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Abstract

This paper quantifies the welfare effects of regulating commission fees in digital platforms,

focusing on third-party app developers’ innovation and pricing decisions. I employ a comprehen-

sive dataset of music apps within Apple’s App Store in the United States from October 2018 to

February 2024 to estimate app users’ demand and app developers’ cost parameters. The paper

reveals key findings with three policy counterfactual simulations where I sequentially solve for

optimal innovation and pricing decisions. First, a cap on commission fees promotes innovative

efforts by third-party app developers and improves social welfare. Second, when the platform

adds a unit fee scheme under the fee cap, developers partly pass unit fees on to app users by

increasing in-app purchase prices. Third, a hypothetical buy-out of a streaming app by the plat-

form leads to a significant decrease in the innovative efforts and market share of the acquired

app. Notably, welfare analysis without quality adjustment is predicted to underestimate the

impact of fee cap on social welfare by 0.91% - 2.06% points compared to the full-stage model

estimates. This research highlights the importance of considering quality changes along with

price fluctuations when evaluating regulatory intervention in digital platforms.
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1 Introduction

Digital platforms connect two sides of the market: third-party developers and consumers, facili-

tating transactions between the end users. This so-called ‘gatekeeper’ role of digital platforms has

been raising regulatory discourse worldwide, prompting legal scrutiny of major platforms such as

Amazon and Apple. One of the main issues pertains to the legitimacy of the commission fee im-

posed on third-party firms. Spotify’s lawsuit against Apple’s excessive fee (up to 30%) highlighted

how these fees increase costs for third-party app developers and consumer prices, consequently

thwarting innovation. While the European Commission and U.S. Supreme Court upheld Apple’s

current fee scheme, the Competition Commission of India criticized it as “exorbitant,” leaving un-

resolved debates over the excessive commission fees.1 Academic literature reflects this debate: some

speak to the need of fee regulation to promote innovation (Tirole and Bisceglia, 2023; Lu et al.,

2024), while others argue the regulation could only benefit producers at the expense of platform or

consumers (Li and Wang, 2024; Sullivan, 2024).

This paper aims to quantify the welfare consequences of capping commission fees in digital

platforms, focusing on the innovation and pricing decisions of third-party app developers. To that

end, I develop a two-stage structural model of the mobile app marketplace where app developers

first choose innovative effort and decide on the in-app purchase price (henceforth IAP) in the second

stage. Innovative effort is a proxy for the app quality improvements and continuously increases in

the number of app updates and its frequency.

While evaluating policy impact through equilibrium price changes has been standard (e.g., Sul-

livan (2024)), assessing quality adjustments is becoming equally crucial for welfare analysis, partic-

ularly in antitrust cases (Khan, 2016). Leyden (2022) documents that digitization has prompted

developers to continuously innovate. For instance, mobile app developers enhance their products

by regularly updating their apps to attract and maintain app users. These update decisions are

primarily driven by revenue expectations. External factors like platform owner entry (Foerderer

et al., 2018; Zhu and Liu, 2018) or commission fee increases (Lu et al., 2024) that potentially de-

crease developer revenue may lead developers to scale back updates. In light of these observations,

relying solely on price fluctuations may not precisely capture market dynamics and lead to biased

1https://economictimes.indiatimes.com/tech/technology/cci-reviewing-probe-report-on-apple-app-store-billing-
policy/articleshow/101142937.cms?from=mdr
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welfare estimates when evaluating policy impact.

This paper contributes a more comprehensive welfare analysis of regulatory interventions in

digital platforms by analyzing how app developers adjust both quality and pricing decisions in

equilibrium. The model can be extended to evaluate other regulatory interventions in digital

platforms, such as speculations on platform integration.

I estimate the model using a comprehensive dataset on individual music apps in Apple’s iOS

App Store in the United States from October 2018 to February 2024. I observe the app update

information, app ratings, in-store revenues (metrics for IAP), and the number of downloads and

active users at the app-month level. In a descriptive analysis, I find that app developers’ update

decisions and past in-store revenues are positively correlated, motivating the hypothesis that an

improved revenue potential due to the commission fee cap may bolster app developers’ incentive

to innovate.

I face endogeneity problems in estimating consumer utility parameters governing sensitivities to

IAP and app updates. First, the price coefficient estimate is subject to an upward bias due to the

positive correlation between IAP and the unobservable app quality. Second, the innovative effort

coefficient is also subject to bias as developers make optimal update decisions to maximize the net

returns to improve their app qualities.

These endogeneity concerns are addressed with two types of instrumental variables. The first set,

inspired by the BLP approach (Berry et al., 1995), aggregates competitors’ observed characteristics

from the previous period: 1) app rating, 2) cumulative downloads within the same group, and 3) the

differential in the number of app updates within the group. An app’s unobserved quality residual

is unlikely to correlate with competitors’ past observable characteristics. For example, YouTube

Music’s past app rating is unlikely to be impacted by Spotify ’s current unobserved quality after

controlling for observable attributes. However, an anticipation of a higher market-wide app rating

may prompt developers to lower IAP and adjust their innovation strategies. The second and third

instruments also provide exogenous variations in within-nest market shares to estimate the nesting

parameter governing the within-nest correlation of utilities.

The second set of instruments consists of the supply-side factors: 1) the developer’s total app

count in the App Store and 2) the number of consumer privacy agreements collected. These vari-

ables influence developers’ cost structures. Multi-app developers may benefit from the economies
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of scale or learning effects, potentially achieving greater efficiency in app distribution and updates.

Additionally, developers can leverage user data obtained through privacy permissions for moneti-

zation strategies, such as price discrimination or targeted advertising, and guide update decisions

based on post-update user behavior analysis.

With these instrumental variables, I estimate a nested logit demand model where music apps

are grouped into streaming, instruments, radio, and social apps. My empirical strategy appears

to substantially reduce the bias in price and app update coefficients. These demand parameters

allow me to back out app developers’ net ancillary benefits using the first-order condition from the

supply model. As Tirole and Bisceglia (2023) describe, developers gain ancillary benefits from app

usage, such as advertisement revenue or consumer data, while the marginal (app distribution) cost

is minimal.2 I define net ancillary benefits by subtracting marginal costs from ancillary benefits and

discover that most developers are estimated to have positive net ancillary benefits. This reflects

the prevalence of zero-price strategy in the mobile app marketplace, where app developers rely on

ancillary benefits as one of their main revenue sources.

I then estimate the cost parameters for innovative efforts using the optimality condition. While

innovative effort directly affects developer profit, it also has indirect effects by influencing IAP

decision in the model’s second stage. Consequently, the optimality condition includes cross-price

elasticities and cross-partial derivatives of price with respect to innovative effort, presenting a

computational challenge; a marginal change in innovative efforts would shift optimal IAP and

market shares for all developers. To address this complexity, I employ the approach developed by

Berto Villas-Boas (2007) and Fan (2013).

I simulate three policy counterfactuals. For each scenario, I sequentially solve for the equilibrium

innovative effort and IAP. The first counterfactual reflects the regulatory debate on capping digital

platform’s commission fees. The preliminary results suggest that lowering fees increases both

IAPs and app updates, eventually improving developer welfare but reducing platform surplus.

Interestingly, capping the fees is predicted to harm consumer welfare while having the fee at 30%

improves consumer surplus. This is the result of the prevalence of positive net ancillary benefits in

the mobile app marketplace.3 Nevertheless, the increased levels of innovation appear to partially

2Tirole and Bisceglia (2023) define it as a negative opportunity cost of distributing apps and illustrate the
prevalence of zero-price strategy in the mobile app marketplace.

3The impact of commission fees on IAP is unambiguous in two aspects. Higher fees can increase effective
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offset the negative effects of fee caps, ultimately improving social welfare.

The second counterfactual resembles Apple’s new fee scheme in the EU: it collects 10% on

subscription payments with 0.5 Euro per app download.4 It turns out that the developers would

partly pass through unit fees on to consumers by increasing IAP. Though the lower ad-valorem fee

promotes innovation, consumers may be worse off due to higher prices. Apple seems to derive a

huge benefit from the new fee policy.

The third counterfactual is Apple’s hypothetical buy-out of one of the streaming apps in the

App Store. Apple is predicted to put less innovative effort into the acquired app compared to the

previous owner in the pre-acquisition state, losing market share. This discrepancy between Apple

and third-party app developers’ innovation incentives is due to the fact that the platform’s revenue

partly comes from commission fees. The results challenge the allegations of Apple and Google that

their market dominance in digital wallets and online search engines primarily results from superior

product quality.

In light of these findings, regulating commission fees at lower rates could enhance developer

welfare and incentivize their innovation, improving social welfare. From a distributional perspective,

a fee cap benefits third-party app developers at the expense of the platform and consumer surplus.

Counterfactual studies that treat innovative efforts variable as exogenous indicate that fee caps

would harm social welfare. Specifically, they underestimate the impact of fee cap on social welfare

by 0.91% - 2.06% points compared to the full-stage model estimates. This suggests that analyzing

fee caps solely through price competition could lead to misleading policy implications. The finding

emphasizes that quality competition plays a crucial role in evaluating regulatory interventions in

digital platform ecosystems.

There are several caveats to my analysis. One could argue that there is a potential risk of

platforms increasing core prices to compensate for their welfare loss. For example, the platform

could increase access fees for consumers (e.g., iPhone price) as Sullivan (2024) finds in food delivery

platforms. Despite the assumption that the platform fully recuperates its surplus loss through con-

marginal costs for developers, potentially inflating IAP. However, developers with minimal marginal production costs
and substantial marginal ancillary benefits may strategically lower IAP, relying more on ancillary revenue sources like
advertisements. This is due to the fact that the commission fee is only imposed on in-store purchases. Additionally,
reduced innovation resulting from higher fees could also drive down in-app prices (similar to what Zhao et al. (2024)
find).

4Since this paper uses the number of active users, I set the unit fees as $0.05.
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sumer surplus extraction, the model demonstrates a net increase in total welfare under commission

fee regulation. While this study focuses on unveiling third-party developers’ ‘short-run’ responses

to policy intervention, the inclusion of the platform’s ‘long-run’ problem can be a possible exten-

sion. I investigate the music app category that exhibits a subscription-based payment system; thus,

it is worth noting that the main findings of this study may be generalizable to other categories with

similar payment systems. I will further elaborate on potential criticisms of my model in Section 3.

1.1 Related Literature

This paper is closely related to the literature on platform fee regulation, a topic that originated in

debates on credit and debit card interchange fees. From a theoretical perspective, profit-maximizing

interchange fees set by card issuers were not considered socially optimal (Wright, 2004; Klein et al.,

2005) since merchants would increase consumer prices, though Rochet and Tirole (2003) argued

that policy intervention requires robust evidence of market failure and empirical analysis in a two-

sided market. Following the implementation of fee caps on debit card platforms in 2010, empirical

studies revealed “unintended” policy consequences, such as increases in bank service fees (Evans

et al., 2013) and small-ticket transaction fees (Wang, 2016), eventually harming consumers.

The regulatory discourse has recently extended to digital platforms, initially prompted by Spo-

tify’s lawsuit against Apple in 2019. While the discussions on interchange fees primarily centered

on consumer price impacts, debates on digital platforms also consider the policy’s effect on qual-

ity (Lu et al., 2024; Zhao et al., 2024). For instance, Lu et al. (2024) investigate the regulatory

impact of commission caps on app developers’ innovation incentives within the Steam game plat-

form. Using BLP estimation, they demonstrate that lower commission fees increase developers’

expected revenue, encouraging more frequent updates while discouraging new app releases, result-

ing in over-investment in beta testing. This study extends Lu et al. (2024)’s work by incorporating

app developers’ sequential decisions on innovative effort and price instead of treating price as con-

stant and using an indicator variable for updates. Furthermore, focusing on mobile apps presents

a novel approach due to their unique revenue structure, which also depends on ancillary benefits.

