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1. INTRODUCTION

Sample-splitting is ubiquitous in modern econometric theory. Routine statistical tasks—model

selection, dimension reduction, nuisance parameter estimation—can be implemented on a randomly

selected subsample of a data set, without contaminating the validity of a statistical inference

produced on its complement. This principle underlies the widely applied practices of cross-

validation for predictive risk estimation (Stone, 1974; Arlot and Celisse, 2010) and cross-fitting for

adaptive estimation of semiparametric models (Bickel, 1982; Schick, 1986; Chernozhukov et al.,

2018), among a growing set of additional applications.

For a fixed data set, statistics constructed with sample-splitting are not deterministic. Two

researchers can compute the same statistic on the same data and obtain different values. Researchers

are incentivized to report significant results. If there is scope to materially alter the statistics that

they report through the choice of the split of their sample, should this choice be left to chance?

This paper makes two contributions. First, we show that many widely applied sample-split

econometric methods exhibit significant residual randomness. We give examples from the applied

economics literature where the randomness induced by sample-splitting determines the statistical

significance of a treatment effect estimated with cross-fitting, the interpretation of a model selected

with cross-validation, and the qualitative features of treatment targeting rules learned from cross-fit

nuisance parameter estimates.

Second, and accordingly, we propose an efficient method for removing the residual randomness

from sample-split statistics. The procedure takes as input a bound and an error rate. The statistic

of interest is sequentially aggregated over randomly drawn splits of the sample. The procedure

is stopped after an estimate of the residual variation of the aggregate statistic falls below a pre-

determined threshold. If the procedure were run twice, we show that the chance that the outputs

differ by more than the bound is well-approximated by the error rate. That is, by setting the bound

and error rate to be sufficiently small, sample-split statistics aggregated with the procedure are

reproducible.

We begin, in Section 2, by discussing several widely applied sample-split econometric methods

and demonstrating that, for each, the randomness induced by sample-splitting can substantively

effect results. In Section 3, we propose an efficient method for sequentially aggregating sample-

split statistics that ensures that the residual randomness is small. We illustrate that, in each

of our examples, the proposed method stabilizes results—ensuring reproducibility at a minimal

computational expense. We establish that the procedure is valid, in a particular asymptotic sense,

without imposing any restrictions on the data generating process or statistic of interest. Similarly,

we show that, for a large class of applications, sample-split statistics aggregated with the procedure
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maintain (or, improve upon) unconditional statistical guarantees. That is, reproducibly aggregated

sample-split statistics are still consistent and associated inferences are still valid.

To implement the procedure, a user must make several choices that may affect performance,

including the specification of a suitable bound and error rate. Additionally, in most applications, the

procedure is applied to stabilize a statistic that is itself constructed with cross-splitting. In these

cases, users must also specify how many folds to use for cross-splitting.

To shed light on these choices, in Section 4, we give an analysis of the performance of the

procedure under a set of simplifying conditions. We give two main results. First, the computation

needed to achieve a given bound on residual randomness is very sensitive to the desired error

tolerance, but is insensitive to the number of folds that are used for cross-splitting. Second, and on

the other hand, the accuracy of the nominal error rate of the procedure deteriorates as the number of

folds used for cross-splitting increases. We conclude, in Section 5, by synthesizing these results into

a set of concrete recommendations for practice. We emphasize simple rules-of-thumb for choosing

suitable error tolerances and approaches to cross-splitting.

The main theoretical challenge posed by this analysis is the accommodation of the dependence

between statistics computed on cross-splits of a sample. We address this through an application

of the method of exchangeable pairs (Stein, 1986; Ross, 2011; Chen et al., 2011). To construct

an appropriate exchangeable pair for our problem, we develop a novel application of a coupling

argument due to Chatterjee (2005), that may be of independent interest.

1.1 Related Literature

The procedure studied in this paper is applicable to a large variety of sample-split statistical

methods. In Section 2, we give a selective review of various sample-split methods that are frequently

used in applied economics. There are many, additional, sample-split methods, proposed in the

statistics literature, that have the potential to be useful in econometric applications. Generic

sample-split methods for testing statistical hypotheses are studied in Guo and Romano (2017),

DiCiccio et al. (2020), and Wasserman et al. (2020). Additional applications include sample-split

procedures for selective inference (Rinaldo et al., 2019), inference on high-dimensional linear

models (Meinshausen and Bühlmann, 2010), conformal and predictive inference (Lei et al., 2018),

and knockoff tests of conditional independence (Barber and Candès, 2015).

Chernozhukov et al. (2018) and Chernozhukov et al. (2023) advocate for the aggregation of

estimators and p-values computed with sample splitting, over a pre-determined number of splits, in

the context of applications related to semiparametric estimation and characterization of treatment

effect heterogeneity, respectively. We second these recommendations and contribute a general

purpose method that provides a statistical guarantee that residual randomness has been controlled

up to a specified level of error, at a minimal computational cost.
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Our setting is related to a large literature that studies methods for constructing confidence intervals

for cross-validated estimates of generalization error. Several examples include Dietterich (1998),

Nadeau and Bengio (1999), Lei (2020), Bayle et al. (2020), Austern and Zhou (2020), and Bates

et al. (2023). By contrast, we are interested in the randomness conditional on the data. Formally,

our non-asymptotic results are most similar to the Berry-Esseen bounds given in Austern and

Zhou (2020), who study the unconditional normal approximation of statistics similar to the those

considered in Section 4. Our bounds apply under weaker conditions and are substantially simpler.

Some of our results build on a literature studying the role of algorithmic stability in the accuracy

of cross-validation (Kale et al., 2011; Kumar et al., 2013). These papers are related to a broader

literature that derives generalization bounds for stable algorithms, originating with Bousquet and

Elisseeff (2002). Some of the concentration inequalities that we derive can be compared to the

results of Cornec (2010) and Abou-Moustafa and Szepesvári (2019). Again, the setting we study is

different and our conditions, and resultant bounds, are substantially simpler.

Although our emphasis is on statistics constructed with sample-splitting, the algorithmic and

formal methods studied in this paper are potentially applicable to randomized algorithms more

generally (Motwani and Raghavan, 1995). See Beran and Millar (1987) for a classical analysis of

the asymptotics of randomized tests and estimators.

2. THE RESIDUAL RANDOMNESS OF SAMPLE-SPLIT STATISTICS

Sample-splitting has proliferated as a useful subroutine for simplifying various tasks associated

with modern statistical inference. The high-level situation is as follows. Consider a researcher who

observes the independent data D = (Di)
n
i=1 and wishes to report the statistic

Ψ(D, η) , (2.1)

where η is some unknown nuisance parameter.

For example, each observation Di could contain a measurement of an outcome Yi, a treatment

Wi, and a vector collecting a large number of covariates Xi. The researcher could be interested in

measuring the effect of Wi on Yi. To ensure that their estimate is not unnecessarily imprecise, they

might like to include controls for only the subset of covariates that are correlated with the outcome.

Here, formally, the nuisance parameter η collects the indices of the subset of “relevant” controls

and the statistic Ψ(D, η) denotes a treatment effect estimate associated with, say, a regression of the

outcome on the treatment with controls for covariates with indices in η.

In practice, the researcher cannot compute the statistic (2.1), as the nuisance parameter η is

unknown. Often, however, an estimator η̂(D) is available and so it may be tempting to report the

feasible statistic

Ψ(D, η̂(D)) . (2.2)
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In the example, the estimator η̂(D) could collect the indices of the covariates whose absolute sample

correlation with the outcome is greater than some pre-determined threshold.

Statistical inferences that, counterfactually, would be appropriate if the infeasible statistic (2.1)

were available will not necessarily be valid if they were instead based on the feasible statistic (2.2).

In particular, the process of computing the nuisance parameter estimate η̂(D) might produce a

confounding effect. In the example, screening control variables according to their correlation with

the outcome produces a bias in the resultant treatment effect estimate.

Sample-splitting solves this problem.1 Let s denote a randomly drawn subset of the numbers

[n] = {1, . . . , n} of size b and let s̃ denote its complement. Sample-split statistics take the form

T (s, D) = Ψ(Ds, η̂(Ds̃)) , (2.3)

where the quantities Ds = (Di)i∈s and Ds̃ = (Di)i∈s̃ collect the data with indices in s and

s̃, respectively. Splitting the data D into two independent subsamples (Ds, Ds̃) prevents the

construction of nuisance parameter estimates from contaminating statistical inferences that the

researcher may wish to make with the feasible statistic (2.3).

There are two, well-known, practical issues with this approach. First, by splitting the data,

statistical precision may be meaningfully reduced. Second, the statistic (2.3) is random through

both the data D and the choice of the random subset s. That is, if the same sample-split statistic

were computed on the same data by two different researchers, and the statistic was sensitive to the

choice of the random subset s, then the researchers could report meaningfully different results.

To address these concerns, researchers often aggregate several replications of sample-split

statistics through cross-splitting (Stone, 1974; Schick, 1986). In particular, researchers typically

report aggregate statistics of the form

a(r, D) =
1

k

k∑
j=1

T (sj, D) , (2.4)

where the quantity r = (sj)
k
j=1 denotes a random k-fold partition of [n], i.e., a collection of

k mutually exclusive sets whose union is equal to [n]. By reusing subsamples of the data for

computation of both the statistic of interest and the estimation of nuisance parameters, cross-split

statistics mitigate potential losses in statistical precision.

In this section, we demonstrate, in several real applications from applied economics, that the

second concern—the residual randomness generated by sample-splitting—can substantively affect

results. This residual variability is, often, not resolved by cross-splitting. Consequently, in Section 3,
1Of course, under certain conditions involving the sparsity of the covariance between the treatment, outcome, and
controls, “double post selection” of control variables with a Lasso regression (Tibshirani, 1996) can produce consistent
treatment effect estimates (Belloni et al., 2014). However, consistent estimates can be obtained under weaker conditions
through a closely related approach based on sample-splitting (Chernozhukov et al., 2018; Belloni et al., 2012).
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we propose an approach to aggregating sample-split statistics that controls the scope of residual

randomness at a minimal computational cost. Revisiting the applications, we demonstrate that

sample-split statistics aggregated through this procedure are reproducible.

2.1 Cross-Validation

The most prevalent instance of sample-splitting in applied economics is the use of cross-validation

for model selection. Often, in this setting, the data Di consist of a measurement of an outcome Yi
and a vector Xi collecting measurements of p covariates. Interest is in choosing a parsimonious

subset of the covariates that, together, best predicts the outcome.

Lasso regression is a standard approach to this problem (Tibshirani, 1996; Hastie et al., 2015).

The Lasso coefficient is the solution to the regularized least-squares regression

η̂λ(D) = arg min
η∈Rp

{
1

n

n∑
i=1

(Yi − η>Xi)
2 + λ

p∑
j=1

|ηj|

}
, (2.5)

where λ is some tuning parameter chosen by the user. Penalization of the `1-norm of the coefficient

η encourages sparsity. That is, often, many elements of η̂λ(D) are exactly equal to zero. The set of

covariates associated with non-zero coefficients are referred to as the model “selected” by the Lasso.

The selected model is sensitive to the choice of the tuning parameter λ. If λ is sufficiently large, no

covariates are selected. If λ is sufficiently small, all covariates are selected.2

Cross-validation is a widely applied and, perhaps, uncontroversial approach for choosing tuning

parameters. Here, cross-validation entails assigning λ the value that minimizes the cross-split

estimate of the out-of-sample mean-squared error

aλ(r, D) =
1

k

k∑
j=1

Tλ(sj, D) , where Tλ(s, D) =
1

|s|
∑
i∈s

(Yi − η̂λ(Ds̃)
>Xi)

2 (2.6)

and, as before, r = (sj)
k
j=1 is a random k-fold partition of [n]. By measuring error out-of-sample,

i.e., in the independent subsampleDs, the cross-validated risk estimate (2.6) avoids any “over-fitting”

bias induced by the estimation of the coefficient η̂λ(Ds̃). This approach is widely applied throughout

various subfields of applied economics.3

2For sufficiently small λ, a covariate is selected so long as it is not collinear with other covariates and its sample
correlation with the outcome is not exactly equal to zero.
3See, for example, applications to Crime (Mastrobuoni, 2020; Arnold et al., 2020), Development (Casey et al., 2021;
Blattman et al., 2024; Sadka et al., 2024), Economic Theory (Fudenberg and Liang, 2019), Education (Ellison and
Pathak, 2021), Environment (Deryugina et al., 2019; Cicala, 2022), Finance (Koijen et al., 2024), Health (Abaluck
et al., 2016; Cooper et al., 2020), Industrial Organization (Kelly et al., 2023; Dubé and Misra, 2023), Innovation (Chen
et al., 2021; Myers and Lanahan, 2022), Labor (Muendler and Becker, 2010; Card et al., 2020; Adermon et al., 2021;
Derenoncourt, 2022), Market Design (Agarwal et al., 2019), Macroeconomics (Hansen et al., 2018), and Political
Economy (Gentzkow et al., 2019; Cantoni and Pons, 2022).
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FIGURE 1. Cross-Validation
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Notes: Figure 1 measures the residual randomness of the cross-validated Lasso, implemented in data from Casey et al.
(2021). Panel A displays quantiles of the 10-fold cross-validated estimate of the mean-squared error (2.6) of the lasso
regression (2.5) over a grid of values of λ. In Panel B, the probabilities that each value of λ minimize the cross-validated
risk estimate are displayed with light green dots, relative to the left y-axis. The number of covariates selected at each
value of λ are displayed with dark blue dots, relative to the right y-axis. See Appendix A.1 for further details.

The risk estimate (2.6) is random both through the data D and through the choice of the k-fold

partition r. That is, the choice of λ, and thereby, the selected model, have the potential to change for

different choices of the random collection r. To evaluate the scope of this sensitivity, we consider

data from Casey et al. (2021). Casey et al. (2021) study a large-scale experiment, implemented

in Sierra Leone, in which a randomly selected subset of parliamentary elections were preceded

by direct vote, party-specific primaries. They select covariates to include in various, downstream,

econometric analyses with the cross-validated Lasso. In their setting, the outcome Yi is the vote

share, in a poll of party officials, for each of 390 candidates. The vector Xi collects measurements

of 48 characteristics for each candidate.

Panel A of Figure 1 displays quantiles, across random draws of the 10-fold partition r, of the cross-

validated estimate of the mean-squared error (2.6) over a grid of values of λ. The curve associated

with the 5th quantile has a minimum around λ = 0.02. By contrast, the curve associated with the

95th quantile is monotonically decreasing. This induces instability in the value of λ chosen by

cross-validation. Panel B of Figure 1 displays, in light green, the probability—again, across random
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10-fold partitions r—that each value of λ is selected, i.e., minimizes the cross-validated estimate

of the mean-squared error. The number of covariates in the model associated with each value of

λ is displayed in dark blue. The distribution of the selection probabilities has two maxima—both

are associated with probabilities greater than 0.2. One entails selecting a model with 14 covariates.

The other entails selecting a model with zero covariates. The random choice of the partition r

substantively affects the size of the selected model.4

2.2 Cross-Fitting

Meaningful residual randomness is not particular to cross-validated risk estimation. A second

class of sample-split methods, seeing increasing use in applied economics, are characterized by the

application of “cross-fitting” to accommodate—or characterize—treatment effect heterogeneity.

Often, in this case, the data Di consist of an outcome Yi, a binary treatment Wi, and a vector of

covariates Xi. Let Yi(1) and Yi(0) denote the potential outcomes induced by the treatment Wi. As

before, let s denote a random a subset of [n], with complement s̃.

The basic idea underlying this class of methods is to use the data from the units i in s̃ to predict

the treatment effects Yi(1)− Yi(0) for the units i in s. For example, a machine learning algorithm

can be applied to the data Ds̃ to construct an estimate of the conditional expectation

µw(x) = E[Yi | Xi = x,Wi = w] (2.7)

for each w in {0, 1}. Collect these estimates into η̂(Ds̃) = (µ̂1, µ̂0). Predictions of the treatment

effects for the units i in s can be constructed through the sample-split statistic

ψ(Di, η̂(Ds̃)) = µ̂1(Xi)− µ̂0(Xi) . (2.8)

These predictions can then be used to estimate average treatment effects and characterize treatment

effect heterogeneity, among other related problems. The point is, by splitting the data, these

“second-stage” analyses are not confounded by the construction of the “first-stage” estimators.

“Double Machine Learning” (DML) estimates of average treatment effects are a leading example

of a method that takes this structure (Chernozhukov et al., 2018). Here, the sample-split statistics

(2.8) are aggregated with cross-splitting, through

a(r, D) =
1

k

k∑
j=1

T (sj, D) , where T (s, D) =
1

|s|
∑
i∈s

ψ(Di, η̂(Ds̃)) (2.9)

4Casey et al. (2021) take measures to stabilize their results. In particular, they select covariates that are selected in more
than 200 of 400 randomly drawn 10-fold partitions r. We use this setting as an example, in part, because a serious
attempt was made to address residual randomness. This is not commonplace in the literature surveyed in Footnote 3 (a
similar strategy is used in, e.g., Hansen et al. (2018), however).
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and, again, r is a random k-fold partition of [n]. An appropriate standard error for (2.9) is itself

given by the cross-split statistic

se(r, D) =
1

n

√√√√ k∑
j=1

∑
i∈sj

(
ψ(Di, η̂(Ds̃j))− a(r, D)

)2
. (2.10)

Chernozhukov et al. (2018) show that an asymptotically efficient test of the null hypothesis that

an average effect treatment effect is less than zero can be constructed by comparing (2.9) to the

critical value cvα(r, D) = z1−α · se(r, D), where z1−α is the 1− α quantile of the standard normal

distribution.5 DML estimators have been increasingly used in applied economics, as they place

weaker restrictions on treatment effect heterogeneity than, say, methods based on linear regression.6

The DML estimator (2.9) and standard error (2.10) are, again, random through both the data D

and the k-fold partition r. To evaluate the extent of resultant variability, we consider data from

Chakravorty et al. (2024). Chakravorty et al. (2024) use DML to study the effect of a program,

implemented in two Indian states, involving the provision of information concerning prospective

jobs to vocational trainees, on employment outcomes. Here, the binary outcome Yi indicates

employment five months after completing training for each of 890 trainees placed into jobs, Wi

denotes assignment to the program, and Xi collects measurements of 77 pre-treatment covariates.

Panel A of Figure 2 displays a heat map of the joint distribution of the 5-fold cross-fit estimator

(2.9) and the associated critical value cvα(r, D) over random draws of the partition r.7 A black line

is placed at the threshold where the estimate is equal to the critical value. The residual variability in

the estimate is large relative to estimates of the sampling variability, and is sufficient to determine

the purported statistical significance. Concretely, the difference between the 5th and 95th quantiles

of the distribution of the estimator (0.094 and 0.131, respectively) is equal to 68% of the median of

the distribution of the standard error (0.054).8

The same behavior is exhibited in related applications that use cross-fitting in more complicated

ways. In these cases, measures to stabilize results are more common, although there is little

guidance on how to best operationalize this stabilization. To illustrate this, we consider examples
5This result does not apply to estimates of the form (2.8), but rather to estimators constructed with a “Neyman
Orthogonal” moment, which, in this case, additionally require a non-parametric estimate of the propensity score.
6See, for example, applications in Okunogbe and Pouliquen (2022), Beraja et al. (2023), Covert and Sweeney (2023),
Delfino (2024), Farronato et al. (2024).
7We follow the replication package associated with Chakravorty et al. (2024). Nuisance parameters are estimated with
random forests using the “Ranger” R package (Wright and Ziegler, 2017). Estimates and standard errors are constructed
using the “DoubleML” R package (Bach et al., 2024). See Appendix A.2 for further details.
8Some papers take measures to address analogous residual randomness (see e.g., Covert and Sweeney (2023)). In fact,
Chernozhukov et al. (2018) suggest taking the median over several partitions r. Most implementations of DML in
standard statistical software allow the user to aggregate estimates, although this aggregation does not occur by default
(e.g., Bach et al., 2024 in R or Ahrens et al., 2024 in STATA).
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FIGURE 2. Cross-Fitting
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Notes: Figure 2 displays discretized heat maps quantifying the residual randomness of three estimators constructed
with cross-fitting. All three panels give the joint distribution of an estimator and an associated critical value. In each
case, a black line has been placed at the threshold where the estimator is equal to the critical value. Panel A displays
the distribution of the DML estimate (2.9) cross 5-fold cross-splits using data from Chakravorty et al. (2024). Panel B
displays the difference between treatment effects estimates for the “most impacted” and “most deprived” individuals,
following Haushofer et al. (2022), using data from Egger et al. (2022), again across 5-fold cross-splits. Panel C displays
the distribution of the estimate associated with a test of treatment effect heterogeneity using data from Beaman et al.
(2023). Here, each estimate and critical value is computed by averaging over 250 independently drawn half-samples s.
See Appendix A for further details on the construction of each panel.
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from Haushofer et al. (2022) and Beaman et al. (2023).9 Haushofer et al. (2022) use data from a

randomized cash transfer implemented in Kenya. These data were originally considered in Egger

et al. (2022). Beaman et al. (2023) use data from an experiment concerning agricultural lending in

Mali. Both papers use sample-splitting to construct estimates, of the form (2.8), of the treatment

effects Yi(1) − Yi(0) for each of the units i in s. Haushofer et al. (2022) additionally construct

sample-split estimates of the untreated outcome Yi(0) for each of the units in s.

Haushofer et al. (2022) identify the 50% of units in s that have the largest predicted treatment

effect as well as the 50% of units that have the smallest predicted untreated outcome. They refer

to these groups as the “most impacted” and “most deprived,” respectively. They estimate the

difference in the average treatment effect for the two groups, and construct a standard error, and

associated critical value, for this difference with the bootstrap. See Appendix A.3 for details. Panel

B of Figure 2 displays a heat map of the joint distribution of the 5-fold cross-fit estimate of the

difference between the treatment effect estimates for the two groups, and the associated critical

value, over random draws of the partition r.10 The residual randomness is considerable. Here, the

difference between the 5th and 95th quantiles of the distribution of the estimator (37.82 and 109.69,

respectively) is equal to 190% of the median of the distribution of the standard error (54.44). To

stabilize these results, Haushofer et al. (2022) average over 400 draws of the 5-fold partition r. Due

to this increased computation, they only report confidence intervals for their main results. The

methods developed in this paper ensure that stabilization of sample-split statistics, in this way,

occurs at a minimal computational expense.

Likewise, Beaman et al. (2023) implement a test of treatment effect heterogeneity proposed by

Chernozhukov et al. (2023). In particular, in data for units in s, the outcome is regressed on the

treatment, the treatment effect estimate, and an interaction between the treatment and the treatment

effect estimate. The idea is that, if treatment effect estimates are well-calibrated, then the coefficient

on the interaction should be statistically greater than zero. Chernozhukov et al. (2023) recommend

aggregating p-values associated with the coefficients on the interaction over 250 replications of

this sample-split test. Panel C of Figure 2 displays a heat map measuring the joint distribution of
9Additional, related, methods that uses cross-fitting to estimate and evaluate treatment targeting rules are proposed by
Athey and Wager (2021) and Yadlowsky et al. (2024).
10We were not able to access a replication package associated with Haushofer et al. (2022), and so implement a
simplified version of the exercise considered in that paper using data from the replication package associated with Egger
et al. (2022). Treatment effects, and untreated outcomes, are estimated with random forests using the “GRF” R package
(Athey et al., 2019). Analogous estimates reported in Haushofer et al. (2022) are statistically significant. We emphasize
that, as we implement only a simplified version of the exercise conducted in Haushofer et al. (2022), our estimates
should only be interpreted an an illustration of the scope of residual randomness in analyses of this type, rather than
as a substantive characterization of underlying treatment effect heterogeneity. In particular, we make no attempt to
reweigh observations according to their sampling probabilities and appear to be using a different measure of the time
between the administration of the experiment and the measurement of post-treatment outcomes.



12

the average coefficient and critical value associated with this test.11 That is, each coefficient and

critical value is computed by taking the average over 250 sample-splits. Despite this aggregation,

the residual randomness remains meaningful.12 The difference between the 5th and 95th quantiles

of the distribution of the estimator (0.86 and 1.08, respectively) is equal to 28% of the median of the

distribution of the standard error (0.80). Perhaps motivated by this instability, Beaman et al. (2023)

aggregate over 1000 sample-splits.

Two themes emerge from these examples. First, sample-splitting is a versatile tool for simplifying

various tasks associated with modern statistical inference. Second, the residual randomness induced

by sample splitting is often large and can affect the substantive interpretation of results. In the next

section, we provide a general-purpose method for aggregating sample-split statistics that ensures

that residual randomness is controlled at a minimal computational cost.

3. REPRODUCIBLE AGGREGATION

We propose a sequential method for aggregating sample-split statistics. Our objective is to ensure

that the auxiliary randomness induced by sample-splitting is small. To introduce the method, we

require some additional notation. The set Sn,b consists of all subsets of [n] = {1, . . . , n} of size b.

In turn, the setRn,k,b contains all collections of k mutually exclusive elements of Sn,b. That is, if

n = k · b, then the set Rn,k,b collects all partitions of [n] into k mutually exclusive sets of size b.

We refer to the elements of the set Rn,k,b as cross-splits. Throughout, the quantity Rg,k = (ri)
g
i=1

collects g cross-splits, each given by ri = (si,j)
k
j=1. Unless otherwise specified, the elements of Rg,k

are random, sampled independently and uniformly from the collectionRn,k,b.

Suppose that we are interested in some sample-split statistic T (s, D). We study the construction

of aggregate statistics of the form

a(Rg,k, D) =
1

g

g∑
i=1

a(ri, D) , where a(ri, D) = A({T (si,j, D)}kj=1) (3.1)

and the function A(·) aggregates the statistics T (si,j, D) across the cross-split ri. To simplify

exposition, for the time being, we will restrict attention to the case that the statistic a(Rg,k, D) is

real-valued. This is natural, if, for example, the statistic a(r, D) is a treatment effect estimate or

p-value constructed with cross-fitting. Later, in our application to cross-validated risk estimation,
11We follow the details of the replication package associated with Beaman et al. (2023). Nuisance parameters
are estimated with random forests using the “GRF” R package (Athey et al., 2019). Further details are given in
Appendix A.4.
12Chernozhukov et al. (2023) recommend aggregating p-values the median to ensure robustness to outliers. In practice,
if aggregation of a sample-split statistic with a median, rather than a mean, makes a material difference, we strongly
encourage researcher to investigate why some sample-splits generate extreme (or highly skewed) estimates (e.g., outliers
in the underlying data or poor overlap in an intervention).



