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Abstract

We present novel monotone comparative statics results for steady state behavior in a
dynamic optimization environment with misspecified Bayesian learning. We consider a
generalized framework, based on Esponda and Pouzo (2021), wherein a Bayesian learner
facing a dynamic optimization problem has a prior on a set of parameterized transition
probability functions (models) but is misspecified in the sense that the true process is
not within this set. In the steady state, the learner infers the model that best-fits the
data generated by their actions, and in turn, their actions are optimally chosen given
their inferred model. We characterize conditions on the primitives of the environment,
and in particular, over the set of models under which the steady state distribution over
states and actions and inferred models exhibit monotonic behavior. Further, we offer a
new theorem on the existence of a steady state on the basis of a monotonicity argument.
Lastly, we provide an upper bound on the cost of misspecification, again in terms of
the primitives of the environment. We demonstrate the utility of our results for several
environments of general interest, including forecasting models, dynamic effort-task, and
optimal consumption-savings problems.
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In general, dynamic programs with learning are intractable, i.e., they are not solvable
either analytically or numerically, when there is no separability of control and learning.
The problem is not only whether a solution exists, but if a solution can be characterized
and its properties studied. Koulovitanos, Mirman, and Santugini (2009)

1 Introduction

Stemming from the foundational contributions of Arrow and Green (1973) and Nyarko (1991),
model misspecification in economic environments continues to be of substantive interest for
economists. It acknowledges the possibility that economic agents, perhaps due to cognitive
limitations or simplified perspectives, may often not know the true model of their complex
economic environment and, therefore, learn about it through a set of models that are misspecified
in the sense that the true model is not contained in their set of models. A growing body of
literature in economics suggests that enriching classical economic environments with misspecified
economic agents aligns theoretical predictions closely with the observed behavior.1

Dynamic programming offers one robust framework for economists to approach discrete-
time economic problems. They are commonly used to analyze instances where economic agents
make decisions sequentially in an uncertain environment. The framework applies to a broad
spectrum of economic models, from consumption-savings decisions for individuals to investment
choices for firms. However, they are known to be intractable, no closed-form solutions, when
incorporated with agents who simultaneously make decisions and learn about their environment
through their models, where both the decision making and the learning activity mutually affect
each other. In this paper, we provide robust predictions on the comparative statics properties
of an agent’s behavior within a dynamic programming environment, particularly when they are
learning with potentially misspecified models.2

Consider the following setting, conceptualized by Esponda and Pouzo (2021) (hereafter,
EP), in the context of a single-agent dynamic optimization problem, a Markov Decision Process
(hereafter, MDP). In each period t “ 0, 1, 2, . . ., an agent observes a state st and then takes an
action xt and receives a utility, upst, xtq. The current action and the state together determine
the evolution of the state tomorrow, st`1, via the true transition function, Qp¨|st, xtq. The agent
chooses a sequence of actions to maximize their current and the expected discounted flow of
utility. The agent doesn’t know the true (objective) transition function and, therefore, chooses
actions based on a set of model (subjective) transition functions, tQθ, θ P Θu, parameterized by

1For example, Farmer, Nakamura, and Steinsson (2023) finds that much of the anomalies concerned with
forecasts of professional forecasters can be attributed to them not knowing the true model of the environment.

2As is well-known, comparative statics analysis deals with characterizing conditions for various environments,
both static and dynamic, under which decision rules and solution concepts are increasing in the primitives.
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θ, that is misspecified in the sense that it does not contain the true transition function. The
Bayesian agent has a prior µ on the set of models Θ and, every period updates the prior using
Bayes’ rule B, based on the current state, the chosen action, and the realized state. The agent’s
problem can be formulated as a Bellman equation,

V ps, µq “ max
xPX

!

u ps, xq ` β

ż

S
V ps1, µ1q Q̄µ pds1 | s, xq

)

, (1)

where Q̄µ “

ż

Θ

Qθµpdθq, µ1 “ B ps, x, s1, µq is the next period’s belief,3 updated using Bayes’
rule, and V : S ˆ ∆pΘq Ñ R is the unique solution to the Bellman equation of the agent, where
∆pΘq is the set of probability distributions on the parameter space, Θ.

For a misspecified agent that follows the above setting in choosing their sequence of actions
and updating their sequence of beliefs over models, EP predicts its steady-state behavior in terms
of a solution concept called the Berk-Nash equilibrium. It is an equilibrium distribution over
states and actions corresponding to which the misspecified agent infers the model (or a set of
models) that ‘best fits’ the true model. In turn, given the inferred model, the chosen actions are
optimal for each state. Furthermore, the equilibrium distribution over states and actions gives
rise to a stationary Markov process. The ‘best-fit’ formalization is in the sense of a minimum
weighted Kullback-Liebler divergence, with weights determined by the equilibrium distribution
over states and actions.4 Given this prediction of the long-run behavior of a misspecified Bayesian
agent in terms of a Berk-Nash equilibrium and its corresponding inferred model, we ask the
following comparative statics question: how do the equilibrium objects respond to changes in
the economic primitives? Phrased differently, what are the requirements on the primitives of the
economic environment so that a misspecified agent’s stationary distribution and corresponding
best-fit models exhibit monotone comparative statics properties?

This question is of general theoretical interest for several reasons. First, models of dynamic
programming incorporated with learning, whether correctly specified or misspecified, such as the
one described in Equation (1), are known to be intractable.5 In an important paper on learning
in stochastic growth models, Koulovatianos, Mirman, and Santugini (2009) (hereafter, KMS)
note that the intractability arises primarily for two reasons: (a) the curse of dimensionality
problem, which occurs because of incorporation of beliefs about the models in the state space,

3The Bayesian operator B, where for any A Ď Θ, Bps, s1, x, µqpAq “

ż

A

Qθps1|s, xqµpdθq

M

ż

Θ

Qθps1|s, xqµpdθq.

4The Kullback-Liebler (KL) divergence measures the difference between two probability distributions in terms
of relative entropy; in our case, between the models and the true process; see Cover and Thomas (2005) for details.

5With learning incorporated in dynamic programming models, the agent is an active learner and processes
incoming data in order to infer the models of their unknown environment. At the same time, they also take
decisions. These two functions of the agent are intertwined.
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thus making the state space very large and computationally cumbersome, and (b) with Bayesian
updating, the prior and the posterior over models potentially belong to different families, thereby
hampering analytical and computational tractability.6 By focusing on the long-run prediction
for a misspecified dynamic program with a precise characterization of the distribution over states
and actions, as well as the limiting posterior (beliefs) over models, we abstract away from the
intractability problems and thereby make predictions about their steady-state properties even
when their closed-form solutions may not exist. Thus, in this paper, we expand the theory of
dynamic programming with misspecified learning, potentially rendering it applicable across a
wide spectrum of economic domains.

Second, comparative statics for misspecified learning environments are typically not well-
understood in the existing literature on misspecification in economic theory. This traces itself
to the issue that with concurrent decision making and learning, there is often no separability
between the two, as is illustrated in Equation (1). We tackle this problem by recognizing that
steady states for such models are fixed points of a well-defined equilibrium mapping. This insight
allows us to appeal to a relatively newer literature of powerful order-theoretic techniques, tailored
for dealing with the monotonicity of fixed points for non-lattice spaces (Acemoglu and Jensen
(2015)). A technical challenge that lies with misspecified MDPs is that the underlying spaces
containing such fixed points are typically not lattices in any natural order, and therefore, a wide
array of popular lattice-dependent techniques (Hopenhayn and Prescott (1992); Topkis (1998))
are not applicable. Finally, our results for comparative statics do not necessitate any specific
knowledge of the functional forms of any environment primitives, and therefore are robust, and
hold for a very general class of dynamic programming environments with misspecified models.7

To interpret our framing, we discuss examples that cover three important economic envi-
ronments. The first example concerns Bayesian inference with misspecified AR(1) models. The
agent’s set of models is misspecified in the sense that although the true process is AR(1), the
innovations of the process are non-normally distributed and, therefore, are not contained in their
set of AR(1) models with Gaussian innovations. We characterize the Berk-Nash equilibrium for
this pathological example, and show that despite being misspecified, the Bayesian agent correctly
infers the persistence parameter of the true process at the steady state. The next two examples
are based on EP, albeit with slight modifications for interpretation and analytical tractability.
In the second example, we study a canonical problem of effort provision in a dynamic effort-task

6As KMS and EP note, the curse of dimensionality does not arise if the beliefs are over a finite parameter
set. However, for parameter spaces such as the real line, it is a cause for concern. Also note that, unlike KMS,
in our framework, choosing actions also affects the flow of information, thus further complicating matters.