The implementation of commission fee caps for food delivery platforms has become prevalent

across the United States, prompting various empirical evaluations. Li and Wang (2024) employ

a staggered difference-in-differences estimation to explore the impact of commission caps in food
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delivery platforms (e.g., Doordash, Grubhub) on the third-party stores’ revenue and order volumes.

Their findings indicate that independent stores, such as local restaurants, experience decreased

profits and order volumes in regulated areas due to city-based commission caps that do not apply

to nationwide chain restaurants. The platforms are observed to impose higher consumer fees to

offset the commission revenue loss from stores. Similarly, Sullivan (2024) assesses the welfare

effects associated with commission caps. His findings reveal that while capping commission fees

reduces restaurant prices, the platform increases fees for consumers. Although consumers benefit

from greater choice variety, higher platform fees reduce overall welfare. My analysis, on the other

hand, shows that when accounting for firms’ endogenous quality improvement decisions, the welfare

consequence of a fee cap becomes positive.

As Leyden (2022) documents, digitization has provided a wider range of monetization options

for developers and thus induced a zero-price strategy while increasing the innovation incentive at

the same time. This low-price strategy (sometimes called “predatory” pricing for Amazon) has

led the antitrust regulators to consider quality aspects when evaluating the regulations on digital

platforms, as noted by Khan (2016). With this in mind, my paper provides a novel lens to assess

regulatory intervention in digital platforms by constructing a model that incorporates firm decisions

on price and quality.

The paper contributes to the growing body of literature on platform regulation that addresses

key issues such as platform entry (Hagiu and Wright, 2015; Gutierrez, 2021; Hervas-Drane and

Shelegia, 2022), self-preferencing (Zennyo, 2022; Dendorfer, 2024), and its gatekeeper role (An-

derson and Bedre-Defolie, 2023; Tirole and Bisceglia, 2023). This paper specifically analyzes the

welfare effects of capping commission fees by focusing on its effects on the app developers’ inno-

vation and pricing decisions. By examining market outcomes under various commission rates, this

study also informs broader discussions on the consequences of platform entry. For instance, the

platform can divert consumers toward its own product by increasing commission fees (Etro, 2022).5

This paper further contributes to research examining the impact of changing commission fees

in various aspects. Prior studies have extensively addressed how higher commission fees increase

sellers’ costs (Motta, 2023; Sullivan, 2024). Tirole and Bisceglia (2023) propose that regulating

5Such a demand substitution effect can arise since higher fee increases the effective marginal cost for competing
firms (Anderson and Bedre-Defolie, 2023).
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commission fees enables third-party app developers to fully benefit from their innovations, thereby

fostering a more innovative environment. Gomes and Mantovani (2024) extends the discussion

by considering the network externalities of the platform. Their key finding suggests that capping

commission fees reduces platform revenue, potentially leading to decreased investment in market

expansion and consumer information enhancement.

This paper also aligns with the stream of empirical papers examining developers’ innovation de-

cisions in response to exogenous shocks, such as platform owner’s entry (Foerderer et al., 2018; Wen

and Zhu, 2019) or platform system change (Leyden, 2024). For example, Leyden (2024) explores

how Apple’s review system in the App Store influences the innovation incentives for app developers.

This paper relates to their works in that I discover how developers’ pricing and innovative effort

decisions vary when commission fee structures change exogenously.

Finally, this paper extends previous work on estimating demand for mobile applications. While

Ghose and Han (2014) find discounts on app price and more updates would increase app downloads,

I additionally demonstrate how in-app purchase prices and update decisions affect app usage. To the

best of my knowledge, previous studies have not yet shown the intensive margin of demand on mobile

apps. For instance, Leyden (2022)’s finding on the positive relationship between innovation and

app demand is limited to the extensive margin of demand due to data constraints. He highlights the

importance of considering the intensive margin of demand, which this paper reveals by leveraging

the number of active users as a quantity variable.6 In addition, this paper contributes to the research

on digital service business models (e.g., for music apps (Lin et al., 2013; Barata and Coelho, 2021)

or game apps (Hamari et al., 2017)) by providing strategic guidelines for app developers on in-app

price and update frequency decisions.

The remainder of this paper follows: In Section 2, I provide background on the mobile app

marketplace with its distinctive features and market definitions. I then show a reduced-form rela-

tionship between in-app revenue and developers’ decisions on app updates. With this suggestive

evidence in mind, I construct a two-stage model in Section 3. Section 4 conducts estimations for

demand and supply parameters that will be used to simulate counterfactuals in Section 5. Section

6 provides concluding remarks.

6Garg and Telang (2013) also suggest estimating mobile app demand with in-app purchase prices included as a
future agenda.
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2 Background and Data

2.1 Institutional Background

Apple launched the App Store in 2008, providing iPhone users access to millions of applications.

It has since become a major mobile app platform, dominating the United States’ mobile app

market alongside Google. As of 2023, Apple and Google held market shares of 56.92% and 42.65%,

respectively (Statista, 2023). This study focuses on the Apple iOS App Store in the United States,

the exclusive app marketplace for iPhone users. The App Store exhibits several distinctive features

that differentiate it from other platform markets:

Flat commission rates The App Store enforces fixed commission rates across product categories:

15% for subscriptions and 30% for other transactions.7 These rates exceed those of other platforms.

For comparison, Amazon typically charges 12% in ad-valorem fees on third-party sellers’ revenue,

eBay collects up to 12% of sales revenue, and Walmart imposes referral fees ranging from 6% to

15% on fringe sellers’ revenue (Borck et al., 2020). The commission fee scheme is considered a

long-term optimization problem for Apple, with most major digital platforms (e.g., Google and

Steam) implementing a 30% fee as an industry standard (Lu et al., 2024). Consequently, this study

introduces the commission fee as an exogenous and constant variable in the model.

Freemium products The mobile app market is characterized by a prevalent zero-price strategy

facilitated by minimal marginal costs for app distribution. Tirole and Bisceglia (2023) argue that

negative opportunity costs drive this strategy, motivating developers to offer apps with zero prices.

App developers have a distinctive revenue structure, that depends on ancillary benefits such as ad-

vertisement revenue or collecting consumer data by distributing their free apps. Over 50% of music

apps in the dataset are observed to adopt this approach. Spotify exemplifies a ‘freemium’ business

model, offering both a free (ad-supported) streaming service and premium (ad-free) subscriptions.

This dual-tier strategy expands the user base, with the free version providing ancillary benefits even

without direct monetization. Figure 1 demonstrates that the majority of app developers maintain

static average IAP, with less than half implementing price adjustments over time.

7Apple has a small business program that reduces the commission fee to 15% for developers who earned under $1
million with their total apps in the previous calendar year. However, since this study focuses on the top 200 ranked
apps and subscription-based services, Apple’s small business program is not considered in this analysis. In addition,
Apple reduces the fee to 15% on the subscription-based payment that recurs for more than a year. However, this
paper assumes that the fee for subscription payments is set uniformly at 15%.
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Figure 1: Average In-App Purchase Price and Innovative Effort across Months

Note: The values in the figure are based on the panel dataset, which will be discussed in detail in Section 2. This figure illustrates each music streaming app
developer’s decisions on in-app price (black) and innovative effort (orange) over time. Most apps offer both free (ad-supported) and paid (ad-free) versions,
explaining the flat black lines for apps like Spotify and Musi, which indicate a high proportion of free users. In contrast, developers such as AMI Entertainment,
Entercom (Audacy), and Mixcloud provide completely free streaming services. This visualization highlights the diverse pricing and innovation strategies in the
music streaming app market.
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Continuous product improvements On top of the digitization, the mobile app developers’

unique revenue model, which derives significant portions from ancillary benefits, results in sub-

stantial product differentiation compared to traditional marketplaces like Amazon. Consequently,

continuous product enhancement through frequent app updates is a key characteristic of the App

Store. Figure 1 underscores the ongoing competition among app developers, exemplifying the dy-

namic nature of the marketplace beyond price competition. In the same spirit, previous studies

on the platform find that app developers primarily respond to platform entry by adjusting update

frequency (e.g., Foerderer et al. (2018) and Wen and Zhu (2019)). Incorporating horizontal and

vertical differentiation in the model facilitates a more precise quantification of welfare effects.

2.2 Regulatory Details

Apple and Google have faced ongoing regulatory scrutiny for their ‘gatekeeper’ roles in the dig-

ital platform ecosystem, particularly regarding the imposition of commission fees on third-party

developers and vertical integration practices. This study addresses three main antitrust issues sur-

rounding digital platforms. The first case pertains to the legitimacy of Apple’s high commission

fees on third-party developers, a concern raised by Spotify in 2019.8 The suitcase highlighted how

Apple’s excessive commission fee increases costs for developers and consumer prices while ulti-

mately diminishing incentives for quality enhancement. The second issue stems from the antitrust

challenge against Google and Apple brought forth by Epic, the developer of the popular mobile

game Fortnite, citing an unjust commission fee system. After Epic enabled direct in-app purchases

through its own platform, both tech giants removed Fortnite from their stores, citing violations of

“anti-steering provisions” and commission fee evasion.

The European Commission and U.S. courts have ruled that while Apple may maintain current

commission rates, it must allow third-party developers to offer alternative payment options (Iyengar

and Duffy, 2021; Grant, 2023). The European Commission’s Digital Markets Act (DMA) further

mandates that digital platforms should not restrict developers’ payment options and should permit

alternative app stores on iPhones. Although these regulations signal a potential upheaval in Apple’s

current policies, the company’s response to the DMA has been deemed unsatisfactory. Their

proposed terms include a 17% fee on in-app purchase revenue (10% for recurring payments) and a

8For details, see news article from CNBC (2020).
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fixed fee of 50 Euro cents per app download, regardless of payment options. Spotify contends that

this new structure contravenes the DMA’s objectives.9

Third, the study addresses antitrust issues on vertical integration of the platform. Whether

allowing the digital platforms to have their own products in their marketplace is pro-competitive

or anti-competitive has been the topic of heated discussion. Recent legal actions include the U.S.

federal attorney and Department of Justice fining Google for dominating the search engine market

with Chrome browser (McCabe, 2024) and accusing Apple of foreclosing competing app developers

in the digital wallet market. Both companies argue that their dominance stems from superior

product quality.

Section 5 of this study explores counterfactual simulations reflecting recent policy issues sur-

rounding Apple’s commission fee structure. As an extension, I simulate additional counterfactuals

to assess whether acquiring a prominent streaming music app would enhance innovation for the

platform.

2.3 Market Description

The unit of analysis in this study is the individual music app developers on the Apple iOS platform

in the United States on a monthly basis. The music category was selected for three primary reasons:

regulatory relevance, category distinctiveness, and profit function clarity. First, the antitrust debate

on excessive commission fees was raised by Spotify, and regulators primarily focus on the music

app market. Analyzing Music category thus provides more direct policy implications.

Second, the music app category exhibits less overlap with other categories, as users predom-

inantly listen to music via music apps. This contrasts with other app categories that may share

similar user bases (e.g., Travel apps and Navigation apps or Health & Fitness, Lifestyle, and Medi-

cal apps). Third, the music category contains fewer companion apps, which typically have distinct

profit functions. For instance, developers of airline or banking apps primarily compete outside the

app platform and may not prioritize app profit maximization. It is worth noting that as most

music apps are subscription-based, the main findings of this study may be generalizable to other

categories with similar payment systems (e.g., Productivity, TV Streaming).