13

we treat vector-valued sample-split statistics, e.g., cross-validated risk estimates queried at a vector

of values of a penalization parameter.

Our task is to formulate a method for choosing the number of cross-splits g to ensure that the

residual variability of the aggregate statistic (3.1) is small. We formalize this objective as follows.

Definition 3.1 (Reproducible Aggregation). Let the sequences {ri}∞i=1 and {r′i}∞i=1 be drawn

independently and uniformly, conditional on the data D, from the collection of cross-splitsRn,k,b.

Define Rg,k = {rg}gi=1 and R′g,k = {r′g}
g
i=1 for each integer g. Suppose that the integers ĝ and ĝ′ are

independent and identically distributed, again conditional on the data D. We say that the aggregate

statistic a(Rĝ,k, D) is (ξ, β)-reproducible if

P

{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)
∣∣ ≥ ξ | D

}
≤ β (3.2)

almost surely.

Definition 3.1 is motivated by the following thought experiment. Suppose that the data D are

given to two researchers. Each researcher is tasked with producing an estimate of the form (3.1).

They generate the collections of splits, Rĝ,k and R′ĝ′,k, independently using the same, potentially

data-dependent, procedure. That is, the two collections of splits are independent and identically

distributed, conditional on the data D. If the estimate a(Rĝ,k, D) is (ξ, β)-reproducible, then the

probability that the two researchers’ estimates differ by more than ξ is less than β.

Of course, ensuring that estimates are reproducible, in the sense of Definition 3.1, does not

preclude deceptive behavior. Researchers might compute a reproducibility aggregated statistic many

times, until a desirable estimate is obtained. However, reporting reproducible statistics greatly

increases the cost of searches of this form, as the scope of residual randomness has been reduced.

We propose a sequential method for constructing reproducible sample-split statistics. The

proposal is based on the fixed-length sequential confidence intervals of Anscombe (1952) and Chow

and Robbins (1965). The procedure works by repeatedly drawing a cross-split rg uniformly from

Rn,k,b, appending the cross-split to the collection Rg,k = (Rg−1,k, rg), and estimating the conditional

variance

vg,k (D) = Var(a(Rg,k, D) | D) (3.3)

with the plug-in estimator

v̂ (Rg,k, D) =
1

g

1

g − 1

g∑
i=1

(a(ri, D)− a(Rg,k, D))2 (3.4)

until the condition

v̂ (Rg,k, D) ≤ cv(ξ, β) =
1

2

(
ξ

z1−β/2

)2

(3.5)
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Algorithm 1: Anscombe-Chow-Robbins Aggregation
Input: Data D, tolerance ξ, error rate β, collection size k, split size b, initialization ginit

1 Set g ← ginit
2 Draw r1, ..., rginit independently and uniformly fromRn,k,b. Collect Rginit,k = (rj)

ginit
j=1.

3 while v̂(Rg,k, D) > cv(ξ, β) do
4 Set g ← g + 1
5 Draw rg uniformly fromRn,k,b. Collect Rg,k = (Rg−1,k, rg).
6 end
7 Set ĝ ← g
8 return a(Rĝ,k, D)

Notes: Algorithm 1 gives a method for sequentially aggregating sample-split statistics. The critical value
cv(ξ, β) is defined in display (3.5).

is satisfied, where zα denotes the α quantile of the standard normal distribution. In particular, let

ginit ≥ 2 denote some “burn-in” period chosen by the user. The number of cross-splits ĝ chosen by

the procedure is the smallest value of g, greater than ginit, such that (3.5) is satisfied. The procedure

is summarized in Algorithm 1.

In Section 3.1, we show that Algorithm 1 is applicable, off-the-shelf, to a large class of problems.

In particular, without imposing any conditions on the data generating process or the statistic of

interest, we show that sample-split statistics aggregated with Algorithm 1 are reproducible, in a

particular asymptotic sense. Moreover, we show that, in many applications, statistics aggregated

with Algorithm 1 maintain, or improve on, various unconditional statistical guarantees. We then

revisit, in Section 3.2, the examples considered in Section 2. We show that, in each case, an

application of Algorithm 1 produces a reproducible, stabilized, estimate.

3.1 Asymptotic Validity

The following theorem establishes that statistics aggregated with Algorithm 1 are reproducible,

in a particular asymptotic sense. The proof is closely related to the arguments of Anscombe (1952)

and Chow and Robbins (1965) and is given in Appendix C. See e.g., Theorem 3.1 of Gut (2009) for

a textbook treatment.

Theorem 3.1. Suppose that the conditional variance Var(a(r, D) | D) is strictly positive, almost

surely, where r denotes a random collection drawn uniformly from Rn,k,b. If the collections Rĝ,k
and R′ĝ′,k are independently obtained using Algorithm 1, then

P

{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)
∣∣ ≥ ξ | D

}
a.s→ β as ξ → 0 . (3.6)

Two aspects of Theorem 3.1 are worthy of emphasis. First, no restrictions on the data generating

process or the statistic of interest are imposed. For instance, the data D do not necessarily need
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to be i.i.d. and the statistic a(r, D) can be random though quantities other than just r and D. The

result, thus, provides a strong assurance that Algorithm 1 can be applied widely.

Second, in the statement (3.6), asymptotics are taken as ξ → 0, with all other quantities, including

the sample size n, fixed. This asymptotic framework is somewhat opaque, or at least nonstandard,

as the parameter ξ is a choice variable. The operational interpretation is that, if ξ is chosen to be

sufficiently small—at a point negligible relative to, say, the conditional variance v1,k(D)—then the

nominal reproducibility error β is accurate. In Section 4, by imposing some simplifying restrictions,

we give a set of non-asymptotic results that make the dependence of the performance of Algorithm 1

on the choices of ξ, β, and the statistic a(r, D) more transparent.

The intuition underlying Theorem 3.1 is straightforward. The result follows directly from the

observation that the cross-splits ri are independent and identically distributed conditional on the data

D. Thus, for large values of g, the variance estimator v̂ (Rg,k, D) will be close to the conditional

variance vg,k(D). As a consequence, if ξ is sufficiently small, then the number of cross-splits ĝ

chosen by the procedure will be close to the “oracle” stopping time

g? = arg min
g≥ginit

{
cv(ξ, β) =

1

2

(
ξ

z1−β/2

)2

≥ vg,k(D)

}
(3.7)

= arg min
g≥ginit

{
ξ ≥ z1−β/2

√
2v1,k(D)

g

}
, (3.8)

where we have used the fact that vg,k(D) = g−1v1,k(D) in writing (3.8). This, then, ensures that the

aggregate statistic is approximately (ξ, β)-reproducible, as

P
{∣∣a(Rg?,k, D)− a(R′g?,k, D)

∣∣ ≥ ξ | D
}

= P

{∣∣∣∣
√

g?

2v1,k(D)

(
1

g?

g?∑
i=1

a(ri, D)− a(r′i, D)

)∣∣∣∣ ≥ z1−β/2 | D

}
a.s→ β

as ξ → 0, where the limit follows from the central limit theorem (as g? →∞ as ξ → 0).13

In most cases, sample-split statistics are used because they have some desirable property. For

example, a sample-split estimator a(r, D) might be asymptotically normal or might perform well

in terms of some loss function. The following result—roughly, a sequential version of Jensen’s

inequality—can be applied to show that, in many situations, statistics aggregated with Algorithm 1

inherit these properties. The proof is given in Appendix C and follows from an application of the

martingale stopping theorem.

13The discrepancy between a(Rĝ,k, D) and a(Rg?,k, D) can be shown to be negligible by applying an appropriate
maximal inequality—an idea due to Rényi (1957).
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Theorem 3.2. If the collection Rĝ,k is obtained with Algorithm 1, the cross-split r is a random

element of the setRn,k,b, and f(·) is any convex function, then

E [f(a(Rĝ,k, D))] ≤ E [f(a(r, D))] . (3.9)

Suppose that the estimator a(r, D) has good performance in terms of some convex loss. Theorem 3.2

demonstrates that the aggregate estimator a(Rĝ,k, D) will also perform well (and, in fact, may

perform better). For example, Chetverikov et al. (2021) demonstrate that the cross-validated lasso

has nearly optimal rates of convergence in sparse regression problems. Theorem 3.2 shows that

all higher-order moments of risk estimates obtained with our procedure are smaller than those of

risk estimates obtained from a single cross-split. Thus, we expect the same result to hold for tuning

parameters chosen with risk estimates aggregated with Algorithm 1.

Alternatively, in many cases, sample-split statistics are shown to be asymptotically normal by

demonstrating that the variance of the discrepancy

√
n

(
a(r, D)− 1

n

b∑
i=1

ψ(Di, η)

)
(3.10)

is small, where ψ(Di, η) is some score, or influence, function and η is some unknown nuisance

parameter.14 This is how Chernozhukov et al. (2018) demonstrate that DML estimates of average

treatment effects are asymptotically normal, for example. Theorem 3.2 demonstrates that the same

argument will apply to statistics aggregated with Algorithm 1.

In some cases, substantial residual randomness in a sample-split statistic might cause concern for

the validity of associated inferences. For example, for DML estimators, the variance of the term

(3.10) is bounded from below by the expectation of its variance conditional on the data. So, if the

conditional variance is large, then the unconditional variance of (3.10) is likely not small. On the

other hand, the conditional variance can be reduced through the application of our procedure. In

other cases, substantial residual randomness may not be a reason for concern, because inferences are

based on estimating a nuisance parameter in one split of a data set, and then conducting inference in

the other split by conditioning on this estimate. This is the case for the applications considered in

Beaman et al. (2023) and Haushofer et al. (2022).

There is a large statistical literature on the use and interpretation of average p-values. In general,

a level α test can be constructed by comparing an average p-value to 2 · α (see e.g. Rüger, 1978;

Vovk and Wang, 2020; DiCiccio et al., 2020).15 Using a result analogous to Theorem 3.2, for a
14That is, if second term in (3.10) is asymptotically normal and the variance of (3.10) converges to zero, then the
statistic a(r, D) is also asymptotically normal by Chebychev’s inequality and the continuous mapping theorem.
15A variety of methodological papers use this observation to construct sample-split hypothesis tests that control the Type
I error rate under very general conditions. In Appendix B.1, we show that the sample-split hypothesis tests considered
in e.g., DiCiccio et al. (2020), Meinshausen et al. (2009), and Wasserman et al. (2020) continue to be valid when they
are constructed sequentially with Algorithm 1.
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pre-determined number of sample-splits g, Chernozhukov et al. (2023) show that, under some

high-level conditions, valid p-values aggregated by averaging over sample-splits are also valid

p-values. Under the same conditions, Theorem 3.2 can be applied to give an analogous result for

p-values aggregated with Algorithm 1.

3.2 Reproducible Aggregation in Practice

Equipped with Algorithm 1, we return to the examples considered in Section 2. We show that, in

each case, an appropriate application of the procedure produces a stabilized, reproducible estimate.

3.2.1 Cross-Fitting. We begin by treating the three examples that use cross-fitting. The most

important choice to make when implementing Algorithm 1 is the specification of the statistic a(r, D).

There are many reasonable choices that one might make here. For example, one could choose to

ensure that estimates or standard errors are stable up to a desired level of precision. For the sake of

comparability across settings, we opt to stabilize the p-value

a(ri, D) = 1− Φ

(
est(ri, D)

se(ri, D)

)
, (3.11)

where the function Φ(·) is the standard normal c.d.f. and the quantities est(ri, D) and se(ri, D) denote

the cross-split estimate and standard error that corresponding to the axes of Figure 2. In effect,

controlling the residual randomness of the average p-value ensures that the residual randomness in

the aggregate estimate is small relative to the sampling error.

Table 1 summarizes the results. We choose ξ equal to either 0.001 and 0.01, as these are the

levels of precision relevant for the determination of statistical significance at levels α = 0.025 and

α = 0.10, respectively. For now, we follow the approaches to cross-splitting taken by all three

papers. In the applications to Chakravorty et al. (2024) and Haushofer et al. (2022), we aggregate

over 5-fold cross splits. In the application to Beaman et al. (2023), the split ri contains a single

half-sample, i.e., subset of [n] of size n/2.16 The estimates displayed in Table 1 indicate that all

three applications require aggregation over hundreds of cross-splits to ensure reproducibility, in the

sense of Definition 3.1, at these levels of error tolerance. Moreover, we find that nominal error rate

β associated with Algorithm 1, here set to 0.05, is very accurate.

3.2.2 Cross-Validation. We now turn to our application to cross-validated risk estimation. In

this setting, there is more ambiguity in how to best apply Algorithm 1. We find that the following

approach works well in the data from Casey et al. (2021). Recall that, in this application, the sample-

split statistic aλ(r, D) denotes the cross-validated estimate of the mean-squared error, queried at a

specified value of the regularization parameter λ. We are interested in stabilizing these estimates
16If it is desirable to aggregate the median p-value, Algorithm 1 will continue to apply with a small modification. In
particular, the variance estimator (3.4) can be replaced by an estimator constructed with the bootstrap. In this case, a
result analogous to Theorem 3.1 will continue to hold.
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TABLE 1. Reproducible Aggregation in Practice: Cross-Fitting

Application ξ p-value Average ĝ Reproducibility

Chakravorty et al. (2024) 0.001 0.979 860.7 0.945

Haushofer et al. (2022) 0.01 0.80 1360.6 0.947

Beaman et al. (2023) 0.01 0.83 2794.8 0.950

Notes: Table 1 summarizes the application of Algorithm 1 to three of the examples considered in Section 2. The first
column indicates the application. The second column specifies choices for the error tolerance ξ. In each case, we set
the reproducibility error rate to β = 0.05 and the burn-in sample size ginit to 10. The third column gives the p-value
produced by one-application of the procedure. The fourth column gives the average number of cross-splits ĝ drawn
in each implementation, taken across 2,000 replications of the aggregation procedure. The fifth column displays an
estimate of the true reproducibility probability, i.e., the probability that two independent implementations of Algorithm 1
produce estimates that differ by less than ξ, computed with these replicates.

for each value of λ in an increasing sequence (λ`)
p
`=1, where λp is the smallest value such that no

covariates have non-zero coefficients when estimated using the full data.17

To do this, we apply Algorithm 1 to each component of the vector

(bλ1(r, D), . . . , bλp−1(r, D)) , where bλi(r, D) = (aλi(r, D)− aλp(r, D)) . (3.12)

The rationale for this is that the relative, rather than absolute, values of the risk estimates are

what are relevant for determining where the estimates takes their minimum value. We find that, in

practice, consideration of the differences (3.12) can substantially reduce the amount of aggregation

needed for stabilization.

We implement Algorithm 1, independently, for each component of the vector (3.12). In other

words, we ensure that each component of the risk estimate is marginally reproducible.18 We let

ξi denote the error tolerance used for the ith component of the vector (3.12). We use a simple

approach for determining suitable values for these tolerances. Roughly speaking, we compute the

statistic (3.12) for each element of a small, initial sample of cross-splits (e.g., g = 20). Using these

estimates, we find that the level of precision needed to distinguish between the close-to-optimal
17Throughout, we use the grid (λ`)

p
`=1 of values of the regularization parameter λ chosen by default by the “glmnet” R

package (Friedman et al., 2021).
18In principle, it is straightforward to ensure that the components of the vector (3.12) are simultaneously reproducible.
For example, simultaneous reproducibility at level β can be obtained by ensuring that each component is reproducible
at level β/(p− 1), mimicking the standard Bonferonni adjustment. More sophisticated schemes, based on the bootstrap,
say, are also applicable. In practice, ensuring simultaneous reproducibility can substantially increase the required
computation and tends not to lead to materially different risk estimates.
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values of λ is approximately ξi = 10−4. The error tolerances specified at values of λ that can be

determined to be sub-optimal are set to larger values. Further details are given in Appendix B.2.

Figure 3 gives measurements of the performance of Algorithm 1 for aggregation of the statistic

(3.12), implemented in the data from Casey et al. (2021). Panel A displays quantiles of the

reproducibly aggregated statistic (3.12) across replications of the procedure. The y-axis has been

truncated to focus attention on the close-to-optimal values of the regularization parameter. There

is little residual randomness. Panel B displays quantiles of the number of 10-fold cross-splits

ĝ chosen by the procedure at each value of the regularization parameter. Precise estimates at

the close-to-optimal values require aggregation over thousands of cross-splits. Observe that less

aggregation is used at small, sub-optimal values of λ, as we have used larger error tolerances for

these values. We find that, if cross-validated model selection is implemented twice, and, in each

case, aggregated at this level of error tolerance, then the same value of λ is selected with probability

0.84 and the same 14 covariates are selected with probability 0.999. In Appendix B.2, we show

that the nominal reproducability error, again β = 0.05, is very accurate over the full range of the

regularization parameter.

4. THEORETICAL ANALYSIS

The asymptotic results given in Section 3 are quite general. In particular, Theorem 3.1 holds in

the absence of any restrictions on the data generating process or statistic under consideration. It is

worth asking, however, whether these results confer a clear statistical understanding. At least two

issues arise. First, Theorem 3.1 relies entirely on the fact that, in Algorithm 1, successive cross-splits

are sampled independently. That is, we have said nothing, yet, about the role of cross-splitting.

Second, the interpretation of the asymptotic approximation with ξ → 0 is somewhat opaque. What

would be a reasonable value of ξ to choose to ensure that Algorithm 1 is accurate? And how do

these choices impact the amount of computation required to implement the procedure?

In this section, we give a non-asymptotic description of the performance of Algorithm 1. This

is accomplished by placing some simplifying restrictions on the statistic of interest. The more

specialized analysis that follows is aimed at providing qualitative and quantitative intuition for how

the computational cost and reproducibility error of statistics aggregated with Algorithm 1 depend

on the choices of k and ξ. Proofs for results stated in this section are given in Appendix D.

4.1 Symmetry, Linearity, and Stability

We impose a set of simplifying restrictions. Recall that, in general, we are considering the

aggregation of cross-split statistics of the form

a(r, D) = A({T (sj, D)}kj=1) , where T (s, D) = Ψ (Ds, η̂ (Ds̃)) (4.1)
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FIGURE 3. Reproducible Aggregation in Practice: Cross-Validation
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−0.001

0.000

0.001

0.002

0.003

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Lambda

M
S

E
 D

iff
er

en
ce

Quantile
0.95
0.50
0.05

Panel B: Computation

0

500

1000

1500

2000

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Lambda

R
ep

lic
at

io
ns

Quantile
0.95
0.50
0.05

Notes: Figure 3 displays the performance of Algorithm 1 in the application to cross-validated Lasso, implemented
in data from Casey et al. (2021). Algorithm 1 is applied independently to each component of the vector (3.12). The
error tolerances ξi are specified in Appendix B.2. We set the nominal reproducibility error to β = 0.05. Panel A
displays quantiles of the statistic (3.12) at each value of a grid of values of the regularization parameter λ. The y-axes is
truncated to focus attention on large values of λ. We give an un-truncated version in Appendix B.2. Panel B displays
quantiles of the number of 10-fold cross-splits ĝ chosen by the procedure at each value of the regularization parameter.

is a sample-split statistic and the function η̂(·) is an estimator of an unknown nuisance parameter η.

In the main text, we restrict attention to the case that n = k · b, i.e., where each element r inRn,k,b

is a complete partition of [n] into k sets of size b. Each of the results given here will follow directly

from more general results stated in Appendix D, where this restriction is not imposed.

First, we assume that the sample-split statistic under consideration is symmetric and deterministic

in each part of a split sample.

Assumption 4.1 (Symmetry and Determinism). For all sets s in Sn,b and dataD, the statistic T (s, D)

is deterministic and invariant to permutations of the data with indices in s and s̃, respectively.

The intention of Assumption 4.1 is to restrict the residual randomness under consideration to the

randomness introduced by sample-splitting. This holds in cases where η̂(·) is deterministic, e.g.,

when η̂(·) is a coefficient vector determined by a regularized regression or in the applications to

hypothesis testing considered by DiCiccio et al. (2020) or Wasserman et al. (2020). Assumption 4.1

rules out procedures where the estimator η̂(·) is random conditional on the data. This excludes
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settings where, e.g., η̂(·) is estimated with stochastic gradient descent, bagging or subsampling, or

is itself constructed with data splitting.

Second, we assume that the aggregation function A(·) is an average and that the statistic T (s, D)

is linearly separable in the first part of the split sample.

Assumption 4.2 (Linearity). For all cross-splits r = (sj)
k
j=1 in Rn,k,b, the cross-split statistic a(r, D)

can be represented by

a(r, D) =
1

k

∑
i∈s

T (sj, D) . (4.2)

Moreover, for all sets s in Sn,b, the sample-split statistic T (s, D) can be represented by

T (s, D) =
1

b

∑
i∈s

ψ(Di, η̂ (Ds̃)) (4.3)

for some function ψ(·, ·).

We make these restrictions to ease exposition. Assumption 4.2 is satisfied if, for example, the

statistic under consideration is a cross-fit treatment effect or cross-validated mean-squared error

estimate. In principle, Assumption 4.2 rules out some applications of interest. In practice, so

long as the linear representations (4.2) and (4.3) hold up to a suitable degree of approximation,

the qualitative and quantitative predictions of the results that follow will continue to hold.19 In

particular, we show below that the predictions of our results play out in the data from Chakravorty

et al. (2024), where the statistic T (s, D) is a p-value of the form (3.11).

The remaining assumptions, and our ensuing results, are expressed in terms of two objects that

measure the sensitivity of the statistic under consideration to perturbations of the data and of the

splits, respectively. We refer to these objects as stabilities. They are defined as follows.

Definition 4.1 (Sample Stability). Fix a set s ⊆ Sn,b and let i be an arbitrary element of s. Let D′

denote an independent and identical copy of the data D. For each q ⊆ [n], let D̃(q) be constructed

by replacing Dj with D′j in D for each j in q. Let q be a randomly selected subset of s̃ of cardinality

q. We refer to the quantity

σ(r,q) = E
[∣∣ψ(Di, η̂ (Ds̃))− ψ(Di, η̂(D̃

(q)
s̃ ))

∣∣r] (4.4)

as the (r, q)-order sample stability.

Definition 4.2 (Split Stability). We refer to the quantity

ζ(r) = E
[

max
s,s′∈Sn,b

(T (s, D)− T (s′, D))
r

]
. (4.5)

19Extensions of our results to cases where the function A(·) or the statistic T (s, D) satisfy component-wise Lipschitz
or bounded differences conditions, say, are feasible, and will exhibit the same qualitative behavior.
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as the rth-order split stability.

We restrict attention to statistics whose sample stabilities decay in a suitable way with the sample

size n. Throughout, we say x . y if there exists a universal constant C such that x ≤ Cy.

Assumption 4.3 (Sample Stability Decay). The (r, q)-order sample stability satisfies the bound

σ(r,q) .

( √
q

n− b

)r
(4.6)

uniformly for each q in [b] and r in {2, 4}.

We call a statistic sample stable if it satisfies Assumption 4.3.20 Many sample-split statistics of

interest are sample stable. In Appendix B.3, we show that statistics satisfying Assumption 4.2 are

sample stable if the nuisance parameter estimator η̂(·) is an empirical risk minimizer of a, potentially

regularized, strictly convex loss. There is a large literature that gives analogous bounds for other

standard machine learning estimators, including bagged or subsampled estimators, like random

forests (Chen et al., 2022; Ritzwoller and Syrgkanis, 2024), ensemble estimators (Elisseeff et al.,

2005), and estimators computed with stochastic gradient descent (Hardt et al., 2016).21

Nevertheless, sample-stability should be viewed as a strong assumption, that is only applicable to

highly regular estimators. Below, we show that the predictions that follow from the imposition of

sample-stability, concerning the qualitative behavior of the residual randomness, play out in the

applications to Casey et al. (2021) and Chakravorty et al. (2024). These predications may not have

the same quality in settings that use less well-behaved nuisance parameter estimators.

The split stability ζ(r) is a less frequently studied object. We will only require that it is finite for r

equal to 4 or 8, depending on the setting. This is a weak restriction that will hold, for example, if

the statistic T (s, D) is bounded.

4.2 Computation and Concentration

Algorithm 1 entails sequentially computing the statistic a(Rg,k, D), as g increases, until a stopping

criteria is satisfied. How much computation should we expect to do? And how does this quantity

depend on the parameters k and ξ?
20The (2, 1)-order sample stability σ(2,1) is a widely studied object in the statistical learning literature, where it is
referred to as mean-square stability (see e.g., Bousquet and Elisseeff, 2002; Kale et al., 2011; Kumar et al., 2013).
21Chen et al. (2022) show that, under some regularity conditions, sample-splitting is unnecessary for the consistency
and asymptotic normality of DML estimators, if a condition related to, but partially stronger than, Assumption 4.3 is
satisfied. We comment on the relationship between Assumption 4.3 and the conditions considered in Chen et al. (2022)
in Appendix B.3.
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Recall from Section 3.1 that we should expect the total number of splits m̂ = ĝ · k used by

Algorithm 1 to be close to the “oracle” quantity

m? = g? · k ≈ 2k · v1,k(D)

(
z1−β/2

ξ

)2

, (4.7)

where v1,k(D) = Var(a(r, D) | D) denotes the conditional variance of the statistic computed using

a single cross-split. Two aspects of the expression (4.7) are worth highlighting. First, the total

number of splits depends on the error tolerance ξ through the factor ξ−2. In other words, in order to

reduce the reproducibility error by a factor of 10, e.g., to move from ξ = 0.1 to ξ = 0.01, the total

number of splits must be increased by a factor of 100. Second, the total number of splits depends on

the parameter k through the factor k · v1,k(D). How should we expect this quantity to scale with k?

We answer this question with the following result, which characterizes the rate of convergence of

the statistic a(Rg,k, D) around its conditional mean, given by

a (D) = E [a(Rg,k, D) | D] = E [T (si,j, D) | D] (4.8)

under Assumption 4.2. The nonstandard aspect of this result is that we account for the dependence

in the summands in a(Rg,k, D) across cross-splits, i.e., the dependence induced by cross-fitting.

This is accomplished by applying a coupling argument due to Chatterjee (2005, 2007).22

Theorem 4.1. Suppose that Assumptions 4.1 to 4.3 hold, the data D are independently and

identically distributed, and n = k · b. If the 4th-order split stability ζ(4) is finite, then for each δ > 0,

the inequality

vg,k(D) = E
[
(a (Rg,k, D)− a (D))2 | D

]
.

1

δ

b− 1

n2

1

g
. (4.9)

holds with probability greater than 1− δ as D varies.

