}, CBI_t) < 0$	

Table: Central Bank return on assets correlation to the policy rate

Joseph Kachovec 3 / 26

Framing the balance sheet assumption

- why am I imposing a strong constraint and not others?
 - a policy maker at time t inherits a condition on the balance sheet and interest rate levels
 - economy hit with a shock....what should the policy response be?
 - interest rate policy: option to raise interest rates from ZLB to 10% in one day with administered rates (unlimited flexibility)
 - can not alter the size of the balance sheet drastically in the short term
 - they did this in COVID, but was dependent on a LARGE fiscal shock which the Fed monetized
 - since interest rate policy is the primary short term counter-cyclical tool, we keep that flexible and the balance sheet fixed

Joseph Kachovec 4 / 26

Representative Household (return)

$$\max_{\{c_t(i),h_t(i),D_t\}_{t=0}^{\infty}} E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\sigma} - 1}{1-\sigma} - \psi \frac{H_t^{1+\chi}}{1+\chi} \right) \xi_t$$

$$P_t C_t + P_t T_t + D_t \leq W_t H_t + (1+i_{t-1}^d) D_{t-1} + \int_0^1 \phi_t^{firm}(i) di + \phi_t^{FI}$$

$$log(\xi_t) = \rho_a log(\xi_{t-1}) + \varepsilon_t^{\xi}$$

- Standard NK set-up and euler equation
- Saving through deposits at financial intermediary
- Own the firms and intermediary
- Preference shock ξ_t on entire utility function

Joseph Kachovec 5 / 26

Firms producing differentiated goods (return)

$$\begin{aligned} \max_{\{\rho_{t}(i)\}_{t=0}^{\infty}} E_{t} \sum_{j=0}^{\infty} \mathcal{D}_{t,t+j} \bigg(\rho_{t+j}(i) y_{t+j}(i) - w_{t+j}(i) \frac{y_{t+j}(i)}{A_{t+j}} - \frac{\varphi}{2} \bigg(\frac{\rho_{t+j}(i)}{\pi^{*} \rho_{t+j-1}(i)} - 1 \bigg)^{2} Y_{t+j} P_{t+j} \bigg) \\ y_{t}(i) &= A_{t} h_{t}(i) \\ log(A_{t}) &= \rho_{a} log(A_{t-1}) + \varepsilon_{t}^{A} \\ \mathcal{D}_{t,t+j} &= \beta^{j} [U_{c}(t+j)/U_{c}(t)] \end{aligned}$$

- Simple NK-set up and phillips curve
- Nominal price frictions as in Rotemberg 1982
- Constant returns to scale production in labor
- A_t used for aggregate supply shock

Joseph Kachovec 6 / 26

Monetary policy (return)

Central bank sets the interest rate on excess reserve balances in a Taylor type rule

$$i_t^{ioer} = \mu_i i_{t-1}^{ioer} + (1 - \mu_i) \left[(i^{ioer})^{ss} + \mu_{\pi} (\pi_t - \pi^*) + \mu_y \left(\frac{Y_t - Y^N}{Y^N} \right) \right]$$

Central bank balance sheet

$$\underbrace{B_t^{CB} + L_t^{CB}}_{Assets} = \underbrace{\Lambda P_t Y_{ss} + \lambda P_t Y_{ss}}_{Assets} = \underbrace{RE_t}_{Liabilities}$$

- Central bank income $(CBI_t) \sim \Lambda P_t Y_{ss}(i_t^{bill} i_t^{ioer}) + \lambda P_t Y_{ss}(i_{ss}^{bond} i_t^{ioer})$
- Counterfactuals between different λ -economies (QE purchases of long term bonds)

Joseph Kachovec 7 / 26

Fiscal sector (return)

• Spending and taxes are constant fractions γ, τ of output

$$F_{t} = (1 - \rho_{F})\gamma Y_{ss} + \rho_{F} F_{t-1} + \varepsilon_{t}^{F}$$

$$T_{t} = \tau Y_{t} + \phi_{B} \left(\frac{(B_{t-1}^{FI} + L_{t-1}^{FI})/P_{t}}{Y_{t}} - \frac{(B_{ss}^{FI} + L_{ss}^{FI})/P}{Y^{ss}} \right)$$