The iPhone users can download applications only through the App Store due to Apple’s privacy

9See their claims on Spotify’s website.
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Table 1: Sample App List for each Nested Group

Streaming (Online) Complementary (+ Headphones) Instrument

Amazon Music Airbuds Widget Audio Editor - editor
AMI BarLink AmpMe Audio Editor - Mixer
Apple Music Bass Booster + Equalizador Pro Auxy
Audiomack Bass Booster Volume Boost EQ BandLab
Bandcamp Bass Booster Volume Equalizer Beat Maker
Deezer Bose Connect BeatStars
DICE: Tickets for Gigs & Clubs Bose Music Chordify
eSound Clear Wave - Water Eject DJ it!
Mixcloud djay Drum Pad Machine
TIDAL Songkick Concerts Mezquite
Trending SongPal Moises
YouTube Music SongShift MuseScore

Streaming (Offline) Radio Socialize

Cloud Music Offline Downloader Audacy Bandsintown Concerts
Evermusic Calm Radio Discogs
Melodista Music Offline Player FM Radio Guitar Center: Shop for Gear
Music Downloader & Player iHeartRadio KaraFun
Trebel MusiC Play Unlimited Musi.C K-LOVE
Cloud Music Offline Downloader myTuner Radio RA Guide

Note: This table shows the partial list of apps for each sub groups due to limited space.

policy. Hence, the potential market for app developers consists of iPhone users in the United States,

of which the figure increased from 101.9 million in 2018 to 135.97 million in 2023.10 I define the

market size as proportional to the number of iPhone users.11 Also, I use the number of active

users as the quantity variable, which precisely measures an app usage that app developers actually

compete for; Dubé et al. (2021) adopt an analogous approach with the number of customer visits

per store. This approach allows for identifying the intensive margin of demand for app usage.

2.4 Data

A panel dataset of 200 top-ranked apps in the Music category of the Apple App Store was collected

from October 2018 to February 2024 (T = 65) using the App Annie website. App Annie is an

AI-powered analytics company that regularly collects app data on a daily, weekly, and monthly

10https://www.demandsage.com/iphone-user-statistics/
11This approach aligns with other empirical studies in Industrial Organization; Miller and Weinberg (2017) set the

craft beer market size as 50% greater than the maximum unit sales observed within each region, and Gutierrez (2021)
used the average ratio between Amazon’s e-commerce share and retail shares to compute market size (approximately
20% of the total population).
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basis, providing various app-level data such as the number of app downloads and active users,

in-store revenue, app rating, rating counts, and language offerings. Additionally, update dates for

individual apps were scraped from the Appfigures website using the Selenium package in Python.

2.4.1 Sub-Groups

The mobile app platform is characterized as a “short-tail” market rather than a “long-tail” market

where the cumulative effect of numerous unpopular niche products constitutes a significant portion

of demand (Jiang et al., 2011; Zhong and Michahelles, 2013). Consequently, there was limited

information available on the number of active users for some apps, particularly the less renowned

ones. Data for 128 individual apps were used from the full sample. The sample was further

refined to 73 apps through a two-step process: First, apps launched during the study period were

eliminated, thereby being unable to capture the entry or exit behaviors of app developers; however,

most of the famous apps were launched before my time period.

Second, I excluded complementary apps from the sample. Considering that the feature of music

apps greatly varies from streaming services to music instruments, some would not be in direct

competition with each other or even be deemed as a complementary app. Indeed, Headphones &

Speaker apps such as Bose Connect or music-finding apps (e.g., Shazam) would increase the utility

of streaming app users. With this in mind, I manually categorized music apps into five groups

based on their main feature. Table 1 reports a list of sample apps in different groups.

Figure 2a demonstrates an inverse relationship between the average in-app purchase price (IAP)

of complementary apps and streaming app usage, while concurrently showing a positive correlation

between other music apps’ IAP and streaming app usage. Correspondingly, Figure 2b reveals a

negative association between the average IAP of music apps and complementary app usage. These

findings suggest a negative cross-price elasticity between complementary apps and both streaming

and other music applications. Furthermore, Table D.2 in Appendix D substantiates a positive

correlation between streaming app downloads and the innovative efforts of complementary apps.

Collectively, these observations indicate that complementary apps may not directly compete with

other music apps, but in a complement relation.

The complementary apps in a total of 25 were therefore excluded from my dataset. I conducted
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Figure 2: Evidence on Cross-Price Elasticities Across Nests
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Notes: Figure 2a depicts the correlation between the average in-app purchase price (IAP) changes within each nested
group and the number of active users for streaming applications. This visualization elucidates the elasticity of user
engagement metrics for streaming apps in response to IAP adjustments across different nests. Figure 2b reports the
same for complementary apps.

a regression with a 98-app sample (after the first step, including complementary apps), with results

reported in Appendix A. The signs for parameters of interest are the same as the main results in

this paper; however, the nesting parameter turns out to be close to one, indicating a lower diversion

ratio between the subgroups.

2.4.2 In-App Purchase Price (IAP)

The app developers usually do not charge a price for downloading apps, but users need to pay

a subscription fee in order to enjoy the streaming (or premium) service within the music apps.

Indeed, most apps offer a ‘freemium’ service by setting the app price to zero.12 Hence, it is difficult

to find a standardized subscription price variable in the Music app category since the options for

a subscription highly vary depending on the length of the subscription period and bundle options

(e.g., free trial, family plan).

One way to overcome this difficulty is to use the average transaction price per unit. I divide

the total in-store revenue, which aggregates all the revenue made through in-app purchases, by the

12The average app price in Appstore is $0.8 in May 2023 (https://www.statista.com/statistics/267346/average-
apple-app-store-price-app/).
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Figure 3: App Update Information

(a) Spotify (b) Histogram of Update Frequency
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Note: Figure 3a shows the version history of the Spotify, captured from the iOS App Store website. The numbers
on the left side indicate the version of the app, with descriptions of updates delineated below. The updated date is
shown on the right side. Figure 3b depicts the histogram of update frequency for music apps in the dataset, with
x-axis representing the days took for a single update. The metric 30 includes apps that have not been updated more
than 30 days.

number of active users to compute the average transaction expense. I use this average transaction

expense as a proxy for the price, which can be standardized across different music apps. Neverthe-

less, this measure cannot capture the purchase directly through a developer’s website. For example,

some Spotify users could pay subscriptions on the website and stream music on the mobile apps.

This paper abstracts away from such consumer behavior, assuming them as free-version users.13

13Spotify opted out from Apple’s in-app payment system in 2016 to avoid the 30% commission fee structure
(news article). While existing Spotify subscribers retained access to Apple’s in-app payment system, new users
were restricted to direct payment channels through Spotify ’s platform. Although more than 50% of Spotify ’s user
base consists of non-paying subscribers using ad-supported streaming services, the inability to capture payment
data from users operating outside the App Store potentially results in an underestimation of the price coefficient β.
Supplementary welfare analysis conducted with increased |β| values in Appendix A reveals welfare effects of similar
magnitude as those presented in the primary findings; higher price sensitivity hamper app developers from charging
higher prices, at the same time reducing changes in the innovative effort as well. Consequently, the counterfactual
results presented in Section 5 seem to remain solid regardless of the limitation of data.
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2.4.3 Innovative Effort

Enhancing the quality of an app can be an important strategy for developers to keep active users

and attract more users. Compared to other platform marketplaces, firms in mobile platforms can

continuously improve their apps through frequent updates. In order to capture this app quality

improvement, I introduce the innovative effort variable which continuously increases in the number

of app updates and its frequency. In specific, I use the inverse of the time period between two

consecutive updates. For example, Figure 3a shows the version history of Spotify in the App

Store in September. Spotify updated its version from 8.8.66 to 8.8.68 within seven days, and

after two days, it launched a new version, 8.8.69, and so on. Hence, the innovative effort for

Spotify in September can be computed as 1
7 + 1

2 + 1
5 + 1

8 + 1
6 + 1

2 = 1.635. Note that Spotify ’s

innovative effort increases in the number of app updates and its frequency. Most importantly, this

computation makes the variable continuous and enables us to smoothly simulate counterfactual

with its optimality condition (11).

2.4.4 Descriptive Statistics

Table D.1 in Appendix D reports the summary statistics of the dataset used in this paper. The

market share of each app is computed based on the number of active users each month. Market

share highly varies from 0.003% (UnitedMasters) to 24.8% (Spotify), implying the short-tail feature

of the market (Zhong and Michahelles, 2013). The average in-app purchase price (IAP) also shows

some variation, while the mean value is close to zero. This indicates the presence of negative

opportunity cost in the app marketplace that Tirole and Bisceglia (2023) argue. By offering free

service, the app developers gain ancillary benefits, such as advertising revenue or consumer data,

that outweigh the marginal cost of app distribution.

Figure 1 further depicts how streaming app developers change their IAP and innovative efforts

across time periods. We can witness that innovative decisions greatly vary while pricing decisions

remain relatively stable. This suggests that the quality competition is more dynamic than the

price competition in the streaming app market. I also introduce a categorical variable, popularity

of app, based on the number of ‘cumulative downloads’ last month: < 1, 000, 000; < 10, 000, 000;

< 50, 000, 000; < 100, 000, 000 and the rest.
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Figure 4: Statistics Across the Nest
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Note: Figures 4a and 4b illustrate the aggregated monthly app downloads and active user counts, respectively,
categorized by nested groups denoted by distinct color coding. Figure 4c presents the mean cumulative number of
app updates traced within the dataset. Additionally, Figure 4d elucidates the correlation between the average in-app
purchase price (IAP) and app updates.
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Finally, Figure 4 shows descriptive statistics across the nested groups. On aggregated level,

Streaming apps are observed to take the largest share of app downloads and active users while

Socialize apps have the least (Figures 4a and 4b). Figure 4c demonstrates the Streaming apps’

active updates compared to other groups, while Socialize apps would charge higher IAP, as shown

in Figure 4d. A positive correlation between IAP and app updates is also implied in Figure 4d.

2.4.5 Reduced-Form Evidence

I conduct a reduced-form approach with equation (1), focused on observing the relationship between

past in-store revenue and update decisions for app developers. The number of updates or innovative

effort (both denoted as ρjt) for each developer j in month t is regressed on the previous month’s

in-store revenue (revjt−1) and a vector of app age, app ratings, the popularity of app in previous

month in Xjt. I also include year-month-fixed effects (µt) and app-fixed effects (θj). Table 2

reports the OLS regression results.

ρjt = ω0 + ω1revjt−1 + ω2sjt−1 + ω3bjt−1 +XjtΩ+ µt + θj + εjt (1)

A notable and positive correlation between the in-store revenue and the innovative effort (and

the number of app updates) is evident in all specifications. This persistence suggests that app

developers’ optimal update decisions are endogenously linked to their in-app revenue. When their

in-store revenue decreases due to external factors, a decrease in their innovative effort also would

be associated. With this evidence in mind, I develop a structural model that will be used in coun-

terfactual where the platform would choose to raise (or lower) the commission fee that exogenously

shifts the revenue for third-party app developers.
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Table 2: Relationship Between In-Store Revenue and Update Decisions

Dependent variable:
Number of update Innovative effort
(1) (2) (3) (4)

lagged(In-store revenue) 0.066∗∗∗ 0.016∗ 0.013∗∗∗ 0.004
(0.004) (0.008) (0.001) (0.003)

App age 0.006∗∗∗ −0.010∗∗ 0.001∗∗∗ −0.001
(0.001) (0.005) (0.0002) (0.002)

App rating 0.245∗∗∗ 0.310∗∗ 0.024 0.087∗

(0.084) (0.134) (0.026) (0.046)

Popularity last month 0.146∗∗∗ 0.011 0.026∗∗∗ −0.010
(0.027) (0.063) (0.008) (0.022)

Constant −0.639 1.687∗∗ −0.060 0.054
(0.408) (0.702) (0.126) (0.242)

Year-Month Fixed Effects Y Y Y Y
App Fixed Effects N Y N Y

Observations 4,745 4,745 4,745 4,745
R2 0.155 0.497 0.090 0.326

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3 Model

This paper investigates how developers adjust their innovative efforts and in-app purchase prices

against Apple’s commission fee structure changes, which is essential for implementing the welfare

analysis. In this section, I construct a structural model of consumers and app developers (including

Apple’s GarageBand app) on Apple’s iOS App Store to capture the developer behaviors on pricing

and innovative effort decisions. The model is a two-stage game with a timeline as follows: i) in

the first stage, the app developers simultaneously decide to which extent to put innovative effort,

an increasing function of the number of updates and its frequencies, into their apps; ii) then, in

the second stage, with the complete information on the optimal innovative effort in the market,

developers set the in-app purchase price for the consumers at the same time. The number of

updates and its frequency signal to consumers that the developer is putting effort into improving

app quality and consumer satisfaction.14 This two-stage game is solved by backward induction.