The left-hand side of the inequality (4.9) is random through the data D. Theorem 4.1 says that, if

F is the event that the inequality (4.9) holds, then P{F} > 1 − δ unconditionally. This bound

results from an application of Markov’s inequality, at one point in the proof, to bound a complicated,

data-dependent term with a term that depends on the sample stability. This strategy—bounding the

conditional quantities of interest with unconditional quantities—is helpful because the resultant
22Theorem 4.1 is closely related to the unconditional variance bounds given in Kale et al. (2011) and Kumar et al. (2013),
who give bounds with the same dependence on k for cross-validated risk estimation. Our result follows from a different
method of argument. In particular, Theorem 4.1 is a corollary of a more general result, presented in Appendix D, that
gives an analogous large deviations bound. In particular, we show that, for each ε > 1, the bound

P

{
|a(Rg,k, D)− a(D)| ≤

√
b− 1

n2
1

g

log(ε−1)

δ
| D

}
≥ 1− ε

holds with probability greater than 1− δ as D varies. That is, the rate of convergence suggested by Theorem 4.1 holds
for all higher-order moments as well. This large deviations bound is applied repeatedly to establish the result given in
the following subsection.
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unconditional object, the sample stability, is tractable and has been characterized in many settings

of interest.

Theorem 4.1 demonstrates that the variance vg,k(D) converges to zero at the rate

1

n

b− 1

n

1

g
≤ 1

n

1

k

1

g
. (4.10)

Consequently, for a fixed total number of splits m = g · k, the rate of convergence is proportional to

(mn)−1. That is, the conditional randomness of aggregate statistics constructed withm sample-splits

concentrates like averages of m i.i.d. random variables, despite the dependence across cross-splits.

Observe, also, that if b = 1, corresponding to “jackknife” or “leave-one-out” sample-splitting, then

there is no residual randomness and the left-hand-side of (4.10) collapses to zero.

Plugging the bound (4.9) into the expression (4.7), we find that

m? ≈ 1

n

(
z1−β/2

ξ

)2

, (4.11)

In other words, Theorem 4.1 implies that—in contrast to the error tolerance ξ—the number of

cross-folds k does not affect the required computation. On the other hand, all else equal, less

aggregation is needed to remove residual randomness from settings with larger sample sizes n.

Theorem 4.1 plays out empirically. Figure 4 displays measurements of the conditional variance

v1,k(D) in dark blue, as k varies, for our applications to Casey et al. (2021) and Chakravorty

et al. (2024). For the application to Casey et al. (2021), we use the cross-validated estimate of the

mean-squared error at the value of λ that minimizes the curves displayed in Panel A of Figure 3.

For the application to Chakravorty et al. (2024), we use the p-value (3.11), associated with the

cross-fit estimate of the average treatment effect. If the variance bound (4.9) is accurate, then the

approximation

v1,k(D) ≈
(
k′

k

)
v1,k′(D) (4.12)

should hold for each pair k, k′. To test this, we display estimates of right-hand-side of (4.12) in

light green, where k′ is the largest value of k considered in each sub-figure. In each case, the

approximation is remarkably accurate.23

4.3 Reproducibility

Algorithm 1 confers a guarantee. In particular, statistics aggregated with Algorithm 1 should

be interpreted as being reproducible, up to an error tolerance ξ, with probability greater than β.
23It is worth emphasizing that neither Assumption 4.1 nor Assumption 4.2 holds for the application to Chakravorty et al.
(2024). That is, in this case, nuisance parameters are estimated with random forests, which are random conditional on
the data, and the p-value (3.11) does not admit an exact representation of the form (4.3). Rather, in this setting, both
of these assumptions are good approximations (so long as the number of trees used to construct the random forests is
sufficiently large), and so the predictions of Theorem 4.1 hold.
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FIGURE 4. Concentration

Panel A: Casey et al. (2021)
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Panel B: Chakravorty et al. (2024)
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Notes: Figure 4 illustrates the concentration of the residual randomness of various cross-split statistics with the number
of cross-splits k, using data from Casey et al. (2021) and Chakravorty et al. (2024). For the application to Casey et al.
(2021), we use the cross-validated estimate of the mean-squared error at the value of λ that minimizes the curves
displayed in Panel A of Figure 3. For the application to Chakravorty et al. (2024), we use the p-value of the form
(3.11), associated with the cross-fit estimate of the average treatment effect. The x-axes give 1/k. The y-axes give
measurements of the conditional variance of each statistic. Both the axes are displayed on a logarithmic scale, base 10.
The theoretical prediction (4.12), based on Theorem 4.1, is given in light green.

How accurate is this guarantee? In particular, how does the accuracy of the nominal reproducibility

error β depend on the choice parameters ξ and k? These questions are answered by the following

Berry-Esseen type bound on the accuracy of the nominal reproducibility of Algorithm 1.

Theorem 4.2. Suppose that the collections Rĝ,k and R′ĝ′,k are independently obtained using Algorithm 1.

If Assumptions 4.1 to 4.3 hold, the conditional variance v1,k(D) = Var(a(r, D) | D) is strictly

positive, almost surely, the data D are independent and identically distributed, and the eighth-order

split stability ζ(8) is finite, then for all sufficiently small ξ, the inequality∣∣∣∣P{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)
∣∣ ≥ ξ | D

}
− β

∣∣∣∣
.

1

δ3/4

1

kn

(
1

v1,k(D)

)5/4(
ξ

z1−β/2

)1/2

, (4.13)



26

holds with probability greater than 1− δ as D varies, where in writing (4.13), we have omitted a

multiplicative term that converges to zero logarithmically as ξ decreases to zero.

Theorem 4.2 describes the settings under which Algorithm 1 is accurate. To unpack this result,

observe that the variance bound (4.9) gives

1

kn

(
1

v1,k(D)

)5/4(
ξ

z1−β/2

)1/2

&
k1/4

n

(
ξ

z1−β/2

)1/2

. (4.14)

This suggests that the performance of Algorithm 1 improves as k and ξ decrease and as n increases.24

These predictions hold empirically. Panel A of Figure 5 displays estimates of the reproducibility

error in the application to Casey et al. (2021) as k and ξ vary. An analogous figure for the application

to Chakravorty et al. (2024) is displayed in Appendix A.5. As predicted, over most of the range of

ξ, the reproducibility error is increasing as k increases.25

Likewise, Panel B displays estimates of the average number of cross-splits ĝ used in Algorithm 1,

at each value of ξ and k. Again, as predicted, the total number of splits used by the procedure stays

constant as k varies. To see this, observe that the average value of ĝ is roughly 10 times smaller

for k = 20 than for k = 2, as predicted by the approximation (4.11). Comparing Panels A and B,

observe that, once the average value of ĝ is larger than approximately 500, the reproducibility error

is close to the nominal error rate β.

If the total number of splits required to ensure reproducibility at a given error tolerance ξ is

constant as k varies, then why does the performance of Algorithm 1 decrease with k? As part of the

proof of Theorem 4.2, we show that, for each ε > 0, the bound

P

{∣∣∣∣ ĝg? − 1

∣∣∣∣ . 1

n

1

k

(
1

v1,k(D)

)3/2
ξ

z1−β/2

√
log(ε−1)

δ
| D

}
≥ 1− ε (4.15)

holds with probability greater than 1− δ, as D varies. Again the variance bound (4.9) gives

1

n

1

k

(
1

v1,k(D)

)3/2
ξ

z1−β/2
&
k1/2

n

ξ

z1−β/2
. (4.16)

Written differently, as k increases the discrepancy between the realized and oracle number of cross-

splits, |ĝ/g?− 1|, increases, reducing the accuracy of the nominal error rate. Roughly speaking, this

happens because the quality of the estimator v̂g,k(D) for the conditional variance vg,k(D) depends

24The dependence of the bound (4.13) on ξ is sharp, at least up to the logarithmic factor. This follows from general
results concerning randomly stopped sums given in Landers and Rogge (1976, 1988).
25Note, however, that for large values of ξ, the reproducibility error decreases as k increases. This is due to early
stopping. That is, if the variance v1,k(D) is large relative to ξ, then there is an increased chance that ĝ stops immediately
after the burn-in period, i.e., ĝ = ginit.
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FIGURE 5. Performance in Application to Casey et al. (2021)

Panel A: Reproducibility Error
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Panel C: Discrepancy from Oracle Stopping Time, ĝ/g? − 1
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Notes: Figure 5 displays measurements of the performance of Algorithm 1 on the data from Casey et al. (2021). Panel
A displays measurements of the reproducibility error, P{|a(Rĝ,k, D)− a(R′ĝ′,k, D)| ≥ ξ | D}, as ξ and k vary. A solid
horizontal line is displayed at the nominal error rate β = 0.05. Panel B displays measurements of the average number
of replications ĝ s ξ and k vary. The y-axis is displayed with a log scale, base 10. Solid horizontal lines are placed at
each exponential factor of 10. Panel C displays measurements of the 5th and 95th quantiles of the discrepancy ĝ/g? − 1
as k and ξ vary. Further details on the construction of this figure are given in Appendix A.5.



28

only on the number of cross-splits g.26 That is, for a given number of sample-splits m̂ = k · ĝ,

Algorithm 1 is most accurate when ĝ is large, as the variance estimate v̂ĝ,k(D) is more precise.

As before, these predictions play out in practice. Panel C of Figure 5 displays estimates of the 5th

and 95th quantiles of the distribution of the discrepancy ĝ/g? − 1 as k and ξ vary. Over most of the

range of ξ the discrepancy between ĝ and g? is increasing in k. At small values of k and large values

of ξ, there is an increased chance that ĝ stops immediately after the burn-in period, i.e., ĝ = ginit.

It is worth pausing to note that these results do not support eschewing cross-splitting altogether,

i.e., setting k equal to one and aggregating over independent splits, as we have restricted attention

to the case that n = k · b. In Appendix D, we give analogous results that relax this assumption

and show that cross-splitting, i.e., setting n = k · b, reduces residual randomness at a faster rate

than independent splitting, i.e., setting k equal to one. In other words, all else equal, Algorithm 1

performs best, in the sense that the nominal reproducibility error is most accurate, when k is equal

to 2 and b is equal to b/2.

To summarize, the computation needed to achieve a desired bound on residual randomness is

highly sensitive to the error tolerance ξ, but is not affected by the number of cross-folds k. On

the other hand, the accuracy of the nominal error rate of Algorithm 1 decreases as the number of

cross-folds k increases. If the error bound ξ is chosen to be suitably small, such that the realized

number of cross-splits ĝ is greater than roughly 500, then the nominal reproducibility probability

tends to be quite accurate, and insensitive to changes in the number of cross-splits.

5. RECOMMENDATIONS FOR PRACTICE

Sample-splitting is a helpful tool for simplifying many widely encountered problems in applied

econometrics. This simplification comes at the cost of the introduction of residual randomness. We

have shown, in several applications, that this residual randomness is large enough to substantively

affect results. To address this, we have proposed a simple procedure, summarized in Algorithm 1,

for removing the auxiliary randomness from sample-split statistics. The procedure takes as input a

bound and an error rate. We have shown that, if the procedure were run twice, the chance that the

results differ by more than the bound is well-approximated by the error rate.

We conclude, in this section, by detailing several recommendations for how to best implement

Algorithm 1 in practice. The most important choice to make is the specification of the sample-split

statistic of interest. For example, suppose that we are interested in estimating an average treatment

effect, or other causal contrast, using an estimator based on sample-splitting. Denote this quantity
26Similarly, in Appendix D, we show that the quality of a normal approximation to a(Rg,k, D) depends only on g,
although this discrepancy is not the leading term in the reproducibility error. The close approximation exhibited in
Figure 4 suggests that is may be reasonable to estimate v1,k(D) by taking the sample variance both across and within
cross-splits, i.e., computing the sample variance across all m sample-splits. Although this worth further consideration,
asymptotic validity, i.e., Theorem 3.1, would not hold at the same level of generality.
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by est(r, D) and let se(r, D) denote an associated, potentially sample-split, standard error estimate.

There are several reasonable choices that one might make. In this case, we recommend applying

Algorithm 1 to sequentially aggregate the p-value

a(r, D) = 1− Φ

(
est(r, D)

se(r, D)

)
(5.1)

associated with a test that the contrast of interest is greater than zero, where Φ(·) denotes the

standard normal c.d.f. This approach has the benefit of benchmarking residual randomness with an

estimate of the sampling error.

In some settings, it may be of interest to report the scope of residual randomness for alternative

quantities associated with statistics that have aggregated with Algorithm 1. For example, suppose

that we have applied Algorithm 1 to stabilize the p-value (5.1), and obtain a(Rĝ,k, D). We may

also wish to report the associated estimate est(Rĝ,k, D). In this case, we recommend reporting and

interpreting the standard error√√√√1

ĝ

1

ĝ − 1

ĝ∑
i=1

(est(ri, D)− est(Rĝ,k, D))2 (5.2)

in the usual way. That is, the standard error (5.2) estimates the residual randomness of the estimate

est(Rĝ,k, D), conditional on the data. If this is too large, the error tolerance ξ should be decreased.

The optimal choice of statistic in settings where cross-validation is used for model selection and

risk estimation is less immediate. In this case, we recommend applying Algorithm 1 to each element

of the statistic (3.12), i.e., the relative values of the risk estimates.

The second most important choice to make is the choice of the error tolerance ξ. In some cases, an

appropriate choice is clear. For example, it may be desirable to ensure that a p-value is reproducible

at the level relevant for the determination of statistical significance at level 0.10 or 0.025, e.g., setting

ξ = 0.01 or ξ = 0.001. In other cases, like in applications to cross-validated model selection, this

choice is less clear. We propose a procedure for making this choice in that setting in Appendix B.2.

The error tolerance ξ should be set to a value that is sufficiently small so that the nominal

reproducibility error is accurate. On the other hand, ξ should not be set so small that the computation

associated with implementing Algorithm 1 becomes infeasible. To ensure that the chosen value

of ξ satisfies these constraints, we recommend computing the statistic of interest for each of a

small, initial sample of cross-splits (e.g., g equal to 20 or 30). Let v̂1,k(D) denote an estimate of

the conditional variance v1,k(D) computed using this sample. An estimate of the total number of

cross-splits needed to implement Algorithm 1 at a specified level of ξ can then be obtained by

g(ξ) = 2v̂1,k(D)

(
z1−β/2

ξ

)2

. (5.3)
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Motivated by the numerical results reported in Section 4, we recommend choosing a value of ξ such

that this estimate is greater than 500.

In some cases, the estimate (5.3) may be too large at practically relevant values of ξ to be

computationally feasible. Unfortunately, as we have shown in Section 4, changing the number

of cross-folds k will not address this issue, and it may be best to consider alternative choices

of nuisance parameter estimators. In this situation, one might consider using “leave-one-out” or

“jackknife” sample-splitting, i.e., setting k = n, which exhibits no residual randomness. This is not

an omnibus fix, however. For example, proofs of the asymptotic normality of DML estimates of

average treatment effects require that k is small relative to n (Chernozhukov et al., 2018). Similarly,

leave-one-out cross-validation is not necessarily optimal for model selection (see e.g., Shao (1993)

for early discussion of this point). Chetverikov (2024) gives a review of various, alternative,

approaches to tuning parameter selection.

If the number of cross-folds k is set too high, the realized number of cross-splits ĝ may be too

small and Algorithm 1 may perform poorly. But, so long as the user ensures that the error tolerance

ξ is sufficiently small such that the number of cross-splits ĝ tends to be large (e.g., greater than

500, say), small changes in the number of folds k should not have adverse effects. Thus, this

choice should be made on substantive grounds, that will depend on the application. In practice, the

conventional choices of k equal to 2, 5, or 10 should work well in most settings.

We have had relatively little to say about the choice of the nominal reproducibility error β. We

have found that setting β = 0.05 is suitable for most applications. Finally, although it has not

played a central role in our theoretical analysis, it is important to choose the burn-in period ginit to

be suitably large to ensure that the variance estimate v̂ginit,k(D) is reasonably accurate, otherwise

Algorithm 1 will tend to stop too early. We recommend setting ginit to be equal to at least 10.
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APPENDIX A. DATA AND SIMULATIONS

A.1 Casey et al. (2021)

We obtain the data associated with Casey et al. (2021) from the replication package posted on

OpenICPSR.27 The units of observation are the aspirant political candidates in Sierra Leone’s 2018

parliamentary elections. The data that we consider consist of an outcome and 48 covariates. The

outcome is the vote share for each aspirant candidate in a poll of party officials. The covariates collect

various measurements relating to the candidate’s personal, political, and financial characteristics.

All data cleaning steps match Casey et al. (2021).

We consider the exercise summarized in Appendix Table A.4 of Casey et al. (2021). These authors

repeatedly compute 10-fold cross-validated estimates of the risk associated with a regularized

regression of the outcome on the collection of covariates, at each value of a grid of penalization

parameters. They include both Ridge and Lasso type penalties. For each replication, they compute

the covariates that are selected in the regression associated with the penalty parameter having the

minimum risk estimate. They display the covariates that are selected in more than 200 of the 400

replications. These covariates are included as controls in various downstream analyses. In our

replication of this exercise, to ease exposition, we only include a Lasso type penalty.

A.2 Chakravorty et al. (2024)

We obtain the data and replication package associated with Chakravorty et al. (2024) directly

from the authors.28 The units of observation are trainees in a job training program implemented

in the Indian states of Bihar and Jharkhand. There are 2,488 total trainees, who were divided into

batches of approximately 30 trainees. Batches of trainees were randomly assigned to treatment with

a program involving the provision of information concerning potential placement jobs. All data

cleaning steps match those taken in Chakravorty et al. (2024) .

We replicate the analysis reported in Column 4 of Table 1 of Chakravorty et al. (2024). This

estimate restricts attention to the 890 trainees that completed the training and were subsequently

placed into a job. The outcome variable is an indicator for whether the trainee is still in the job five

months after training completion. The covariates collect measurements of 77 attributes related to

the demographics, human capital, and expectations of the trainees. These covariates are listed in

Table 3.1 of Chakravorty et al. (2024).

Following Chakravorty et al. (2024), we estimate the effect of the treatment using the implementation

of Double Machine Learning available through the “DoubleML” R package (Bach et al., 2024). We

use 5-fold cross-fitting. Nuisance parameters (i.e., outcome regressions and propensity scores) are
27The replication package associated with Casey et al. (2021) is posted at the URL https://www.openicpsr.
org/openicpsr/project/124501/version/V1/view.
28We thank Bhaskar Chakravorty for sharing this material.

https://www.openicpsr.org/openicpsr/project/124501/version/V1/view
https://www.openicpsr.org/openicpsr/project/124501/version/V1/view
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estimated with Random Forests using the default tuning parameters associated with the “Ranger” R

package (Wright and Ziegler, 2017). Standard errors are clustered at the batch level.

A.3 Haushofer et al. (2022)

Haushofer et al. (2022) consider data originally studied in Egger et al. (2022). At the time of

the preparation of this paper, no replication materials for Haushofer et al. (2022) were publicly

available. We replicate a simplified version of the exercise considered in Haushofer et al. (2022),

using data obtained from the replication package associated with Egger et al. (2022).29 The units

of observation are households in three sub-counties of Siaya County, western Kenya. Households

were randomly allocated large cash transfers. See Egger et al. (2022) and Haushofer et al. (2022)

for further details on the design of this experiment.

Using the replication data from Egger et al. (2022), we begin with a sample of 5,423 treatment

eligible households. We then restrict attention to 4,758 households who were surveyed in both the

first and second round of the experiment. We drop any households that are missing measurements of

post-treatment assets, consumption, income, or food security, leaving a sample of 4,755 households.

These data are merged with pre-treatment measurements of the demographics, assets, food security,

and labor market participation for each household, leaving a sample of 4,754 households.

We obtain a cleaned dataset that records 24 measurements associated with each household. The

dataset identifies the village that contains each household, whether each household was assigned to

treatment, and post-treatment measurements of indices of assets, consumption, income, and food

security. The covariates are measurements of the household size, the number of meals eaten the

day before the survey, the number of high-protein meals eaten the day before the survey, the time

between the administration of the program and the measurement of post-treatment outcomes,30 and

indicators for whether the household contains a widow, contains a female, has children, has children

under 3, has children under 6, contains an elderly resident, has livestock, has land, has more than a

quarter acre of land, has a radio and tv, has a self-employed resident, and has an employed resident.

We implement a simplified version of the exercise studied in Haushofer et al. (2022). Consider a

subset s. Let the complement of s in [n] be denoted by s̃. Let Yi denote a measurement of an index

quantifying post-treatment consumption, Xi denote a vector of measurements of pre-treatment

covariates, and Wi denote assignment to treatment. Let Hi denote the number of occupants of

household i. Let Di collect these observations. Let Yi(1) and Yi(0) denote the potential outcomes
29The replication package for Egger et al. (2022) is available at https://
www.econometricsociety.org/publications/econometrica/2022/11/01/
General-Equilibrium-Effects-of-Cash-Transfers-Experimental-Evidence-From-Kenya.
30We use the measurement of the time between the administration of the program and the measurement of post-treatment
outcomes available as “exptoend” in the dataset “GE Survey and Transfer Dates.dta” in the replication package for
Egger et al. (2022). This variable appears to differ from the analogous quantity used in Haushofer et al. (2022), whose
density is displayed in their Figure A.2.

https://www.econometricsociety. org/publications/econometrica/2022/11/01/General-Equilibrium-Effects-of-Cash-Transfers-Experimental-Evidence-From-Kenya
https://www.econometricsociety. org/publications/econometrica/2022/11/01/General-Equilibrium-Effects-of-Cash-Transfers-Experimental-Evidence-From-Kenya
https://www.econometricsociety. org/publications/econometrica/2022/11/01/General-Equilibrium-Effects-of-Cash-Transfers-Experimental-Evidence-From-Kenya
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induced by the treatment Wi. For each household i in s, let

te(Di, η̂(Ds̃)) and uto(Di, η̂(Ds̃)) (A.1)

denote sample-split estimates of the treatment effect Yi(1)−Yi(0) and per-capita untreated outcome

Yi(0)/Hi, respectively. In this case, the nuisance parameters η̂(Ds̃) consist of nonparametric

estimates of outcome regressions, i.e., the conditional expectations (2.7), computed using the data

for units i in s̃.

Following Haushofer et al. (2022), we compute these estimates with Random Forests using the

“GRF” R package (Athey et al., 2019).31 As best as we can tell, there are two differences between

our implementation and the results presented in Haushofer et al. (2022). First, we make no attempt

to include sample weights that reflect the sampling probabilities. Second, we include the time

between treatment and the measurement of post-treatment outcomes as a covariate, rather than

implement some form of de-meaning and re-weighing of estimates across time.

Let Impacted(s) collect the 50% of units in s associated with the largest values of te(Di, η̂(Ds̃)).

Similarly, let Deprived(s) collect the 50% of units i in s associated with the smallest values

of uto(Di, η̂(Ds̃)). Let Impactedw(s) collect the subset of Impacted(s) with Wi = w. Define

Deprivedw(s) analogously. Consider the sample-split statistic

T (s, D) =

 1

|Impacted1(s)|
∑

i∈Impacted1(s)

Yi −
1

|Impacted0(s)|
∑

i∈Impacted0(s)

Yi


−

 1

|Deprived1(s)|
∑

i∈Deprived1(s)

Yi −
1

|Deprived0(s)|
∑

i∈Deprived0(s)

Yi

 . (A.2)

That is, the sample-split statistic (A.2) is an estimator of the difference in the average treatment

effect of the most impacted and most deprived units in s. The statistic (A.2) can be aggregated with

cross-splitting, through

a(r, D) =
1

k

k∑
i=1

T (si, D) , (A.3)

where r = (si)
k
i=1 is a k-fold partition of [n]. Following Haushofer et al. (2022), in Section 2, we

use 5-fold cross-fitting.

Haushofer et al. (2022) say that they construct a standard error for (A.3) with the bootstrap. There

are a variety of ways that one might do this. In our implementation, we keep the values of the

treatment effect and untreated outcome estimates (A.1) fixed for each household, and compute a
31Following Haushofer et al. (2022), we use the default tuning parameters, but set “sample.fraction” equal to 0.1 and
“min.node.size” equal to 10.
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bootstrap standard error for the statistic (A.3), re-computing the groups Impacted(s) and Deprived(s)

in each bootstrap replicate.

A.4 Beaman et al. (2023)

We obtain the data associated with Beaman et al. (2023) from the associated replication package

posted on the Econometric Society’s webpage.32 The units of observations are low-income farmers

in Mali. The cleaned data consist of observations of 5210 farmers across 198 villages. All data

cleaning steps match Beaman et al. (2023).

Beaman et al. (2023) consider a two-stage experiment. In the first stage, a microcredit organization

randomly offered group-liability loans to women in 88 of the 198 villages. In the second stage,

households were randomly offered cash grants. We replicate the analysis reported in Column (4)

of Appendix Table VI of Beaman et al. (2023). In this setting, attention is restricted to the 2,142

households who received a loan. They are interested in testing whether the effects of cash-grants

on farm profits are heterogeneous. For this problem, the data Di consist of a measurement Yi of

the post-transfer profit for farm i, the variable Wi denotes assignment to the cash transfer, and the

vector Xi collects a vector of pre-treatment measurements of the physical and financial attributes of

each farm. Let Yi(1) and Yi(0) denote the potential outcomes induced by the treatment Wi.

Beaman et al. (2023) implement a sample-split test for treatment effect heterogeneity proposed

by Chernozhukov et al. (2023). Let s denote a random half-sample of [n], i.e., a random subset of

[n] of size n/2. As before s̃ denotes the complement of s in [n]. For each farm i in s, let

te(Di, η̂(Ds̃)) (A.4)

denote sample-split estimates of the treatment effect Yi(1)− Yi(0). The nuisance parameters η̂(Ds̃)

consist of nonparametric estimates of outcome regressions, i.e., the conditional expectations (2.7),

computed using the data for units i in s̃. We compute these estimates with Random Forests using

the “GRF” R package (Athey et al., 2019). Tuning parameters are chosen with cross-validation in

the same manner implemented in Beaman et al. (2023).