Convex output costs to taxation as in Barro 1979, Bhattarai et al. 2022

$$F_t = G_t + s(T_t)$$

ullet Bond issuance governed by a constant maturity structure $\Omega=B_t/(L_t+B_t)$

Expenditures :
$$P_tG_t + (1 + i_{t-1}^{bill})B_{t-1} + (1 + i_{ss}^{bond})L_{t-1}$$

Income : $P_tT_t + B_t + L_t + \Delta_{LCR}(\zeta D_t - RE_t - B_t^{FI}) + \frac{CBI_t}{2}$

Joseph Kachovec 8 / 26

Financial intermediary problem (return)

• Maximize expected profits under deposit withdraw uncertainty Z_t as in Poole 1968

$$\max_{\{B_t^{FI}, L_t^{FI}, RE_t\}} E_t \sum_{t=0}^{\infty} \beta^t \left((1 + i_{t-1}^{bill}) B_{t-1}^{FI} + (1 + i_{ss}^{bond}) L_{t-1}^{FI} + (1 + i_{t-1}^{irr}) \alpha D_{t-1} - (1 + i_{t-1}^{d}) D_{t-1} + \Xi_{t-1} \right)$$

$$Z_t D_t = B_t^{FI} + RE_t + L_t^{FI}$$

$$RE_t \ge \alpha D_t$$

$$RE_t + B_t^{FI} \ge \zeta D_t$$

$$i^{irr} = 0$$

- Costs of deposit withdraw uncertainty Ξ_t with $Z_t \sim lognormal(0, \sigma_Z^2)$
 - 1 excess reserves or reserve deficiency Reserve requirement constraint uncertainty
 - 2 surplus or deficient high quality liquid assets LCR constraint uncertainty

Joseph Kachovec 9 / 26

Financial intermediary problem under Poole uncertainty (Full FI problem)

Balance sheet constraint:

$$\underbrace{Z_t D_t}_{Liabilities} = \underbrace{RE_t + B_t^{FI} + L_t^{FI}}_{Assets}$$

• Reserve requirement violation cost Δ_{DW} :

$$RE_t \geq \alpha D_t$$

• Liquidity coverage ratio violation cost Δ_{ICR} :

$$RE_t + B_t^{FI} \ge \zeta D_t$$

- Portfolio choice problem:
 - $RE_t \rightarrow (i_t^{rr}, i_t^{ioer}) + LCR$ constraint + reserve requirement
 - $B_t^{FI} \rightarrow i_t^{bill} + LCR$ constraint
 - $L^{FI} \rightarrow i^{bond}$

Joseph Kachovec 10 / 26

Reserve requirement: $RE_t \ge \alpha D_t$ (return)

$$\begin{split} \Xi_t = & (1+i_t^{ioer}) \int\limits_{\frac{B_t^{F_I} + L_t^{F_I}}{(1-\alpha)(B_t^{F_I} + L_t^{F_I} + RE_t)}}^{Z^U} (RE_t + (D_tZ_t - D_t) - \alpha D_tZ_t) f(Z_t) dZ_t \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\$$

• For which value of Z_t do excess reserves =0?

$$\underbrace{\alpha D_t Z_t}_{\text{Required reserves after payments shock}} = \underbrace{RE_t + (D_t Z_t - D_t)}_{\text{Total reserves after payments shock}} \implies Z_t = \frac{B_t^{FI} + L_t^{FI}}{(1 - \alpha)(B_t^{FI} + RE_t + L_t^{FI})}$$

Joseph Kachovec 11 / 26

Liquidity coverage ratio: $RE_t + B_t^{FI} \ge \zeta D_t$ (return)

• For which value of Z_t does the LCR bind?