7The reader may be interested in the following discussion: https://stats.stackexchange.com/questions/274815/why-
should-i-be-bayesian-when-my-model-is-wrong. Uppal and Wang (2003) discuss the contrast between Savagian
and Knightian approaches to tackle model misspecification concerns. The interested reader is referred to their
p. 2469 for further reading.
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problem where the agent seeks to learn their ability while exercising control over the stochastic
outcome of a task by choosing their effort levels. The agent’s models are misspecified since
they incorrectly postulate that tomorrow’s outcome depends only on their ability and not on
today’s outcome. In contrary, the true dynamics are determined by both ability and current
outcome. The Berk-Nash equilibrium for this case is the steady-state frequency of the outcome,
either a success or a failure, along with the agent’s inference of their ability. We characterize
the dependence of these equilibrium objects on the economic primitives of the environment,
such as the cost of exerting higher effort or the objective probability of success, and study their
associated comparative statics. The final example considers an agent that optimally chooses its
consumption and savings in the presence of preference and productivity shocks. The agent seeks
to learn about the return of their wealth process but does so through a set of misspecified models
that do not consider the correlation between the two shocks. Here, the Berk-Nash equilibrium is
the long-run perceived distribution of the wealth process along with their corresponding inferred
parameter of the return on that process. However, this case has no analytical solution; therefore,
making our results most valuable for such settings.

We now turn to the specificity of our results. Theorem 1 establishes the existence of a
Berk-Nash equilibrium for a misspecified MDP with compact action and state spaces. EP and
Anderson, Duanmu, Ghosh, and Khan (2023) (hereafter, ADGK) provide proofs for the existence
of a Berk-Nash equilibrium with finite and infinite state and actions, respectively. ADGK
applies recent advances in non-standard analysis to present existence theorems for misspecified
environments with infinite action and state spaces and unbounded payoff functions. We adopt
the more general environment of ADGK, but the novelty of our existence result lies in exploiting
the non-lattice structure of our economic environment. In general, distributions over states and
actions are not lattices under most natural orders; therefore, to show the existence of the Berk-
Nash equilibrium which in turn is a distribution, we rely on a novel application of techniques
tailored for non-lattice spaces. These techniques, originating in Smithson (1971), have been
pioneered in Acemoglu and Jensen (2015) for establishing the existence and comparative statics
results in infinite-horizon large dynamic economies.

After furnishing the existence result for the Berk-Nash equilibrium, we utilize these tech-
niques for Theorems 2-4 and give sufficient conditions for which the Berk-Nash equilibrium and
the corresponding inferred best-fit model respond monotonically to the primitives of the envi-
ronment. We formalize a notion of a positive shock for a misspecified dynamic optimization
problem, defined as shocks to the primitives that increase strategies for any given beliefs over
models, and under mild assumptions establish in Theorem 2 that the least and the greatest
inferred best-fit model at the steady state, responds monotonically to a change in the economic
primitives. Theorem 2 further provides a prediction for the monotonicity of the Berk-Nash equi-
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librium in the usual stochastic order, when a misspecified agent is hit with positive shocks to
their primitives. In Theorem 3, we show that the least and the greatest inferred best-fit model
responds monotonically to an increase in the set of models, where an increase is defined in the
strong-set order in the space of parameters. Theorem 4 drops the usual stochastic order on the
underlying space and extends Theorem 2 to spaces with increasing and convex orders.8

Our final result is of a slightly different flavor from the previous results. In Theorem
5, we perform a welfare comparison of steady-state learning in a correctly specified vis-à-vis a
misspecified learning environment. While welfare under misspecified learning is always weakly
lower than that under correct learning, we provide an upper bound on the cost of misspecification,
formalized as the difference between the two instances and outline its dependence in terms of
the primitives of the environment. We also note the potential usefulness of this bound for
computational applications concerning Berk-Nash equilibria.

Related literature. This paper belongs to the growing literature on learning with misspecified
models and its implications on the properties of the learning behavior.

Within the dynamic programming framework, following EP and ADGK, this paper adds
to this literature a more general framework to model MDPs with misspecified learning for in-
finite environments.9 MDPs are commonly used to analyze instances involving agents making
decisions sequentially in an uncertain environment and, therefore, have found many applications
within natural and social sciences. Within the economics literature, one of its earliest uses is
traceable in Arrow, Harris, and Marschak (1951), where an inventory holder maximizes some
given objective (profits, revenue, net utility) by choosing an inventory policy subject to stochas-
tic product demand and other random fluctuations to the primitives of the problem.10 Since
then, MDPs have spanned both micro and macro environments, covering many important eco-
nomic applications; these include (i) investment with adjustment costs under uncertain demand
(Lucas and Prescott (1971)), (ii) one-sector optimal economic growth with uncertainty (Brock
and Mirman (1972)), (iii) equilibrium search and unemployment (Lucas and Prescott (1974)),
and (iv) asset prices in a pure exchange economy (Lucas (1978)).11 In a recent paper, Saghafian
(2018) presents a framework for an MDP in which agents possess a ‘cloud’ of models and allows
for considering model ambiguity and the potential misspecification within an MDP.

8As Che, Kim, and Kojima (2021) note in the context of individual choices, the strong set order proves to be
an appropriate notion; see the references therein for further details.

9See Puterman (1994) for illustrations covering operations research, engineering, and many other allied fields.
Also, see Rust (1994) for an extensive survey on MDPs and associated structural estimation methods. The results
in this paper could potentially be admissible in an extended learning version of the partially observable MDP
framework of Saghafian (2018); see the references therein for an overview of that literature.

10This work has important precursors in Arrow, Blackwell, and Girshick (1949).
11Other prominent examples include models of portfolio choice under uncertainty (Phelps (1962); Levhari and

Srinivasan (1969)) and business cycle models (Kydland and Prescott (1982); Long Jr. and Plosser (1983)).
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This paper also contributes to the understanding of the comparative static properties of
the limit posterior of a Bayesian inference process. In his foundational paper on inference with
misspecified models, devoid of any actions, Berk (1966) demonstrates that for a misspecified
Bayesian agent learning about a parameter through a series of independently and identically
distributed (i.i.d.) signals, the posterior concentrates asymptotically on those set of models (re-
ferred therein as the asymptotic carrier) where the Kullback-Liebler divergence is minimal with
respect to the true model.12 In this paper, we address a misspecified MDP, a non-i.i.d. environ-
ment, that combines decision-making and inference but heavily relies on Berk’s characterization
to abstract away from the dynamics of the updating process. This approach enables us to focus
on the comparative statics of the steady-state behavior for both the Berk-Nash equilibrium and
the corresponding asymptotic carrier, and contribute to the inference literature by outlining the
dependence of the inferred models on the primitives of the decision making and the learning en-
vironment. Furthermore, our results also have implications for a series of papers that follow the
papers of Huber (1967) and White (1982). These papers employ maximum likelihood techniques
for inference and show that when an agent conducts inference using maximum likelihood estima-
tion, their inference converges towards models that minimize the Kullback–Leibler divergence
with respect to the true distribution, identical to the limits proposed in Berk (1966).13

The topic of misspecification in economic environments has been a subject of active re-
search area.14 In an influential paper, Esponda and Pouzo (2016) provides a framework for
a static game-theoretic setting that relaxes the assumption that agents have a correct view of
the game’s environment. This formulation is further extended to the dynamic programming
environment in EP for a finite (states and actions) setting and by ADGK for an infinite setting.
While there has been influential work on social learning problems as in Frick, Iijima, and Ishii
(2020) and Bohren and Hauser (2021), properties of asymptotic learning in a misspecified MDP
environment are still not well-studied. The results in this paper contribute to the understanding
of such properties, in terms of the comparative statics behavior of misspecified agents.

Naturally, this work is informed by the substantive literature on monotone comparative
statics. The theory of monotone comparative statics deals with characterizing conditions under
which the optimizing behavior of agents leads to solution concepts (and invariant distributions)
being monotonic in the primitives of the environment.15 In an influential paper, Hopenhayn and

12See also Bunke and Milhaud (1998) and Shalizi (2009) for extensions to non-iid environments. The reader
should note that Berk’s asymptotic carrier is independent of the prior distribution.

13For Bayesian inference, Grünwald and van Ommen (2017) classifies misspecification into good or bad, depend-
ing on the structure of the models. They further show that this has important implications for the consistency
of Bayesian inference.

14Among many other prominent works, some notable ones include Kirman (1975), Jehiel (2005), and Hansen
and Sargent (2011). The reader is referred to the references therein for a broader view of the literature.

15Some important references include Milgrom and Shannon (1994), Amir (1996), Topkis (1998), Huggett (2003),
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Prescott (1992) uses the tools of monotone comparative statics to analyze stationary dynamic
optimization problems with lattice environments. There results turn out to be of limited use for
obtaining our theorems. Our proofs instead exploit the non-lattice structure of our setting and,
therefore, depend on the techniques developed in Smithson (1971) and Acemoglu and Jensen
(2015). We adapt and apply these techniques in a novel way to misspecified MDPs with Bayesian
learning.

Lastly, we calculate the cost of misspecification in terms of the discrepancy between the
expected discounted welfare under correctly specified and misspecified Bayesian learning for an
MDP and provide an upper bound on the discrepancy between the two quantities. We then
characterize its comparative statics properties with respect to the primitives. This is partly
inspired by Santos (2000)’s work on testing the accuracy of numerical solutions in dynamic
models. We argue that the one-way bound on welfare that we provide is useful for computational
purposes of such equilibria.

Outline. The paper is organized as follows. Section 2 sets up the general framework for a
misspecified MDP and outlines the necessary prerequisites and techniques for the comparative
statics analysis. Section 3 offers three examples to illustrate our setting. The main results
of this paper are presented in Section 4, while Section 5 completes the formal analysis of the
examples. Section 6 compares welfare between correctly specified and misspecified settings.
Section 7 concludes by discussing how these results can be extended and related to different
settings. Appendix A to this paper contains the necessary mathematical preliminaries, and the
proofs of the results are presented in Appendix B.