To test for treatment effect heterogeneity, we estimate the coefficients of the linear regression

Yi = α + τ1 ·Wi + τ2 · te(Di, η̂(Ds̃)) + τ3 ·Wi · te(Di, η̂(Ds̃)) + εi . (A.5)

The idea is that, if the treatment effect estimates are heterogeneous, then the “true” value of the

interaction coefficient τ3 should be positive. Let τ̂3(s, D) denote the estimate of τ3 computed with

linear regression in the sample s. Let se(s, D) denote the associated standard error, clustered at the

32The replication package for Beaman et al. (2023) is available at https://
www.econometricsociety.org/publications/econometrica/2023/09/01/
Selection-into-Credit-Markets-Evidence-from-Agriculture-in-Mali

https://www.econometricsociety.org/publications/econometrica/2023/09/01/Selection-into-Credit-Markets-Evidence-from-Agriculture-in-Mali
https://www.econometricsociety.org/publications/econometrica/2023/09/01/Selection-into-Credit-Markets-Evidence-from-Agriculture-in-Mali
https://www.econometricsociety.org/publications/econometrica/2023/09/01/Selection-into-Credit-Markets-Evidence-from-Agriculture-in-Mali
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village level. Chernozhukov et al. (2023) advocate for computing the median estimate and standard

error over 250 half-splits s. Beaman et al. (2023) use 1000 half-splits.

A.5 Simulations

In this section, we give further details concerning the simulations whose results are reported in

Section 4. For both the applications to Casey et al. (2021) and Chakravorty et al. (2024), we sample

100,000 replications of the cross-split statistic of over a range of values of k. In the application to

Chakravorty et al. (2024), we have increased the number of trees used to compute the random forest

nuisance parameter estimates, from 100 to 3000, in order to ensure that the residual randomness

induced by cross-splitting is greater than the residual randomness induced by the nuisance parameter

estimate. We use these replicates to estimate the variance v1,k(D) for each value of k, in addition to

the oracle stopping time

g? = 2v1,k(D)

(
z1−β/2

ξ

)2

, (A.6)

at each value of k and ξ

We implement Algorithm 1 100,000 times for each value of k and ξ, for each application, by

sampling with replacement from the replicates of 100,000 draws. We use these estimates to estimate

the reproducibility error

P

{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)
∣∣ ≥ ξ | D

}
(A.7)

as well as the distribution of ĝ for each k and ξ. These estimates are used to construct Figure 5.

Figure A.1 displays measurements analogous to those displayed in Figure 5 for the application to

Chakravorty et al. (2024). The accuracy of the reproducibility error, relative to the application to

Casey et al. (2021), is somewhat worse. This is likely a consequence of the fact that the quality of a

normal approximation to the conditional distribution of the p-value (3.11) is worse than the quality

of the normal approximation to the conditional distribution of the mean-squared error estimate. As

before, the reproducibility error tends to be most accurate at values of k and ξ where the average

number of cross-splits ĝ is greater than 500.
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FIGURE A.1. Performance in Application to Chakravorty et al. (2024)

Panel A: Reproducibility Error
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Notes: Figure A.1 displays measurements of the performance of Algorithm 1 on the data from Chakravorty et al. (2024).
Panel A displays measurements of the reproducibility error, P{|a(Rĝ,k, D)− a(R′ĝ′,k, D)| ≥ ξ | D}, as ξ and k vary.
A solid horizontal line is displayed at the nominal error rate β = 0.05. Panel B displays measurements of the average
number of replications ĝ s ξ and k vary. The y-axis is displayed with a log scale, base 10. Solid horizontal lines are
placed at each exponential factor of 10. Panel C displays measurements of the 5th and 95th quantiles of the discrepancy
ĝ/g? − 1 as k and ξ vary. Further details on the construction of this figure are given in Appendix A.5.



7

APPENDIX B. AUXILIARY RESULTS AND DISCUSSION

B.1 Validity of Testing Procedures Based on Multiple Sample-Splitting

In this appendix, we discuss the application of Algorithm 1 to testing procedures based on

averaging over multiple splits of the same sample. We show that methods based on both p-values

and e-values constructed with sample splitting continue to control the Type I error rate if they are

aggregated sequentially with Algorithm 1. Both results follow from the “Exchangeable Markov

Inequality” of Ramdas and Manole (2023). As before, let D = (Di)
n
i=1 be independent and

identically distributed according to a probability distribution P . Interest is in testing the null

hypothesis H0 : P ∈ P for some collection of probability distributions P.

B.1.1 Methods Based on p-Values. Suppose that we have access to a valid p-value p̂(s, D). That

is, the statistic p̂(s, D) satisfies

P {p̂(s, D) ≤ u | Ds̃} ≤ u

for all u in (0, 1) and P in P. For example, a test-statistic could be chosen using the data in Ds̃ and

a p-value can be constructed based on this test statistic using the data in Ds. For any collection Rg,k

inRn,k,b, let

aδ(Rg,k, D) =
1

g

1

k

g∑
i=1

k∑
j=1

I {p̂(si,j, D) ≤ δ} (B.1)

denote the proportion of p-values that are less than or equal than δ. Rüger (1978), Meinshausen

et al. (2009), and DiCiccio et al. (2020) observe that if Rg,k is constructed independently of the data

D, then

P {aδ(Rg,k, D) ≥ c} ≤ E [aδ(Rg,k, D)]

c
≤ δ

c
by Markov’s inequality, for all P in P. Thus, if δ and c are chosen such that δ/c = α, then the test

that rejects the null hypothesis H0 if aδ(Rg,k, D) is larger than c has level α.

The following theorem establishes that this test continues to be valid if the collection of sample-

splits Rg,k is constructed sequentially with Algorithm 1.

Theorem B.1. If the statistic aδ(Rĝ,k, D) defined in (B.1) is constructed sequentially with Algorithm 1,

then

P {aδ(Rĝ,k, D) ≥ c} ≤ δ

c
(B.2)

for all P in P.

Proof. We apply the following inequality, due to Ramdas and Manole (2023).
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Theorem B.2 (Theorem 1.1, Ramdas and Manole (2023)). If X1, X2, . . . form an exchangeable

sequence of integrable random variables, then

P

{
∃t ≥ 1 :

1

t

t∑
i=1

|Xi| ≥ 1/a

}
≤ aE [|Xi|] (B.3)

for any a > 0.

Consequently, we have that

P {aδ(Rĝ,k, D) ≥ c} ≤ P {∃g ≥ 1 : aδ(Rg,k, D) ≥ c} (B.4)

≤ E [I {p̂(si,j, D) ≤ δ}]
c

≤ δ

c

by Theorem B.2, as required.

B.1.2 Methods Based on e-Values. Next, we consider settings where we have access to a valid

e-value ê(s, D) (see Ramdas et al. (2023) for a recent review). That is, the nonnegative statistic

ê(s, D) satisfies

EP [ê(s, D)] ≤ 1

for all P in P. For example, this setting applies to the “Universal Inference” procedure of Wasserman

et al. (2020). Here, an estimator P̂ (s̃) of P is formed using the data Ds̃ and is used in the split-

likelihood ratio test statistic

ê(s, D) = inf
P∈P

∏
i∈s

dP̂ (̃s)

dP
(Di) . (B.5)

Wasserman et al. (2020) prove that (B.5) is an e-value. For any collection Rg,k inRn,k,b, let

a(Rg,k, D) =
1

g

1

k

g∑
i=1

k∑
j=1

ê(si,j, D) (B.6)

denote an aggregate e-value. See Dunn et al. (2023) and Tse and Davison (2022) for further

discussion of aggregate e-values. Observe that

P {a(Rg,k, D) ≥ 1/α} ≤ αE [ê(s, D)] ≤ α , (B.7)

by Markov’s inequality, for all P in P. Thus, the test that rejects the null hypothesis H0 if a(Rg,k, D)

is larger than 1/α has level α.

We again establish that this test continues to be valid if the collection of sample splits Rg,k is

constructed sequentially with Algorithm 1.



9

Theorem B.3. If the aggregate e-value aδ(Rĝ,k, D) defined in (B.6) is constructed sequentially with

Algorithm 1, then

P

{
a(Rĝ,k, D) ≥ 1

α

}
≤ α (B.8)

for all P in P.

Proof. The claim is established with an argument very similar to the proof of Theorem B.1. Namely,

the Markov inequality used to establish (B.7) can then be replaced by Theorem B.2, as before.

B.2 Determining Suitable Levels of Precision for Cross-Validated Risk Estimation

In this section, we give the details supporting our application of Algorithm 1 to cross-validated

risk estimation, using data from Casey et al. (2021). Recall from Section 3.2.2, that we apply the

procedure, independently, to each component of the vector

(bλ1(r, D), . . . , bλp−1(r, D)) , where bλi(r, D) = (aλi(r, D)− aλp(r, D)) . (B.9)

Let ξi denote the error tolerance used for the ith component of the vector (B.9). We use a simple,

data-driven procedure for choosing these tolerances.

In particular, we draw a small number of cross-splits, i.e., g = 20 and compute the aggregated

difference

bλi(Rg,k, D) =
1

g

g∑
i=1

bλi(ri, D) (B.10)

for each i in 1, . . . , p− 1. Panel A of Figure B.2 displays the absolute value of these estimates in

purple, where the y-axis has been transformed to a logarithmic scale. The absolute value of the

differences (B.10) are on the order 10−4 at the close-to-optimal values of λ, i.e., values of λ above

about 0.01. The differences for smaller values of λ are much larger, and, as indicated by Figure 1,

have larger conditional variances. These qualitative features are not particularly sensitive to residual

randomness. Panel B of Figure B.2 displays the quantiles of the difference (B.10) across draws of

g = 20 cross-splits.

These observations suggest the following approach for choosing the tolerances ξi. We would like

to set ξi = 10−4 for the large, close-to-optimal values of the regularization parameter, but would

be willing to tolerate a larger error tolerance at smaller, sub-optimal values. This is practically

important, as achieving the same level of precision for the small values of λ requires aggregation

over many more cross-splits (as the conditional variances are much larger). We operationalize

this approach in the following way. First, using the sample of g = 20 cross-splits that we used to

estimate (B.10), we compute the p-values

qλi(Rg,k, D) = 1− Φ

(
bλi(Rg,k, D)√
v̂λi(Rg,k, D)

)
(B.11)
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FIGURE B.2. Determining Error Tolerances for Cross-Validated Risk Estimation

Panel A: One Draw of Risk Estimates, The Choice of ξi

1e−04

1e−03

1e−02

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Lambda

Risk Estimate
Xi

Panel B: Quantiles of Risk Estimates

1e−05

1e−04

1e−03

1e−02

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Lambda

R
is

k 
E

st
im

at
e

Quantile
0.90
0.50
0.10

Notes: Figure B.2 displays auxiliary measurements relating to the the performance of Algorithm 1 in the application
to cross-validated Lasso, implemented in data from Casey et al. (2021). Panel A displays the absolute value of the
differences (B.10) computed on a random sample of g = 20 cross-splits, in purple, and the realized values of the
error tolerances (B.13), in green. Panel B displays the quantiles of the absolute value of the differences (B.10), over
replications of random samples of g = 20 cross-splits. In both cases, the y-axes is displayed in a logarithmic scale.

for each i in 1, . . . , p− 1, where v̂λi(Rg,k, D) denotes the sample-variance of the statistics bλi(ri, D)

across the sample-splits. Let λ denote the largest value of the regularization parameter such that

qλ(Rg,k, D) < 0.2 and let the constant “scale” solve the equality

10−4 =
bλ(Rg,k, D)

scale
. (B.12)

We set the error tolerances to

ξi = max{10−4, bλi(Rg,k, D)× scale} . (B.13)

In other words, we set ξi = 10−4 for all i with qλi(Rg,k, D) ≥ 0.2 and increase the error tolerance in

proportion to bλi(Rg,k, D) for all other values of i. The realized values of ξi are displayed in Panel

A of Figure B.2. These error tolerances are used throughout the main text.

Panel A displays quantiles of the reproducibly aggregated statistic (3.12) across replications

of the procedure, without truncation of the y-axis. Panel B of Figure B.2 displays estimates of

the marginal reproducibility probability at each value of the regularization parameter, computed
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FIGURE B.3. Auxiliary Figures for Application to Cross-Validation

Panel A: Mean-Squared Error Differences
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Notes: Figure B.2 displays auxiliary measurements relating to the the performance of Algorithm 1 in the application to
cross-validated Lasso, implemented in data from Casey et al. (2021). Panel A is analogous to Panel A of Figure 3, but
the y-axis is not truncated. Panel B displays estimates of the marginal reproducibility probability for each value of the
regularization parameter, where the nominal reproducibility error is set to β = 0.05.

using 2, 000 replications of the procedure. Over the full range of the regularization parameter, the

reproducibility error is very close to the nominal value β = 0.05.

B.3 Sample Stability

This appendix collects discussion and analysis concerning the (r, q)-sample stability σ(r,q) defined

in Definition 4.1. First, in Appendix B.3.1, we specialized our consideration to the case that the

estimator η̂ is a regularized empirical risk minimizer. Some closely related arguments are used in

proof of Proposition 4 of Austern and Zhou (2020). Second, in Appendix B.3.2 we compare we

compare the stable-stability decay condition Assumption 4.3 to the conditions considered by Chen

et al. (2022). The proof of the Theorem stated in Appendix B.3.1 is given in Appendix B.3.3

B.3.1 Specialization to Regularized Empirical Risk Minimizers. Assume that the parameter η is

an element of some closed convex space H ⊆ Rp. Consider the estimator

Ψ (Ds, η) =
1

b

∑
i∈s

ψ (Di, η) (B.14)
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η̂ = arg min
η∈H

{
1

n− b
∑
i∈s̃

` (Di, η) + λ1,n‖η‖1 + λ2,n‖η‖2

}
, (B.15)

where ψ (·, ·) are ` (·, ·) functions and λ1,n, λ2,n ≥ 0 are penalty parameters.

Let ∇` (d, η) and ∇2` (d, η) denote the gradient and Hessian of the function η 7→ ` (d, η). Let

∇j` (·, ·) denote the jth component of∇` (·, ·). Similarly, we write

∇s̃` (D, η) =
1

n− b
∑
i∈s̃

∇` (Di, η) and

∇2

s̃ ` (D, η) =
1

n− b
∑
i∈s̃

∇2` (Di, η)

for the empirical averages of the gradients and the Hessian evaluated on the data in the set s̃.

We impose the following set of restrictions. The first two restrictions concern the curvature of the

loss function.

Assumption B.1. The minimum eigenvalue of∇2

s̃ ` (D, η) is bounded below by ρ almost surely.

Assumption B.2. The loss function ` (·, ·) is strictly convex and twice continuously differentiable in

its second argument.

Remark B.1. Under Assumption B.1, if ρ > 0, then the dimension p of the parameter vector η is

less than the number of observations n. To the best of our knowledge, analysis of the stability of

`1 regularized empirical risk minimization in the regime with p larger than n is an open problem.

Further analysis of the sample stability in the high-dimensional regime is an interesting direction

for further research.

The second two restrictions are statistical. The first concerns the expected curvature of the

moment function ψ (·, ·). The second is a sub-exponential tail bound on the gradient∇j` (·, ·).

Assumption B.3. The function ψ (·, ·) satisfies the inequality

E
[
(ψ(Di, η)− ψ(Di, η

′))
r] . E [‖η̂ − η̂′‖r2] (B.16)

for each pair η, η′ ∈ H .

Assumption B.4. The ψ1-Orlicz norm bound

‖∇j`j(D
′
i, η)−∇j`(Di, η)‖ . κ2 (B.17)

holds for each pair η ∈ H .

Remark B.2. Assumption B.3 is satisfied in many problems of interest. For example, Chen

et al. (2022) show that similar conditions hold when ψ(·, ·) is given by various moment functions
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used for semiparametric causal inference. Assumption B.4 is equivalent to the assumption that

∇j`j(D
′
i, η)−∇`j(Di, η) is sub-exponential with parameter κ2.

The following theorem gives a bound on the (r, q)-sample stability.

Theorem B.4. If Assumptions B.1 to B.4, if ρ+ λ2,n > 0, then

σ(r,q) . Crp

( √
q

n− b
κ

ρ+ λ2,n

)r
+ Cr

(
λ1,n

p

ρ+ λ2,n

)r
,

uniformly over all even integers r and positive integers q ≤ n − b, where Cr is some positive

constant that depends only on r.

Remark B.3. A necessary and sufficient condition for η̂ to be consistent for the population risk

minimizer associated with (B.15) is that λ1,n = o ((n− b)−1). See e.g., Knight and Fu (2000).

Thus, so long as the penalty λ1,n is chosen in this regime, the sample stability σ(r,q) will be

O

(( √
qκ

n− b

)r)
up to terms that depend on the dimension of η, as required.

B.3.2 Comparison to Chen et al. (2022). In the main text, we restrict attention to sample stable

estimators. In a recent article, Chen et al. (2022) show that, under some regularity conditions, if a

condition related to, but partially stronger than, sample stability is satisfied, then sample-splitting is

unnecessary for the consistency and asymptotic normality of DML estimators. In this section, we

comment on the difference between the notion of sample stability used in this article and the related

condition used in Chen et al. (2022).

First, for ease of reference, we recall our definition of sample stability. We restrict attention to

the case that q = 1 and r = 2, as this is what is relevant to make the comparison. Fix a set s ⊆ Sn,b
and let i be an arbitrary element of s. Let D′ denote an independent and identical copy of the data

D. For each i in [n], let D̃(i) be constructed by replacing Di with D′i in D. Let I be a randomly

selected element of s̃. In this paper, we refer to the quantity

σ(2,1) = E
[(
ψ(Di, η̂ (Ds̃))− ψ(Di, η̂(D̃

(I)
s̃ ))

)2
]

(B.18)

as the (2, 1)-sample stability. In particular, in the main text, we restrict attention to settings where

the bound

σ(2,1) .

(
1

n− b

)2

(B.19)

holds.
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Chen et al. (2022) consider settings where the nuisance parameter estimator η̂ is not constructed

with sample-splitting. Likewise, they consider moments of the form

σ̃(2,1) = E
[(
ψ(Di, η̂ (D))− ψ(Di, η̂(D̃(i)))

)2
]
, (B.20)

where i is an arbitrary element of [n]. Observe that, in contrast to (B.18), the moment (B.20) is

evaluated using the same observation Di used to perturb the nuisance parameter estimate—and

that the nuisance parameter estimate is evaluated using the complete data. Roughly speaking,

Chen et al. (2022) show that, under some regularity conditions, DML estimators are consistent and

asymptotically normal if the bound

σ̃(2,1) . n−1 (B.21)

holds for a suitable choice of the function ψ(·, ·). Moreover, they show that, under certain conditions

on the choice of tuning parameters, nuisance parameter estimators constructed with a bagged

1-nearest-neighbor estimator satisfies this bound.

Although the right-hand-side of the bound (B.21) is larger than the bound (B.19), control of

the moment (B.20) can be more difficult to achieve than control of the moment (B.18). To see

the substantive differences between the conditions (B.19) and (B.20), we consider an artificial,

but illustrative, example adapted from an example given in the introduction to Chernozhukov

et al. (2018). Suppose that the observation Di consists of the real-valued quantities Yi, Wi, and

Xi. Furthermore, suppose that the nuisance parameter η(x) denotes the conditional expectation

E[Wi | Xi = x] and that

ψ(Di, η) = Yi(Wi − E[Wi | Xi]) = Yi(Wi − η(x)) . (B.22)

Suppose that the nuisance parameter estimator takes the form

η̂(Ds̃)(x) =
∑
j∈s̃

wj(x)η̂j(x) (B.23)

where s̃ is an arbitrary subset of [n], η̂j(x) is an estimator of the nuisance parameter η(x) based on

the observation Dj , and the weight wj(x) again depends on the observation Dj and the set s̃. We

refer the reader to discussion in Section 1 of Chernozhukov et al. (2018) and Section 2 of Chen

et al. (2022) for further context on why understanding quantities of the form (B.22) is essential for

establishing the consistency of DML estimators.33

To study the sample stability (B.18) in this example, i.e., in the sense considered in this article,

we are interested in the difference

ψ(Di, η̂ (Ds̃))− ψ(Di, η̂(D̃
(I)
s̃ )) = Yi(wI(Xi)η̂I(Xi)− w′I(Xi)η̂

′
I(Xi)) (B.24)

33In particular, establishing the Stochastic Equicontinuity of a given Neyman Orthogonal moment amounts to bounding
scaled averages of quantities of the form (B.22).
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where w′I(Xi) and η̂′I(Xi)) denote the updated weight and estimator associated with the perturbed

data D̃(I)
s̃ . On the other hand, in order to consider the stability (B.20), i.e., in the sense of Chen et al.

(2022), we are interested in the difference

ψ(Di, η̂ (D))− ψ(Di, η̂(D̃(i))) = Yi(wi(Xi)η̂i(Xi)− w′i(Xi)η̂
′
i(Xi)) (B.25)

where, as before, w′i(Xi) and η̂′i(Xi) denote the updated weight and estimator associated with the

perturbed data D̃(i).

The quantities (B.24) and (B.25) will behave differently if the nuisance parameter estimator

exhibits overfitting. In particular, to take a highly stylized example, suppose that the weights satisfy

wi(Xj) =

|̃s|−1/3, i = j,

|̃s|−1, otherwise.
(B.26)

That is, the nuisance parameter estimator (B.23) meaningfully up-weights the estimate obtained

from the evaluation point Xj , if Xj is part of the training data s̃, and is otherwise equally balanced.

Overfitting to the training data, in a perhaps less stylized form, is a well-known property of some

machine learning estimators.

It is easy to see that, in this case, if all other quantities are bounded, we should expect that

σ(2,1) = E
[(
ψ(Di, η̂ (Ds̃))− ψ(Di, η̂(D̃

(I)
s̃ ))

)2
]

= E
[(
Yi(wI(Xi)η̂I(Xi)− w′I(Xi)η̂

′
I(Xi))

)2
]
.

(
1

|̃s|

)2

(B.27)

whereas

σ̃(2,1) = E
[(
ψ(Di, η̂ (D))− ψ(Di, η̂(D̃(i)))

)2
]

= E
[
(Yi(wi(Xi)η̂i(Xi)− w′i(Xi)η̂

′
i(Xi)))

2
]
.

(
1

|̃s|

)2/3

. (B.28)

In particular, we can see that all that is needed for us to expect the moment (B.27) to be approximately

of order O((n− b)−2), is that the randomly selected weights wI(Xi) tend to be close to, or smaller

than, (n− b)−1. The moment (B.28), by contrast, is highly sensitive to the weight wi(Xi) placed

on the evaluation point Xi.

The main point of this example is that establishing that a nuisance parameter estimator is stable,

in the sense of Chen et al. (2022), requires showing that it does not overfit its training data, i.e., that

evaluations of points in-sample are not overly-determined by a few observations. By contrast, all

that is needed to establish that a nuisance parameter estimator is sample stable, in the sense used

in this article, is that evaluations of points out-of-sample are not overly concentrated on a small
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number of training samples. In general, we should expect that out-of-sample balance is more likely

to occur in practice than in-sample balance.

B.3.3 Proof of Theorem B.4. By Assumptions B.1 and B.2, the objective function for the estimator

(B.15) is strongly convex. Thus, there is a unique solution to (B.15) for any data D. Let η̂ and

η̂′ denote the solutions to (B.15) for the data D and D̃(q) respectively. Let ∂f (x) denote the

subgradient set of the function x 7→ f (x). The Karush-Kuhn-Tucker condition for the program

(B.15) is given by

∇s̃` (D, η) + λ2,nη̂ + λ1,nẑ = 0, (B.29)

where ẑ ∈ ∂‖η̂‖1 is the subgradient associated with the Lasso penalty. Observe that, in this case,

ẑ ∈ sign (η̂), where we set sign (0) = [−1, 1]. Let ẑ and ẑ′ denote the subgradients obtained from

D and D̃(q), respectively. As ` (d, ·) is twice continuously differentiable under Assumption B.2 (i),

we have that

∇s̃` (D, η̂′) + λ2,nη̂
′ + λ1,nẑ

= ∇s̃` (D, η̂) + λ2,nη̂ + λ1,nẑ +
(
∇(2)

s̃ ` (D, η̃) + λ2,nId

)
(η̂ − η̂′)

=
(
∇(2)

s̃ ` (D, η̃) + λ2,nId

)
(η̂ − η̂′) (B.30)

for some vector η̃, by a Taylor expansion and the optimality condition (B.29). On the other hand,

we have that

∇s̃` (D, η̂′) + λ2,nη̂
′ + λ1,nẑ = ∇s̃`(D̃

(q), η̂′) + λ2,nη̂
′ + λ1,nẑ

′

+
1

n− b

(∑
i∈q

∇`(D′i, η̂′)−∇`(Di, η̂
′)

)
+ λ1,n (ẑ − ẑ′)

=
1

n− b

(∑
i∈q

∇`(D′i, η̂′)−∇`(Di, η̂
′)

)
+ λ1,n (ẑ − ẑ′) (B.31)

again by the optimality condition (B.29). Thus, we have that(
∇(2)

s̃ ` (D, η̃) + λ2,nIp

)
(η̂ − η̂′)

=
1

n− b

(∑
i∈q

∇`(D′i, η̂′)−∇`(Di, η̂
′)

)
+ λ1,n (ẑ − ẑ′) (B.32)

by (B.30) and (B.31). Observe that the the matrix∇(2)

s̃ ` (D, η̃)+λ2,nIp is invertible by Assumption B.1.

Thus, we find that

η̂ − η̂′ = 1

n− b

(
∇(2)

` (D, η̃) + λ2Ip

)−1
(∑

i∈q

∇`(D′i, η̂′)−∇`(Di, η̂
′)

)
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+ λ1,n

(
∇(2)

` (D, η̃) + λ2Id

)−1

(ẑ − ẑ′)

and that consequently

‖η̂ − η̂′‖2 .
1

n− b
‖
∑

i∈q∇`(D′i, η̂′)−∇`(Di, η̂
′)‖2

ρ+ λ2,n

+ λ1,n
‖ẑ − ẑ′‖2

ρ+ λ2,n

.
1

n− b
‖
∑

i∈q∇`(D′i, η̂′)−∇`(Di, η̂
′)‖2

ρ+ λ2,n

+ λ1,n
p

ρ+ λ2,n

(B.33)

by Assumption B.1.