3.1 Consumer Side

There are N third-party app developers labeled as j ∈ {1, 2, · · · , N} in the platform, while Apple

also engages in the downstream market by selling its app m. The consumers are assumed to choose

developer j’s app according to nested logit preferences. The music apps are categorized into five

sub-groups: streaming (g = 1), radio and podcasts (g = 2), socialize (g = 3), instruments (g = 4),

and outside option (g = 0). Consumers can choose an “outside good”, which is the only member

in group g = 0, by not using any music apps. For example, some consumers may use streaming

services directly from a computer website or not enjoy listening to music. The mean utility of an

outside good is defined as zero. Thus, the indirect utility of this outside option is u0jt = ϵ0jt.

Consumer i gains utility uijt when using an app from developer j ∈ {1, 2, 3, · · · , N,m} in group

g at month t:

uijt = δjt + ζig + (1− σ)ϵijt

where δjt = αρjt + βbjt +Xjtλ+ ξjt. The innovative effort is denoted as ρjt for the developers to

14Previous research shows common results on the positive effect of updates on consumer demand (e.g., Ghose and
Han (2014); Leyden (2022); Lu et al. (2024))
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improve app quality, and bjt represents the in-app purchase price (IAP). Xjt is a K-dimensional

vector of observable app characteristics, such as the app age, app rating, and app popularity. The

unobserved app quality is captured in a structural term ξjt. Consumers gain a common utility

of ζig for the apps in the same group. There is an idiosyncratic shock ϵijt to the consumer’s

preference over developer j’s app, which follows Type 1 extreme value distribution with a nesting

scale parameter σ.15 When σ → 1, consumer preferences become more correlated across apps in

the same nest, while σ → 0 indicates a multinomial logit demand.

The probability of purchasing an app from developer j is

Pjt(ρ⃗t) =
exp(δjt/(1− σ))∑
k∈Jgexp(δkt/(1−σ))︸ ︷︷ ︸

Pj|gt

·
[
∑

k∈Jg exp(δkt/(1− σ))](1−σ)

1 +
∑G

h=1[
∑

k∈Jh exp(δkt/(1− σ))](1−σ)︸ ︷︷ ︸
Pgt

(2)

where Pj|gt is the probability of choosing app j in the nest g and Pgt is the probability of choosing

the nest g among other nests, given a vector of innovative effort ρ⃗t = (ρ1t, ρ2t, · · · , ρNt, ρmt). I

hereafter omit subscript t for ease of exposition and restore it in Section 4.

The model is based on two assumptions that can be criticized. First, using a discrete choice

model assumes that consumers will only use a single app in a given period. The quantity in

my model is the number of active users in a given month, which does not distinguish single-app

and multi-app uses; a consumer can use Spotify today and use SoundCloud tomorrow, but my

data regard him/her as separated users. I leverage the number of minutes spent per app as a

dependent variable to conduct a robustness check in Appendix A and find similar results. Since it

is unlikely that one will use multiple apps in one minute, this alternative specification strengthens

my main results. Second, app developers are assumed to be single-homing. Put differently, multiple

apps of the same developer are treated as owned by separate developers (similar to what Leyden

(2022) assumes). However, this assumption is partially relaxed in my model, as there are only two

developers who have more than one app in my sample. Hence, a subscript j indicates either a

developer or an app hereafter.

15Following Cardell (1997), for ϵijt that is distributed Type 1 extreme value, there exists a unique distribution for
ζig that allows ζig + (1− σ)ϵijt to follow extreme value distribution.
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3.2 Developer Side

The model assumes single-homing for the app developers; they can distribute their apps only

through the platform. The platform is a gatekeeper and charges ad valorem commission fees (f)

to developers, while it does not charge access fees to consumers.

3.2.1 Second-stage: Decide IAP (bj)

In the second stage, I derive the equilibrium in-app purchase price for each app developer. The

profit functions for third-party app developers and the platform follow:

πS
j = (bj(1− f) + ϕj)Msj(ρ⃗) (3)

πS
m = M

f

N∑
j=1

sj(ρ⃗)bj + (bm + ϕm)sm(ρ⃗)

 (4)

where M is the market size and sj(ρ⃗) is the market share of app j that depends on effort vector ρ⃗.

The in-store revenues come from two different sources: IAP (bj) and net ancillary benefits (ϕj) that

are privately known. The net ancillary benefits is a sum of ancillary benefits (e.g., advertisement

revenue) and marginal cost of production. The ad-valorem fee is imposed only on the in-store

purchases (bj). The first-order conditions with respect to b for the developers and the platform are,

(bj +
ϕj

1− f
)
∂sj
∂bj

+ sj = 0 (5)

f

N∑
j=1

∂sj
∂bm

bj + (bm + ϕm)
∂sm
∂bm

+ sm = 0, for j = 1, 2, · · · , N. (6)

I define the implicit best response function bj = f j(ρ⃗) that satisfies the first-order conditions

(5) and (6) as follows:

bj = − ϕj

1− f
− sj

∂sj
∂bj

(7)

bm = −ϕm −

(
f
∑N

j=1
∂sj
∂bm

bj + sm
∂sm
∂bm

)
. (8)

It is noteworthy that the marginal effect of commission fee f on the optimal price bj is negative

22



when the net ancillary benefits is positive (ϕj > 0). Intuitively, when the commission fee gets

higher, the best strategy for the developer is to reduce the price (since f is imposed only on b) and

depend more on ancillary revenues with higher market share. If a developer has negative ϕj , then

it would raise its in-app price under a higher commission fee.

3.2.2 First-stage: Decide Innovative Efforts (ρj)

In the first stage, the developers simultaneously choose their innovative effort, conditional on their

own and competing developers’ optimal price functions (⃗b∗(ρ⃗)). The first-stage profits for third-

party developers and platform are below:

πF
j (ρ⃗) = πS

j (⃗b
∗(ρ⃗); ρ⃗)− C(ρj) (9)

πF
m(ρ⃗) = πS

m(⃗b∗(ρ⃗); ρ⃗)− C(ρm) (10)

where each developer has a convex cost function C(ρj) for innovative effort. For this analysis, I

specify the slope of the effort cost as γ0 + γ1ρj + νj , where νj is developer j’s unobservable cost

shock.

The first-order conditions with respect to ρj give us the supply-side estimation equation for the

developers and the platform:

∂πS
j

∂ρj
+

m∑
k=1

∂πS
j

∂bk

∂b∗k
∂ρj

≡ γ0 + γ1ρj + νj . (11)

The left-hand side terms
∂πS

j

∂ρj
and

∂πS
j

∂bk
can be derived by taking derivative of equations (3) and (4).

On the other hand, computing
∂b∗k
∂ρj

is a challenge. I follow a similar approach that is used in Berto

Villas-Boas (2007) and Fan (2013) by taking the total derivative of the first-order conditions (5)

and (6) for all j = 1, 2, · · · , N,m:
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m∑
k=1

∂sj
∂bk

(1− f) + (bj(1− f) + ϕj)
∂2sj

∂bj∂bk
+ 1(j = k)(1− f)

∂sj
∂bj︸ ︷︷ ︸

=f(j,k)

 dbk

+

∂sj
∂ρj

+ (bj(1− f) + ϕj)
∂2sj

∂bj∂ρj︸ ︷︷ ︸
=g(j,1)

 dρj = 0

where 1(j = k) is an indicator for own-price derivatives. Since equation (11) is an optimality

condition for observed innovative efforts, we are only interested in computing
∂b∗k
∂ρj

with assuming

dρj ̸= 0 and dρk = 0, ∀k ̸= j ∈ {1, 2, · · · , N,m} (Fan, 2013). Then if I stack up f(j, k) and g(j, 1) for

all alternatives J = 1, 2, · · · , N,m, I get a matrix, F , with element f(j, k) and an (N+1)-dimension

vector, G, with an element of g(j, 1).

Next, taking total derivative on bj = f j(ρ1, · · · ρN , ρm) with the assumption dρj ̸= 0 and

dρk = 0, ∀k ̸= j ∈ {1, 2, · · · , N,m},

db1 =
∂b1
∂ρj

dρj

...

dbN =
∂bN
∂ρN

dρj

dbm =
∂bm
∂ρm

dρj .

We can then derive the matrix ∆b where the general element (i, j) is ∂bi
∂ρj

. And the j-th column

of ∆b can be computed as d⃗b
dρj

= −F−1G. With the other values on the left-hand side of equation

(11), I can estimate the cost coefficients γ0 and γ1 on the right-hand side. I further delineate the

details in the Appendix C.

3.2.3 Simulation Study

This section shows a simulation study with selected parameters to demonstrate the model’s func-

tionality and derive insights for various scenarios. The simulation setup is as follows: the coefficients
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for effort and price are set as α = 1 and β = −1, respectively. The number of app developers is

denoted as N = 30, while the cost coefficients γ0 and γ1, along with the net ancillary benefits ϕ,

are specified as 0.0001, 0.05, and 0.5 (or -0.5), respectively. These parameters remain constant and

symmetric across firms, simplifying the analysis. I posit asymmetries in unobserved quality (ξj)

in mean utility across 30 developers; ξj for j ∈ {1, 2, · · · , 30} is averaged over 5,000 consumers’

ξij randomly drawn from the Type I Extreme Value distribution. I investigate various scenarios

where the commission fee (f) takes on different values: i) 1%, ii) 15% (baseline), and iii) 30%. The

simulation proceeds through fixed-point iterations involving the two first-order conditions. Addi-

tionally, I impose lower bounds for each variable: bj > 0 and ρj > 0. I will discuss more details on

the simulation and counterfactual in Section 5.

Table 3: Simulation Results with Selected Parameters

Net Benifits Scenarios ρ̄ b̄ PS MS CS SW

ϕ = 0.5 f=1% 0.65 0.53 1.01 0.01 4.12 5.14
f=15% (baseline) 0.55 0.45 0.86 0.07 4.11 5.04
f=30% 0.46 0.32 0.71 0.09 4.14 4.94

ϕ = −0.5 f=1% 0.63 1.54 0.98 0.01 3.12 4.11
f=15% (baseline) 0.53 1.62 0.83 0.23 2.95 4.01
f=30% 0.43 1.75 0.68 0.49 2.74 3.91

Notes: The table reports the average value for each variable: innovative effort (ρ), IAP (b), app developer surplus
(PS), platform surplus (MS), consumer surplus (CS), and social welfare (SW). The first panel shows simulation results
when the developers exhibit positive net ancillary benefits (ϕ > 0) and the second panel shows the opposite case.

Table 3 shows the simulation results with different fee rates, from 1% to 30%. It is notable

that reducing the commission fee promotes innovative efforts regardless of the sign of net ancillary

benefits. On the other hand, the developers with positive (negative) net ancillary benefits (ϕ)

increase (decrease) IAP when the fee is reduced. Such a unique revenue structure of the mobile

app platform yields a conclusion that consumer surplus is maximized at f = 30% when ϕ > 0.

Nonetheless, capping the fee to 1% always improves consumer welfare (and maximizes social welfare)

by promoting innovation, and this result highlights the significance of including quality competition

in analyzing welfare effects.