2 General Framework

We begin by framing the environment for a Markov Decision Process (MDP) with model mis-
specification. While the conceptual framework is patterned after the finite (states and actions)
environment of EP, we adopt the setting of ADGK since it applies to infinite settings; an envi-
ronment that naturally features many important applications in economics. After outlining the
contents of a misspecified MDP and the relevant Berk-Nash equilibrium concept, we provide an
overview of the order-theoretic methods that are instrumental for our results. A refresher for
these concepts and methods is provided in Appendix A for the reader’s convenience.

At the start of each period t “ 0, 1, 2, . . . , the agent observes a state realization, st P S,
and then chooses an action, xt P X. Given a transition probability function Qp¨|st, xtq, the state
and action together determine the distribution of the next period state, st`1. The per-period

Datta, Reffett, and Woźny (2018), and Light (2021). Amir (2018) is an useful guide for some of the history and
also of the more recent advances in the comparative statics literature.
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payoff function is a mapping u : S ˆ X Ñ R. The agent maximizes expected discounted utility
(discount factor 0 ă β ă 1) by choosing a feasible sequence of policy functions txtu

8
t“1 that

solves the following problem,

V ps0q “ max
txtu8

t“0

EQ

«

8
ÿ

t“0

βtupst, xtq

ff

, t “ 0, 1, 2, . . . . (2)

Following (2), the Bellman equation for the agents’ sequential decision problem is formulated
as,

V psq “ max
xPX

!

u ps, xq ` β

ż

S
V ps1qQ pds1 | s, xq

)

, (3)

where V, the value function, is the unique solution to (3). Corresponding to this V, the optimal
policy correspondence G is given by,

Gpsq ” argmax
xPX

!

ups, xq ` β

ż

S

V ps1qQpds1|s, xq

)

, (4)

where action x̂ is optimal given state s. We summarize this environment in the following defi-
nition of a MDP.16

Definition 1. A Markov Decision Process (hereafter, MDP) is a tuple xS,X, q0, Q, uy, where (i)
the state space S is a compact metric space with Borel σ-algebra BpSq, (ii) the action space X
is a compact metric space with Borel σ-algebra BpXq, (iii) the initial distribution of states q0 is
a probability measure on S, (iv) Q : S ˆ X Ñ M1pSq is a transition probability function, where
M1pSq denote the set of probability measures on S, and (v) u : S ˆ X Ñ R is the per-period
payoff function.17

We next define a Subjective Markov Decision Process. It adds to the tuple, a set of subjective
transition functions, tQθuθPΘ, parameterized with θ. We refer to the parameter space Θ as the
set of models.

Definition 2. A subjective Markov Decision Process (herafter, SMDP) is an MDP, xS,X, q0, Q ,
uy, and a non-empty family of transition probability functions, QΘ “ tQθ : θ P Θu, where each
transition probability function Qθ : SˆX Ñ M1pSq is indexed by a parameter value θ P Θ Ď R.
A SMDP is said to be misspecified if Q R QΘ.

Notice that under this definition, an SMDP could be misspecified in several ways. For instance,
the true transition function and the set of model transition functions may pertain to dissimilar

16The framework can be extended with minor modifications to allow for the dependence of feasible set of
actions on the state variable; see the Esponda and Pouzo (2015) working paper for details.

17M1pSq is the space of finite probability measures on pS,BpSqq endowed with the weak-˚ topology.
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families of probability distributions. Furthermore, even if the true model and set of models
belong to the same family of distributions, they can be misspecified if the support, the range of
possible values of the parameter, of the models is different from that of the true distribution.18

Our next definition requires the primitives of the SMDP to satisfy certain regularity conditions.

Definition 3. A regular SMDP satisfies the following conditions.
(i) (Continuity) The mappings ps, xq Ñ Qp¨ | s, xq and pθ, s, xq Ñ Qθp¨ | s, xq are continuous

in the Prokhorov metric, and the density function Dθ ps1 | s, xq is jointly continuous on the
set

tpθ, s1, s, xq : Qps, xq is dominated by Qθps, xqu ,

where
`

Dθps
1 | s, xq

˘

is the Radon-Nikodym derivative of Q with respect to Qθ, θ P Θ.

(ii) (Absolute continuity) There is a dense set Θ̂ Ă Θ such that Qp¨|s, xq is absolutely contin-
uous with respect to Qθp¨|s, xq for all θ P Θ̂ and ps, xq P S ˆ X.

(iii) (Uniform integrability) For every compact set S 1 Ă S, there exists some r ą 0 such that
`

Dθp¨|s, xq
˘1`r is uniformly integrable with respect to Qθp¨|s, xq over the set Θ̂.19

(iv) (Compactness) The parameter space Θ is a compact metric space.

Condition (i) is a standard technical condition and requires the transition functions, both
true and subjective, to be continuous. Condition (ii) requires that there always exists some model
Qθ that accounts for every observation from the true distribution, Q. Condition (iii) places
an uniform integrability requirement to deal with distributions with infinite support. Lastly,
condition (iv) requires the parameter space Θ to be compact. This is an essential requirement
for the existence of best-fit models as will be evident in the next definition. We next measure
the cost of misspecification in terms of the well-known measure of relative entropy, the Kullback-
Liebler divergence.

Definition 4. For a given true transition function Q and model transition function Qθ, the
Kullback-Liebler divergence, DKL, of Qθ with respect to Q is defined as,

DKL

`

Qps, xq, Qθps, xq
˘

“ EQp¨|s,xq

“

ln
`

Dθps
1|s, xq

˘‰

. (5)
18See Examples 1 and 2 for an instance for the former, and Example 3 for the latter. Den Haan and Drech-

sel (2019) explore more on forms of model misspecification and their relevance to econometric methods with
macroeconomic models.

19The density function Dθp¨|s, xq is the Radon-Nikodym derivative of Q with respect to a model, Qθ. The
uniform integrability is satisfied if the density functions Dθp¨|s, xq are uniformly bounded over the set tpθ, s, xq :
Qp¨|s, xq is dominated by Qθp¨|s, xq}. For example, given any two Gaussian distributions with distinct variances,
the Radon-Nikodym derivative of the one with the larger variance with respect to the other is unbounded.
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Then for any distribution over states and actions, m P M1pSˆXq, and model parameter, θ P Θ,
the weighted Kullback-Leibler divergence is a mapping KQ : M1pS ˆ Xq ˆ Θ Ñ R̄ě0 such that

KQpm, θq “

ż

SˆX
DKL

`

Qps, xq, Qθps, xq
˘

mpds, dxq.20 (6)

The set of closest parameter values given a distribution m P M1pS ˆ Xq and for a given true
transition function Q is the set, Θpm;Qq “ argmin

θPΘ
KQpm, θq.21

That is, given a distribution m over states and actions and a true transition function Q, the
best-fit set Θpm;Qq is the set of those parameter values that minimize the weighted relative
entropy between true transition function and the parameterized model transition functions in
Θ. Our focus in this paper is on the Berk-Nash equilibrium. We now define it.

Definition 5. A probability distribution m˚ P M1pS ˆ Xq is a Berk-Nash equilibrium of the
regular-SMDP if there exists a belief µ˚ P M1pΘq such that the following conditions hold.

(a) For all states and actions, ps, xq, that are in the support of m˚, action x is optimal given
state s in the MDP(Q̄µ˚), where Q̄µ˚ “

ż

Θ

Qθµ
˚pdθq.

(b) For a given true transition function Q, beliefs µ˚ are restricted over the best-fit set of
parameters, that is, µ˚ P M1pΘpm˚;Qqq.

(c) For all A P BpSq, m˚
SpAq “

ż

SˆX
QpA|s, xqm˚pds, dxq, where m˚

S denote the invariant
marginal measure of m˚ on S.

The Berk-Nash equilibrium is a probability distribution m˚ over the states and actions, sup-
ported by equilibrium beliefs µ˚ over the best-fit set of parameterized models. The beliefs µ˚ are
optimal given the data generated by the steady-state distribution over states and actions, m˚. In
turn, the distribution m˚ over states and actions is such that actions, conditioned on the state,
are subjectively optimal given the equilibrium beliefs µ˚ over the best-fit models. For instance,
in the case of a correctly specified MDP, where the true transition function Q is part of the set of
models QΘ, the concept of Berk-Nash equilibrium implies that in the steady state for a Bayesian
learner, beliefs concentrate on the true transition function, and the actions are optimal given
this belief. The equilibrium concept effectively reduces to the well-known stationary solution for
a MDPpQq.

20R̄ denotes the extended real line, equipped with the one-point compactification topology.
21M1pSˆXq is the space of finite probability measures on pSˆX, BpSˆXqq endowed with the weak-˚ topology.