Now, observe that

σ(r,q) = E
[
(ψ(Di, η̂)− ψ(Di, η̂

′))
r]

. E [‖η̂ − η̂′‖r2]

. E

[(
1

n− b
‖
∑

i∈q∇`(D′i, η̂′)−∇`(Di, η̂
′)‖2

ρ+ λ2,n

+ λ1,n
p

ρ+ λ2,n

)r]
(B.34)

. 2r
(

1

n− b
1

ρ+ λ2,n

)r
E

[
‖
∑
i∈q

∇`(D′i, η̂′)−∇`(Di, η̂
′)‖r2

]

+ 2r
(
λ1,n

p

ρ+ λ2,n

)r
, (B.35)

where the first inequality follows from Assumption B.3, the second inequality follows from

(B.33), and the third inequality follows from the Binomial Theorem and Cauchy-Schwarz. By

Assumption B.4, we have that

‖
∑
i∈q

∇j`j(D
′
i, η̂
′)−∇`j(Di, η̂

′)‖ψ1 . q‖∇j`j(D
′
i, η̂
′)−∇`j(Di, η̂

′)‖ψ1 . qκ . (B.36)

Consequently, we have that

E

[
‖
∑
i∈q

∇`(D′i, η̂′)−∇`(Di, η̂
′)‖r2

]

.
∑
j∈[p]

E

[∣∣∣∣∑
i∈q

∇j`j(D
′
i, η̂
′)−∇`j(Di, η̂

′)

∣∣∣∣r/2
]

(Jensen)

. p((r/2)!)r/2(κq)r/2 (B.37)

where, for the final inequality, we have used the fact that ‖X‖r/2 . ((r/2)!)‖X‖ψ1 (see e.g., Section

2.2 of Van Der Vaart and Wellner (1996)). Putting the pieces together, we find that

σ(r,q) . 2r((r/2)!)r/2p

(
q1/2

n− b
κ1/2

ρ+ λ2,n

)r
+ 2r

(
λ1,n

p

ρ+ λ2,n

)r
, (B.38)
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as required.

APPENDIX C. PROOFS FOR RESULTS STATED IN SECTION 3

C.1 Proof of Theorem 3.1

For each collection r = (sj)
k
j=1 inRn,k,b, we write

a(r, D) =
1

k

k∑
j=1

T (sj, D)− E [T (sj, D) | D] .

Define the oracle stopping time

g? = arg min
g≥2

{
vg,k(D) ≤ 1

2

(
ξ

z1−β/2

)2
}
.

Observe that vg,k(D) = (1/g) · v1,k(D) as the collections of cross-splits are drawn independently

and identically. Moreover, we have that

v̂(Rg,k, D)

vg,k(D)
=
gv̂(Rg,k, D)

v1,k(D)

a.s→ 1 (C.1)

as g →∞, by the strong law of large numbers. Now, observe that

ĝ · v̂(Rĝ,k, D)

v1,k(D)
≤ ĝ

2v1,k(D)

(
ξ

z1−β/2

)2

≤ ĝ · v̂(Rĝ−1,k, D)

v1,k(D)
, (C.2)

by definition. Consequently, as ĝ →∞ and

g?

(
2v1,k(D)

(
z1−β/2

ξ

)2
)
→ 1

as ξ → 0, we have that

ĝ/g?
a.s→ 1 (C.3)

as ξ → 0 by (C.1) and (C.2).

Define the objects

U (Rg,k, D) =
1

g?

(
g∑
i=1

a (ri, D)−
g?∑
i=1

a (ri, D)

)
and (C.4)

Q (Rg,k, D) =

(
1− g

g?

)
(a(Rg,k, D)− E [T (sj, D) | D]) (C.5)

Observe that we can decompose(
a(Rĝ,k, D)− a(R′ĝ′,k, D)

)
/
√

2vg?,k(D)
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=

√
g?

2v1,k(D)

(
a(Rg?,k, D)− a(R′g?,k, D)

)
+

√
g?

2v1,k(D)

(
U(Rĝ,k, D)− U(R′ĝ′,k, D)

)
+

√
g?

2v1,k(D)

(
Q(Rĝ,k, D)−Q(R′ĝ′,k, D)

)
. (C.6)

First, we have that √
g?

2v1,k(D)

(
Q(Rĝ,k, D)−Q(R′ĝ′,k, D)

)
= op(1)

almost surely as ξ → 0 by (C.3). To handle the terms involving (C.4), fix ε > 0 and observe that

P

{∣∣∣∣ ĝ∑
i=1

a(ri, D)−
g?∑
i=1

a(ri, D)

∣∣∣∣ > ε
√
g? | D

}

≤ P

{∣∣∣∣ ĝ∑
i=1

a(ri, D)−
g?∑
i=1

a(ri, D)

∣∣∣∣ > ε
√
g?, ĝ ∈

[
g?
(
1− ε3

)
, g?
(
1 + ε3

)]
| D

}

+ P

{∣∣∣∣ ĝ∑
i=1

a(ri, D)−
g?∑
i=1

a(ri, D)

∣∣∣∣ > ε
√
g?, ĝ′ 6∈

[
g?
(
1− ε3

)
, g?
(
1 + ε3

)]
| D

}

≤ P

{
max

g?(1−ε3)≤g≤g?

∣∣∣∣ g∑
i=1

a(ri, D)

∣∣∣∣ > ε
√
g? | D

}
(C.7)

+ P

{
max

g?≤g≤(1+ε3)g?

∣∣∣∣ g∑
i=1

a(ri, D)

∣∣∣∣ > ε
√
g? | D

}
+ P

{
ĝ 6∈

[
g?
(
1− ε3

)
, g?
(
1 + ε3

)]
| D
}
.

The third term in (C.7) is smaller than ε for all sufficiently small ξ by (C.3). To handle the first two

terms, observe that

P

{
max

g?≤g≤(1+ε3)g?

∣∣∣∣ g∑
i=1

a(ri, D)

∣∣∣∣ > ε
√
ĝ | D

}

≤ 1

ε2

1

g?
Var

bε3g?c∑
i=1

a(ri, D) | D


≤ εVar(a(ri, D)),

almost surely, where the first inequality follows from Kolmogorov’s maximal inequality (see e.g.,

Proposition 2.3.16 of Dembo (2021)) and the second inequality follows from the fact that the

cross-splits ri are independent. An analogous bound holds for the remaining term. Thus, we have√
g?

2v1,k(D)

(
U(Rĝ,k, D)− U(R′ĝ′,k, D)

)
= op (1)
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almost surely as ξ → 0. Hence, we have that

P
{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)

∣∣ > ξ | D
}

= P

{∣∣∣∣
√

g?

2v1,k(D)

(
1

g?

g?∑
i=1

a(ri,k, D)− a(r′i,k, D)

)∣∣∣∣ > z1−β/2 | D

}
+ o (1)

= 1− β + o (1)

as ξ → 0 almost surely, by the central limit theorem.

C.2 Proof of Theorem 3.2

Recall that the cross-split r is drawn independently and uniformly from the collectionRn,k,b. The

result is based on the bound

E [f(a(Rg,k, D))] = E

[
E

[
f

(
1

ĝ

ĝ∑
i=1

a(ri, D)

)
| ĝ

]]

≤ E

[
E

[
1

ĝ

ĝ∑
i=1

f (a(ri, D)) | ĝ

]]
(Jensen)

= E

[
1

ĝ

ĝ∑
i=1

f (a(ri, D))

]

= E [f (a(r, D))] + E

[
1

ĝ

ĝ∑
i=1

(f (a(ri, D))− E [f (a(r, D)) | D])

]
. (C.8)

In particular, it will suffice to show that the second term in (C.8) is weakly negative. To do this, we

apply the following optimal stopping theorem.

Theorem C.1 (Theorem 5.7.5, Durrett (2019)). Suppose that Xg is a real-valued supermartingale,

that Fg is the σ-algebra generated by X1, . . . , Xg, and that there exists some constant B such that

E [|Xg+1 −Xg| | Fg] ≤ B (C.9)

almost surely. If ĝ is a stopping time with respect to the filtration {Fg}∞g=1, then E [Xĝ] ≤ E [X1].

Consider the sequence of random variables

Xg =
1

g

g∑
i=1

(f (a(ri, D))− E [f (a(r, D)) | D]) (C.10)

Observe that

E [Xg+1 | Fg, D] = E

[
1

g + 1

g+1∑
i=1

(f (a(ri, D))− E [f (a(r, D)) | D]) | Fg, D

]
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=
1

g + 1
E [f (a(ri, D))− E [f (a(r, D)) | D] | Fg, D]

+
g

g + 1

1

g

g∑
i=1

(f (a(ri, D))− E [f (a(r, D)) | D])

=
g

g + 1
Xg . (C.11)

Consequently, Xg is a supermartingale. To verify the condition (C.9), observe that, as the collection

Rn,k,b is finite, there exists some positive, finite function B(D) such that

f(a(r, D)) ≤ B(D) (C.12)

almost surely. Thus, we find that

E [|Xg+1 −Xg| | Fg, D] = E

[∣∣∣∣ 1

g + 1

g+1∑
i=1

f (a(ri, D))− 1

g

g∑
i=1

f (a(ri, D))

∣∣∣∣ | Fg, D
]

≤ 1

g + 1
E [|f (a(r, D)) |] +

1

g(g + 1)

g∑
i=1

E [|f (a(ri, D)) |]

≤ 2

g + 1
B(D) (C.13)

almost surely. Hence, by Theorem C.1, we have

E

[
1

ĝ

ĝ∑
i=1

(f (a(ri, D))− E [f (a(r, D)) | D]) | D

]
≤ E [f (a(r, D))− E [f (a(r, D)) | D] | D] = 0 (C.14)

almost surely, completing the proof.

APPENDIX D. GENERAL NON-ASYMPTOTIC RESULTS

In this appendix, we give a general, non-asymptotic analysis of the performance of Algorithm 1.

We begin, in Appendix D.1, by studying the concentration and normal approximation of the

aggregate statistic a(Rk,g, D). Equipped with these results, in Appendix D.2, we characterize the

accuracy of the nominal error rate of Algorithm 1. In Appendix D.3, we show that these general

results imply the results stated in Section 4, by restricting attention to sample-stable, cross-split

statistics. Proofs are given in Appendices D.4 and D.5.

D.1 Concentration and Normal Approximation

We begin by giving a non-asymptotic characterization of the concentration and normal approxima-

tion of the statistic a(Rg,k, D). To state these results, we require a slightly more general definition

of sample stability.
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Definition D.1 (General Sample Stability). Let D′ denote an independent and identical copy of

the data D. For each q ⊆ [n], let D̃(q) be constructed by replacing Di with D′i in D for each i in q.

Fix a set s ⊆ Sn,b. Let i be an arbitrary element of s. Let q be a randomly selected subset of s̃ of

cardinality q. We refer to the quantities

σ
(r)
valid = E

[∣∣ψ(DI , η̂ (Ds̃))− ψ(D′I , η̂ (Ds̃))
∣∣r] and

σ
(r,q)
train = E

[∣∣ψ(Di, η̂ (Ds̃))− ψ(Di, η̂(D̃
(q)
s̃ ))

∣∣r]
as the rth-order validation and (r, q)th-order training sample stabilities, respectively. Similarly, we

refer to the quantity

σ(r)
max = max

{
σ

(r)
valid, σ

(r,1)
train

}
(D.1)

as the rth-order full sample stability.

In other words, we define separate stabilities associated with resampling data in the subsets s and

s̃. We refer to these subsets as the “validation” and “training” samples, respectively. The training

sample stability σ(r,q)
train is identical to the sample stability defined in Section 4.

With this in place, we give a large deviations bound for the statistic a(Rg,k, D) about its conditional

mean. The primary difficulty is accommodating the dependence in the summands of a(Rg,k, D)

across elements of the same cross-split. We tackle this problem through the method of exchangeable

pairs (Stein, 1986). In particular, we construct a suitable exchangeable pair with a coupling

argument due to Chatterjee (2005) and apply a method for deriving concentration inequalities with

exchangeable pairs, also due to Chatterjee (2005, 2007). Some preliminary results that facilitate the

application of this approach are given in Appendix D.4. Proofs for results stated in this appendix

are then given in Appendix D.5.

Theorem D.1. Suppose that Assumptions 4.1 and 4.2 hold, that the data D are independently and

identically distributed, and that the statistic a(R1,k, D) has a non-zero variance conditional on D

almost surely. If the fourth-order split stability ζ(4) is finite, then, for each ε > 0, the inequality

P

{
|a(Rg,k, D)− a (D) | ≤

√
24(2− ϕk − ϕ)2

δ

Γk,ϕ,b log(ε−1)

g
| D

}
≥ 1− ε

2
(D.2)

holds with probability greater than 1− δ as D varies, where

Γk,ϕ,b =

(
1− kϕ
1− ϕ

)
4σ(2)

max +

(
kϕ− ϕ
1− ϕ

)
σ

(2,b−1)
train (D.3)

and ϕ = b/n.

Remark D.1. The quantity Γk,ϕ,b interpolates between σ(2)
max and σ(2,b−1)

train as k varies between its

bounds 1 and 1/ϕ. In the case of independent splitting, i.e., k = 1, the rate of concentration
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for the statistic a(Rg,k, D) is driven by the full sample stability σ(2)
max. On the other hand, in the

case of cross-splitting, concentration depends only on the training sample stability σ(2,b−1)
train . In a

previous draft of this paper, we give estimates of σ(2)
valid and σ(2,b−1)

train in applications to treatment effect

estimation and cross-validated risk estimation. We show that the training stability is dramatically

smaller than the validation stability and decreases rapidly as b decreases.34 To see this, observe

that we should next expect the validation sample-stability σ(r)
valid to change with k. That is, residual

randomness is smaller for full cross-splitting, i.e., k = n/b, than for independent splitting. �

Next, we derive bounds for the centered conditional moments of a (Rg,k, D) through an argument

closely related to the proof of Theorem D.1. Bounds of this form are known as Burkholder-Davis-

Gundy inequalities (Burkholder, 1973).

Theorem D.2. Suppose that Assumptions 4.1 and 4.2 hold and that the data D are independent and

identically distributed. If r = 2c−1 for some positive integer c and the 4rth-order split stability ζ(4r)

is finite, then, for each δ >, the inequality

E
[
(a (Rg,k, D)− a (D))2r | D

]
≤ (2r − 1)r

(
24(2− ϕk − ϕ)2

g

)r
Γ

(r)
k,ϕ,b , (D.4)

holds with probability greater than 1− δ as D varies, where

Γ
(r)
k,ϕ,b =

(
1− kϕ
1− ϕ

)
22rσ(2r,1)

max +

(
kϕ− ϕ
1− ϕ

)
σ

(2r,b−1)
valid (D.5)

and ϕ = b/n.

Remark D.2. By setting r = 1, the inequality (D.4) gives a variance bound. In this case, the

right-hand side of the inequality (D.4) is equal to negative one times the inverse of the right-hand

side of the inequality (D.2). In this sense, the concentration inequality Theorem D.1 can be thought

of as an exponential Efron-Stein inequality adapted to the dependence inherent in our problem

(Boucheron et al., 2003). For values of r greater than 1, the unconditional quantity Γ
(r)
k,ϕ,b again

interpolates between the 2rth order full sample stability σ(2r,1)
max and the (2r, b− 1)th order training

sample stability σ(2r,b−1)
valid as k increases from 1 to 1/ϕ.

Remark D.3. An analogous, unconditional, result will follow from the same argument. In particular,

under the same conditions, we have that

E
[
(a (Rg,k, D)− a (D))2r] ≤ (2r − 1)r

(
24(2− ϕk − ϕ)2

g

)r
Γ

(r)
k,ϕ,b . (D.6)

We opt to state the conditional version of the result thought, as, arguably, the conditional behavior

of the statistic is of primary interest.
34See Figure 3 of the preprint posted at https://arxiv.org/abs/2311.14204v2.

https://arxiv.org/abs/2311.14204v2
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In turn, we bound the distance between the conditional distribution of a (Rg,k, D) and the standard

normal distribution. The result follows by combining the bounds derived in Theorem D.2 with a

standard Berry-Esseen inequality (Shevtsova, 2011).

Theorem D.3. Suppose that Assumptions 4.1 and 4.2 hold, that the data D are independently and

identically distributed, and that the statistic a(R1,k, D) has a non-zero variance conditional on D

almost surely. If the eighth-order split stability ζ(8) is finite, then for all g, the inequality

sup
z∈R

∣∣∣∣P
{
a (Rg,k, D)− a (D)√

vg,k (D)
≤ z | D

}
− Φ(z)

∣∣∣∣
.

2632

δ

(2− ϕk − ϕ)3

g1/2

(
(Γ

(2)
k,ϕ,b)

1/2

v1,k(D)

)3/2

(D.7)

is satisfied with probability greater than 1− δ as D varies, where Φ(·) is the standard normal c.d.f.

Remark D.4. To the best of our knowledge, the only Stein’s method central limit theorem in the

Kolmogorov distance, applicable to our setting, is given in Zhang (2022), which generalizes the

argument of Shao and Zhang (2019). In Appendix D.6, we show that this central limit theorem

implies a bound that does not reduce as either g or k increase. �

D.2 Reproducibility

We now characterize accuracy of the nominal reproducibility error of Algorithm 1.

Theorem D.4. Suppose that the conditional variance Var(a(r, D) | D) is strictly positive, almost

surely, where r denotes a random collection drawn uniformly from Rn,k,b. Suppose that the

collections Rĝ,k and R′ĝ′,k are independently obtained using Algorithm 1. If Assumptions 4.1 and 4.2

hold, the data D are independent and identically distributed, and the eighth-order split stability ζ(8)

is finite, then, for all sufficiently small ξ, the inequality

P
{
|a(Rĝ,k, D)− a(R′ĝ′,k, D)| ≤ ξ | D

}
− (1− β) |

.

(
ξ

z1−β/2

(2− ϕk − ϕ)4Γ
(1)
k,ϕ,b(Γ

(2)
k,ϕ,b)

1/2

δ3/2(v1,k (D))5/2

)1/2

· log3/4

(
z1−β/2

ξ

δ(v1,k(D))2

(2− ϕk − ϕ)3(Γ
(2)
k,ϕ,b)

3/4

)
, (D.8)

holds with probability greater than 1− δ as D varies.

Remark D.5. Recall the definition of the oracle stopping time g? given in (3.7). The bound (D.17)

is obtained by decomposing the reproducibility error into two terms. The first term involves the

error in a normal approximation to the difference a(Rg?,k, D)− a(R′g?,k, D). As g? is deterministic
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conditional on D, a bound on this term follows from an argument very similar to the proof of

Theorem D.3. The second term involves the differences a(Rĝ,k, D)− a(Rg?,k, D) and a(R′ĝ′,k, D)−
a(R′g?,k, D). The key step in bounding these quantities involves deriving a high probability bound

for the difference ĝ − g?. This follows by combining a concentration inequality analogous to

Theorem D.1 for the estimator v̂g,k(D) with a maximal inequality due to Steiger (1970). �

D.3 Specialization to Cross-Split, Sample-Stable Statistics

In this section, we specialize the results stated in Appendices D.1 and D.2 to cross-fit, sample-

stable statistics. That is, we focus attention to the setting where n = k ·b and impose Assumption 4.3.

By doing this, we prove each of the results stated in Section 4.

We begin by stating the following corollary of Theorem D.1, which is referenced in Footnote 22.

Corollary D.1. Suppose that Assumptions 4.1 to 4.3 hold, that the data D are independently and

identically distributed, and that the statistic a(R1,k, D) has a non-zero variance conditional on D

almost surely. If the fourth-order split stability ζ(4) is finite, then, for each ε > 0, the inequality

P

{
|a(Rg,k, D)− a (D) | ≤

√
b− 1

n2

1

g

log(ε−1)

δ
| D

}
≥ 1− ε (D.9)

holds with probability greater than 1− δ as D varies.

Proof. Corollary D.1 follows immediately from Theorem D.1 by restricting attention to the case that

n = k · b and applying Assumption 4.3. In particular, observe that if n = k · b, then Γk,ϕ,b = σ
(2,b−1)
train

and

(2− ϕk − ϕ)2 = (1− ϕ)2 =

(
n− b
b

)2

. (D.10)

Applying Assumption 4.3 then gives

Γk,ϕ,b = σ
(2,b−1)
train .

(√
b− 1

n− b

)2

. (D.11)

Plugging (D.10) and (D.11) into Theorem D.1 gives the desired bound.

Next, we show that Theorem D.2 implies the following generalization of Theorem 4.1 to higher-

order moments. Theorem 4.1 is a strictly weaker result, as it only holds for the second moment.

Corollary D.2. Suppose that Assumptions 4.1 to 4.3 hold, the data D are independently and

identically distributed, and n = k · b. If the 4rth-order split stability ζ(4) is finite, then, for each

δ > 0, the inequality

E
[
(a (Rg,k, D)− a (D))2r | D

]
.

(
b− 1

n2

1

g

)r/2
(D.12)

holds with probability greater than 1− δ as D varies.
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Proof. If n = k · b, then Γ
(r)
k,ϕ,b = σ

(2r,b−1)
valid . Applying Assumption 4.3 then gives

Γ
(r)
k,ϕ,b .

(√
b− 1

n− b

)2r

. (D.13)

Plugging (D.10) and (D.13) into (D.4) gives

E
[
(a (Rg,k, D)− a (D))2r] . ( 1

nkg

)r
, (D.14)

where we omit constants the depend only on r.

In turn, we specialize the non-asymptotic central limit theorem Theorem D.3 cross-fit, sample-

stable statistics. This result suggests that, although the aggregate statistic a(Rg,k, D) is more

concentrated at larger values of k, the quality of a normal approximation to its conditional

distribution does not necessarily improve. This result is referenced in Footnote 26.

Corollary D.3. Suppose that Assumptions 4.1 to 4.3 hold, the data D are independently and

identically distributed, n = k · b, and the conditional variance v1,k(D) = Var(a(r, D) | D) is strictly

positive almost surely, where r denotes a random collection drawn uniformly from Rn,k,b. If the

8th-order split stability ζ(8) is finite, then, for all g, the inequality

sup
z∈R

∣∣∣∣P
{
a (Rg,k, D)− a (D)√

vg,k (D)
≤ z | D

}
− Φ(z)

∣∣∣∣ . 1

δ

(
1

n

1

k

b− 1

v1,k(D)

)3/2√
1

g
(D.15)

is satisfied with probability greater than 1− δ as D varies, where Φ(·) is the standard normal c.d.f.

Proof. As before, Corollary D.3 follows by restricting attention to the case that n = k · b and

imposing Assumption 4.3. In particular, Corollary D.3 is obtained by plugging the bounds (D.10)

and (D.13) into (D.7).

Remark D.6. In this case, the quantities g and k enter differently. In particular, observe that, by

applying the variance bound (4.9) for the case g = 1, to lower bound the rate (D.15), we get(
1

n

1

k

1

v1,k(D)

)3/2√
1

g
&

√
1

g
. (D.16)

Written differently, Corollary D.3 suggests that the quality of a normal approximation to the

conditional distribution of the aggregate statistic a (Rg,k, D) does not increase with k—it only

depends on g. �

Finally, we show that Theorem 4.2 is a corollary of Theorem D.4 by restricting attention to the

case that n = k · b and applying Assumption 4.3. We restate Theorem 4.2 below as a corollary for

ease of reference.
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Corollary D.4. Suppose that the collections Rĝ,k and R′ĝ′,k are independently obtained using

Algorithm 1. If Assumptions 4.1 to 4.3 hold, the conditional variance v1,k(D) = Var(a(r, D) | D)

is strictly positive, almost surely, the data D are independent and identically distributed, and the

eighth-order split stability ζ(8) is finite, then for all sufficiently small ξ, the inequality∣∣∣∣P{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)
∣∣ ≥ ξ | D

}
− β

∣∣∣∣
.

1

δ3/4

1

kn

(
1

v1,k(D)

)5/4(
ξ

z1−β/2

)1/2

, (D.17)

holds with probability greater than 1− δ as D varies, where in writing (D.17), we have omitted a

multiplicative term that converges to zero logarithmically as ξ decreases to zero.

Proof. Observe that if n = k · b, then the right-hand-side of the inequality (D.17) can be written(
ξ

z1−β/2

σ
(2,b−1)
train (σ

(4,b−1)
train )1/2

δ3/2(v1,k (D))5/2

(
n− b
n

)4
)1/2

· log3/4

(
z1−β/2

ξ

(
n

n− b

)3
δ(v1,k(D))2

(σ
(4,b−1)
train )3/4

)
. (D.18)

By applying Assumption 4.3, the non-logarithmic factor reduces to(
ξ

z1−β/2

1

δ3/2(v1,k (D))5/2

(√
b− 1

n

)4
)1/2

≤

(
1

δ3/2

ξ

z1−β/2

(
1

kn

)2(
1

v1,k(D)

)5/2
)1/2

(D.19)

as required.

D.4 Constructing a Stein Representer

Suppose that we are interested in studying the statistic f (X), where X is random variable valued

on the separable metric space X . The method of exchangeable pairs has two ingredients. First, we

need to construct a random variable X ′ such that (X,X ′) is an exchangeable pair. Second, we need

to construct an antisymmetric function F (X,X ′) such that

f (X) = E [F (X,X ′) | X] (D.20)

almost surely. We will refer to the function F (X,X ′) as a “Stein representer” for f (X).

In many applications, the Stein representer (D.20) induced by a suitable exchangeable pair

(X,X ′) can be derived in closed form. See e.g Chen et al. (2011) and Ross (2011). A closed form

derivation is more challenging in our setting, where the collection Rg,k takes the place of the random

variable X . To address this issue, we apply a method due to Chatterjee (2005) for constructing

Stein representers through a pair of coupled Markov chains induced by an appropriately chosen

exchangeable pair.
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Chatterjee’s construction is founded on a observation, due to Stein (1986), that an exchangeable

pair (X,X ′) induces a reversible Markov kernel K through

Kg(x) = E [g(X ′) | X = x] ,

where g is any function satisfying E [|g(X)|] <∞. Suppose that {Xm}m≥0 and {X ′m}m≥0 are two

Markov chains constructed with the kernel induced by (X,X ′) and coupled in such a way that the

marginal distributions of Xm and X ′m depend only on the initial conditions X0 and X ′0, respectively.

Chatterjee makes the following observation. If there exists a constant C such that
∞∑
m=0

|E [f(Xm)− f(X ′m) | X0 = x,X ′0 = y] | ≤ C , (D.21)

for each x and y in X , then the function

F (x, y) =
∞∑
m=0

E [f(Xm)− f(X ′m) | X0 = x,X ′0 = y]

is a Stein representer for f (X). See Paulin et al. (2013, 2016) for applications of this idea to the

derivation of matrix concentration inequalities. To apply this construction to our setting, we have

two tasks. First, we need to specify a suitable exchangeable pair. Second, we need to construct

a pair of coupled Markov chains induced by this pair that satisfy the finiteness condition (D.21).

Throughout, for a vector x = (xi)
n
i=1 we let (x−`, y) denote the vector formed by replacing the `th

component of x with y.