Figure 5 further illustrates to which extent incorporating quality competition affects the market

outcome. If we treat the innovative effort (ρ) as an exogenous variable, the marginal effect of the fee

cap on IAP likely decreases. For example, when the commission fee gets lower to 1% in panel (b),
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developers reduce the price more with ρ fixed. The reason behind this is intuitive: more innovation

under a fee cap drives up the in-app prices at the same time. Hence, excluding the decisions on ρ

in the model would overestimate the magnitude of the effects of the fee cap on consumer welfare

(conditional on innovation level).

4 Estimation

This section derives consistent demand and supply parameters that are needed to conduct counter-

factual simulations. I begin with estimating equation (12) below to identify demand parameters (α,

β, and σ). Then, the net ancillary benefits (ϕ) can be backed out with FOCs (5) and (6). Finally,

I estimate equation (11) to recover cost coefficients. Table 4 explains variables.

ln(sjt)− ln(s0t) = αρjt + βbjt +Xjtλ+ ωpopjt−1 + σln(s̄j|gt) + µt + θj + ξjt (12)

Table 4: Variable Descriptions

Variables Descriptions

sjt Market share of app owned by developer j for the number of active users in month t.
s0t Outside market share; consumers who do not use music apps or use music service

via other methods (e.g., computer).
s̄j|gt Within market share in group g.

ρjt Innovative effort; increases in update frequency and the number of app updates.

bjt Average in-app purchase price per active user;
(in-store revenuejt)
(# of active usersjt)

.

Xjt Vector of observed app characteristics such as app rating and app age.
popj,t−1 App specific categorical variables; grouped based on the number of ‘cumulative

downloads’ < 1, 000, 000; < 10, 000, 000; < 50, 000, 000; < 100, 000, 000 and the rest.
Consumers likely prefer apps with more cumulative downloads.

µt Year-Month Fixed Effectss; e.g., iOS system update, aggregated shock on music market.
θj App Fixed Effectss; e.g., brand value.
ξjt Structural term that captures unobserved app quality.

4.1 Identification Strategy

The presence of unobservable quality (ξjt) in the app developers’ optimality conditions poses an

identification challenge. On the one hand, the structural term could positively correlate to IAP,

introducing a zero toward bias to the price coefficient (Petrin, 2002). For example, the transitory
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Figure 5: Optimal In-App Purchase Prices With and Without Quality Competition

(a) f = 1%

18.50

18.55

18.60

18.65

18.70

0.57 0.59 0.61
Mean utility

P
ric

e 
ch

an
ge

 (
%

)

Stage

Full

Partial
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(c) f = 30%
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(d) f = 30% (ϕ < 0)
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Note: This figure shows each developer’s simulation results of optimal in-app prices. The x-axis shows the mean
utility of each app, and the y-axis shows the percentage change in price compared to the baseline (f = 15%). The
dashed line represents the price changes when ρ is fixed. Hence, it shows the outcome when the model is partially
simulated only with Stage 2. The black solid line represents price changes when the full model is simulated. Panels
5a and 5c depict when the net marginal benefit is positive, while the net marginal benefit is negative in panels 5b
and 5d.
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shock on the quality of algorithms in music apps may be observed by app users but not by econo-

metricians. Suppose Spotify offers a higher quality of AI-based algorithms than YouTube Music

has. Ceteris paribus, Spotify would likely gain more market share and charge a higher IAP. This

positive correlation between IAP and unobserved quality index yields upward bias for β. On the

other hand, the relationship between innovative effort and unobserved app quality in the model is

more complex, with the former potentially increasing the quality index up until further app updates

yield diminishing returns. The innovative effort coefficient (α) is thus also subject to a potential

bias.

To deal with the endogeneity, I introduce two types of instruments. The first set is inspired by

the ‘BLP-instruments’ (Berry et al., 1995) by aggregating observed characteristics of competitors

in the previous period. Specifically, I use 1) app rating, 2) the cumulative number of app downloads

in the same group, and 3) the difference between the number of app updates in the same group:

Zg
jt =

∑
k∈Jg |xkt−1 − xjt−1|. The unobserved quality of an app is unlikely to be influenced by

the predetermined observed characteristics of competing apps. For instance, YouTube Music app’s

rating in previous months can hardly impacted by the current unobserved quality of the Spotify

app. On the other hand, when the market-wide app rating is observed to increase, the developer

will likely reduce the in-app price to attract more consumers and change their innovation decisions

(whether to compete or not). The second and third instruments have exogenous variations within-

nest market shares to estimate the nesting parameter governing the within-nest correlation of

utilities.

The second set of instruments comes from the supply side: 1) app developer’s total app count

in the App Store and 2) the number of consumer privacy agreements collected by the developer.

These variables shift the costs for the app developers. For example, a developer with multiple apps

across categories would be more cost-efficient in distributing and updating its apps, possibly by the

economies of scale or accumulated learning process. Also, the developer can gather user data by

requiring the privacy permissions of its app users, as exemplified in Figure 6. Then, the developers

can leverage the collected data in monetization strategy (e.g., price discrimination or advertising)

and efficient updates by examining users’ behavior after the past updates.16

16The determinants of app updates are empirically studied in the previous research. For example, see Ghose and
Han (2014) and Leyden (2022).
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Figure 6: App Privacy Example

Note: This figure is a screenshot of Spotify ’s app privacy policy, directly captured from the App Store.

These cost shifters vary across developers and time. Spotify, as depicted in Figure 6, collects

twelve sorts of privacy data; on the other hand, there are apps that do not collect any privacy

data, such as AMI BarLink and Auxy. The number of apps by the same developer shows more

variations as developers launch new apps over time. For example, Amazon had a total of twenty

apps in October 2018, including Amazon Music, while it launched thirteen more apps during our

time period. On the contrary, Auxy distributes only one app Auxy for the entire time period. This

paper also addresses an identification challenge regarding app heterogeneity. On top of including

app-fixed effects, I add the app’s popularity in previous months capturing consumers’ preferences

for music apps with a larger user base.

4.2 Estimation Results

Table 5 reports the demand and supply parameter estimates from equations (12) and (11), respec-

tively. The first two columns report the estimates under the multinomial logit model, and the next

two columns show regression results under the nested logit model. As expected, the coefficients

for innovative effort (α) and IAP (β) are significantly negative and positive for most of the speci-

fications. By comparing the coefficients of 2SLS models (second and fourth columns) to the OLS
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Table 5: Parameter Estimates

Dependent variable:

ln(sjt)− ln(s0t)
Logit Nested Logit

OLS IV OLS IV
(1) (2) (3) (4)

Innovative effort (α) 0.075∗∗∗ −0.459 −0.007 0.360∗∗

(0.029) (1.070) (0.007) (0.120)

IAP ($) (β) −0.245∗∗∗ −1.801∗∗∗ −0.009 −1.199∗∗∗

(0.068) (0.361) (0.021) (0.242)

Nesting parameter (σ) 0.967∗∗∗ 0.287∗

(0.014) (0.115)

App age (λ1) 0.006∗∗∗ −0.011∗∗ 0.0004∗∗ −0.006∗

(0.001) (0.005) (0.0002) (0.003)

App rating (λ2) 0.409∗ 0.524∗∗∗ −0.053 0.284∗∗∗

(0.225) (0.135) (0.041) (0.081)

Popularity (ω) 0.138 0.096∗∗ 0.040∗∗ 0.086∗∗∗

(0.113) (0.039) (0.016) (0.027)

Constant −4.020∗∗∗ −2.473∗∗∗ 0.854∗∗∗ −1.598∗∗∗

(1.059) (0.563) (0.197) (0.532)

Year-Month Fixed Effects Y Y Y Y
App Fixed Effects Y Y Y Y

Observations 4,745 4,745 4,745 4,745
R2 0.951 0.876 0.998 0.941

F-statistics (effort) 17.049∗∗∗ 17.049∗∗∗

F-statistics (price) 106.999∗∗∗ 106.999∗∗∗

F-statistics (nesting) 638.640∗∗∗

Wu-Hausman statistic 29.95∗∗∗ 409.43∗∗

Sargan statistic 0.873

Cost coefficients
γ0 258, 689∗∗∗

γ1 1, 329, 495∗∗∗

Notes: (i) Robust standard errors are clustered by app and month in the parentheses. (ii) The first stage F-statistics
are reported at the bottom. The first-stage regression results are reported in Appendix B. (iii) ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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estimators (first and third columns), my empirical strategy appears to substantially reduce the bias

in price and update coefficients.17

The cost coefficients for innovative effort are shown in the last panel from Table 5. The estimates

are $258,689 and $1,329,495 for γ0 and γ1. Though the figure seems huge, the average in-app revenue

is $814,484, and the average observed ρ is 0.2. The average developer profit is $612,555 per month.

Other papers find that the app update costs even surpass the total revenue. For instance, Leyden

(2022) shows a bug fix update costs $3,355.97 for app developers whose weekly revenue is $1,436.55

on average.18 In addition, Figure 7 depicts the net ancillary benefits ϕ for app developers that are

recovered from equation (5) with demand parameters α and β. In most cases, developers seem to

earn a variable profit of $1 per active user from IAP and net ancillary benefits.

Figure 7: Net Ancillary Benefits for App Developers
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17The instrument variables seem to mitigate the upward bias of β and address a negative correlation between ρ
and unobserved quality ξ.

18Lu et al. (2024) also derive similar cost estimates for Steam game app developers. Their estimates are relatively
small compared to what this paper reports, possibly because they estimate the extensive margin of demand that is
based on the number of downloads and app prices on a weekly basis.
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Table 6: Median Own Elasticities

Logit Nested Logit

Nest IAP ρ IAP ρ

Streaming -0.0041 0.0030 -0.0156 0.0294
Radio -0.0242 0.0176 -0.0893 0.0151
Socialize 0.0000 0.0000 0.0000 0.0109
Instruments -0.0345 0.0250 -0.1290 0.0014

Notes: This table reports median own elasticities for in-app purchase prices (IAP) and innovative efforts (ρ) in each
group. The left panel shows elasticities with plain logit estimates, while those of nested logit are used in the right
panel.

Table 7: Median Diversion Ratio

From Streaming Radio Socialize Instruments Outside

Streaming 0.8469 0.0336 0.0712 0.0164 0.1531
Radio 0.4478 0.3179 0.0721 0.0166 0.1543
Social 0.4403 0.0336 0.3729 0.0164 0.1474
Instruments 0.4451 0.0340 0.0723 0.2967 0.1507

Notes: This table shows the median diversion ratio in each nest. For example, when a streaming app marginally
increases IAP or decreases innovative efforts, 84% of consumers would switch to another streaming app, while 15%
would choose an outside option.

5 Counterfactual Simulation

With the demand (α, β, and σ) and supply parameters (ϕj , γ0, and γ1) from the column (4) in

Table 5, I simulate counterfactual scenarios to shed lights on how the market outcome changes

upon Apple’s different commission fee structure. In the simulation study, I restrict the sample to

streaming apps to capture the direct competition between them precisely. Since the top 4 apps

show dominance in the market, observing their behaviors would be sufficient to draw implications.19

The simulation proceeds with the two FOCs. In the first loop, optimal innovative efforts are

derived by equation (11) using the Nelder-Mead method. Then ρ⃗∗ is used to iterate the fixed-point

for optimal in-app prices in the second loop, with equations (7) and (8). In the second loop, I follow

the work done by Morrow and Skerlos (2011) for convergence efficiency by setting the fixed point

equation as bjn+1 = − ϕj

1−f + ω(bn), where ω(bn) = [sj|g − (1− σ)(1− sg)sj|g] · (b
j
n +

ϕj

1−f )−
1−σ
β .20 I

19The aggregated market share of the top 4 apps in streaming service is around 70% across the whole time period,
as depicted in Figure 8.