The density function Dθps1|s, xq is jointly continuous on the set tpθ, s1, s, xq : Qps, xqis dominated by Qθps, xqu.
Further, 0

0
“ 0, 1

0
“ 8, log8 “ 8. We follow the standard convention in that lnp0q ¨ 0 “ 0 and integral of

infinity over a set of measure 0 is 0.
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However, if the SMDP is misspecified, that is, if Q is not contained within the set QΘ,
then in Definition (5), condition (a) asserts that action x is optimal in the MDPpQ̄µ˚q when
the equilibrium transition function is a weighted combination of model transition functions,
with weights given by µ˚. Condition (b) mandates that these beliefs µ˚ are determined by
minimizing the weighted relative entropy between the true transition function and the model
transition functions, where the weights are the Berk-Nash equilibrium, m˚. Lastly, condition
(c) stipulates that the marginal distributions over states, m˚

S is an invariant distribution. Notice
that in condition (c), the invariant distribution is dependent on the optimal actions x via the
true transition function, Q. EP show that under moderate conditions, the learning illustration
with misspecified models sketched in Equation (1) converges to the Berk-Nash equilibrium.22

The equilibrium serves as a prediction of the steady-state behavior in where m˚ is the steady-
state distribution over states and actions, and µ˚ is the limit of the sequence of posteriors of a
Bayesian learner with misspecified models.

Our focus is on the comparative statics of the Berk-Nash equilibrium and the associated
best-fit set with respect to the primitives P of the environment, where P “ă u, β,Q,QΘ,Θ ą

are our objects in the collection of primitives. Given any primitive p P P, we next adjust
our value function, the optimal policy correspondence, and the best-fit set to allow for their
dependence on the primitive. At the steady state solution, agent has a belief µ˚ over their
set of best-fit models and solves a stationary dynamic programming problem where the value
function V : S ˆ M1pΘq ˆ P Ñ R is determined by the following functional equation, where
Q̄µ˚ “

ż

Θ

Qθµ
˚pdθq,

V ps, µ˚, pq “ max
xPX

!

ups, xq ` β

ż

S

V ps1, µ˚, pqQ̄µ˚pds1|s, xq,
)

and (7)

corresponding to V and µ˚, the stationary optimal policy correspondence G is given by,

Gps, µ˚, pq ” argmax
xPX

!

ups, xq ` β

ż

S

V ps1, µ˚, pqQ̄µ˚pds1|s, xq

)

. (8)

Therefore, in line with Definition 5, the set of Berk-Nash equilibrium for a given primitive
p is given by the set of fixed points of the equilibrium mapping T ,

Λppq ” tpm˚, µ˚q P M1pS ˆ Xq ˆ M1pΘq : z P T pz, pqu, (9)

where T : Z ˆ P ↠ 2Z is a set-valued function on the space of probability measures on states
22For finite state and action spaces, EP shows that convergence happens under a mild identification assump-

tion. For infinite (but compact) state and action spaces, ADGK demonstrate that convergence occurs under
identification only under the total-variation norm on the space of state and action distributions.
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and actions and the set of parameters, Z “ M1pS ˆ Xq ˆ M1pΘq and P “ă u, β,Q,QΘ,Θ ą

are our primitives.23

For inquiring the comparative statics behavior of the equilibrium objects in Λppq with
respect to the primitives of the environment, we need to define corresponding orders for the
equilibrium objects and the primitives. For vectors x and y in Rn, we use the following conven-
tion: “x ě y” means xi ě yi in every component, “x ą y” means x ě y and x ‰ y, and “x " y”
means xi ą yi in every component. A real-valued function, f : X Ñ R, is said to be increasing
if for x ě y in the component-wise order, fpxq ě fpyq, and convex if its domain is a convex set
and for all x, y in its domain, and all λ P r0, 1s, we have fpλx`p1´λqyq ď λfpxq`p1´λqfpyq.24

We follow Shaked and Shanthikumar (2007) in ranking probability measures on the state and
action space, and the parameter space.

Definition 6 (Shaked and Shanthikumar (2007)). Let MpXq denote the space of probability
measures defined on a compact subset of X Ď Rn.25 For any two measures, µ and ν in MpXq,

(i) µ usual order stochastically dominates ν, µ Ást ν, if
ż

fpxqµpdxq ě

ż

fpxqνpdxq, for any
measurable, bounded, and increasing real-valued function f.

(ii) µ increasing and convex-order stochastically dominates ν, µ Áicx ν, if
ż

fpxqµpdxq ě
ż

fpxqνpdxq, for any measurable, bounded, increasing, and convex real-valued function f.

We rely on well-known orders for the primitives. For instance, the discount factor 0 ă β ă

1 is ranked in the natural order, as in higher patience implies a higher β. The true transition
function Q can be ordered in multiple ways, including the usual stochastic order, the convex
order, or the increasing convex order.26 The parameter set Θ is ranked in the strong-set order,
where Θ2 is greater than or equal to Θ1 if, for any θ in Θ2 and any θ1 in Θ1, the maximum of
tθ, θ1u belongs to Θ2 and the minimum of tθ, θ1u belongs to Θ1. Changes in the primitives of the
utility function refer to changes that impact utility levels such as variations in risk aversion or
other factors, depending on the specific applications.

After defining all the necessary prerequisites for analyzing the comparative statics of the
fixed points in Equation (9), the next logical step is to apply the standard lattice theoretic
methods as used in (Hopenhayn and Prescott (1992), Topkis (1998)) and derive the monotonicity

23For the ease of the reader, the full expression for T is defined in the Proofs section, p.30.
24The interested reader is referred to Shaked and Shanthikumar (2007) for more details concerning univariate

and multivariate orders. The results in this paper could potentially be extended to admit various orders.
25To be clear, X denotes a general set, not particularly the set of actions, X.
26Convex order in this case, would refer to changes in true distribution in the sense of mean-preserving spreads.

For two distributions, Q1 and Q2, distribution Q2 Ácx Q1 iff
ż

fpsqQ2p¨|s, xq ě

ż

fpsqQ1p¨|s, xq for every convex
function, f, and for all ps, xq P S ˆ X.
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of the fixed points, the Berk-Nash equilibrium and the corresponding inferred model, in terms
of the primitives. However, there is a technical challenge here. Notice that for our equilibrium
mapping T, the underlying space on which it is defined is not a lattice. That is, the space of
probability measures over states and actions (and parameters) are not lattices in any natural
order.27 Thus, standard lattice theoretic methods are of no use for our misspecified MDP setting.
Therefore, to establish the monotonicity of the fixed points, our results rely on a rather novel
application of a technical framework that originated in Smithson (1971) and was pioneered in
the context of large dynamic economies by Acemoglu and Jensen (2015), for non-lattice spaces.

Remark 1. Our setting fundamentally diverges from the setting in Acemoglu and Jensen (2015)
in several key aspects. In their work, they examine an infinite-horizon dynamic economy featuring
a continuum of agents subject to idiosyncratic shocks, whereas our setting deals with a single agent
facing an infinite-horizon dynamic problem in which shocks are influenced by action choices. Most
importantly, our analysis intertwines the agent’s decision-making process with learning under
model misspecification, whereas in Acemoglu and Jensen (2015), the agents possess knowledge
of the accurate distribution of idiosyncratic shocks, thus obviating the need for any learning
component. This also furthers tailoring their techniques to our framework.

Towards this end, we shall show (Lemmas 1 and 2 in Appendix B) that our equilibrium
mapping T is monotonic in the sense defined below.

Definition 7 (Smithson (1971)). Let X and Y be sets equipped with some partial order Á,
and P, a partially ordered set. A correspondence T : X ˆ P Ñ 2Y is Type I monotone in x

for each p if for all x1 Á x2 and y2 P T px2, pq, there exists y1 P T px1, pq such that y1 Á y2,

and Type II monotone if for all x1 Á x2 and y1 P T px1, pq, there exists y2 P T px2, pq such that
y1 Á y2. A correspondence T : X ˆP Ñ 2Y is Type I monotone in p for each x if for all p1 Á p2

and y2 P T pp2, xq, there exists y1 P T pp1, xq such that y1 Á y2, and Type II monotone if for all
p1 Á p2 and y1 P T pp1, xq, there exists y2 P T pp2, xq such that y1 Á y2. T is Type I (Type II)
monotone if it is Type I (Type II) monotone in both X and P.28

By placing mild monotonicity structure on our environment, we shall show that the Berk-
Nash equilibrium map T is Type I and Type II monotone. And then by appealing to an existence

27Let MpXq denote the space of probability measures defined on a compact subset of X Ă Rn. Although even
if X is a lattice, the poset pX,Ástq is not a lattice as pointed in Kamae, Krengel, and O’Brien (1977). For e.g.,
for pR2,Ástq let p1 “ 0.5pϵa ` ϵbq, p2 “ 0.5pϵa ` ϵcq, p3 “ 0.5pϵc ` ϵbq, p4 “ 0.5pϵa ` ϵdq, where a “ p0, 0q, b “

p0, 1q, c “ p1, 0q, d “ p1, 1q. Then, both p3 and p4 are supremum, which is a contradiction.
28Smithson uses the term ‘multifunction’ in his paper. All the proofs in this section are given for Type I

monotonicity. The proofs for Type II monotonicity follow analogously. It is important to point out here that
while the statement for Theorem 1 is correct in Smithson (1971), its proof is wrong; the correct proofs are in
Höft (1987).
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result in Smithson (1971) for non-lattice spaces, we shall show that the set of fixed points is
non-empty.29 Finally, the following result in Acemoglu and Jensen (2015) will play a critical role
in transfer the monotonicity of the equilibrium mapping T onto the set of its fixed points. We
explain in more detail the applicability of these results in Section 4.