Our construction is premised on the observation that the random collection of splits Rg,k can be

generated by a random collection of permutations. To see this, let Pn denote the set of permutations

of the set [n], treating each π ∈ Pn as a bijection from [n] to [n]. Observe that each permutation

π ∈ Pn can be associated with an element of Rn,k,b, denoted by rk (π) = (s1 (π) , . . . , sk (π)),

through

si (π) = {π (k · (i− 1) + 1) , . . . , π (k · (i− 1) + b)} .

If π = (πi)
g
i=1denotes a collection of permutations drawn independently and uniformly at random

from Pn, then the collection Rg,k (π) = (rk (πi))
g
i=1 is equidistributed with the collection Rg,k

defined in Section 2.

Now, we construct an exchangeable pair (π,π′), keeping in mind that our aim is to verify a

condition of the form (D.21). For any permutation π ∈ Pn and indices i, j ∈ [n], define the updated

permutation

π̂ (i, j) (x) =


j, x = i,

π (i) , x = π−1 (j) ,

π (x) , otherwise.
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In other words, π̂ (i, j) is identical to π, except that i maps to j and π−1 (j) maps to π (i). Let L

be distributed uniformly on [g] and let I and J be independently and uniformly distributed on [n].

Define the modified collection

π′ = (π−L, π̂L(I, J)).

and observe that (π,π′) is an exchangeable pair.

With the exchangeable pair (π,π′) in place, we choose a coupled pair of Markov chains that it

induces. For each m ≥ 1, let Lm be distributed uniformly on [g] and let Im and Jm be distributed

uniformly on [n]. Construct (πm,π
′
m) from the pair (π0,π

′
0) = (π,π′) by setting

πm = (πm−1,−Lm , π̂m−1,Lm(Im, Jm)) and π′m = (π′m−1,−Lm
, π̂′m−1,Lm

(Im, Jm)) (D.22)

recursively. In other words, the Markov chain π′0 is initialized by choosing one permutation in

π0 and swapping one pair of indices. In the mth iteration of the Markov chain (πm,π
′
m)m≥0, the

permutations πm−1,Lm and π′m−1,Lm
are selected and updated so that Im now maps to Jm. As the

iterations proceed, Im will continue to map to the same index in the Lmth permutation in both

collections. That is, in each iteration that a new permutation L and index I are selected, the two

collections become more similar. Eventually, every L and I will have been selected, the two

collections πm and π′m will be the same, and so a(Rg,k(πm), D)− a(Rg,k(π
′
m), D) = 0. This will

imply the finiteness (D.21). This argument is formalized in the proof of the following Lemma.

Lemma D.1. The function

A (π,π′ | D) =
∞∑
m=0

E [(a (Rg,k(πm), D)− a (Rg,k(π
′
m), D)) | π0 = π,π′0 = π′, D] ,

is finite, antisymmetric, and satisfies the equality

E [A (π,π′ | D) | π, D] = a (Rg,k(π), D)− a (D) (D.23)

almost surely.

D.5 Proofs

D.5.1 Proofs for Non-Sequential Results. To obtain the concentration inequality Theorem D.1 and

Burkholder-Davis-Gundy inequality Theorem D.2, we apply the following result due to Chatterjee

(2005, 2007), which we have augmented to be applicable under a set of assumptions considered in

Paulin et al. (2016).

Lemma D.2. Let X be a separable metric space and suppose that (X,X ′) is an exchangeable pair of

X -valued random variables. Let f : X → R be a square integrable function and let F : X ×X → R
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be a Stein representer for f . For each positive integer (r), define the quantities

U
(r)
f (X) =

1

2
E
[
(f (X)− f (X ′))

2r | X
]

and U
(r)
F (X) =

1

2
E
[
F (X,X ′)

2r | X
]
. (D.24)

If there exist nonnegative constants u and s such that

U
(1)
f (X) ≤ s−1u and U

(1)
F (X) ≤ su, (D.25)

then the concentration inequality

P {|f (X) | ≥ δ} ≤ 2 exp
(
−t2/2u

)
(D.26)

holds for all t ≥ 0. Moreover, the moment inequality

E
[
f (X)2r] ≤ (2r − 1)r

(
sE
[
U

(r)
F (X)

]
+ s−1E

[
U

(r)
f (X)

])
(D.27)

holds for all positive integers r for any positive constant s.

Throughout, to ease notation, we use the short hand

Z = (Rg,k(π), D) and Z ′ = (Rg,k(π
′), D) .

The Markov chains (Zm)m≥0 and (Z ′m)m≥0 are defined accordingly and we simplify A (π,π′ | D)

to A(Z,Z ′). To apply Lemma D.2, we are required to develop bounds for the objects

U (r)
a (Z) =

1

2
E
[
(a (Z)− a (Z ′))

2r | Z
]

and U
(r)
A (Z) =

1

2
E
[
A (Z,Z ′)

2r | Z
]
.

Our approach is based on the following Lemma, which combines a generalization of an idea due to

Lemma 10.4 of Paulin et al. (2016) with a Markov type bound.

Lemma D.3. Let r = 2c for some positive integer c. Let f : Z → R be a function such that there

exists a square integrable random variable W with(
∞∑
m=0

E [f (Zm)− f (Z ′m) | Z0 = Z,Z ′0 = Z ′]

)r

≤ W (D.28)

almost surely. If the inequality

E
[
E [f(Zm)− f(Z ′m) | Z0 = Z,Z ′0 = Z ′]

r | π
]
≤ hrm (D.29)

holds for each m ≥ 0 and each collection π, where (hm)m≥0 is a deterministic sequence of

nonnegative numbers, then the inequalities

1

2
E
[
(f (Z)− f (Z ′))

r | Z
]
≤ hr0

δ
and (D.30)

1

2
E

[(
∞∑
m=0

E [f (Zm)− f (Z ′m) | Z0 = Z,Z ′0 = Z ′]

)r

| Z

]
≤ 1

δ

(
∞∑
m=0

hm

)r

(D.31)
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both hold with probability greater than 1− δ as D varies

To apply this Lemma, we begin by noting that the inequality(
∞∑
m=0

E [a (Zm)− a (Z ′m) | Z0 = Z,Z ′0 = Z ′]

)2

. g2n4 max
s,s′∈Sn,b

(T (s, U,D)− T (s′, U,D))
2 (D.32)

follows from Lemma E.1, stated in Appendix E.1. Moreover, the right hand side of (D.32) is square

integrable, as the fourth order split-stability ζ(4) is finite by assumption. Deterministic bounds of

the form (D.29) are obtained through the following Lemma.

Lemma D.4. Under Assumptions 4.1 and 4.2, for all integers m ≥ 0 and r ≥ 1, the inequality

E
[
E [a(Zm)− a(Z ′m) | Z0 = Z,Z ′0 = Z ′]

2r | π
]

≤ 24r

(
1− 2

gn2

)2mr (
2n− bk − b

gn2

)2r

Γ
(r)
k,ϕ,b

holds almost surely, where Γ
(r)
k,ϕ,b is defined in the statement of Theorem D.2.

Combining Lemmas D.3 and D.4, we have that

U
(r)
A (Z) ≤ 1

δ

(
gn2

2

)r(
24 (2n− bk − b)2

gn2

)r

Γ
(r)
k,ϕ,b

and

U (r)
a (Z) ≤ 1

δ

(
2

gn2

)r(
24 (2n− bk − b)2

gn2

)r

Γ
(r)
k,ϕ,b

with probability 1−δ. Corollary D.1 is obtained by setting r = 1 and applying (D.26) of Lemma D.2

with s = gn2/2 and

u =
1

δ

24 (2n− bk − b)2

gn2
Γ

(1)
n,k,b.

Similarly, Theorem D.2 is obtained by applying (D.27) of Lemma D.2 with s = (gn2/2)r.

The normal approximation error bound Theorem D.3 follows from Theorem D.2. To see this,

consider the centered statistic

a (Z)− a (D) =
1

g

g∑
`=1

a (r`, D) , where a (r`, D) =
1

k

k∑
i=1

(T (s`,i, D)− a (D)) (D.33)

for each ` in [g]. Conditional on the data D, the statistics a (r`, D) are independent, identically

distributed, and mean zero. Moreover, we have that

E
[
|a (r`, D) |3

]
≤ 3226 (2− ϕk − ϕ)3 (Γ

(2)
k,ϕ,b)

3/4 (D.34)
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by Hölder’s inequality and Theorem D.2. Hence, we find that

E [|a (r`, D) |3 | D]

g1/2 (v1,k(D))3/2
≤ 3226

δ

(2− ϕk − ϕ)3

(v1,k(D))3/2

(Γ
(2)
k,ϕ,b)

3/4

g1/2

holds with probability greater than 1− δ, by combining (D.34) with the Markov inequality. The

proof then follows by the Berry-Esseen inequality. See e.g., Corollary 1 of Shevtsova (2011).

D.5.2 Proofs for Sequential Results. The first step for verifying Theorem D.4 is deriving a large

deviation bound for the variance estimator v̂ (Rg,k, D) defined in (3.4). This is obtained in the

following Lemma, which follows from an argument very similar to the proof of Theorem D.1.

Lemma D.5. Suppose that Assumptions 4.1 and 4.2 hold and that the data D are independent

and identically distributed. If the eighth-order split-stability ζ(8) is finite, then the conditional

concentration inequality

log
1

4
P

{∣∣∣∣ v̂(Rg,k, D)

vg,k (D)
− 1

∣∣∣∣ ≥ t | D
}
. − δ (v1,k(D))2

(2− ϕk − ϕ)4

gt2

Γ
(2)
k,ϕ,b

holds for all t > 0 with probability greater than 1− δ as D varies.

We focus our analysis on the error

|P
{
a(Rĝ,k, D)− a(R′ĝ′,k, D) ≤ ξ | D

}
− (1− β/2) |. (D.35)

An analogous argument will yield the same bound for the lower tail. We begin by bounding (D.35)

with quantities that will be easier to handle in isolation. Define the objects

U (Rg,k, D) =
1

g?

(
g∑
i=1

a (ri,k, D)−
g?∑
i=1

a (ri,k, D)

)
and (D.36)

Q (Rg,k, D) =

(
1− g

g?

)
(a(Rg,k, D)− a (D)) . (D.37)

The following Lemma bounds the error (D.35) in terms of the error in the normal approximation to

the quantity a(Rg?,k, D)− a(R′g?,k, D) and generic high probability bounds on (D.36) and (D.37).

Lemma D.6. Define the events

Uk,λ (D) =

{
|U(Rĝ,k, D)− U(R′ĝ′,k, D)| ≤ λ

√
2vg?,k (D)

}
and

Qk,λ(D) =

{∣∣∣Q(Rg,k, D)−Q(R′ĝ′,k, D)
∣∣∣ ≤ λ

√
2vg?,k (D)

}
.
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The quantity (D.35) is bounded above by

sup
z∈R

∣∣∣∣P
{
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
≤ z | D

}
− Φ(z)

∣∣∣∣
+ 2λ+ (1− P {Uk,λ (D) ∩Qk,λ(D) | D}) , (D.38)

where Φ(·) is the standard normal c.d.f.

Thus, it remains to give suitable bounds for the objects in (D.38). We state these bounds in terms

of the quantities

ρk,ϕ,b(ξ, β | D) =
ξ

z1−β/2

(2− ϕk − ϕ)3(Γ
(2)
k,ϕ,b)

3/4

δ (v1,k (D))2 and (D.39)

λk,ϕ,b(ξ, β | D) =

(
ξ

z1−β/2

(2− ϕk − ϕ)4Γ
(1)
k,ϕ,b(Γ

(2)
k,ϕ,b)

1/2

δ3/2(v1,k (D))5/2

)1/2

, (D.40)

respectively. Each part of following Lemma follows from an application of Lemma D.6.

Lemma D.7. Suppose that Assumptions 4.1 and 4.2 hold, that the data D are independent and

identically distributed, that the conditional variance v1,k(D) = Var(a(r, D) | D) is strictly positive

almost surely, and that the eighth-order split stability ζ(8) is finite.

(i) The inequality∣∣∣∣P
{
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
≤ z | D

}
− Φ(z)

∣∣∣∣ . ρk,ϕ,b (ξ, β | D)

is satisfied with probability greater than 1− δ as D varies.

(ii) The conditional concentration inequality

P

{
|U(Rĝ,k, D)− U(R′ĝ′,k, D)|√

2vg?,k (D)
≥ λk,ϕ,b (ξ, β | D) log3/4

(
ρk,ϕ,b (ξ, β | D)−1) | D}

. ρk,ϕ,b (ξ, β | D)

holds with probability greater than 1− δ as D varies.

(iii) For all sufficiently small ξ, the conditional concentration inequality

P

{
|Q(Rĝ,k, D)−Q(R′ĝ′,k, D)|√

2vg?,k (D)
≥ λk,ϕ,b (ξ, β | D)

}
. ρk,ϕ,b (ξ, β | D)

holds with probability greater than 1− δ as D varies.
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Now, observe that ρk,ϕ,b (ξ, β | D) is smaller than λk,ϕ,b(ξ, β | D) for all sufficiently small ξ,

almost surely. Consequently, by combining Lemma D.6 and Lemma D.7, we find that

|P
{
|a(Rĝ,k, D)− a(R′ĝ′,k, D)| ≤ ξ | D

}
− (1− β) |

.

(
ξ

z1−β/2

(2− ϕk − ϕ)4Γ
(1)
k,ϕ,b(Γ

(2)
k,ϕ,b)

1/2

δ3/2(v1,k (D))5/2

)1/2

· log3/4

(
z1−β/2

ξ

δ(v1,k(D))2

(2− ϕk − ϕ)3(Γ
(2)
k,ϕ,b)

3/4

)
(D.41)

with probability greater than 1− δ, as required.

D.6 Comparison with Zhang (2022)

We state a Berry-Esseen bound for a (Rg,k, D) through an application of a result due to Zhang

(2022). In contrast to the bound stated in Theorem D.3, the bound obtained here does not shrink as

g increases. On the other hand, the bound obtained below is unconditional. It is straightforward to

modify our argument to give an analogous high-probability conditional bound.

Theorem D.5. Let W denote a standard normal random variable. Suppose that Assumptions 4.1

and 4.2 hold and that the data D are independent and identically distributed. If the eighth-order

split stability ζ(8) is finite, then the Berry-Esseen inequality

dK

(
a (Rg,k, D)− a (D)√

E [vg,k (D)]
,W

)
≤

4 (2− ϕk − ϕ)2 (Γ
(2)
k,ϕ,b)

1/2

E [v1,k(D)]

is satisfied.

D.6.1 Proof of Theorem D.5. We apply the following central limit theorem, due to Zhang (2022).

This result generalizes Theorem 2.1 of Shao and Zhang (2019) to accommodate general Stein

representers.

Theorem D.6 (Theorem 4.1, Zhang, 2022). Let X be a separable metric space and suppose that

(X,X ′) is an exchangeable pair of X -valued random variables. Suppose that f : X → R and

F : X × X → R are square-integrable functions such that F is antisymmetric and

E [F (X,X ′) | X] = f (X)

almost surely. Assume that Var (f (X)) is finite and non-zero and that E [f (X)] = 0. Define the

objects

f (X) = f (X) /
√

Var (f (X)). (D.42)

G (X) =
1

2
E [(f (X)− f (X ′))F (X,X ′) | X] and (D.43)
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G (X) =
1

2
E [(f (X)− f (X ′)) |F (X,X ′) | | X] . (D.44)

Let W denote a standard normal random variable. The bound

dK
(
f (X) ,W

)
≤

E [|G (X)− E [G (X)] |] + E
[
|G (X) |

]
Var (f (X))

(D.45)

is satisfied.

To this end, define the objects

B (Z) =
1

2
E [(a (Z)− a (Z ′))A (Z,Z ′) | Z] and

B (Z) =
1

2
E [(a (Z)− a (Z ′)) |A (Z,Z ′) | | Z] .

It will suffice to bound the quantity

E [|B (Z)− E [B (Z)] |] + E
[
|B (Z) |

]
Var (a (Z)− a (Z))

. (D.46)

Observe that

E [|B (X)− E [B (X)] |] ≤
√

Var (B (Z)) and

E
[
|B (Z) |

]
≤
√

Var
(
B (Z)

)
by the Cauchy-Schwarz inequality and the fact that E

[
B (X)

]
= 0 by exchangeability. Consequently,

as

Var (B (Z)) ≤ E
[
B (Z)2] = E

[
(a (Z)− a (Z ′))

2
A (Z,Z ′)

2
]

= Var
(
B (Z)

)
it will suffice to bound

2E
[
(a (Z)− a (Z ′))

2
A (Z,Z ′)

2
]
. (D.47)

By Young’s inequality, we have that

E
[
(a (Z)− a (Z ′))

2
A (Z,Z ′)

2
]
≤ 1

2

(
s−1E

[
U (2)
a (Z)

]
+ sE

[
U

(2)
A (Z)

])
,

where U (2)
a (Z) and U (2)

A (Z) are defined in Appendix D.5.1.

Observe that the bound(
∞∑
m=0

E [a (Zm)− a (Z ′m) | Z0 = Z,Z ′0 = Z ′]

)4

≤
(

2gn2 max
s,s′∈Sn,b

(T (s, D)− T (s′, D))

)4

(D.48)
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holds by Lemma E.1 and that the right-hand side of (D.48) is square-integrable as the eighth-order

split stability ζ(8) is finite. Thus, by combining Lemma E.3 and Lemma D.4, we have that

U
(2)

A ≤
(
gn2

2

)2
(

4 (2n− bk − b)2

gn2

)2

Γ
(2)
k,ϕ,b

and

U
(2)

a ≤
(

2

gn2

)2
(

4 (2n− bk − b)2

gn2

)2

Γ
(2)
k,ϕ,b .

Hence, by taking s = (gn2/2)
2, we find that (D.47) is bounded above by

4

gn2

(
(2n− bk − b)2 (Γ

(2)
k,ϕ,b)

1/2
)

Now, we have that

Var (a (Z)− a (D)) = E [vg,k (D)]

by the law of total variance and the fact that E [a (Z)− a (D) | D] = 0. Consequently we can

decompose

E [vg,k (D)] =
E[φn,b(D)] + (k − 1)E[γn,b(D)]

kg
. (D.49)

Hence, we have that (D.46) is bounded above by

4 (2− ϕk − ϕ)2 (Γ
(2)
k,ϕ,b)

1/2

E [v1,k(D)]
,

as required.

APPENDIX E. PROOFS FOR LEMMAS STATED IN APPENDIX D

E.1 Proof of Lemma D.1

We use the following Lemma in several places.

Lemma E.1. Let ψ and ψ′ be two sets, each containing g elements of Pn. The inequality
∞∑
m=0

∣∣∣∣E [a (Rg,k(πm))− a (Rg,k(π
′
m)) | π0 = ψ,π′0 = ψ′, D]

∣∣∣∣
≤ 2gn2 max

s,s′∈Sn,b

(T (s, D)− T (s′, D))

holds almost surely.

Observe that the quantity

max
s,s′∈Sn,b

(T (s, D)− T (s′, D))
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is finite almost surely. Thus, the convergence of the series defining A (π,π′ | D) follows from

Lemma E.1. Define the operator

K : F → F

f (·) 7→ E [f (π′) | π = ·] ,

where F is the set of all measurable functions supported on the domain of π. Observe that

E [a (Rg,k(πm), D)− a (Rg,k(π
′
m), D) | π0 = π,π′0 = π′, D]

= E [a (Rg,k(πm), D)− a(D) | π0 = π, D]− E [a (Rg,k(π
′
m), D)− a(D) | π′0 = π′, D]

= Km (a (Rg,k(π))− a(D))−Km+1 (a (Rg,k(π
′))− a(D)) .

Thus, for any m′, we have that

m′∑
m=0

E [a (Rg,k(πm), D)− a (Rg,k(π
′
m), D) | π0 = π,π′0 = π′, D]

= a (Rg,k(π), D)− a (D)−Km′+1 (a (Rg,k(π), D)− a (D)) . (E.1)

By Lemma E.1, the partial sums (E.1) converge almost everywhere and so the sequence(
Km+1 (a (Rg,k(π), D)− a (D))

)
m≥0

(E.2)

also converges almost everywhere. Lemma E.1 also implies that the limit of (E.2) depends only on

D, as

Km (a ((Rg,k (ψ) , D))− a (D))−Kma ((Rg,k (ψ′) , D)− a (D))→ 0

for any ψ and ψ′ each containing g elements of Pn. Therefore, we have that

E [A (π,π′ | D) | D]

= E
[

lim
n→∞

(
a (Rg,k(π), D)− a (D)−Km+1a (Rg,k(π), D)− a (D)

)
| D
]

= E [a (Rg,k(π), D)− a (D) | D]− b (D) ,

for some quantity

b (D) = lim
m→∞

Km (a (Rg,k(π), D)− a (D))

that depends only on D. Observe that

E [A (π,π′ | D) | D]

= E

[
lim
m′→∞

m′∑
m=0

E [a (Rg,k(πm), D)− a (Rg,k(π
′
m), D) | π0 = π,π′0 = π′, D] | D

]
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= lim
m′→∞

m′∑
m=0

E [a (Rg,k(πm), D)− a (Rg,k(π
′
m), D) | D] (Dominated Conv.)

= 0, (Exchangeability)

where the applicability of the Dominated Convergence Theorem follows from Lemma E.1. Thus, as

E [a (Rg,k(π), D)− a (D) | D] = 0,

we can conclude that b (D) = 0 almost surely. Hence, we find that

E [A (π,π′ | D) | π, D]

= E

[
lim
m′→∞

m′∑
m=0

E [a (Rg,k(πm), D)− a (Rg,k(π
′
m), D) | π0 = π,π′0 = π′, D] | π, D

]

= lim
m′→∞

m′∑
m=0

E [a (Rg,k(πm), D)− a (Rg,k(π
′
m), D) | π0 = π,π′0 = π′, D] (Dominated Conv.)

− lim
m′→∞

Km′+1 (a (Rg,k(π), D)− a (D))

= a (Rg,k(π), D)− a (D) ,

completing the proof.

E.2 Proof of Lemma D.2

First, observe that

UF (X) ≥ 1

2
(E [F (X,X ′) | X])

2
=

1

2
f (X)2 ,

where the inequality follows from Jensen’s inequality and the definition of the Stein representer F .

By (D.30), we have that

su ≥ 1

2
f (X)2 .

Hence, the random variable f (X) is bounded almost surely.

Now, suppose h : X → R is any measurable function such that E [h (X)F (X,X ′)] <∞. Then,

E [h (X) f (X)] = E [h (X)F (X,X ′)]. Using the exchangeability of X and X ′ and the fact that

F is antisymmetric, we have that

E [h (X)F (X,X ′)] = E [h (X ′)F (X ′, X)] = −E [h (X ′)F (X,X ′)]

and that therefore

E [h (X) f (X)] =
1

2
E [(h (X)− h (X ′))F (X,X ′)] . (E.3)
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Let

m (θ) = E [exp (θf (X))]

denote the moment generating function of f (X). As f (X) is bounded almost surely, we can

exchange differentiation and expectation in the differentiation of m (θ). Thus, we obtain

m′ (θ) = E [exp (θf (X)) f (X)] .

=
1

2
E [(exp (θf (X))− exp (θf (X ′)))F (X,X ′)] , (E.4)

where the second inequality follows from (E.3). To boundm′ (θ) we apply the following exponential

mean-value inequality, stated in a more general form in Paulin et al. (2016).

Lemma E.2. For all constants x, y, and c in R and s > 0, it holds that

| (ex − ey) c| ≤ 1

4

(
s (x− y)2 + s−1c2

)
(ex + ey) .

In particular, by (E.4) and Lemma E.2, we obtain the bound

|m′ (θ) | ≤ 1

2
E [| (exp (θf (X))− exp (θf (X ′)))F (X,X ′) |]

≤ 1

8
inf
t>0

E
[(
t (θf (X)− θf (X ′))

2
+ t−1F (X,X ′)

2
)

(exp (θf (X)) + exp (θf (X ′)))
]

=
|θ|
4

inf
t>0

E
[(
t (f (X)− f (X ′))

2
+ t−1F (X,X ′)

2
)

exp (θf (X))
]

=
|θ|
2

inf
t>0

E

[(
t

2
E
[
(f (X)− f (X ′))

2 | X
]

+
1

2t
E
[
F (X,X ′)

2 | X
])

· E [exp (θf (X)) | X]

]

=
|θ|
2

inf
t>0

E
[(
tUf (X) + t−1UF (X)

)
E [exp (θf (X)) | X]

]
≤ |θ|

2
E
[(
sUf (X) + s−1UF (X)

)
E [exp (θf (X)) | X]

]
≤ |θ|vE [exp (θf (X))]

for all θ ∈ R. Thus, we have that

m′ (θ) ≤ uθm (θ)

for all θ > 0. As m (·) is a convex function and m′ (0) = 0, m′ (θ) always has the same sign as θ,

we find that
d
dθ

logm (θ) ≤ uθ.
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As a consequence, and by m (0) = 1, we have that

logm (θ) ≤
∫ θ

0

utdt ≤ uθ2

2
.

By the Chernoff bound (see e.g., Equation 2.5, Wainwright, 2019), we have

logP {f (X) ≥ δ} ≤ inf
θ≥0

(logm (θ)− θδ) ≤ inf
θ≥0

(
uθ2

2
− θδ

)
Solving this minimization with θ = δ/u, we find

P {f (X) ≥ t} ≤ exp

(
−δ2

2u

)
,

as required. The analogous lower tail bound follows from an identical argument, which completes

the proof of (D.26). To prove (D.27) we apply the following result stated in Chatterjee (2007).

Theorem E.1 (Theorem 1.5, (iii), Chatterjee, 2007). Reintroduce the notation and assumptions from

the statement of Theorem D.2. Define

∆ (X) =
1

2
E [|F (X,X ′) (f (X)− f (X ′)) | | X] .

The Burkholder-Davis-Gundy inequality

E
[
f (X)2r] ≤ (2r − 1)r E [∆ (X)r]

holds for any positive integer r.

The inequality

E [∆ (X)r] = E
[
E [| (f (X)− f (X ′))F (X,X ′) | | X]

r]
≤ E [E [| (f (X)− f (X ′))F (X,X ′) |r | X]] (Jensen)

= E
[
E
[((

s−1 (f (X)− f (X ′))
2r
)(

sF (X,X ′)
2r
))1/2

| X
]]

≤ E
[
E
[
s−1 (f (X)− f (X ′))

2r
+ sF (X,X ′)

2r | X
]]

(Young)

= s−1E
[
U

(r)
f (X)

]
+ sE

[
U

(r)
F (X)

]
then completes the proof.