20For the platform, bmn+1 = −ϕm + ωm(bn), with ωm(bn) = sm[sm|g − (1 − σ)(1 − sg)sm|g] · (bmn + ϕm) −
1−σ
β

(f
∑N

j=1

∂sj
∂bmn

bjn + sm).
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Figure 8: Market Share Distributions

Note: This figure illustrates the monthly market share distribution of the top four music streaming apps — Pandora:
Music & Podcasts, SoundCloud, Spotify, and YouTube Music— in the music category. Market share is calculated
based on the number of active users. The black bar indicates the combined market share of these leading four apps,
whereas the grey bar represents the market share of all other music apps.

impose lower bounds for each variables: bj > 0 and ρj > 0.

5.1 Commission Fee Adjustments

In the first counterfactual scenario, I examine the market outcome under different commission fees.

I set the commission fee to be 1%, 10%, 15% (baseline), 20%, and 30%. The necessity for capping

commission fees has been proposed in academic papers, as exemplified by the work of Tirole and

Bisceglia (2023). The validity of such an argument lies in the fact that increasing expected revenue

for developers would directly increase their incentive for innovation (e.g., Lu et al. (2024)).

5.2 Apple’s New Fee Policy

The second counterfactual stems from the antitrust issue raised by Epic, who owns a famous mobile

game app Fortnite, against Google and Apple for an unfair commission fee system. Both tech giants

banned Fortnite from Playstore and App Store when Epic allowed its app users to make an in-

app purchase directly through Epic, violating “anti-steering provisions” and thereby bypassing the

commission fee payment to Apple and Google. Epic filed a lawsuit right after the ban on Fortnite,
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and the United States Court stated that Apple and Google had violated antitrust laws and should

allow app developers to freely direct the consumers to alternative payment methods (Iyengar and

Duffy, 2021; Grant, 2023). Apple has appealed the court’s decision, and Epic also appealed on the

statement that Apple has no monopoly over the mobile game app market.

The European Commission also stated Apple should allow various payment options for the app

users. As a response, Apple proposed the new price policy, where app developers would be subject

to a 17% fee on in-app purchase revenue (10% for recurring payments) and a fixed fee of 50 Euro

cents per app download above one million, irrespective of the available payment options.21In the

U.S. and South Korea, where the same regulation was forced on Apple, the developers need to pay

a 27% commission fee with external payment options.22 In this counterfactual scenario, I assume

Apple collects 10% of the commission fee on in-store revenue and $0.05 unit fees per active user

(denoted as κ). The corresponding profit functions for developers and the platform in the second

stage are given below:

πS
j = ((bj(1− f) + ϕ− κ)sj (13)

πS
m =

N∑
j=1

sj(fbj + κ) + (bm + ϕm)sm. (14)

5.3 Acquisitions by Apple

Digital platforms frequently enter their own marketplaces, directly competing with fringe sellers,

a practice that has raised significant antitrust concerns. Recently, the Department of Justice has

accused Apple of monopolizing the digital wallet and messaging markets through illegal foreclosure

of competitors. Also, a federal judge ruled that Google had achieved monopoly status in the online

search engine market by anti-competitively suppressing competition.23 Both Apple and Google have

appealed these decisions, asserting that their dominant positions stem from the superior quality of

their products rather than anti-competitive practices.

In the last simulation I extend my model to examine the potential effects of vertical integration

in the app marketplace. Specifically, I introduce a hypothetical acquisition of a streaming app by

21For example, see news article: https://www.nytimes.com/2024/03/04/business/apple-eu-fine-app-store.html
22https://developer.apple.com/support/storekit-external-entitlement-us/
23See details from news articles of The New York Times for lawsuit against Apple and statement on Google.
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Apple and assess whether such an acquisition would promote innovation both for the acquired app

and the broader market. In this simulation, the acquired app’s profit maximization function is

modified to align with equation (4), reflecting its new status as a vertically integrated entity within

Apple’s ecosystem.

5.4 Counterfactual Results

Fee Adjustments Table 8 presents findings for each counterfactual scenario. I find that the fee

caps lead to increased innovative efforts, while developers are less inclined to invest in innovation

under higher commission fees (20% or 30%). We can also witness that having lower commission

fees leads to a less concentrated market. As Kesler et al. (2017) show, a less concentrated market

contributes to fostering quality competition as well.24 The results overall imply that the current 15%

commission rate appears to suppress innovative incentives for app developers, providing supporting

evidence for regulatory intervention. The results align with what Lu et al. (2024) show, that Steam

game app developers update their apps more frequently under a fee cap.

On the other hand, the average in-app purchase price (IAP) rises under a fee cap, which contra-

dicts previous findings (Li and Wang, 2024; Sullivan, 2024). It is attributed to the unique revenue

structure in the mobile app marketplace: the positive net ancillary benefits for app developers

causes a negative effect of commission fee on IAP, as illustrated in equation (3). When a devel-

oper’s ancillary benefits (e.g., advertising revenue) exceed marginal costs, their optimal strategy

under high fees is to offer free services. This maximizes market share and leverages non-price

revenue streams, offsetting the impact of platform fees. That said, lower fees allow developers to

implement higher mark-ups that were previously unfeasible due to high commission rates. Since

the top four app developers all have positive net ancillary benefits (Figure 7b), the IAP would likely

hike under a fee cap. In addition, increased innovative effort levels also contribute to higher IAP.

Similarly, Zhao et al. (2024) show empirical evidence that the fee cap causes the subscription fees

to increase in the creator platform in China. They illustrate that the creators increase the prices

to cover additional costs for the enhanced content quality.

24Zhao et al. (2024) empirically demonstrates that a commission fee increase in a creator platform endows market
power to a minor group of creators and lessens the overall productivity. In a similar vein, Khan (2016) warns that
firms tend to be reluctant to innovate in less competitive markets.
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Table 8: Results for Counterfactual Studies at Market-level (Fee Adjustments)

Scenario IAP (bj) Effort (ρj) Consumer Developer Platform Social Welfare HHI

Panel A. With ρ adjustments
Factual (f=15%) 0.41 0.60 234.5M 94.7M 6.9M 336.1M 2198
f=1% 11.84% 16.02% -1.95% 14.22% -91.65% 0.78% 2124
f=10% 4.16% 10.50% -0.06% 3.66% -27.43% 0.43% 2158
f=20% -4.77% -1.01% 1.57% -5.69% 20.96% -0.08% 2216
f=30% -14.71% -3.00% 5.11% -15.44% 39.22% 0.02% 2287
f=10% & Unit fees 16.86% 10.50% -3.26% 0.48% 21.47% -1.70% 2086

Panel B. Without ρ adjustments
Factual (f=15%) 0.39 0.48 218.1M 88.7M 5.1M 311.9M 1721
f=1% 11.67% 0.00% -4.30% 11.38% -91.57% -1.28% 1578
f=10% 4.54% 0.00% -1.69% 4.01% -26.28% -0.48% 1665
f=20% -4.88% 0.00% 1.85% -3.88% 17.60% 0.48% 1783
f=30% -14.37% 0.00% 5.45% -10.71% 30.76% 1.27% 1896
f=10% & Unit fees 18.10% 0.00% -5.02% 0.86% 26.78% -2.83% 1600

Note: The first row in each panel presents the average equilibrium outcomes for the in-app purchase price (b) and innovative effort (ρ), along with the corresponding
surplus for consumers, developers, the platform, and social welfare under the factual scenario. The change in consumer surplus is computed with the compensating

variation CVt =
V

f
t −V

cf
t

β
, with V f

t = log(1 +
∑J

j=1 exp(δjt)) in the factual (f = 15%) scenario, where J = {1, 2, · · · , N,m} and δjt = αρjt + βbjt +Xjtλ + ξjt.

The counterfactual utility V cf
t is analogous to V f

t . Then, the total change in consumer surplus is
∑65

t Mt ∗CVt. The producer surplus and platform surplus each
indicate the second stage profits (3) and (4). Subsequent rows report the percentage changes from the factual baseline across various counterfactual scenarios.
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From a social welfare perspective, the implementation of a commission fee cap is predicted

to enhance the total welfare, primarily through increased innovative effort and developer surplus.

Regarding distributional effects, the reduction in commission fees predominantly benefits app de-

velopers at the expense of platform and consumer surplus (e.g., Sullivan (2024)). In the second

counterfactual, where Apple imposes additional unit fees, developers seem to partially pass these

costs to consumers by increasing prices. Apple’s new fee policy would decrease consumer and

developer surplus while significantly improving platform surplus.

The second panel of Table 8 presents equilibrium outcomes in scenarios excluding innovative

effort (ρ) adjustment. When analyzing price competition in isolation, the effects of fee caps on

social welfare turn negative. Notably, treating innovative effort as an exogenous variable yields an

underestimation of the fee cap’s impact on social welfare by 0.91% - 2.06% points compared to

the full-stage model estimates. This finding emphasizes the critical role of quality competition in

evaluating regulatory interventions within digital platform ecosystems.

Simulation results indicate that fee caps generally enhance developer welfare and stimulate

innovative efforts, despite marginally diminishing consumer welfare due to elevated in-app purchase

prices (IAP). Significantly, platform revenue optimization occurs at a 30% fee rate, highlighting the

fundamental tension between platform profitability and user welfare maximization. However, the

increased levels of innovation appear to offset the negative effects of fee caps, ultimately improving

social welfare.

Acquisitions Table 9 reveals that all acquired apps are predicted to reduce their innovative

efforts and increase IAP post-acquisition, ceding market share to competitors. This discrepancy

likely stems from the platform’s different objective function (4), which incorporates commission fee

revenue. These findings cast doubt on Apple and Google’s claims that their market dominance in

digital wallets and online search engines primarily stems from superior product quality. Possibly,

other factors that my model cannot capture may play a significant role in their market positions.
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Table 9: Individual App’s Outcome Before and After Buy-out

App ϕ̄ b ρ sh π

Scenario A. Pre-merger
Spotify 0.74 0.21 1.53 0.38 59.0M
Pandora 0.33 0.44 0.53 0.24 30.5M
SoundCloud 0.33 0.23 0.32 0.03 2.7M
YouTube Music -0.14 0.77 0.02 0.02 2.6M

Scenario B. Spotify
Spotify 279.86% -100.00% -70.50% -56.63%
Pandora 24.30% -29.70% 22.75% 38.75%
SoundCloud 21.86% 373.29% 168.05% 202.12%
YouTube Music 5.29% 4688.88% 188.48% 225.65%

Scenario C. Pandora
Spotify 8.66% -5.13% 0.18% 2.23%
Pandora -13.41% -100.00% -15.44% -22.67%
SoundCloud 5.01% 124.61% 40.32% 44.26%
YouTube Music 0.89% 2277.94% 35.64% 38.98%

Scenario D. SoundCloud
Spotify -4.18% -5.69% -1.24% -1.83%
Pandora 2.30% 8.23% 2.60% 4.16%
SoundCloud 45.98% -47.63% -25.72% -12.07%
YouTube Music 0.25% 720.87% 11.07% 11.72%

Scenario E. Google
Spotify -18.83% 0.82% -4.64% -7.51%
Pandora -2.15% 32.58% -2.89% -4.03%
SoundCloud -0.43% 22.90% -5.53% -5.80%
YouTube Music -99.16% -83.29% 211.56% -180.82%

Note: The first panel presents each app’s mean values for key variables: net ancillary benefits (ϕ), IAP (b), innovative
effort (ρ), market share (sh), and total profit (π) in the pre-merger state. Subsequent panels display percentage
changes from this baseline across various Apple acquisition scenarios.
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6 Conclusion

This paper quantifies the welfare consequences of capping commission fees in digital platforms,

focusing on third-party app developers’ innovation and pricing decisions. Based on evidence sug-

gesting a positive relationship between past in-store revenue and app updates, I propose a two-stage

structural model of the mobile app marketplace. In this model, app developers first choose inno-

vative efforts and then decide on in-app purchase prices (IAP). Counterfactual simulations yield

preliminary results indicating that capping commission fees leads to increased IAP while promoting

innovation and improving developer welfare, but reducing platform surplus. The model predicts

that consumers will lose surplus under a fee cap due to higher IAP. The negative relationship be-

tween fees and IAP results from the prevalence of positive net ancillary benefits in the mobile app

marketplace. Put differently, current fees might have forced app developers to take a predatory

pricing strategy to gain a larger market share, and then earn ancillary benefits. Nonetheless, the

increased levels of innovation appear to offset the negative effects of fee caps, ultimately improving

social welfare; app developers benefit from a fee cap at the expense of consumer and platform

surplus.