Theorem (Acemoglu-Jensen (2015)). Let X be a compact topological space equipped with a
closed partial order Á, P a partially ordered set of primitives, and T : X ˆ P Ñ 2X be upper
hemicontinuous for each p P P . Define the fixed-point correspondence,

Λppq “ tx P X : x P T px, pqu.

Then if T is Type I (Type II) monotone in p, so is Λ in p.

3 Motivating Examples

We now present three examples of misspecified environments that illustrate the framework of
this paper. Our first example is that of a misspecified AR(1) inference process where actions
have no role. It is purely an inference problem.30 Examples 2 and 3 are more substantive in
that the choice of actions plays a role in learning, and vice-versa. They are based on EP and
cover effort provision problems with misspecified effort-task dynamics and consumption-savings
problem with misspecified wealth process, respectively. While Example 2 has an explicit analyt-
ical solution and is, therefore, used to outline the mechanics for comparative statics properties
of a Berk-Nash equilibrium, the solution for Example 3 is intractable and, therefore, the most
substantive for the applicability of this paper’s techniques.31

Example 1 (Inference of an AR(1) process). In this example, we characterize the Berk-Nash
equilibrium of an inference process when the set of AR(1) models, parameterized by θ, is misspec-
ified. Let the state space S “ R. Suppose the state variable st`1 evolves via the true transition
function, Qp¨|stq. Let the true process Qp¨|stq be an AR(1) process with parameter 0 ă |ρ| ă 1

and with the innovations distributed as a two-component mixture normal distribution with one
component pµ1, σ

2
1q and the other component pµ2, σ

2
2q, and given by,

st`1 “ ρst ` ξt`1, ξt`1 „ 0.5Fpµ1,σ2q ` 0.5Fpµ2,σ2q (10)
29The reader may wish to pause and review the material in the mathematical preliminaries in Appendix A.
30Per se, there is no decision process involved here. One could think of an economic situation where the flow

of utility is constant over time, and therefore, actions play no role in either inference, nor, payoffs.
31We omit the full analysis of Examples 2 and 3 since they are already covered in the aforementioned papers.
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where F denotes the cumulative density function for a normal distribution. The components
have different means (µ1 ‰ µ2q but identical variances pσ2

1 “ σ2
2q. An agent is equipped with a

compact set Θ of parameterized AR(1) models, Qθp¨|stq, with Gaussian noise, and the process,

st`1 “ θst ` ξt`1, ξt`1 „ Np0, σ2q. (11)

True distribution

Model distribution
µ1 µ2

Figure 1: While the innovation process in the true distribution is mixture-normally distributed
with distinct means and identical variances, resulting in a bi-modal distribution, the innovation
processes in the agent’s models conform to a normal distribution.

The agent’s models are misspecified since the true distribution is not normally distributed,
and therefore, is not in the set of models, QΘ. Following Definition (5), the Berk-Nash equilib-
rium is the stationary distribution m˚

S over the set of states (no actions), implied by the true
process, Qp¨|stq, with the corresponding best-fit AR(1) parameter, θ˚ “

ż

S
θ̂psqm˚pdsq, where,

θ̂psq ” argmin
Θ

KLpQ|Qθq “ argmin
Θ

EQ

„

lnQp¨|sq

lnQθp¨|sq

ȷ

.

Now, given that the AR(1) models are Gaussian and therefore log-concave, the state-dependent
best-fit model θ̂psq is uniquely determined.32 Since the innovations in the models are Gaussian,
θ̂psq is the least-squares minimizer with respect to the true transition Qp¨|stq, and solves the
following,

θ̂psqEQp¨|sqps
2q “ EQp¨|sqps

1sq. (12)

The best-fit inferred AR(1) parameter has the following form,

θ˚ “

ż

S
θ̂psqm˚

S “ ρ `

ż

S

pµ1 ` µ2q

s
m˚

S.

32It is worth mentioning here that Berk’s characterization of the limit posterior is for an i.i.d. process. Here
conditioned on the state s, the AR(1) process behaves as i.i.d., and therefore, θ̂psq could be interpreted as the
posterior to which the agent converges if they were to receive infinite state-realizations, all i.i.d., given the state
is fixed.
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Now, let µ1 ` µ2 “ 0. That is, the mean of the components of the true distribution cancel
each other. In this case, a Bayesian agent, starting from any prior on their models QΘ, would
eventually converge in the Berk-Nash equilibrium to the true persistence parameter ρ and yet
continue to remain misspecified. For this case, the comparative statics of the steady state inferred
θ˚ with respect to the AR(1) parameter of the true process is one-to-one in a trivial way.33

Example 2 (Effort provision with unknown ability (EP)). In this setting of a dynamic effort
provision problem, we follow EP in characterizing the Berk-Nash equilibrium. The equilibrium
for this instance is a probabilistic prediction for the agent’s long run outcome to be either a
success or a failure, along with their inference of their ability. This example is related to the
growing literature on effort provision, as exemplified in Deimen and Wirtz (2022).

Each period, an agent chooses either to put high (H) or low (L) effort, xt P X “ tL,Hu, L ă

H in a task. The task then has two outcomes, either it fails (0) or succeeds (1), that is,
st`1 P S “ t0, 1u. The payoffs are as follows,

upxt, st`1q “

$

&

%

st`1, xt “ L,

st`1 ´ c, xt “ H.

In case the effort is low, the agent’s payoff is the state realization, while if the effort is high, in
addition to the state realization, they also incur a cost c for their high effort. Under the true
process Qp¨|st, xtq, if the agent puts in the high effort, the probability of the task being a success
is 1, irrespective of the outcome of the task in the current state. That is, Qp1 | st, Hq “ 1. With
low effort, however, the probability of success tomorrow is dependent on the outcome today;
Qp1 | 0, Lq “ q0, if it is a failure, and Qp1 | 1, Lq “ q1, if it is a success. Following EP, we assume
that 0 ă q0 ă 1 ´ c ă q1 ă 1. From a routine calculation in EP, the optimal correctly specified
policy function is the following,

xpstq “

$

&

%

H, st “ 0,

L, st “ 1.

That is, a failure today, pushes the agent to work harder (since q0 ă 1 ´ c), while a success
makes them put lower effort (since 1 ´ c ă q1).

However, the agent has a set of misspecified models QΘ “ tQθu, parameterized by θ P

Θ “ r0, 1s, where Qθp1|s,Hq “ 1 and Qθp1|s, Lq “ θ for all s P t0, 1u. The agent’s models
correctly captures the true dynamics, if they were to put in higher effort. However, under lower

33For the case when µ1 ` µ2 ‰ 0, the expression for θ˚ is potentially intractable since the expectation with
respect to the Berk-Nash equilibrium m˚ may simply not exist. The inspiration for the mixture normal dis-
tribution comes from a paper by Csaba and Szoke (2023) who look at learning when the set of likelihoods is
misspecified.
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effort, their models imply that the chances of success are independent of the state today, and is
denoted by the parameter θ. Following a growing literature on effort provision that models an
agent’s control over their future success, based on their effort and ability, we novelly interpret
the parameter θ as an index for the agent’s ability level. That is, the agent is someone who
thinks that when the effort is high, then their ability plays no role in determining the outcome
tomorrow since higher effort guarantees success. Whereas, when the effort is low, it is only the
ability that matters for the successful outcome, with higher ability implying higher chances of
success.

For the Berk-Nash equilibrium, following EP, we shall focus on the unique mixed-strategy
equilibrium wherein the choice of actions are independent of the current state, as implied by the
misspecified models. A routine calculation shows that under certain parameterizations, a unique
Berk-Nash equilibrium exists wherein the agent plays a mixed strategy, conditioned on the state,
m˚pL|0q “ m˚pL|1q “

q1 ´ p1 ´ cq

cpq1 ´ q0q
, and correspondingly infers their ability, θ˚ “ 1 ´ c.34

Example 3 (Savings with misperceived wealth process (EP, ADGK)). In this example, we
demonstrate that there are environments wherein there is no clear analytical solution for the
Berk-Nash equilibrium and its corresponding inferred model, a feature most common to dynamic
programming problems.

In each period, an agent realizes wealth yt, an i.i.d. preference shock zt, and subsequently
chooses to save xt P r0, yts “ X Ď R`. The utility in period t is given by upyt, zt, xtq “ zt lnpyt ´

xtq. The state variables, denoted as s “ py, zq, belong to S “ R` ˆ r0, 1s. The evolution of
wealth yt`1 in the following period is governed by the following process,

ln yt`1 “ α˚ ` β˚ ln xt ` εt,

where the unobserved productivity shock, εt “ γ˚zt ` ξt, with ξt following a standard normal
distribution, ξt „ N p0, 1q, and zt following a uniform distribution, with mean Epzq. Here, β˚

denotes the true return on one additional unit of log of saving in terms of the log of wealth. We
assume that it lies between 0 and 1, so that the true Markov process is stationary. Following
EP, we shall assume that the preference and the productivity shocks are positively correlated,
γ˚ ą 0. For an agent that knows all the primitives of the environment, solving for the Bellman
as in Equation (3), the correctly specified optimal policy function is given by, x˚ “ Azpβ˚qy,

where Azpβ˚q “
δβ˚Epzq

p1 ´ δβ˚qz ` δβ˚Epzq
, where 0 ă δ ă 1 is the discount factor.