E.3 Proof of Lemma D.3

We apply the following Lemma.

Lemma E.3. Let (Xm)m≥0 be a sequence of real-valued random variables. Suppose that the

inequality

E
[
X2c

m

]
≤ h2c

m (E.5)
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holds for each m ≥ 0 and positive integer c, where (hm)m≥0 is a deterministic sequence of

nonnegative real numbers. If there exists a square integrable random variable W such that(
∞∑
m=0

Xm

)2c

≤ W

almost surely, then the inequality

E

( ∞∑
m=0

Xm

)2c
 ≤ ( ∞∑

m=0

hm

)2c

holds almost surely.

Define the objects

U
(r)
f (Z) =

1

2
E
[
(f (Z)− f (Z ′))

2r | Z
]

and

U
(r)
F (Z) =

1

2
E

( ∞∑
m=0

E [f (Zm)− f (Z ′m) | Z0 = Z,Z ′0 = Z ′]

)2r

| Z

 .
By the (D.28), we have that

E

[
∞∑
m=0

f(Zm)− f(Z ′m) | Z0 = Z,Z ′0 = Z ′

]2c

≤ W.

Thus, (D.29) guarantees that the conditions of Lemma E.3 are satisfied, and we have that

E
[
U

(2c−1)
F (Z) | π

]
≤ 1

2

(
∞∑
i=0

hi

)2c

and E
[
U

(2c−1)
f (Z) | π

]
≤ 1

2
h2c

0 .

By Markov’s inequality, we obtain

P

{
U

(2c−1)
F (Z) ≥ 2

δ
E
[
U

(2c−1)
F (Z) | π

]
or U

(2c−1)
f (Z) ≥ 2

δ
E
[
U

(2c−1)
f (Z) | π

]
| π
}
≤ δ.

Hence, by Lemma E.3 and DeMorgan’s law, the probability that both

U
(2c−1)
F (Z) ≤ 2

δ
E
[
U

(2c−1)
F (Z) | π

]
≤ 1

δ

(
∞∑
m=0

hm

)2c

and

U
(2c−1)
f (Z) ≤ 2

δ
E
[
U

(2c−1)
f (Z) | π

]
≤ h2c

0

δ

hold is greater than 1− δ.
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E.4 Proof of Lemma D.4

Recall the definition of the collections (πm,π
′
m)m≥0 given in (D.22). Fix Z0 = Z and Z ′0 = Z ′

throughout. For any i in [n], let sm,` (i) denote the element of the collection

r(πm,`) = (s1(πm,`), . . . , sg(πm,`))

that contains the index i and set sm,`(i) equal to ∅ if no element of r(πm,`) contains i.

We begin by defining three events that will determine the structure of our argument. By

construction, the collections πm and π′m are either identical or differ in exactly two indices in

their Lth element. Let Em denote the event that πm and π′m differ. On the event Em, let i1,m and i2,m
denote the two indices in which the Lth elements of πm and π′m differ. Define the random variables

Bm and Cm such that, conditional on Em, each is uniformly distributed on {i1,m, i2,m} such that

Bm 6= Cm. On the complement of Em, set these indices uniformly at random. Let Fm denote the

event that

sm,L (Bm) 6= sm,L (Cm) ,

i.e., the event that the indices that differ are not in the same element of the collection r(πm,`). Finally,

let Gm denote the event that

sm,L (Bm) 6= ∅ and sm,L (Cm) 6= ∅,

i.e., the event that the indices that differ are both in the collection r(πm,`).

By Assumption 4.1, the eventHm = Em ∩Fm is a necessary condition for a (Zm)− a (Z ′m) 6= 0.

Thus, we can compute

P {Hm | E0} = P {Fm | Em, E0}P {Em | E0}

=
(
P {sm,L (Bm) 6= sm,L (Cm) | sm,L (Bm) 6= ∅, Em}P {sm,L (Bm) 6= ∅ | Em}

+ P {sm,L (Bm) 6= sm,L (Cm) | sm,L (Bm) = ∅, Em}P {sm,L (Bm) = ∅ | Em}
)

· P {Em | E0}

=

(
n− b
n− 1

kb

n
+

kb

n− 1

n− kb
b

)(
1− 2

gn2

)m
=

(
kb (2n− kb− b)

n(n− 1)

)(
1− 2

gn2

)m
for all m ≥ 0 by the law of total probability. Moreover, we have that

P {Hm | Z,Z ′} ≤ P {Hm | E0}
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almost surely. Consequently, we find that

E
[
E [a (Zm)− a (Z ′m) | Z,Z ′]2r | π

]
= E

[
(P {Hm | Z,Z ′}E [a (Zm)− a (Z ′m) | Z,Z ′,Hm])

2r | π
]

≤ (P {Hm | E0})2r E
[
E
[
(a (Zm)− a (Z ′m))

2r | Z,Z ′,Hm

]
| π
]

(Jensen)

=

(
1− 2

gn2

)2mr (
kb (2n− kb− b)

n(n− 1)

)2r

E
[
E
[
(a (Zm)− a (Z ′m))

2r | Hm,π
]
| π
]

≤
(

1− 2

gn2

)2mr (
2kb (2n− kb− b)

n2

)2r

E
[
(a (Zm)− a (Z ′m))

2r | Hm

]
, (E.6)

where the final inequality follows from the fact that π is uniformly distributed independently of D

and the elementary inequality n/(n− 1) ≤ 2. Thus, it remains to bound the expectation in (E.6).

To ease notation, we now drop the dependence on m and L. Observe that

P {G | H} = P {s (B) 6= ∅ | s (C) 6= ∅} =
kb− b
n− b

and that therefore

E
[
(a (Z)− a (Z ′))

2r | H,π
]

=

(
kb− b
n− b

)
E
[
(a (Z)− a (Z ′))

2r | G
]

+

(
n− kb
n− b

)
E
[
(a (Z)− a (Z ′))

2r | H \ G
]
. (E.7)

Define the sets

ŝi = s(i) \ i and s = s̃(B) ∩ s̃(C).

With an abuse of notation, we let

ψ(Di, η̂(Dj, Dŝk)) = ψ(Di, η̂(Dj ∩Dŝk ∩Ds)) and

h(Di, Dj, Dŝk) = ψ(Di, η̂(Dj, Dŝk))− ψ(Dj, η̂(Di, Dŝk)).

Observe that

E
[
(a (Z)− a (Z ′))

2r | H \ G
]

= E
[
(a (Z)− a (Z ′))

2r | H \ G
]

=

(
1

gkb

)2r

E
[
h(DB, DC , Ds̃C )2r

]
. (E.8)

On the other hand, we can decompose

E
[
(a (Z)− a (Z ′))

2 | G
]

=

(
1

gkb

)2r

E
[
(h(DB, DC , DŝC ) + h(DC , DB, DŝB))2r]
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=

(
1

gkb

)2r

E
[
(h(DB, DC , DŝC )− h(DB, DB, DŝB))2r] . (E.9)

Consequently, by (E.7), (E.8), and (E.9), it suffices to express suitable bounds for the expectations

E
[
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC )))2r] and

E

[(
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC ))) (E.10)

− (ψ(DB, η̂(DC , DŝB))− ψ(DC , η̂(DB, DŝB)))

)2r
]

respectively. To this end, recall that D̃i are independent copies of Di for each i. Observe that

E
[
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC )))2r]

= E
[(
ψ(DB, η̂(DC , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC )) + ψ(D̃B, η̂(D̃C , DŝC ))− ψ(DC , η̂(DB, DŝC ))

)2r
]

=
2r∑
q=0

(
2r

q

)
E
[(

ψ(DB, η̂(DC , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))
)2r−q

(
ψ(D̃B, η̂(D̃C , DŝC ))− ψ(DC , η̂(DB, DŝC ))

)q ]
(Binomial Theorem)

≤ 22rE
[(
ψ(DB, η̂(DC , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))

)2r
]

(E.11)

where the inequality follows from the fact that B and C are exchangeable and the Hölder inequality.

Similarly, we have that

E
[(
ψ(DB, η̂(DC , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))

)2r−q
]

= E
[(
ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(D̃C , DŝC )) + ψ(DB, η̂(D̃C , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))

)2r
]

=
2r∑
q=0

(
2r

q

)
E
[(

ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(D̃C , DŝC ))
)2r−q

(
ψ(DB, η̂(D̃C , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))

)q ]
(Binomial Theorem)

≤
2r∑
q=0

(
2r

q

)(
σ

(2r)
valid

) 2r−q
2r
(
σ

(2r,1)
train

) q
2r

(Hölder)

≤ 22rσ(2r)
max , (E.12)
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where the last inequality follows by the definitions of σ(2r)
valid and σ(2r,1)

train . Thus, we have that

E
[
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC )))2r] ≤ 24rσ(2r)

max (E.13)

by (E.11) and (E.12).

Next, we consider the double difference term (E.10). In this case, we have that

E

[(
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC )))

− (ψ(DB, η̂(DC , DŝB))− ψ(DC , η̂(DB, DŝB)))

)2r
]

= E

[(
(ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(DC , DŝB)))

− (ψ(DC , η̂(DB, DŝC ))− ψ(DC , η̂(DB, DŝB)))

)2r
]

=
2r∑
q=0

(
2r

q

)
E

[(
(ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(DC , DŝB)))

· (ψ(DC , η̂(DB, DŝC ))− ψ(DC , η̂(DB, DŝB)))

)2r
]

(Binomial Theorem)

≤ 22rE
[
(ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(DC , DŝB)))2r] = 22rσ

(2r,b−1)
train (E.14)

where the final inequality follows from the fact that B and C are exchangeable and the Hölder

inequality. Putting the pieces together, we have that

E
[
E [a (Zm)− a (Z ′m) | Z,Z ′]2r | π

]
≤ 24r

(
1− 2

gn2

)2mr (
2n− kb− b

gn2

)2r ((
n− kb
n− b

)
22rσ(2r)

max +

(
kb− b
n− b

)
σ

(2r,b−1)
train

)
as required.

E.5 Proof of Lemma D.5

Throughout, we us the short hand v̂g,k (Z) to denote v̂(Rg,k, D). We begin by decomposing the

estimator v̂g,k (Z) into two parts that will each be easier to handle when considered in isolation. To

this end, define the statistics

ṽg,k (Z) =
1

g2k2

g∑
`=1

k∑
i,i′=1

(T (s`,i, Y )− a (D)) (T (s`,i′ , D)− a (D)) and

v̌g,k (Z) = (a (Z)− a (D))2 .
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Observe that both ṽg,k (Z) and v̌g,k (Z) are unbiased for v (Z). Moreover, we can write

v̂g,k (Z) =
1

g (g − 1) k2

g∑
`=1

k∑
i,i′=1

(T (s`,i, D)− a (Z)) (T (s`,i′ , D)− a (Z))

=
1

g (g − 1) k2

g∑
`=1

k∑
i,i′=1

(T (s`,i, D)− a (D)) (T (s`,i′ , D)− a (Z))

+
1

g (g − 1) k

g∑
`=1

g∑
i=1

(a (D)− a (Z)) (T (s`,i, D)− a (Z))

=
1

g (g − 1) k2

g∑
`=1

k∑
i,i′=1

(T (s`,i, D)− a (D)) (T (s`,i′ , D)− a (Z))

=
g

g − 1
ṽ (Z) +

1

g (g − 1) k

g∑
`=1

k∑
i=1

(T (s`,i, D)− a (D)) (a (D)− a (Z))

=
g

g − 1
ṽg,k (Z)− 1

g − 1
v̌g,k (Z) . (E.15)

Hence, it will suffice to characterize the exponential rates of conditional concentration for the

statistics ṽg,k (Z) and v̌g,k (Z). These are established through the application of the following

Lemma, which follows from an argument very similar to the proof of Theorem D.1.

Lemma E.4. Suppose that Assumptions 4.1 and 4.2 hold and that the data D are independently and

identically distributed. If the eighth-order split-stability ζ(8) is finite, then:

(i) The conditional concentration inequality

log
1

2
P {|ṽ (Z)− v (D) | ≥ t | D} . − δ

(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b

, (E.16)

holds for all t > 0 with probability greater than 1− δ.
(ii) The conditional concentration inequality

log
1

2
P {|v̌ (Z)− v (D) | ≥ t | D} . − δ

(2− ϕk − ϕ)4

g2t2

Γ
(2)
k,ϕ,b

, (E.17)

holds for all t > 0 with probability greater than 1− δ.

Putting the pieces together, by (E.15), we have that

P {|v̂g,k (Z)− vg,k (D) | ≤ t | D}

= P

{
| g

g − 1
(ṽg,k (Z)− vg,k (D))− 1

g − 1
(v̌g,k (Z)− vg,k (D)) | ≤ t | D

}
≥ P

{
g

g − 1
|ṽg,k (Z)− vg,k (D) |+ 1

g − 1
|v̌g,k (Z)− vg,k (D) | ≤ t | D

}
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≥ P

{
g

g − 1
|ṽg,k (Z)− v (D) | ≤

√
g

1 +
√
g
t,

1

g − 1
|v̌ (Z)− v (D) | ≤ 1

1 +
√
g
t | D

}
≥ P

{
|ṽg,k (Z)− v (D) | ≤ 1

√
g

g − 1

1 +
√
g
t | D

}
+ P

{
|v̌g,k (Z)− v (D) | ≤ g − 1

1 +
√
g
t | D

}
− 1

≥ 1− 4 exp

(
− δ

C(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b

)
with probability greater than 1− δ for some universal constant C, where the last inequality follows

by Lemma E.4 and the facts that 4g ≥
(
1 +
√
g
)2 for all g ≥ 1 and (1/4) g2 ≤ (g − 1)2 for all

g ≥ 2.

E.6 Proof of Lemma D.6

Define the event

Wλ (D) = Uk,λ (D) ∩Qk,λ(D),

the quantity

W (D) =
(
U(Rĝ,k, D)− U(R′ĝ′,k, D

)
+
(
Q(Rĝ,k, D)−Q(R′ĝ′,k, D)

)
.

By the decomposition (C.6), we have that∣∣∣∣P {a(Rĝ,k, D)− a(R′ĝ′,k, D) ≤ ξ | D
}
− (1− β/2)

∣∣∣∣
=

∣∣∣∣P
{
a(Rĝ,k, D)− a(R′ĝ′,k, D)√

2vg?,k (D)
≤ ξ√

2vg?,k (D)
| D

}
− (1− β/2)

∣∣∣∣
=

∣∣∣∣P
{
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
≤ ξ√

2vg?,k (D)
− W (D)√

2vg?,k (D)
| D

}
− (1− β/2)

∣∣∣∣
≤ sup

q∈[−2λ,2λ]

∣∣∣∣P
{
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
≤ z1−β/2 + q

}
− (1− β/2)

∣∣∣∣
+ (1− P {Wλ (D) | D})

≤ sup
z∈R

∣∣∣∣P
{
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
≤ z | D

}
− Φ(z)

∣∣∣∣+ 2λ+ (1− P {Wλ (D) | D}) ,

as required.

E.7 Proof of Lemma D.7

E.7.1 Part (i). Observe that we can write

a(Rg?,k, D)− a(R′g?,k, D) =
1

g?

g∑
`=1

(a(r`, D)− a(r′`, D)) ,
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where a (·, D) is defined in (D.33). We have that

E
[
|a(r`, D)− a(r′`, D)|3

]
≤
(
E
[
(a(r`, D)− a(r′`, D))

4
])3/4

(Hölder)

≤ 26
(
E
[
(a(r`, D))4])3/4

≤ 2632(2− ϕk − ϕ)3(Γ
(2)
k,ϕ,b)

3/4 ,

where the second inequality follows from Hölder’s inequality, the binomial theorem, and the fact

that r` and r′` are exchangeable. The final inequality follows from Theorem D.2. Consequently, we

find that

E [|a(r`, D)− a(r′`, D)|3 | D]

(g?)1/2 (2v1,k (D))3/2
.

(2− ϕk − ϕ)3(Γ
(2)
k,ϕ,b)

3/4

δ (g?)1/2 (v1,k (D))3/2
(Markov)

.
ξ

z1−β/2

(2− ϕk − ϕ)3(Γ
(2)
k,ϕ,b)

3/4

δ (v1,k (D))2 ,

holds with probability 1− δ. The Lemma then follows by the Berry-Esseen inequality.

E.7.2 Part (ii). Our bound is based on the following two conditional concentration inequalities.

Both arguments are based on a Chernoff-type maximal inequality, due to Steiger (1970).

Lemma E.5. Suppose that Assumptions 4.1 and 4.2 hold, that the data D are independent and

identically distributed, and that the eighth-order split ζ8 stability is finite.

(i) For all t > 0 and c > 0, the condition concentration inequality

log
1

2
P

{
|U(Rĝ,k, D)| ≥ t

√
vg?,k (D), |ĝ/g? − 1| ≤ c | D

}
(E.18)

≤ − δv1,k(D)

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

t2

c
(E.19)

holds with probability greater than 1− δ as D varies.

(ii) If g?c ≥ 2 and 1/2 > c > 0, then the conditional concentration inequality

log
1

8
P {|ĝ − g?| > cg? | D} . − δ(v1,k(D))3

(2− ϕk − ϕ)4

z2
1−β/2

Γ
(2)
k,ϕ,b

c2

ξ2
(E.20)

holds with probability greater than 1− δ as D varies.

Observe that

P

{
|U(Rĝ,k, D)− U(R′ĝ′,k, D)| ≥ λ

√
2vg?,k (D)

}
. P

{
|U(Rĝ,k, D)| ≥ λ

√
2vg?,k (D)

}
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≤ P

{
|U(Rĝ,k, D)| ≥ λ

√
2vg?,k (D), |ĝ/g? − 1| ≤ c | D

}
+ P {|ĝ/g? − 1| ≥ c | D}

. exp

(
−

δv1,k(D)

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

λ2

c

)
+ exp

(
−C δ(v1,k(D))3

(2− ϕk − ϕ)4

z2
1−β/2

Γ
(2)
k,ϕ,b

c2

ξ2

)
(E.21)

for some universal constant C. Hence, it remains to choose c and λ such that the quantity (E.21) is

less than ρk,ϕ,b (ξ, β | D). First, we choose c such that

δ(v1,k(D))3

(2− ϕk − ϕ)4

z2
1−β/2

Γ
(2)
k,ϕ,b

c2

ξ2
. log

(
ρk,ϕ,b (ξ, β | D)−1)

Choosing c by

c = ξ

(
(2− ϕk − ϕ)2 (Γ

(2)
k,ϕ,b)

1/2

z1−β/2δ1/2(v1,k(D))3/2

)
log1/2

(
ρk,ϕ,b (ξ, β | D)−1) (E.22)

suffices. Next, we choose λ such that

δv1,k(D)

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

λ2

c
. log

(
ρk,ϕ,b (ξ, β | D)−1) .

We can rewrite this condition by plugging in our choice of c through

λ2

ξ

z1−β/2δ
3/2(v1,k(D))5/2

(2− ϕk − ϕ)4 Γ
(1)
k,ϕ,b(Γ

(2)
k,ϕ,b)

1/2
. log3/2

(
ρk,ϕ,b (ξ, β | D)−1)

Choosing λ by

λ =

(
ξ

z1−β/2

(2− ϕk − ϕ)4Γ
(1)
k,ϕ,b(Γ

(2)
k,ϕ,b)

1/2

δ3/2(v1,k (D))5/2

)1/2

λ̃k,ϕ,b (D) , where

λ̃k,ϕ,b (D) = log3/4
(
ρk,ϕ,b (ξ, β | D)−1)

will then suffice, as required.

E.7.3 Part(iii). Observe that

P

{
|
(

1− ĝ

g?

)
(a(Rĝ,k, D)− a (D)) | ≥ λ

√
2vg?,k (D), |g? − ĝ| ≤ cg? | D

}
= P

{
| (a(Rĝ,k, D)− a (D)) | ≥ λ

c

√
2vg?,k (D), |g? − ĝ| ≤ cg? | D

}
≤ P

{
max

|g?−g|≤cg?
| (a(Rg,k, D)− a (D)) | ≥ λ

c

√
2vg?,k (D) | D

}
≤ P

{
max

|g?−g|≤cg?
| (a(Rg,k, D)− a (D)) | ≥ λ

c

(
ξ

z1−β/2

)
| D
}
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≤
∑

|g?−g|≤cg?
P

{
| (a(Rg,k, D)− a (D)) | ≥ λ

c

(
ξ

z1−β/2

)}
. (E.23)

By Theorem D.1, we have that

P

{
| (a(Rg,k, D)− a (D)) | ≥ λ

c

(
ξ

z1−β/2

)}
≤ 2 exp

(
− gδ

24(2− ϕk − ϕ)2Γk,ϕ,b(1)

λ2

c2

(
ξ

z1−β/2

)2
)

and so is (E.23) bounded from above by

4cg? exp

(
− g?(1− c)δ

4(2− ϕk − ϕ)2Γk,ϕ,b(1)

λ2

c2

(
ξ

z1−β/2

)2
)

. v1,k (D) c

(
z1−β/2

ξ

)2

exp

(
− δv1,k(D)

25(2− ϕk − ϕ)2Γk,ϕ,b(1)

λ2

c2

)
if 1− c ≥ 1/2 by the definition of g?. Thus, we have that

P

{
|Q(Rĝ,k, D)−Q(R′ĝ′,k, D)| ≥ λ

√
2vg?,k (D) | D

}
. P

{
|
(

1− ĝ

g?

)
(a(Rĝ,k, D)− a (D)) | ≥ λ

√
2vg?,k (D), |g? − ĝ| ≤ cg? | D

}
+ P

{
|g? − ĝ| ≥ cg? | D

}
. v1,k (D) c

(
z1−β/2

ξ

)2

exp

(
− δv1,k(D)

25(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

λ2

c2

)
(E.24)

+ exp

(
− 1

C

δ(v1,k(D))3

(2− ϕk − ϕ)4

z1−β/2

Γ
(2)
k,ϕ,b

c2

ξ2

)
(E.25)

for some universal constant C by Lemma E.5, Part (ii). If c is chosen to satisfy (E.22), the term

(E.25) will be bounded above by ρϕ,k (ξ, β | D) for all sufficiently small ξ. By plugging this value

of c and λ = λϕ,k (ξ, β | D) into (E.24), we obtain the term(
z2

1−β/2

ξ

)(
(2− ϕk − ϕ)2 (Γ

(2)
k,ϕ,b)

1/2

z1−β/2δ1/2(v1,k(D))1/2

)
log1/2

(
ρk,ϕ,b (ξ, β | D)−1)

exp

(
−1

ξ

δ1/2(v1,k(D))3/2

(2− ϕk − ϕ)2(Γ
(2)
k,ϕ,b)

1/2
λ̃Uk,ϕ,b (D) log

(
ρk,ϕ,b (ξ, β | D)−1)) (E.26)

as required. Observe that the term (E.26) is bounded above by ρϕ,k (ξ, β | D), for all sufficiently

small ξ, completing the proof.
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E.8 Proofs for Supporting Lemmas

E.8.1 Proof of Lemma E.1. Let Ti (πm,`) = T (si (π`,m) , D) and define Ti(π′m,`) analogously.

Define

Rm (`) =
{
i ∈ [n] : πm,` (i) 6= π′m,` (i)

}
and let Rm (`) = |Rm (`) | denote the number of shared indices in the permutations in πm,` and π′m,`.

Observe that
1

k

k∑
i=1

(
Ti (πm,`)− Ti

(
π′m,`

))
= 0 (E.27)

almost surely for all m′ ≥ m if and only if Rm (`) = n. Let N (`) denote the values of the smallest

index m with Rm (`) = n. Observe that
∞∑
m=0

∣∣∣∣E [a(Rg,k(πm), D)− a(Rg,k(π
′
m), D) | π0 = ψ,π′0 = ψ′, D]

∣∣∣∣ (E.28)

≤
∞∑
m=0

1

g

1

k

g∑
`=1

k∑
i=1

E
[∣∣∣∣ (Ti (πm,`)− Ti (π′m,`)) ∣∣∣∣ | π0 = ψ,π′0 = ψ′, D

]

≤ 1

g

1

k

g∑
`=1

k∑
i=1

max
s,s′∈Sn,b

∣∣T (s, D)− T (s′, D)
∣∣E [N (`)]

Hence, it suffices to bound the quantity E [N (`)].

To that end, let Nr (`) be the value of the smallest index m with Rm (`) ≥ r. We proceed

analogously to standard analysis of the coupon collector’s problem (see e.g., Section 2.2 of Levin

and Peres, 2017). We can evaluate

P
{
Rm (`) ≥ r + 1 | Rm−1 (`) = r

}
=

1

g
P
{
π` (Im) 6= π′` (Im) , π−1

` (Jm) 6= π′−1
` (Jm)

}
=

(n− r)2

gn2

and

P
{
Rm (`) < r | Rm−1 (`) = r

}
= 0,

and thereby obtain the bound

E [N (`)] =
n∑
r=1

E [Nr (`)−Nr−1 (`)] ≤
n∑
r=1

gn2

(n− r + 1)2 = gn2

n∑
r=1

1

r2
≤ 2gn2. (E.29)

Hence, we find that (E.28) is upper bounded by

2gn2 max
s,s′∈Sn,b

T (s, D)− T (s′, D) ,

as required.
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E.8.2 Proof of Lemma E.2. Observe that

d
dt
etxe(1−t)y = (x− y) etxe(1−t)y.

Thus, we find that

c (ex − ey) = c

∫ 1

0

(
d
dt
etxe(1−t)y

)
dt (Fundamental Theorem of Calculus)

= c (x− y)

∫ 1

0

etxe(1−t)ydt

≤ c (x− y)

∫ 1

0

(tex + (1− t) ey) (Convexity)

=
c

2
(x− y) (ex + ey)

=
1

2

((
s−1c2 (ex + ey)

) (
s (x− y)2 (ex + ey)

))1/2

≤ 1

4

((
s−1c2

)
+ s (x− y)2) (ex + ey) , (AM-GM)

as required.

E.8.3 Proof of Lemma E.3. To begin, consider any collection of real numbers x1, . . . , x2c , for

some positive integer c. For any integer s > 0, we have

(x1 · · · x2c)
2s ≤ 1

4

((
xi1 · · · xi2c−1

)2s
+
(
xi2c−1+1

· · ·x2c

)2s
)2

(Young’s Inequality)

≤ 1

4

((
xi1 · · · xi2c−1

)2(s+1)
+ 2 (x1 · · ·x2c)

2s +
(
xi2c−1+1

· · ·x2c

)2(s+1)
)

and so

(x1 · · ·x2c)
2s ≤ 1

2

(
xi1 · · ·xi2c−1

)2(s+1)
+

1

2

(
xi2c−1+1

· · ·x2c

)2(s+1)

. (E.30)

Consequently, we have that

x1 · · ·x2c ≤
1

2c

2c∑
i=1

x2c
i (E.31)

through 2r applications of (E.30).