The study also finds that under Apple’s proposed unit fee scheme, app developers would partly

pass these fees to consumers by increasing IAP. Despite the lower ad-valorem fees promoting innova-

tion, consumers would be worse off due to higher prices, while Apple stands to benefit significantly

from this new fee policy. Additionally, the research reveals that in a hypothetical scenario where

Apple acquires a streaming app, it would invest less in innovation for the acquired app compared to

the previous owner. This finding challenges Apple and Google’s assertions that their market dom-

inance in digital wallets and online search engines primarily stems from superior product quality.

In conclusion, this study finds that regulating commission fees at lower rates promotes in-

novation among app developers with increasing their surplus. However, it also reveals potential

drawbacks: consumers may face higher in-app purchase prices, and platform surplus is likely to

decrease significantly. As Sullivan (2024) has noted, it is arguable that there is a risk that platforms

may increase other fees (e.g., access or hardware prices) to compensate for their losses from lower

commission rates. For a possible scenario, platforms would foster vertical integration under a fee

cap (Tirole and Bisceglia, 2023), which could be an interesting extension of this paper.
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Despite these complexities, I show that treating innovative effort (or quality improvement) as

an exogenous variable would lead us to underestimate the welfare effects of fee cap by 0.91% -

2.06% points compared. In light of the findings, this paper emphasizes the critical importance of

considering both quality changes and price fluctuations when evaluating regulatory interventions

in two-sided digital platform markets like mobile apps.
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Appendices

A Robustness Analysis

Table A.1: Demand Parameter Estimates with Alternative Specifications (1)

Dependent variable:

ln(sjt)− ln(s0t)

Cumulative Update Major ρjt−1

(1) (2) (3) (4)

IAP ($) −1.548∗∗∗ −1.139∗∗∗ −1.224∗∗∗ −1.195∗∗∗

(0.404) (0.287) (0.323) (0.289)

Effort (ρ) 0.024∗∗∗ 0.112∗∗∗ 0.367∗∗∗ 0.086∗∗∗

(0.009) (0.038) (0.128) (0.027)

Major (ρ̃) 5.894∗∗∗

(2.016)

σ 0.361∗∗∗ 0.311∗∗∗ 0.274∗∗ 0.322∗∗∗

(0.118) (0.109) (0.124) (0.105)

Age of app −0.011∗∗∗ −0.005∗ −0.006∗ −0.007∗∗

(0.004) (0.003) (0.003) (0.003)

App rating 0.187∗∗ 0.266∗∗∗ 0.291∗∗∗ 0.294∗∗∗

(0.087) (0.074) (0.083) (0.076)

Popularity 0.075∗∗∗ 0.080∗∗∗ 0.089∗∗∗ 0.081∗∗∗

(0.029) (0.025) (0.027) (0.025)

Constant −0.511 −1.700∗∗∗ −1.650∗∗∗ −1.394∗∗∗

(0.533) (0.525) (0.548) (0.467)

Year-Month Fixed Effects Y Y Y Y
App Fixed Effects Y Y Y Y

Observations 4,745 4,745 4,745 4,745
R2 0.926 0.948 0.939 0.948

Notes: (i) This table reports IV regression results by using demand equation (12) with alternative specifications:
column (1) uses cumulative innovative effort as a proxy for ρ, column (2) uses the number of app updates as a proxy
for ρ, column (3) includes innovative effort for a major update (version number change), and column (4) employs the
lagged innovative effort variable. (ii) Robust standard errors are clustered by app and month in the parentheses. (iii)
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.2: Demand Parameter Estimates with Alternative Specifications (2)

Dependent variable:

ln(sjt)− ln(s0t)

Full Dataset Time Usage

(1) (2)

IAP ($) −0.333∗∗∗ −6.405∗∗∗

(0.109) (1.590)

Effort (ρ) 0.102∗∗∗ 1.141∗

(0.039) (0.639)

σ 0.901∗∗∗ −2.150∗∗∗

(0.032) (0.609)

Age of app −0.002∗ −0.070∗∗∗

(0.001) (0.016)

App rating −0.125∗∗∗ 0.697∗

(0.018) (0.413)

Popularity 0.070∗∗∗ 0.273∗∗

(0.011) (0.136)

Constant 1.356∗∗∗ −5.015∗

(0.147) (2.726)

Observations 5,720 4,745
R2 0.992 0.251

Year-Month Fixed Effects Y Y
App Fixed Effects Y Y

Notes: (i) This table reports IV regression results by using demand equation (12) with alternative specifications:
column (1) uses the full dataset including complementary apps sample and column (2) employs the number of
minutes used per app as the dependent variable. (ii) Robust standard errors are clustered by app and month in the
parentheses. (iii) ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.3: Counterfactual Results with Different β

Scenario IAP (bj) Effort (ρj) Consumer Developer Platform Social Welfare HHI

Panel A. β̃ = 2 ∗ β
Factual (f=15%) 0.39 0.56 116.3M 47.0M 5.2M 168.5M 2157
f=1% -0.44% 10.45% -1.05% 14.71% -92.60% 0.52% 2060
f=10% 0.06% 10.56% 0.52% 5.30% -29.66% 0.92% 2151
f=20% 0.26% 1.11% 0.90% -6.33% 29.70% -0.23% 2166
f=30% 1.70% -17.68% -1.29% -16.52% 74.82% -3.19% 2030
f=10% & Unit fees 13.56% 10.56% -5.80% -1.24% 19.93% -3.74% 2011

Panel B. β̃ = 1.5 ∗ β
Factual (f=15%) 0.39 0.58 156.1M 62.8M 5.8M 224.7M 2186
f=1% 3.73% 18.83% -0.76% 13.41% -92.34% 0.83% 2095
f=10% 1.50% 4.00% -0.86% 5.58% -29.38% 0.21% 2159
f=20% -1.84% -5.89% 0.20% -6.19% 22.81% -1.00% 2150
f=30% -3.80% -14.56% 0.77% -16.04% 64.45% -2.28% 2115
f=10% & Unit fees 14.72% 4.00% -5.58% 0.68% 19.71% -3.18% 2052

Note: The first row in each panel presents the average equilibrium outcomes for the in-app purchase price (b) and innovative effort (ρ), along with the corresponding
surplus for consumers, developers, the platform, and social welfare under the factual scenario. The change in consumer surplus is computed with the compensating

variation CVt =
V

f
t −V

cf
t

β
, with V f

t = log(1 +
∑J

j=1 exp(δjt)) in the factual (f = 15%) scenario, where J = {1, 2, · · · , N,m} and δjt = αρjt + βbjt +Xjtλ + ξjt.

The counterfactual utility V cf
t is analogous to V f

t . Then, the total change in consumer surplus is
∑65

t Mt ∗CVt. The producer surplus and platform surplus each
indicate the second stage profits (3) and (4). Subsequent rows report the percentage changes from the factual baseline across various counterfactual scenarios.
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B First Stage Regression

Table B.1: First Stage Regression Results

Dependent variable:

bjt ρjt s̄j|gt

(1) (2) (3)

App Age −0.027∗∗∗ 0.011∗∗ 0.074∗∗∗

(0.004) (0.005) (0.005)

App rating −0.008 0.370∗∗ 0.379∗∗

(0.136) (0.172) (0.183)

Popularity −0.032∗ −0.008 0.132∗∗∗

(0.017) (0.021) (0.023)

App rating of competing apps −0.050 0.310∗ 0.046
(0.131) (0.166) (0.177)

N of downloads in same group 0.322∗∗ −0.369∗ −2.674∗∗∗

(0.157) (0.198) (0.211)

Diff in update in same group −0.0001 0.004∗∗∗ 0.002∗∗∗

(0.0003) (0.0003) (0.0003)

Developer’s total app −0.014∗∗∗ 0.004 0.030∗∗∗

(0.002) (0.002) (0.003)

N of privacy agreements −0.081∗∗ 0.122∗∗ 0.578∗∗∗

(0.038) (0.048) (0.051)

Constant 13.997 −95.244∗ 14.914
(42.116) (53.314) (56.721)

Year-Month Fixed Effects Y Y Y
App Fixed Effects Y Y Y

Observations 4,745 4,745 4,745
R2 0.768 0.345 0.952
F Statistic (df = 142; 4602) 106.999∗∗∗ 17.049∗∗∗ 638.640∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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C Derivation

C.1 First derivatives

∂Pj|g

∂bj
=

β

1− σ
· Pj|g(1− Pj|g),

∂Pj|g

∂br
= − β

1− σ
· Pr|g · Pj|g

∂Pg

∂bj
= β · Pj · (1− Pg) for j ∈ Jg,

∂Pj|g

∂bfr
= 0

∂Pg

∂br
= β · Pr · (1− Pg) for r ∈ Jg,

∂Pg

∂bj
= −β · Pj|f · Pf · Pg for j ∈ Jf

Hence, for j, r ∈ Jg and j ̸= r,

∂Pj

∂bj
=

∂Pj|g

∂bj
· Pg + Pj|g ·

∂Pg

∂bj

= β · Pj

(
1

1− σ
(1− Pj|g) + (1− Pg)Pj|g

)
=

β

1− σ
· Pj ·

(
1− σPj|g − (1− σ)Pj

)
∂Pj

∂br
=

∂Pj|g

∂br
· Pg + Pj|g ·

∂Pg

∂br

= β · Pj

(
−1

1− σ
· Pr|g + (1− Pg)Pr|g

)
= −β · Pr · Pj

(
1 +

σ

1− σ

1

Pg

)
For r ∈ Jf and r /∈ Jg,

∂P g
j

∂bfr
= Pj|g ·

∂Pg

∂bfr

= −β · P g
j · P f

r

C.2 Second derivatives

Within-Group

∂2Pj

∂2bj
= β2Pj

(
(

1

1− σ
(1− Pj|g) + (1− Pg)Pj|g)

1

1− σ
(1− Pj|g) + (1− Pg)Pj|g − Pj|g(

1

(1− σ)2
(1− Pj|g)−

1

1− σ
(1− Pg)(1− Pj|g) + (1− Pg))

)
∂2Pj

∂bj∂br
= β2PjPr|g

(
(1− Pg −

1

1− σ
)(

1

1− σ
(1− 2Pj|g) + (1− Pg)Pj|g)− (1− Pg)Pj

)
∂2Pj

∂bj∂ρr
= αβPjPr|g

(
(1− Pg −

1

1− σ
)(

1

1− σ
(1− 2Pj|g) + (1− Pg)Pj|g)− (1− Pg)Pj

)
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Cross-group

∂2P g
j

∂bgj∂b
f
r

= −β2P g
j P

f
r

(
1− σPj|g

1− σ
− 2P g

j

)
∂2P g

j

∂bgj∂ρ
f
r

= −αβP g
j P

f
r

(
1− σPj|g

1− σ
− 2P g

j

)
Cross-Cross derivatives
when j,m, k ∈ Jg,

∂2Pj

∂bm∂bk
= 2β2PjPmPk

(
1 +

σ

1− σ

1

Pg

)2

+ β2PjPmPk
σ

1− σ

1− Pg

p2g

when j ∈ Jg, m ∈ Jf , k ∈ Jh,

∂2Pj

∂bm∂bk
= 2β2PjPmPk

when j ∈ Jg, m, k ∈ Jf ,

∂2Pj

∂bm∂bk
= β2PjPmPk(2 +

1

1− σ

1

Pf
)

when j,m ∈ Jg, k ∈ Jf ,

∂2Pj

∂bm∂bk
= β2PjPmPk(2 +

1

1− σ

1

Pg
)

when j,m ∈ Jg,

∂2Pj

∂2bm
= β2Pm

(
−1

1− σ
(1− σPm|g − (1− σ)Pm)(Pj +

σ

1− σ
Pj|g) + Pm(Pj +

σ

1− σ
Pj|g) +

σ

(1− σ)2
Pm|gPj|g

)
when j ∈ Jg, m ∈ Jf ,

∂2Pj

∂2bm
= β2PjPm

(
Pm − 1

1− σ
(1− σPm|f − (1− σ)Pm)