34The steady-state marginal distribution is given by m˚
Sp1q “

1 ´ c ´ q0
q1 ´ q0

, and m˚
Sp0q “ 1 ´ mSp1q. Further,

θQpmq “ p1 ´ mSp1qq q0 ` mSp1qq1. The reader is referred to the EP paper (pp. 726-728) for the full numerical
details.
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However, the agent’s set of models postulates the following wealth process, ln yt`1 “

α ` β ln xt ` εt, where εt „ Np0, 1q, thus ignoring the correlation between the productivity and
the preference shocks. So while the true process is Q py1, z1 | y, z, xq is such that y1 and z1 are
independent, y1 has a log-normal distribution with mean α˚ `β˚ ln x`γ˚z and unit variance, and
z1 „ U r0, 1s, the misspecified process is Qθ py1, z1 | y, z, xq is such that y1 and z1 are independent,
y1 has a log-normal distribution with mean α ` β ln x and unit variance, and z1 „ U r0, 1s.

For this case, the Berk-Nash equilibrium is characterized by an optimal policy function,
xm “ Az pβmq y “

0.5δβm

p1 ´ δβmq z ` 0.5δβm
y, where there exists a corresponding inferred model

βm P p0, β˚q. That is, the misspecified agent underestimates the return on her saving, βm ă β˚,

and therefore, undersaves in the Berk-Nash equilibrium, xm ă x˚.35 Notice however that there is
no closed-form expression for βm, that outlines its dependence on the environment primitives, and
therefore, how the inferred return, the equilibrium policy function, and the invariant distribution
respond to the primitives of the environment is an open question.36

4 Main Results

We now turn to our main results that are on the existence and the comparative statics of
Berk-Nash equilibrium for a misspecified dynamic optimization problem. We invoke techniques
from the fixed point literature (Smithson (1971); Acemoglu and Jensen (2015)) and, in doing
so, impose further structure on our regular SMDP. While assumptions 1 and 2 are useful for
establishing increasing policy selections, assumptions 3 and 4 give the required monotonicity
and identification properties for our models. Throughout, we shall assume that Q is monotone.
The proofs for all the results are in Appendix B.

Assumption 1. The state, action, and parameter spaces are lattices, and for any primitive
p P P, ups, x, pq is supermodular in ps, xq and increasing in s.

Our first assumption is rather standard and emphasises a lattice structure on the state,
35The intuition behind this is that a higher preference shock z is associated with a lower saving proportion,

Azpβmq, since it leads to a lower inferred belief of return on saving, βm, since the preference and productivity
shocks are positively correlated.

36From EP: The inferred model at the stationary Berk-Nash equilibrium solves the following equation,

β̂pAzpβqq “ β˚ ` γ˚ Cov pz, lnAzpβqq

Var plnAzpβqq ` VarplnY q
, (13)

where the covariance and variance are taken with respect to the true distribution, Qpy1, z1|y, zq. Under the
parametric assumptions of γ˚ ą 0, and Covpz,Azq ă 0, EP establish that there exists a βm, the inferred model
in the Berk-Nash equilibrium. Further, in EP, notice that the inferred model depends on the proportion, Az,
instead of the distribution over states and actions, which is unlike the case required as per the conditions of
Berk-Nash equilibria.
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action, and parameter spaces. As evinced by the examples in this paper and in general, for
many economic applications, the state, action, and parameter spaces are a subset of the real
line R, for which the lattice assumption is trivially satisfied in the natural order. Further, we
assume that the payoff function is supermodular in state and action and is increasing in the
state variable. A payoff function u : S ˆ X Ñ R is supermodular if, for all ps1, x1q, ps2, x2q P

SˆX, upps1, x1q _ ps2, x2qq `upps1, x1q ^ ps2, x2qq ě ups1, x1q `ups2, x2q. This implies that states
and actions exhibit complementarity in the sense that marginal contribution to the payoff of
increasing the action increases with a higher state. The supermodularity in states and actions
and monotononicity (in state) of the payoff function alongwith our next assumption guarantees
that optimal policy correspondence is increasing in the state variable, for any given model
distribution µ, and primitive p P P.

Assumption 2. The following holds true for all models in the family of models, QΘ “

tQθ : θ P Θu . For any increasing real-valued function fp¨q,

(i) Qθ is stochastically increasing in ps, xq i.e.
ż

S
fps1qQθpds

1|s, xq is increasing in ps, xq.

(ii) Qθ is stochastically supermodular in ps, xq i.e.
ż

S
fps1qQθpds

1|s, xq is supermodular in ps, xq.

Notice that this assumption is exclusively on the set of models. It requires the model
transition functions to be stochastically increasing and stochastically supermodular in states
and actions. This implies that for every model Qθ, a higher current state and action increases
the probability of observing a higher state in the next period and that an incremental amount
of action increases this probability, the lower the state is in the current period.37 Assumptions
1 and 2 are consistent with the structure one requires for a correctly specified environment and
the reader is referred to Theorem 3.9.2 in Topkis (1998) for a similar set of assumptions. For a
given model distribution µ, and primitive p, the above two assumptions guarantee an increasing
optimal policy correspondence Gps, µ, pq.

We next assume that given any observable endogenous data, i.e. given any distribution m

over states and actions, generated by agent’s endogenous learning and decision making process
as in Equation (1), the best-fit parameter is point-identified. That is, given m, the best-fit set
is singleton and therefore, the parameter is uniquely determined.

Assumption 3. For any given m P M1pS ˆ Xq, a SMDP pQ,QΘq is point-identified if θ, θ1 P

Θpm;Qq implies that θ “ θ
1

. It is point-identified if it is point-identified for all m P M1pSˆXq.38

37For example, consider the following AR(1) process, st`1 “ θst `ϵt`1, where ϵt`1 is distributed normally with
mean 0 and variance σ2. Then for every θ, Qθ is stochastically increasing. See Examples 2 and 3 for illustrations
on stochastic supermodularity.

38The reader is referred here to Lewbel (2019) for an exposition on identification problem in economics.
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The identification assumption is satisfied for many applications in the existing misspecifica-
tion literature and also plays an important role in the convergence of the steady state behavior
of an agent in a SMDP to the Berk-Nash equilibrium; see examples in Esponda and Pouzo
(2016), EP, and, Esponda, Pouzo, and Yamamoto (2021). For our comparative statics purposes,
identification ensures that we always get a unique selection θQpmq from the best-fit set Θpm;Qq.

A function θQpmq, maps a distribution m into a real number in Θ is said to be increasing in the
usual stochastic order Ást, if θQpm2q ě θQpm1q whenever m2 Ást m1. For our last assumption,
we require the weighted Kullback-Liebler divergence to exhibit the single-crossing property in
the parameter θ and distribution m.

Assumption 4. KQpθ;mq satisfies the single crossing property in pθ;mq, that is, for θ1 ď θ2,

and for m2 Ást m1, δpm1q “ KQpθ2,m1q ´ KQpθ1,m1q ě păq0 implies δpm2q “ KQpθ2,m2q ´

KQpθ1,m2q ě păq0.

The assumption above is necessary and sufficient to imply that the best-fit set Θpm;Qq (coupled
with Assumption 3, the inference function θQpmq), is increasing in the strong-set order on the
real line.39 However, as is well-known in the comparative statics literature, it can be difficult
to verify for single-crossing differences. Therefore, a sufficient and easy to check condition to
guarantee an increasing best-fit function or set is to require that the models follow a expected
log-likelihood property.
Sufficient Condition 1: For any two models θ1, θ2 P Θ, such that θ1 ă θ2, define the log-
likelihood ratio, Lps1|s, xq “ lnpDθ2ps1|s, xqq ´ lnpDθ1ps1|s, xqq, where Dθps

1|s, xq are the Radon-
Nikodym derivatives, introduced for measuring KL divergences in (5). Then the models are said
to follow the generalized likelihood ratio property if the expectation of L with respect to the
true distribution Qp¨|s, xq is increasing in state and actions, ps, xq.40

We can now state our first result on the existence of a Berk-Nash equilibrium for a regular
SMDP with infinite states and actions.

Theorem 1. Under assumptions 1-3, every regular SMDP pQ,QΘq with a bounded and contin-
uous utility function has a Berk-Nash equilibrium and the set of such equilibria is compact.

EP and ADGK provide proofs for the existence of a Berk-Nash equilibrium in an SMDP
with finite and infinite environments, respectively. While the former proves the theorem for

39This is similar to assuming monotone Bayesian updating of the kind in Torres (2005) where stochastically
higher states lead to higher posterior probabilities of the parameter. Also, since the parameter spaces are in R,
quasi-supermodularity is trivially satisfied; see Milgrom and Shannon (1994).