Now, to prove the Lemma, we may assume without loss that hi > 0 for all i by continuity.

Observe that

E

( ∞∑
m=0

Xm

)2c
 =

∞∑
i1=0

· · ·
∞∑

i2c=0

E [Xi1 · · ·Xi2c ] (E.32)
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by dominated convergence. By writing

X1 · · ·X2c =
2c∏
j=1

(∏
k 6=j hk

h2c−1

j

)1/2c

Xj

we find that

E [X1 · · ·X2c ] ≤
1

2c

2c∑
j=1

∏
k 6=j hk

h2c−1

j

h2c

j =
2c∏
j=1

hj

by (E.31). Hence, by (E.32), we have that

E

( ∞∑
m=0

Xm

)2c
 ≤ ∞∑

i1=0

· · ·
∞∑

i2c=0

2c∏
j=1

hij =

(
∞∑
m=0

hj

)2c

,

as required.

E.8.4 Proof of Lemma E.4. We begin by constructing Stein representers Ṽ (Z,Z ′) and V̌ (Z,Z ′)

for the statistic ṽg,k (Z) and v̌g,k (Z), respectively. We will use the same exchangeable pair

(Z,Z ′)m≥0 and Markov chain (Zm, Z
′
m)m≥1 defined in Section D.4. The subsequent result follows

from an argument similar to Lemma D.1, again based on an idea expressed by Lemma 4.1 of

Chatterjee (2005).

Lemma E.6.
(i) Let ψ and ψ′ be two sets, each containing g elements of Pn. The inequalities
∞∑
m=0

∣∣∣∣E [(ṽg,k (Zm)− ṽg,k (Z ′m)) | Z0 = Z,Z ′0 = Z ′]

∣∣∣∣ ≤ n2 max
s,s′∈Sn,b

(T (s, D)− T (s′, D))
2 and

∞∑
m=0

∣∣∣∣E [(v̌g,k (Zm)− v̌g,k (Z ′m)) | Z0 = Z,Z ′0 = Z ′]

∣∣∣∣ ≤ 2gn2 max
s∈Sn,b

(T (s, D)− T (s′, D))
2

hold almost surely.

(ii) The functions

Ṽ (Z,Z ′) =
∞∑
m=0

E [(ṽg,k (Zm)− ṽg,k (Z ′m)) | Z0 = Z,Z ′0 = Z ′] and

V̌ (Z,Z ′) =
∞∑
m=0

E [(v̌g,k (Zm)− v̌g,k (Z ′m)) | Z0 = Z,Z ′0 = Z ′]

are finite and satisfy the equalities

E
[
Ṽ (Z,Z ′) | Z

]
= ṽg,k (Z)− vg,k (D) and

E
[
V̌ (Z,Z ′) | Z

]
= v̌g,k (Z)− vg,k (D)

almost surely.
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Next, we apply the concentration inequality stated in Theorem D.2, due to Chatterjee (2005, 2007).

That is, to establish part (i) of the Lemma, it will suffice to characterize constants s and u that satisfy

Uṽ (Z) ≤ s−1u and UṼ (Z) ≤ su,

with probability 1− δ, where

Uṽ (Z) =
1

2
E [(ṽ (Z)− ṽ (Z ′)) | Z] and UṼ (Z) =

1

2
E
[
Ṽ (Z,Z ′)

2 | Z
]
.

The same statement holds for part (ii) of the Lemma, for the objects Uv̌ (Z) and UV̌ (Z) defined

analogously.

We obtain such a characterization through the application of Lemma D.3. To this end, observe

that, by Lemma E.6, part (i), the bound(
∞∑
m=0

E [(ṽg,k (Zm)− ṽg,k (Z ′m)) | Z0 = Z,Z ′0 = Z ′]

)2

(E.33)

≤ n4 max
s,s′∈Sn,b

(T (s, D)− T (s′, D))
4 (E.34)

holds almost surely. The right hand side of (E.34) is square integrable, as the eighth-order split-

stability ζ(8) is finite almost surely. An analogous statement holds for the statistic v̌g,k (Z). Thus,

deterministic bounds of the form (D.29) can be obtained through the application of the following

Lemma.

Lemma E.7. Suppose that Assumptions 4.1 and 4.2 hold and that the data D are independent and

identically distributed. If the eighth-order split stability ζ(8) is finite, then

(i) The inequality

E
[
E [ṽg,k(Zm)− ṽg,k(Z ′m) | Z,Z ′]2 | π

]
.

(
1− 2

gn2

)2m
(

(2− ϕk − ϕ)4

n2g4

)
Γ

(2)
k,ϕ,b ,

holds almost surely for all integers m ≥ 0, and

(ii) The inequality

E
[
E [v̌g,k(Zm)− v̌g,k(Z ′m) | Z,Z ′]2 | π

]
.

(
1− 2

gn2

)2m
(

(2− ϕk − ϕ)4

n2g3

)
Γ

(2)
k,ϕ,b ,

holds almost surely for all integers m ≥ 0.

Thus, by Lemma D.3, part (i), the inequalities

UṼ (Z) .
1

δ

(
gn2

2

)2
(

(2− ϕk − ϕ)4

n2g4

)
Γ

(2)
k,ϕ,b
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.

(
gn2

2

)(
1

δ

(2− ϕk − ϕ)4

g3

)
Γ

(2)
k,ϕ,b

and

Uṽ (Z) .
1

δ

(
(2− ϕk − ϕ)4

n2g4

)
Γ

(2)
k,ϕ,b

.

(
2

gn2

)(
1

δ

(2− ϕk − ϕ)4

g3

)
Γ

(2)
k,ϕ,b

both hold with probability greater than 1 − δ. Hence, we obtain the bound (E.16) by applying

Theorem D.2 and choosing s = gn2/2 and

u =
1

δ

(2− ϕk − ϕ)4

g3
Γ

(2)
k,ϕ,b .

Analogous inequalities for the objects Uv̌ (Z) and UV̌ (Z) hold by Lemma D.3, part (ii), where in

that case

u =
1

δ

(2− ϕk − ϕ)4

g2
n4Γ

(2)
k,ϕ,b .

which similarly implies the bound (E.17) by Theorem D.2.

E.8.5 Proof of Lemma E.6. Reinstate the notation of the proof of Lemma E.1. We begin by noting

that

max
s,s′∈Sn,b

(T (s, D)− T (s′, D))
2

= max
s,s′∈Sn,b

(T (s, D)− a (D))2 + (T (s′, D)− a (D))
2

+ 2 (T (s, D)− a (D)) (T (s′, D)− a (D))

≥ 4 max
s∈Sn,b

(T (s, D)− a (D))2 .

Observe that
k∑

i,i′=1

(Ti (πm,`)− a (D)) (Ti (πm,`)− a (D))−
k∑

i,i′=1

(
Ti
(
π′m,`

)
− a (D)

) (
Ti′
(
π′m,`

)
− a (D)

)
= 0

for all for all m′ ≥ m if and only if Rm (`) = n. Thus, we have that
∞∑
m=0

∣∣∣∣E [ṽg,k(Zm)− ṽg,k(Z ′m) | Z0 = (r (ψ) , D) , Z ′0 = (r (ψ′) , D)]

∣∣∣∣
≤

∞∑
m=0

1

g2k2

g∑
`=1

k∑
i,i′=1

E
[∣∣∣∣ (Ti (πm,`)− a (D)) (Ti′ (πm,`)− a (D))

−
(
Ti
(
π′m,`

)
− a (D)

) (
Ti′
(
π′m,`

)
− a (D)

) ∣∣∣∣ | Z0 = (r (ψ) , D) , Z ′0 = (r (ψ′) , D)

]



56

≤ 2

g2k2

g∑
`=1

k∑
i,i′=1

max
s,s′∈Sn,b

∣∣ (T (s, D)− a (D)) (T (s′, D)− a (D))
∣∣E [N (`)] .

≤ 2

g
max
s∈Sn,b

(T (s, D)− a (D))2 E [N (`)] .

≤ 1

2g
max

s,s′∈Sn,b

(T (s, D)− T (s′, D))
2 E [N (`)] .

Similarly, we have that
∞∑
m=0

∣∣∣∣E [v̌g,k(Zm)− v̌g,k(Z ′m) | Z0 = (r (ψ) , D) , Z ′0 = (r (ψ′) , D)]

∣∣∣∣
≤

∞∑
m=0

1

g2k2

g∑
`,`′=1

k∑
i,i′=1

E
[∣∣∣∣ (Ti (πm,`)− a (D)) (Ti′ (πm,`′)− a (D))

−
(
Ti
(
π′m,`

)
− a (D)

) (
Ti′
(
π′m,`′

)
− a (D)

) ∣∣∣∣ | Z0 = (r (ψ) , D) , Z ′0 = (r (ψ′) , D)

]
≤ 2

g2k2

g∑
`,`′=1

k∑
i,i′=1

max
s,s′∈Sn,b

∣∣ (T (s, D)− a (D)) (T (s′, D)− a (D))
∣∣E [max {N (`) , N (`′)}]

≤ 2

g2k2

g∑
`,`′=1

k∑
i,i′=1

max
s,s′∈Sn,b

∣∣ (T (s, D)− a (D)) (T (s′, D)− a (D))
∣∣E [N (`) +N (`′)]

≤ 1

2
max

s,s′∈Sn,b

(T (s, D)− T (s′, D))
2 ∣∣E [N (`) +N (`′)]

Thus, part (i) of the Lemma follows by the bound (E.29). Part (ii) of the Lemma then follows by an

argument analogous to the proof of Lemma D.1.

E.8.6 Proof of Lemma E.7. We reinstate the notation introduced in the proof of Lemma D.4 from

Section E.4. First, observe that

E
[
E [ṽg,k(Zm)− ṽg,k(Z ′m) | Z,Z ′]2 | π

]
= E

[
(P {Hm}E [ṽg,k(Zm)− ṽg,k(Z ′m) | Hm, Z, Z

′])
2 | π

]
≤
(

1− 2

gn2

)2m(
2kb (2n− bk − b)

n2

)2

E
[
(ṽg,k(Zm)− ṽg,k(Z ′m))

2 | Hm,π
]

(E.35)

as before. Recall the notation

a(r`, D) =
1

k

k∑
i=1

(T (s`,i, D)− a(D))
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and observe that

E
[
(ṽg,k(Zm)− ṽg,k(Z ′m))

2 | Hm,π
]

=
1

g4
E
[(
a(r(πm,L), D)2 − a(r(π′m,L), D)2

)2 | Hm

]
=

1

g4
E
[(
a(r(πm,L), D) + a(r(π′m,L), D)

)2 (
a(r(πm,L), D)− a(r(π′m,L), D)

)2 | Hm

]
≤ 1

g4

(
E
[(
a(r(πm,L), D) + a(r(π′m,L), D)

)4 | Hm

])1/2

(Cauchy-Schwarz)

·
(
E
[(
a(r(πm,L), D)− a(r(π′m,L), D)

)4 | Hm

])1/2

≤ 24

g4

(
E
[
(a(r(πm,L), D)− a(D))4])1/2

(Hölder)

·
(
E
[(
a(r(πm,L), D)− a(r(π′m,L), D)

)4 | Hm

])1/2

. (E.36)

Observe that

E
[
(a(r(πm,L), D)− a(D))4] ≤ 32

(
24(2− ϕk − ϕ)2

)2
Γ

(2)
k,ϕ,b

by Theorem D.2, as Assumption 4.1 is maintained and the eighth-order sample-split stability ζ(8) is

finite. In turn, we have that

E
[(
a(r(πm,L), D)− a(r(π′m,L), D)

)4 | Hm

]
≤ 4

k4b4
Γ

(2)
k,ϕ,b (E.37)

by (E.7), (E.13), and (E.14). Hence, we have that

E
[
(ṽg,k(Zm)− ṽg,k(Z ′m))

2 | Hm,π
]
≤ 3 · 29

k2b2g4
(2− ϕk − ϕ)2Γ

(2)
k,ϕ,b . (E.38)

Combining (E.35), (E.37), (E.38), we find that

E
[
E [ṽg,k(Zm)− ṽg,k(Z ′m) | Z,Z ′]2 | π

]
≤
(

1− 2

gn2

)2m
(

(3 · 211) (2− ϕk − ϕ)4

n2g4

)
Γ

(2)
k,ϕ,b ,

which completes the proof of the first part of the Lemma.

Second, following the same argument, we again have that

E
[
E [v̌g,k(Zm)− v̌g,k(Z ′m) | Z,Z ′]2 | π

]
≤
(

1− 2

gn2

)2m(
2kb (2n− bk − b)

n2

)2

E
[
(v̌g,k(Zm)− v̌g,k(Z ′m))

2 | Hm,π
]

(E.39)

In this case, we can compute

E
[
(v̌g,k(Zm)− v̌g,k(Z ′m))

2 | Hm,π
]
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= E
[(

(a(Zm)− a(D))2 − (a(Z ′m)− a(D))
2
)2

| Hm

]
= E

[
(a(Zm)− a(D) + a(Z ′m)− a(D))

2
(a(Zm)− a(Z ′m))

2 | Hm

]
≤
(
E
[
(a(Zm)− a(D) + a(Z ′m)− a(D))

4 | Hm

])1/2

(Cauchy-Schwarz)

·
(
E
[
(a(Zm)− a(Z ′m))

4 | Hm

])1/2

≤ 24
(
E
[
(a(Zm)− a(D))4])1/2

(
E
[
(a(Zm)− a(Z ′m))

4 | Hm

])1/2

, (E.40)

where the last inequality follows from Hölder’s inequality. Again we have that

E
[
(a(Zm)− a(Z ′m))

4
]
≤ 32

(
24ϕ2(2− ϕk − ϕ)2

g

)2

Γ
(2)
k,ϕ,b (E.41)

by Theorem D.2, as Assumption 4.1 is maintained and the eighth-order sample-split stability ζ(8) is

finite. Similarly. we have that

E
[
(a(Zm)− a(D))4 | Hm

]
≤ 4

g4k4b4
Γ

(2)
k,ϕ,b (E.42)

by (E.7), (E.13), and (E.14). Combining (E.39), (E.41), (E.42), we find that

E
[
(v̌g,k(Zm)− v̌g,k(Z ′m))

2 | Hm,π
]
≤
(

1− 2

gn2

)2m
(

(3 · 29)ϕ4 (2− ϕk − ϕ)4

n2g3

)
Γ

(2)
k,ϕ,b ,

which completes the proof of the second part of the Lemma.

E.8.7 Proof of Lemma E.5, Part (i). Observe that

P

{
|U(Rĝ,k, D)| ≥ t

√
vg?,k (D), |ĝ − g?| ≤ cg? | D

}

= P

{
g∑
i=1

a (ri,k, D)−
g?∑
i=1

a (ri,k, D) ≥ tg?
√
vg?,k (D), |ĝ − g?| ≤ cg? | D

}

≤ P

{
max

g?(1−c)≤g≤g?
|

g∑
i=1

a (ri,k, D)−
g?∑
i=1

a (ri,k, D) | ≥ tg?
√
vg?,k (D) | D

}

+ P

{
max

g?≤g≤g?(1+c)
|

g∑
i=1

a (ri,k, D)−
g?∑
i=1

a (ri,k, D) | ≥ tg?
√
vg?,k (D) | D

}

= P

{
max

g?(1−c)≤g≤g?
|
g?−g∑
i=1

a (ri,k, D) | ≥ tg?
√
vg?,k (D) | D

}

+ P

{
max

g?≤g≤g?(1+c)
|
g−g?∑
i=1

a (ri,k, D) | ≥ tg?
√
vg?,k (D) | D

}
. (E.43)
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To bound the two probabilities (E.43), we apply the following Chernoff-type variation to the

Kolmogorov maximal inequality, due to Steiger (1970).

Theorem E.2 (Steiger, 1970). Let Si, i = 1, 2, . . ., be a real-valued martingale sequence. If the

moment generating function

mn (θ) = E [exp (θSn)]

is finite for all positive θ, then the inequality

log P

{
max

1≤n′≤n
Sn′ > t

}
≤ inf

θ>0
(logmn (θ)− θt) ,

holds.

Conditional on D, the random variables

a (ri,k, D) , i = 1, 2, . . . ,

are mean-zero, independent, and identically distributed. Thus, the partial sums

Sm =
m∑
i=1

a (ri,k, D)

are a martingale sequence. Moreover, though inspection of the proof of Lemma D.2, we find that

Theorem Corollary D.1 implies that

inf
θ>0

(
logE

[
exp

(
θSbcg?c

)
| D
]
− θτ

)
= inf

θ>0

(
logE

[
exp

(
θ

bcg?c
Sbcg?c

)
| D
]
− θ τ

bcg?c

)
≤ − bcg?c

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

δτ 2

(bcg?c)2

≤ − δ

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

τ 2

cg?

with probability greater than 1− δ, as Assumption 4.1 holds and the fourth-order split stability ζ(4)

is finite. Thus, by setting

τ = tg?
√
vg?,k (D) =

√
g?t (v1,k(D))1/2

we find that

log
1

2
P

{
|U(Rĝ,k, D)| ≥ t

√
vg?,k (D), |ĝ − g?| ≤ cg? | D

}
≤ − δv1,k(D)

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

t2

c
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with probability greater than 1− δ, by Theorem E.2 and the inequality (E.43).

E.8.8 Proof of Lemma E.5, Part (ii). Observe that

P {|ĝ − g?| > cg? | D} = P {g? (1 + c) < ĝ | D}+ P {ĝ < g? (1− c) | D} . (E.44)

We begin by handling the first term. We have that

P {g? (1 + c) < ĝ | D}

≤ P

{
v̂g?(1+c),k (Z)− vg?(1+c),k (D) + vg?(1+c),k (D) >

1

2

(
ξ

z1−β/2

)2

| D

}

≤ P

{
v̂g?(1+c),k (Z)− vg?(1+c),k (D) >

v1,k(D)

g?
− v1,k(D)

g? (1 + c)
| D
}

= P

{
v̂g?(1+c),k (Z)− vg?(1+c),k (D) >

v1,k(D)

g?
c

1 + c
| D
}
,

where the first inequality follows the definition of g?. Thus, as Assumption 4.1 holds and the

eighth-order split stability ζ(8) is finite, we have that

log
1

4
P {g? (1 + c) < ĝ | D} . − δ(v1,k(D))2

(2− ϕk − ϕ)4

g?(1 + c)c2

Γ
(2)
k,ϕ,b

. − δ(v1,k(D))3

(2− ϕk − ϕ)4

z2
1−β/2c

2

ξ2Γ
(2)
k,ϕ,b

with probability greater than 1 − δ, by Lemma D.5, the definition of g? and the assumption that

0 < c < 1/2.

Next, we bound the second term in (E.44). Define the partial sums

Ag =

g∑
`=1

(
1

k2

k∑
i,i′=1

(T (s`,i, D)− a (D)) (T (s`,i′ , D)− a (D))− v1,k(D)

)
and

Bg =

g∑
`=1

(
1

k2

k∑
i,i′=1

(T (s`,i, D)− a (D)) (T (s`,i′ , D)− a (D))

+ 2
`−1∑
`′=1

(T (s`,i, D)− a (D)) (T (s`′,i′ , D)− a (D))− v1,k(D)

)
.

Observe that the equality

v̂g,k (Z)− vg,k (D) =
g

g − 1
(ṽg,k (Z)− vg,k (D))− 1

g − 1
(v̌g,k (Z)− vg,k (D)) ,
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from the proof of Lemma D.5, implies that

v̂g,k (Z)− vg,k (D) =
1

g (g − 1)

g∑
`=1

1

k2

k∑
i,i′=1

(T (s`,i, D)− a (Z)) (T (s`,i′ , D)− a (Z))− v1,k(D)

g

=
1

g − 1

1

g
Ag −

1

g − 1

1

g2
Bg

for all positive g. Thus, we can write

P {ĝ < g? (1− c) | D}

= P

{
min

2≤g′≤g?(1−c)
v̂g′,k (Z) ≤

(
ξ

z1−β/2

)2

| D

}

= P

{
min

2≤g′≤g?(1−c)

(g′Ag′ −Bg′)

(g′ − 1) (g′)2 +
1

g′
v1,k(D) ≤

(
ξ

z1−β/2

)2

| D

}
,

where the first equality follows from the definition of ĝ. Now, in the event that

min
2≤g′≤g?(1−c)

(g′Ag′ −Bg′)

(g′ − 1) (g′)2 +
1

g′
v1,k(D) ≤

(
ξ

z1−β/2

)2

, (E.45)

it must also be the case that

min
2≤g′≤g?(1−c)

(g′ − 1) (g′)
2

(
(g′Ag′ −Bg′)

(g′ − 1) (g′)2 +
1

g′
v1,k(D)

)
≤(ĝ − 1)(ĝ)2

(
ξ

z1−β/2

)2

(E.46)

as ĝ ≤ g? (1− c) necessarily. But then, similarly, (E.46) implies that

min
2≤g′≤g?(1−c)

(g′Ag′ −Bg′) +
(ĝ − 1)(ĝ)2

g′
v1,k(D) ≤ (ĝ − 1)(ĝ)2

(
ξ

z1−β/2

)2

,

and in turn

min
2≤g′≤g?(1−c)

(g′Ag′ −Bg′)

(g? (1− c)− 1) (g? (1− c))2

≤ (ĝ − 1)(ĝ)2

(g? (1− c)− 1) (g? (1− c))2

(
1

g? − 1
− 1

g? (1− c)

)
v1,k(D)

=
(ĝ − 1)(ĝ)2

(g? (1− c)− 1) (g? (1− c))2

(
1− g?c

g? (g? − 1) (1− c)

)
v1,k(D),

are then also true. Finally, again as (E.45) is equivalent to ĝ < g? (1− c), we have that

P

{
min

2≤g′≤g?(1−c)

(g′Ag′ −Bg′)

(g′ − 1) (g′)2 +
1

g′
v1,k(D) ≤

(
ξ

z1−β/2

)2

| D

}

≤ P

{
min

2≤g′≤g?(1−c)

g′Ag′ −Bg′

(g? (1− c)− 1) (g? (1− c))2 ≤
(

1− g?c
g? (g? − 1) (1− c)

)
v1,k(D) | D

}
.
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Now, observe that we can write

P

{
min

2≤g′≤g?(1−c)

g′Ag′ −Bg′

(g? (1− c)− 1) (g? (1− c))2 ≤
(

1− g?c
g? (g? − 1) (1− c)

)
v1,k(D) | D

}
= P

{
max

2≤g′≤g?(1−c)

Bg′ − g′Ag′
(g? (1− c)− 1) (g? (1− c))2 ≥

(
g?c− 1

g? (g? − 1) (1− c)

)
v1,k(D) | D

}
.

We bound this term by combining the argument used to establish Lemma D.5 with an application of

Theorem E.2. To this end, observe that

P

{
max

2≤g′≤g

Bg′ − g′Ag′
(g − 1) g2

≤ t | D
}

≥ P

{
max

2≤g′≤g

−1

g − 1

g′

g2
Ag′ ≤

1

1 +
√
g
t | D

}
+ P

{
max

2≤g′≤g

1

g − 1

1

g2
Bg′ ≤

√
g

1 +
√
g
t | D

}
− 1

≥ P

{
max

2≤g′≤g

g

g − 1

−1

g2
Ag′ ≤

√
g

1 +
√
g
t | D

}
+ P

{
max

2≤g′≤g

1

g − 1

1

g2
Bg′ ≤

1

1 +
√
g
t | D

}
− 1

≥ P

{
max

2≤g′≤g
−Ag′ ≤ g2 1

√
g

g − 1

1 +
√
g
t | D

}
+ P

{
max

2≤g′≤g
|Bg′| ≤ g2 g − 1

1 +
√
g
t | D

}
− 1 (E.47)

for any t > 0 and any positive integer D. Observe that the partial sums Ag and Bg are both

martingale sequences. As Assumption 4.1 holds and the eighth-order split stability ζ(8) is finite,

though inspection of the proof of Lemma D.2, Lemma E.4 implies that implies that

inf
θ>0

(
logE [exp (θAg) | D]− θg2 1

√
g

g − 1

1 +
√
g
t

)
= inf

θ>0

(
logE

[
exp

(
θ

g2
Ag

)
| D
]
− θ 1
√
g

g − 1

1 +
√
g
t

)
. − δ

(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b

(E.48)

and

inf
θ>0

(
logE [exp (θBg) | D]− θg2 g − 1

1 +
√
g
t

)
= inf

θ>0

(
logE

[
exp

(
θ

g2
Bg

)
| D
]
− θ g − 1

1 +
√
g
t

)
. − δ

(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b

(E.49)

each with probability greater than 1 − δ, where we have used the facts that 4g ≤
(
1 +
√
g
)2 for

all g ≥ 1 and (1/4) g2 ≥ (g − 1)2 for all g ≥ 2. Hence, by Theorem E.2, and plugging (E.48) and
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(E.49) into (E.47), we find that

log
1

4
P

{
max

2≤g′≤g

Bg′ − g′Ag′
(g′ − 1) (g′)2 ≥ t | D

}
. − δ

(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b

with probability greater than 1− δ. Consequently, by the definition of g?, we find that

log
1

4
P {g? − ĝ ≥ c | D}

= log
1

4
P

{
max

2≤g′≤g?(1−c)

Bg′ − g′Ag′
(g? (1− c)− 1) (g? (1− c))2 ≥

(
g?c− 1

g? (g? − 1) (1− c)

)
v1,k(D) | D

}
. − δ(v1,k(D))2

(2− ϕk − ϕ)4

g?(1− c)(g?c− 1)2

(g? − 1)2Γ
(2)
k,ϕ,b

. − δ(v1,k(D))2

(2− ϕk − ϕ)4

g?c2

Γ
(2)
k,ϕ,b

. − δ(v1,k(D))3

(2− ϕk − ϕ)4

z2
1−β/2c

2

ξ2Γ
(2)
k,ϕ,b

where in the second to last inequality we have used the facts that 1
2
x ≤ x− 1 for x ≥ 2 and g?c ≥ 2.

Thus, putting the pieces together, we find that

log
1

8
P {|ĝ − g?| > cg? | D} . − δ(v1,k(D))3

(2− ϕk − ϕ)4

z2
1−β/2c

2

ξ2Γ
(2)
k,ϕ,b

with probability greater than 1− δ, as required.