$$\underbrace{RE_t + B_t^{FI} + (D_t Z_t - D_t)}_{\text{HQLA after payments shock}} = \underbrace{\zeta D_t}_{\text{HQLA required to avoid a fine}}$$

$$Z_{t} = 1 + \zeta - \frac{RE_{t} + B_{t}^{FI}}{B_{t}^{FI} + L_{t}^{FI} + RE_{t}}$$

$$\Xi_{t} = ... + \Delta_{LCR} \int_{0}^{RE_{t} + B_{t}^{FI}} (RE_{t} + B_{t}^{FI} + (D_{t}Z_{t} - D_{t}) - \zeta D_{t}) f(Z_{t}) dZ_{t}$$

Deposit withdraws LCR violation

Joseph Kachovec 12 / 26

Baseline Calibration (return)

Table: Model Specific Parameters

Parameter	Value	Description	Source
β	.992	Discount factor	3 month CD \sim 5.32% (OECD)
λ	[0,.3]	ratio of QE purchases to SS GDP	comparative statics
٨	.06	pre-QE ratio of CB assets to SS GDP	
γ	.2	SS (gov. spending/GDP)	USA average
au	.217	SS (taxes/GDP)	FI Model Moments
Ω	.2	(Fixed rate bond)/(Tbills) ratio	2024 USA ratio
α	.05	"Reserve Requirement"	excess reserves ~ 0 for $\lambda = 0$
Δ_{DW}	.004/4	DW spread to IOER	full sample average
Δ_{LCR}	.004/4	LCR penalty	$=\Delta_{DW}$
$rac{\Delta_{LCR}}{\sigma_z^2}$.12	Deposit Volatility	Bianchi and Bigio 2022
ζ	.2	LCR	min s.t LCR never violated
ϕ_B	.18	Tax/bond issuance rule	min s.t ∃ convergence
ϕ_T	.2	Output costs to taxation	model mechanism >>> reserve demand
ϕ_{π}	1.5	Taylor coefficient on inflation	Taylor Principle
ϕ_y	.125	Taylor coefficient on output	$arepsilon_t^{m{F}}$ inflationary

Joseph Kachovec 13 / 26

Calibration - an overview (Externally calibrated), Internally calibrated)

- Model is calibrated to match the US 2005 and 2018 economies (Calibration ratios)
 - late stage expansion, no inverted yield curves

Table: Counterfactual calibration

Parameter	Target	2005 Value	2018 Value
λ	(QE purchases)/GDP	0%	15%
α	Currency/(Fed Liabilities)	97%	39%
γ	(Gov. spending)/GDP	20%	22%
au	Debt/GDP	51%	100%
Ω	$Tbills/(Treasury\ Debt)$	0.14	0.1
β	Deposit rate	3.5%	2.2%
$(\Delta_{DW},\Delta_{LCR})$	10yr - 3 month spread	1.07%	94 bps
σ_z^2	3 month - FF spread	0 bps	14 bps
ζ	$\zeta D_t \leq RE_t + B_t^{FI}$.14	.251

Joseph Kachovec 14 / 26

Calibration results

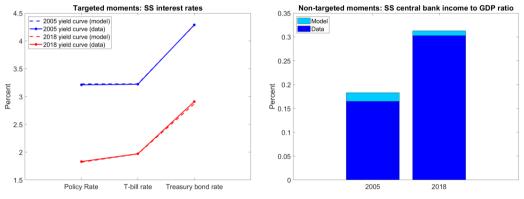


Figure: Targeted and non-targeted moments (Calibration results)