40Ross (1987) contains an useful discussion regarding the existence of the expectation of the log-likelihood
ratio statistic. For instance, if the true, and the model distributions belong to the Gaussian family, this statistic
would always exist.
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finite states and actions, ADGK takes the finite result of EP as given and extends it to more
naturally appealing instances of infinite environments, using novel tools in non-standard anal-
ysis. In contrast, our existence result relies on the assumed monotonicity and identification
properties of the structure of our problem. It is important to mention here that we do rely on
the regular SMDP definition in ADGK, most importantly on part (iv) of Definition 3, because
it allows us to consider distributions that have unbounded Radon-Nikodym derivatives. This
is particularly relevant when dealing with distributions over infinite spaces, such as the AR(1)
process.41 For unbounded state spaces, one continues to rely on ADGK’s structure and existence
results. Further, the set of Berk-Nash equilibria will be compact and in particular, there will
always exist the least and the greatest Berk-Nash equilibrium, m˚ and corresponding beliefs µ˚

over the best-fit inferred models.42

Following Acemoglu and Jensen (2015), we next define a positive shock for a SMDP. Notice
that this positive shock is defined for any p P P “ă u, δ,Q,QΘ,Θ ą and therefore, appeals to
any primitive p that can be considered.

Definition 8. For any given belief µ, a change in a primitive of the SMDP from p1 to p2 is a
positive (negative) shock if Gps, µ, p2q is greater than Gps, µ, p1q in the strong set order. That
is, for all y1 P G ps, µ, p1q and y2 P G ps, µ, p2q , the join y1 _ y2 P G ps, µ, p2q and the meet
y1 ^ y2 P G ps, µ, p1q . Further, for a given primitive p P P , a change in beliefs over models from
µ1 to µ2 is a positive (negative) shock if Gps, µ, pq is ascending in µ from µ1 to µ2, that is, if
y1 _ y2 P Gps, µ2, pq and y1 ^ y2 P Gps, µ1, pq for all y1 P Gps, µ1, pq and y2 P Gps, µ2, pq.

We now state the main result of this paper.

Theorem 2. Suppose assumptions 1-4 hold. Then a positive shock to the primitives of the
regular SMDP will lead to an increase in the least and the greatest equilibrium best-fit models.43

Further, a positive shock to the primitives will lead to
(a) an increase in the least and greatest Berk-Nash equilibrium in the usual stochastic order

dominance if changes in beliefs over models are positive shocks, and
(b) a decrease in the least and greatest Berk-Nash equilibrium in the usual stochastic order

dominance if changes in beliefs over models are negative shocks.

Theorem 2 highlights the two-way interaction between decision making and learning for mono-
tone comparative statics behavior in misspecified dynamic optimization problems with learning.

41Although our examples are based on unbounded state spaces, our results in this paper are established for
compact state and action spaces.

42The argument for the least and greatest follows from Theorem 4 in Acemoglu and Jensen (2015) for the
non-lattice case. Also, see Footnote 9 (pp. 1389) in Hopenhayn and Prescott (1992) for several instances of
compact subsets of measures in economic problems.

43It is important to note here that we are assuming that the constraint on the parameter set is non-binding.
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Under assumptions 1-4 on the regular SMDP, it predicts that a positive shock to any of its
primitives will lead to an increase in the least and greatest equilibrium beliefs over the best-fit
parameterized models. Furthermore, a positive (negative) shock will lead to an increase in the
least and the greatest Berk-Nash equilibrium, the steady state distribution over states and ac-
tions, if changes in beliefs over models is a positive (negative) shock. For instance, if there is a
unique Berk-Nash equilibrium, as in the examples here and in the literature, with a correspond-
ing inferred model, then Theorem 2 gives a clear prediction for the comparative statics of the
equilibrium objects.

Remark 2. Our framework is more general to that of Heidhues, Kőszegi, and Strack (2018),
and therefore, the sharp predictions that they have regarding “perverse” comparative statics for
a stylized production problem with a loss function is something that we are not able to explain
here.

While the full proof of the main result is provided in the Appendix, we provide a brief
proof sketch below that outlines the main points of our argument.

Short proof sketch: The proof of Theorem 2 follows a three-step proof structure as in Ace-
moglu and Jensen (2015). The first step involves showing that under Assumptions 1 and 2, and
for any fixed model distribution µ, the set of Berk-Nash equilibrium m obtained via the fixed
points of the equilibrium mapping T will be Type I and Type II increasing in the primitives p.

Using the set of fixed points in the first step, the second step involves constructing a mapping θ̂

that for any model distribution µ and primitive p, gives a set of model distributions. This map-
ping is constructed from part (b) of Definition 5 wherein for each of the Berk-Nash equilibrium
m obtained in step 1, the construction gives a set of µ1s. It is the fixed points of this map that
are our equilibrium distribution given p. The third and final step shows that if the least and
the greatest selections of the mapping θ̂ are increasing in primitives, then the associated fixed
points are increasing in p.

Remark 3. Acemoglu and Jensen (2015) gives several sufficient conditions to identify positive
shocks for their environment. All of their results (Lemmas 1-3) translate to our case,44 albeit
with some moderation for the endogenous dynamic programs. For example, a change in the
primitive p that influences the decision problem through the utility function, such as the risk-
aversion parameter, is a positive shock if the utility function ups, x, pq has increasing differences
in x and p. Similarly, under Assumptions 1 and 2, a change in discount factor β and model
distribution µ is a positive shock.

Our next theorem is on the inference of a Bayesian learner in a misspecified MDP who
undergoes an expansion of their set of models in the strong-set order.

44The reader is referred to pp. 604-605 in Acemoglu and Jensen (2015).
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Theorem 3. Suppose the hypothesis in Theorem 1 continue to hold. If a change in beliefs over
models is a positive shock, then an increase in the parameter set under the strong set order leads
to an increase in the least and the greatest equilibrium best-fit models.

Our last assumption modifies the single crossing property for instances when distributions
over states and actions are ordered in the increasing and convex stochastic order.

Assumption 5. KQpθ;mq satisfies the single crossing property in pθ;mq, for increasing convex
order Áicx if, for θ1 ď θ2, and for m2 ľicx m1, δpm1q “ KQpθ2,m1q ´KQpθ1,m1q ě păq0 implies
δpm2q “ KQpθ2,m2q ´ KQpθ1,m2q ě păq0.

Sufficient Condition 2: For any two models θ1, θ2 P Θ, such that θ1 ă θ2, define the log-
likelihood ratio, Lps1|s, xq “ lnpDθ2ps1|s, xqq ´ lnpDθ1ps1|s, xqq. Then the models are said to
follow the expected likelihood ratio property in increasing and convex order if the expectation
of L with respect to the true distribution Q is increasing and convex in state and actions, ps, xq.

Our final theorem addresses the monotonicity of Berk-Nash equilibrium for the increasing and
convex order.

Theorem 4. Suppose assumptions 1-3 and assumption 5 holds. Then a positive (negative) shock
to the primitives will lead to an increase in the least and greatest Berk-Nash equilibrium in the
increasing convex order if increases in beliefs over models are positive (negative) shocks.

5 Analysis of Examples

In this section, we show the applicability of our results to Examples 2 and 3, where learning and
decision-making are interlinked. Example 2 has an explicit analytical solution and is more of
an illustrative example of the structure employed in this paper. However, Example 3, like most
problems in dynamic programming, does not have a closed-form solution and, therefore, is most
amenable to analysis with our framework.

Example 2 (contd.) (Dynamic effort with unknown ability (Esponda and Pouzo (2021))).
We now verify our assumptions. The state space S “ t0, 1u and action space X “ tH,Lu are
lattices. Further, the utility function is increasing in the state variable st`1 and for any given
cost of effort c, it is also supermodular in state and actions owing to its linearity. Therefore,
Assumption 1 is satisfied. To check for Assumption 2, the expectation of any increasing function
with respect to model transition functions should be increasing and supermodular in states and
actions. This is again satisified given the structure of the transition functions since, irrespective
of the state, higher action lead to success with probability 1 in the next period, and given the
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action, the probability of success is independent of the current state. Since the weighted KL-
divergence is strictly concave, for every given m ą 0 we have a unique minimizer, and hence, it is
identified and satisfies Assumption 3. Therefore, a Berk-Nash equilibrium exists for this SMDP
from Theorem 1. Notice that Assumption 4 is satisfied since the mapping θQpmsq is increasing
in ms. Therefore, our results in Theorem 2 are applicable for this setting. We focus on the case
with unique solution and for this example, the misspecified policy function is independent of the
current state. That is,

gps, θ, pq “

$

&

%

H, θ ă 1 ´ c,

L, θ ě 1 ´ c.

θ

gps, θ, pq

1 ´ c 1

H

L

Figure 2: An increase in the cost c of high effort is a negative shock for the optimal policy
correspondence, which in this case is a function.

We now verify the prediction of our results vis-á-vis the analytical solution. A fall in the
cost of effort c is a positive shock, and therefore, leads to a higher inference of ability, θ˚ “ 1´ c,

in the Berk-Nash equilibrium, as predicted in Theorem 2. Similarly, a fall in the cost of the effort
leads to an increase in the probability of success at the steady state m˚

s p1q; since an increase in
the model parameter is a positive shock. Here, the stationary distribution m˚

s is increasing in
the usual (first) stochastic order dominance in the cost of effort.