)

49



First-order conditions

∂πS
j

∂bk
=

∂sj
∂bk

(bj(1− f) + ϕj);
∂πS

j

∂bj
≡ 0

∂πS
j

∂ρj
=

∂sj
∂ρj

(bj(1− f) + ϕj)

∂πS
m

∂bk
= f ·

 N∑
j ̸=k

bj
∂sj
∂bk

+ sk +
∂sk
∂bk

bk

+ (bm + ϕm)
∂sm
∂bk

∂πS
m

∂ρk
= f ·

N∑
j=1

bj
∂sj
∂ρk

+ (bm + ϕm)
∂sm
∂ρk

∂πS
m

∂ρm
= f ·

N∑
j=1

bj
∂sj
∂ρm

+ (bm + ϕm)
∂sm
∂ρm

C.3 Notes on the supply-side equation

In this section, I delineate the details in deriving
∂b∗k
∂ρj

which will be used in the supply side equation

(11):

∂πS
j

∂ρj
+

N∑
k=1

∂πS
j

∂bk

∂b∗k
∂ρj

≡ γ0 + γ1ρj + νj .

Let F j (⃗b, ρ⃗) express the first-order conditions (5) and (6), and there also exists bj = f j(ρ1, · · · ρN , ρm).

Taking total derivative on F j (⃗b, ρ⃗) with respect to b⃗ and ρ⃗:

∂F 1

∂b1
db1 +

∂F 1

∂b2
db2 + · · ·+ ∂F 1

∂bN
dbN +

∂F 1

∂bm
dbm = −(

∂F 1

∂ρ1
dρ1 +

∂F 1

∂ρ2
dρ2 + · · ·+ ∂F 1

∂ρN
dρN +

∂F 1

∂ρm
dρm)

∂F 2

∂b1
db1 +

∂F 2

∂b2
db2 + · · ·+ ∂F 2

∂bN
dbN +

∂F 2

∂bm
dbm = −(

∂F 2

∂ρ1
dρ1 +

∂F 2

∂ρ2
dρ2 + · · ·+ ∂F 2

∂ρN
dρN +

∂F 2

∂ρm
dρm)

...

∂FN

∂b1
db1 +

∂FN

∂b2
db2 + · · ·+ ∂FN

∂bN
dbN +

∂FN

∂bm
dbm = −(

∂FN

∂ρ1
dρ1 +

∂FN

∂ρ2
dρ2 + · · ·+ ∂FN

∂ρN
dρN +

∂FN

∂ρm
dρm)

∂Fm

∂b1
db1 +

∂Fm

∂b2
db2 + · · ·+ ∂Fm

∂bN
dbN +

∂Fm

∂bm
dbm = −(

∂Fm

∂ρ1
dρ1 +

∂Fm

∂ρ2
dρ2 + · · ·+ ∂Fm

∂ρN
dρN +

∂Fm

∂ρm
dρm).
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Then, taking total derivative on bj = f j(ρ1, · · · ρN , ρm) with respect to ρ⃗,

db1 =
∂b1
∂ρ1

dρ1 +
∂b1
∂ρ2

dρ2+ · · ·+ ∂b1
∂ρN

dρN +
∂b1
∂ρm

dρm

...

dbN =
∂bN
∂ρ1

dρ1 +
∂bN
∂ρ2

dρ2+ · · ·+ ∂bN
∂ρN

dρN +
∂bN
∂ρm

dρm

dbm =
∂bm
∂ρ1

dρ1 +
∂bm
∂ρ2

dρ2+ · · ·+ ∂bm
∂ρN

dρN +
∂bm
∂ρm

dρm.

Since equation (11) is an optimality condition for observed innovative efforts, we are only interested

in computing
∂b∗k
∂ρj

with assuming dρj ̸= 0 and dρk = 0, ∀k ̸= j ∈ {1, 2, · · · , N,m} (Fan, 2013). Then

the above system becomes:

db1 =
∂b1
∂ρj

dρj

...

dbN =
∂bN
∂ρj

dρj

dbm =
∂bm
∂ρj

dρj .

Combining the two systems and dividing by dρj ̸= 0 we can derive the following:

∂F 1

∂b1

∂b1
∂ρj

+
∂F 1

∂b2

∂b2
∂ρj

+ · · ·+ ∂F 1

∂bN

∂bN
∂ρj

+
∂F 1

∂bm

∂bm
∂ρj

= −∂F 1

∂ρj
...

∂FN

∂b1

∂b1
∂ρj

+
∂FN

∂b2

∂b2
∂ρj

+ · · ·+ ∂FN

∂bN

∂bN
∂ρj

+
∂FN

∂bm

∂bm
∂ρj

= −∂FN

∂ρj
∂Fm

∂b1

∂b1
∂ρj

+
∂Fm

∂b2

∂b2
∂ρj

+ · · ·+ ∂Fm

∂bN

∂bN
∂ρj

+
∂Fm

∂bm

∂bm
∂ρj

= −∂Fm

∂ρj
.

We can then reformulate it as matrix form,

∂F 1

∂b1
∂F 1

∂b2
· · · ∂F 1

∂bN
∂F 1

∂bm
∂F 2

∂b1
∂F 2

∂b2
· · · ∂F 2

∂bN
∂F 2

∂bm
...

∂FN

∂b1
∂FN

∂b2
· · · ∂FN

∂bN
∂FN

∂bm
∂Fm

∂b1
∂Fm

∂b2
· · · ∂Fm

∂bN
∂Fm

∂bm





∂b1
∂ρj
∂b2
∂ρj
...

∂bN
∂ρj
∂bm
∂ρj


=



−∂F 1

∂ρj

−∂F 2

∂ρj
...

−∂FN

∂ρj

−∂Fm

∂ρj


for all j ∈ {1, 2, · · · , N,m}.
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Partial derivatives

∂F j

∂bj
= 2

∂sj
∂bj

+ (bj +
ϕj

1− f
)
∂2sj
∂2bj

∂F j

∂bk
= (bj +

ϕj

1− f
)

∂2sj
∂bj∂bk

+
∂sj
∂bk

∂Fm

∂bk
= f

N∑
j=1

∂2sj
∂bm∂bk

bj + f
∂sk
∂bm

+ (bm + ϕm)
∂2sm

∂bm∂bk
+

∂sm
∂bk

∂Fm

∂bm
= f
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Table D.1: Summary Statistics

Statistic N Mean St. Dev. Min Max

Market share (%) 4,745 1.1 3.6 0.003 27.5
Market share (time use) (%) 4,745 1.4 5.5 0 55.2
Within share (%) 4,745 5.5 11.1 0.02 74.0
Innovative effort 4,745 0.202 0.455 0.000 8.417
Innovative effort (Major) 4,745 0.0002 0.005 0.000 0.333
Cumulative effort 4,745 6.255 8.855 0.000 74.305
Number of update 4,745 1.244 1.523 0 14
In-app purchase price ($) 4,745 0.270 0.603 0.000 5.631
App rating 4,745 4.536 0.251 2.910 4.860
Number of ratings 4,745 538,371 2,525,580 5 31,044,038
App age (months) 4,745 88.849 34.340 6 184
Popularity 4,745 1.009 0.904 0 4
Number of apps 4,745 6.616 11.541 1 84
Privacy 4,745 3.740 3.057 0 12
In-store revenue ($) 4,745 500,316 1,857,297 0 18,098,777
Cumulative downloads 4,745 12,191,867 28,964,095 630 189,489,028
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Table D.2: Relationship Between Streaming Apps’ Downloads and Innovative Effort of Other Apps across Groups.

Dependent variable:

log(downloads)

(1) (2) (3) (4) (5) (6)

Non-streaming −3.027∗∗

(1.244)

Complementary 3.424∗∗

(1.407)

Radio −1.845∗∗

(0.758)

Instruments −2.055∗∗

(0.845)

Headphones 6.830∗∗

(2.806)

Socialize −1.458∗∗

(0.599)

Constant 13.587∗∗∗ 12.519∗∗∗ 13.309∗∗∗ 13.493∗∗∗ 12.626∗∗∗ 13.242∗∗∗

(0.301) (0.190) (0.198) (0.265) (0.155) (0.175)

Year-Month Fixed Effects Y Y Y Y Y Y
App Fixed Effects Y Y Y Y Y Y

Observations 1,357 1,357 1,357 1,357 1,357 1,357
R2 0.898 0.898 0.898 0.898 0.898 0.898

Notes: (i) This table reports the OLS regression results with the equation: yjt = ρt−1β + µt + µj , with yjt indicating a logarithm of number of downloads for
app j in year-month t in streaming group. ρt−1 represents the average innovative effort of apps in each group. Two-way fixed effects, µt and µj , are captured.
(ii) ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure D.1: Net Ancillary Benefits by Groups

(a) Streaming
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(c) Socialize
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(d) Instruments
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Note: The figures depict net ancillary benefits across the nest groups, with the average in-app purchase price.
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Figure D.2: Histogram of Net Ancillary Benefits
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Note: The figures illustrate the distribution of net ancillary benefits across the nest groups. Regardless of their
groups, most music apps exhibit positive net ancillary benefits. This reflects the prevalence of freemium products (or
zero-price strategy) in the mobile app marketplace.
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Figure D.3: Comparison of Market Shares based on The Number of Active Users and Time Used

Note: This figure illustrates market share distribution using two distinct metrics: the number of users (represented by the black line), which serves as the primary
measure in this study, and the amount of time used, measured in hours (depicted by the orange line). The former metric quantifies the number of unique users
accessing the applications within a specified time frame, while the latter measures these users’ cumulative hours of app utilization.
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Figure D.4: Cumulative Innovative Effort across Months

Note: This figure illustrates each music streaming app developer’s decisions on innovative effort over time.
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Table D.3: Equilibrium Outcomes for each App Before and After Buy-out (without Google)

App ϕ̄ ∆ b ∆ρ ∆sh ∆π

Scenario A. Pre-merger
Spotify 0.74 0.22 1.55 0.39 61.2M
Pandora 0.33 0.47 0.71 0.25 33.1M
SoundCloud 0.33 0.23 0.20 0.03 2.9M

Scenario B. Spotify
Spotify 253.95% -100.00% -69.12% -41.66%
Pandora 30.58% -12.77% 24.83% 54.74%
SoundCloud 30.63% 795.51% 233.86% 201.60%

Scenario C. Pandora
Spotify 28.07% 19.80% 7.71% 9.75%
Pandora -18.15% -100.00% -20.85% -16.63%
SoundCloud 4.37% 288.61% 41.52% -2.18%

Scenario D. SoundCloud
Spotify -1.93% 1.31% 0.32% -0.94%
Pandora 1.77% 16.64% 2.86% 2.10%
SoundCloud 46.43% -20.79% -20.52% -2.42%

Note: The first panel presents each app’s mean values for key variables: net ancillary benefits (ϕ), IAP (b), innovative
effort (ρ), market share (sh), and total profit (π) in the pre-merger state. Subsequent panels display percentage
changes from this baseline across various Apple acquisition scenarios.
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