Joseph Kachovec 15 / 26

Steady state bonds calibration

return

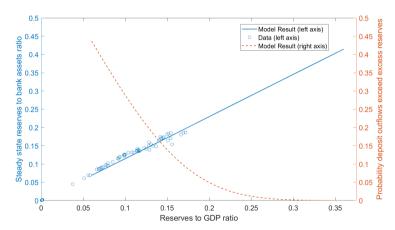


Figure: Matching bank balance sheet reserve/assets ratios

Joseph Kachovec 16 / 26

Measurement of aggregate fluctuations compared to baseline

return

- i = type of AR(1) shock (A_t, ξ_t, G_t)
- $X_{t,i} = \text{impulse response function series: } \pi_{t,i}, Y_{t,i}$
- $RE_t = \lambda Y_{ss}$
- baseline (pre-GFC) Fed Balance Sheet is 6% of GDP

$$\textit{Deviations}_{\lambda,i} = \frac{\displaystyle\sum_{t=0}^{\infty} |X_{t,i} - X_{ss}|_{\lambda} - \displaystyle\sum_{t=0}^{\infty} |X_{t,i} - X_{ss}|_{\lambda=0}}{\displaystyle\sum_{t=0}^{\infty} |X_{t,i} - X_{ss}|_{\lambda=0}}$$

(Area under the $\lambda > 0$ IRF) - (Area under the $\lambda = 0$ economy IRF) (Area under the $\lambda = 0$ economy IRF)

• % difference in fluctuations in prices/output compared to an economy with a CB BS size of 6% GDP?

Duration of publicly held treasuries vs. Fed holdings

return

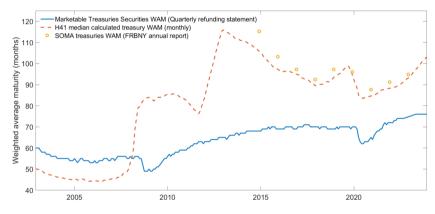


Figure: SOMA Treasury WAM vs Market

Joseph Kachovec 18 / 26

"Steady state" economies: 2005 vs 2018 (return)

• Model is calibrated to match four ratios, plus the slope and level of the yield curve

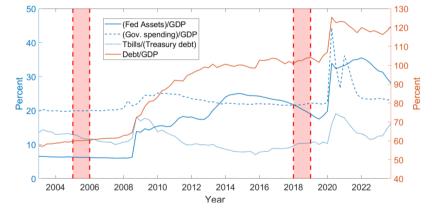


Figure: Calibrated steady states

Joseph Kachovec 19 / 26

Externally calibrated parameters

Table: Externally calibrated parameters

Parameter	2005	2018	Description	Source
λ	0	.15	ratio of QE asset holdings to SS GDP	H41, BEA
٨	.06	.06	ratio of pre-QE asset holdings to SS GDP	H41, BEA
γ	.2	.22	SS (gov. spending/GDP)	BEA
Ω	.14	.1	(Tbills)/(total debt) ratio	MSPD
Δ_{DW}	.00975/4	.0053/4	DW spread to FF	H15, NY fed
ϕ_B	.2	.2	Tax/bond issuance rule	
ϕ_T	.1	.1	Output costs to taxation	
ϕ_{π}	1.5	1.5	Taylor coefficient on inflation	Taylor Principle
ϕ_y	.125	.125	Taylor coefficient on output	$arepsilon_t^G$ inflationary

Joseph Kachovec 20 / 26

Model Calibration (return)

Table: 2005 counterfactual calibration

Parameter	Value	Description	Source		
β	.99956	discount factor	level of yield curve		
τ	.20225	SS (taxes/GDP)	Debt/GDP $\sim 51\%$		
α	.112 "Currency" (reserve) Req		(Currency/CB Liabilities) \sim 97 %		
$\overset{\zeta}{\Delta_{LCR}} \ \overset{\sigma_z^2}{\sigma_z^2}$.14 .0212/4	LCR LCR penalty	ζ^{max} s.t $\zeta D_t \leq RE_t + B_t^{FI}$ (10yr - 3 month spread) $\sim 1.07\%$		
σ_z^2	.001	Deposit Volatility	3 month - FF spread \sim 0bps		

Table: 2018 counterfactual calibration

Parameter	Value	Description	Source
β	.9988	discount factor	level of yield curve
au	.22115	SS (taxes/GDP)	Debt/GDP $\sim 100\%$
α	.0815	"Currency" (reserve) Requirement	(Currency/CB Liabilities) \sim 39 %
ζ	.251	LCR	ζ^{max} s.t $\zeta D_t \leq RE_t + B_t^{FI}$
Δ_{LCR}	.018/4	LCR penalty	(10yr - 3 month spread) \sim 98bps
$\Delta_{LCR} = \sigma_z^2$.26	Deposit Volatility	3 month - FF spread \sim 16 bps

Joseph Kachovec 21 / 26

Model vs Data

Table: Targeted moments

Moment	Data (2005)	Model (2005)	Data (2018)	Model (2018)
(Fed Assets)/GDP	.06	.06	.21	.21
(Treasury bills)/(Treasury debt)	.14	.14	.1	.1
(Government spending)/GDP	.2	.2	.22	.22
(Government debt)/GDP	.51	0.51	1.02	0.99
10 year - 3 month spread	.0107	.0108	.0094	.0092
3 month - policy rate spread	0	0	.0014	.0015
(Currency)/(Fed liabilities)	.97	.95	.39	.39

Table: Non-targeted moments

Moment	Data (2005)	Model (2005)	Data (2018)	Model (2018)
Deposit rate	.035	.038	.022	.025
(Central bank income)/GDP	.0016	.0018	.003	.0031
(Central bank income)/receipts	.01	.009	.019	.014

Joseph Kachovec 22 / 26

Interpretation of results

For a 1% preference shock:

- abundant reserves economy experiences cumulative fluctuations that are 4.5% lower in output, and 3.5% lower in inflation compared to the scarce reserves
 - \bullet Recessions/expansions are \sim 4% smaller in economies with a large central bank balance sheet
- Lucas 2003 → Barlevy 2004, Alvarez and Jermann 2004
 - $\bullet \sim 4\%$ of the cycle
 - \$30 trillion economy w/ 1% recession \rightarrow \$300 billion in lost output
 - \$30 trillion economy w/ .96% recession \rightarrow \$288 billion in lost output
 - \$12 billion difference in GDP based on central bank balance sheet size and income
- Results with deferred asset accounting

Joseph Kachovec 23 / 26

Federal Reserve deferred asset (DA) accounting (return)

- Profits: remit positive net income to the treasury department
- ② Losses: book a negative liability "deferred asset" as an IOU to treasury
 - ullet Fed DA currently \sim \$216 billion

$$DA_{t} = \begin{cases} 0 & \text{if } DA_{t-1} + CBI_{t} \ge 0\\ DA_{t-1} + CBI_{t} & \text{if } DA_{t-1} + CBI_{t} < 0 \end{cases}$$
 (1)

$$\underbrace{B_t^{CB} + L_t^{CB}}_{Assets} = \underbrace{RE_t + DA_t^-}_{Liabilities} \tag{2}$$

Joseph Kachovec 24 / 26

2018 economy counterfactual (return)

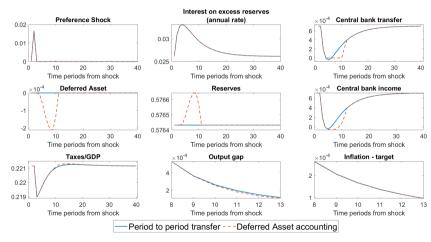


Figure: Period-to-period transfer vs. deferred asset accounting

Joseph Kachovec 25 / 26

Analysis of DA policy (return)

$$\underbrace{B_t^{CB} + L_t^{CB}}_{Assets} = \underbrace{RE_t + DA_t^-}_{Liabilities}$$

- faces negative net income with no fiscal support
- prints money $(+RE_t)$ to pay for its losses $(-DA_t)$

$$\underbrace{(=)B_t^{CB} + (=)L_t^{CB}}_{(=)Assets} = \underbrace{(\uparrow)RE_t + (\downarrow)DA_t^-}_{(=)Liabilities}$$

- lower central bank income and higher path for taxes across the cycle
- DA accounting procedures do not mitigate this channel of monetary policy

Joseph Kachovec 26 / 26