Example 3 (contd.) (Savings with misperceived wealth process (EP, ADGK)). First, we
verify our assumptions. The state, action and parameter spaces are lattices and the utility
function is increasing in the state variables, y and z. Since the payoff function is concave in y

and x, and d2upy, z, xq

dxdy
ą 0, it is supermodular, and hence, satisfies Assumption 1. Further,

the model distributions are Gaussian with mean α ` β ln x, and unit variance and therefore,
satisfy Assumption 2. This follows from the fact that an increase in action x, increases the
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mean, and shifts the model distributions rightward, in the usual order stochastic dominant sense.
Assumption 3 is met since the Gaussian distribution is strictly log-concave, and therefore, ensures
unique identification. Hence, from Theorem 1, the Berk-Nash equilibrium exists. Furthermore,
Assumption 4 is satisfied since this follows from a routine verification of the sufficient condition
1 for increasing best-fit models, under the usual stochastic order.45

Therefore, from Theorem 2, we have a clear prediction about the steady-state inferred
model and the Berk-Nash equilibrium. For example, an increase in the discount factor, a positive
shock to the primitives, will lead to a higher inferred return βm in the equilibrium. Similarly, an
increase in the expected preference shock, another instance of a positive shock, will also lead to a
higher inferred return. Moreover, since increases in beliefs about the return are a positive shock,
it will perpetuate into greater savings in the steady state, and a usual order stochastic increase
in the stationary wealth distribution. One advantage of our comparative statics framework is
that we generate predictions about the comparative statics of the equilibria even when a closed-
form solution may not exist for the equilibrium objects, as is true for this case. Further, since
Assumption 5 holds, the consequent implications also hold for Theorem 4.

6 Welfare Comparisons

We now turn towards comparing the objective welfare of an agent facing a regular SMDP, under
correctly specified and misspecified Bayesian learning and characterize an upper bound on the
difference between the two instances, the costs of misspecification, in terms of the primitives of
the environment. For the purposes of this section, we shall assume that the utility function is
bounded and strictly concave. Further, we shall assume that u : S ˆ X Ñ R is continuously
differentiable in actions.

Let gps, θ̄q, parameterized by a parameter θ̄, denote an optimal policy function. Suppose
it exists under both correctly specified and misspecified environments, where θ̄ take values θ˚

and θ˚ under correctly specified and misspecified learning, respectively. We are interested in
comparing the welfare of a correctly specified agent with parameter θ˚ to the welfare of an
agent who settles at the parameter θ˚ asymptotically, under misspecified Bayesian learning as in
Equation (1). Then, the agent’s welfare under the parameter θ̄, is the objective ex-ante expected
discounted payoff, W ps, θ̄q of choosing the optimal action, gps, θ̄q, and is given as,

W ps, θ̄q “ EQp¨|s,gps,θ̄qq

«

8
ÿ

t“0

βtupst, gpst, θ̄qq

ff

, t “ 0, 1, 2, . . . . (14)

45The expression EQp¨|s,xqLps1|s, xq is increasing in ps, xq under the Gaussian distributions, Q and Qθ. For

pα1, β1q ă pα2, β2q, EQp¨|s,xqLps1|s, xq “
1

2σ2
rpα2 ´ α1qpβ2 ´ β1qpγ˚zqxs which is increasing in x and z.
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Notice that for objective welfare, the expectation is solely with respect to the true transition
function, Qp¨|s, gps, θ̄qq. In Equation (14), the form of environment affects welfare through the
optimal policy action via two channels: first, through the per-period utility function, and sec-
ond, through the true transition function, Q. The optimal policy action gps, θ˚q under misspec-
ified Bayesian learning can theoretically be computed in accordance with Definition 5 and the
subjective distribution Qθ˚ . Our next theorem compares the welfare ranking between the two
instances where our choice of metric is the one induced by sup-norm in the space of functions,
W : S ˆ Θ Ñ R.46

Theorem 5. Welfare under correctly specified learning W ps, θ˚q is weakly greater than welfare
under misspecified learning, W ps, θ˚q. Further, if m0 and m1 denote the absolute upper bound on
the utility function and the marginal utility function, respectively, and if ||gps, θ˚q´gps, θ˚q|| ď γ,

then
||W ps, θ˚q ´ W ps, θ˚q|| ď

2βm0p1 ´ e´k˚

q ` m1γ

1 ´ β
, (15)

where k˚ is the upper bound on the KL divergence of Qp¨|s, gps, θ˚qq with respect to Qp¨|s, gps, θ˚qq.

We interpret the difference γ between the two policy functions in the sup-norm as the
approximation error in the space of policy functions. Then, for a given approximation error γ,

Equation (15) supplies an upper bound on the welfare comparison in terms of the primitives,
namely the discount factor, and the absolute bounds on the utility, the marginal utility function,
and the KL divergence. Notice that if γ “ 0, that is, the policy functions under the two instances
of learning are identical, then the two welfare quantities are equal, by construction. The upper
bound in Equation (15) gives intuitive comparative statics, vis-a-vis the model primitives. For
instance, the discrepancy in welfare is larger, the greater the approximation error, γ. Similarly, for
a positive approximation error, the discrepancy increases in the discount factor. That is, as the
agent gets increasingly patient, reflected in a higher discount factor β, his approximation error
keeps accumulating over the horizon, leading to a greater discrepancy in welfare. Furthermore,
higher bounds on the utility function and its corresponding marginal utility function lead to a
greater discrepancy in the welfare. The marginal utility function plays a role in the discrepancy
by attaching itself to the approximation error. Intuitively, getting the policy wrong is more
pronounced if it matters at the margins. Notice that for the upper bound on the KL divergence,
we only compare the implied distributions by the true transition function Q, under the two
policy functions. This is because our interest lies in comparing the objective welfare under Q.

It is worth mentioning here that bound in Equation (15) is not specific to a misspecified
MDP, rather, it holds for any MDP environment with a endogenous state evolution process,

46The metric induced by sup-norm is the following: ||W ps, θ˚q ´ W ps, θ˚q|| “ sups |W ps, θ˚q ´ W ps, θ˚q|.
Similarly, for the policy function ||gps, θ˚q ´ gps, θ˚q|| “ sups |gps, θ˚q ´ gps, θ˚q|.
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when plugged with alternate policy functions. In this sense, it is related to Lemma 3.1 in
Santos (2000) which does a similar exercise in bounding welfare discrepancies. However, the
state process in there is exogeneous. Furthermore, Santos (2000) uses Euler residuals to provide
upper bounds on the approximation error, in terms of the primitives, for both the policy and the
value functions, which is useful in the context of computing numerical approximations. Often,
MDP environments do not have closed form solutions, thus making economists rely on numerical
techniques to solve for them computationally. We hope that Theorem 5 could be instructive in
this regard, and help in the numerical approximation of the Berk-Nash equilibria.

7 Concluding Remarks and Extensions

Models, by their very nature, offer simplified abstractions of reality, inevitably omitting cer-
tain nuances. This paper delineates conditions under which an important qualitative property,
the comparative statics of decision-making and the corresponding inference, is preserved under
model misspecification. The main contribution of this paper lies in establishing monotone com-
parative statics results for misspecified dynamic optimization problems, by a novel application
of techniques in the fixed points literature (Smithson (1971)) and used in the context of large
dynamic economies (Acemoglu and Jensen (2015)). We also illustrate the utility of these results
for general interest environments. Further, we provide an upper bound on the welfare between
correct and misspecified learning, in terms of the primitives. We conclude by outlining several
promising directions for extending our findings to more broader environments.

Multi-dimensional parameter spaces. Since most of the current applications in the litera-
ture predominantly involve one-dimensional models,47 the results presented in the paper assume
the model (parameter) set to be a compact subset of the real line. However, they could be
extended to multi-dimensional parameter spaces. This would involve a suitable rehabilitation of
Assumptions 3 and 4 for lattice and non-lattice multi-dimensional parameter spaces. Although,
one limitation of such a result using the current techniques is that the comparative statics results
imply that all inferred parameters in the equilibrium must be monotonic together, which may
not be ideal for specific economic applications.

Other forms of updating. While our results primarily address the asymptotic behavior of
Bayesian learners, it’s important to note that other inference processes, such as Maximum Likeli-
hood Estimation (MLE) and moment-based learning, can lead to the same asymptotic inferences.
Csaba and Szoke (2023) provide an illustrative example that demonstrates the identical nature
of inference between Bayesian inference and methods based on likelihoods.

47This feature of the current literature is also noted in Esponda, Pouzo, and Yamamoto (2021).
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Static environments and dynamic concerns. Our results are tailored for dynamic MDP
environments but they potentially are also applicable, subject to modifications, to static envi-
ronments, such as the one in Esponda and Pouzo (2016) for static games. This also spills over
to settings where agents are endogenously concerned about their misspecified models, such as
those in Lanzani (2022).48

Monotone comparative dynamics. The scope of our paper is limited to analyzing the
comparative statics properties of the equilibrium objects in the steady state. An interesting
question arises regarding how the dynamics of the misspecified learning process might react to
changes in its primitives. Specifically, we do not know how the variations in the frequency of
state-action pairs, as well as the sequence of posteriors as described in Equation (1), would be
influenced because of changes in the economic primitives. There is added complexity in the
dynamics due to potential complementarities between current actions and the inference process
via the role of experimentation. In this regard, the tools developed in Balbus, Dziewulski,
Reffett, and Woźny (2022) for monotone comparative dynamics for stochastic games could be
useful for future exploration.

Misspecification in large economies. Our results are also applicable to misspecified dynamic
economies with a continuum of agents, such as the one conceived in Molavi (2019). Given that the
techniques we rely on (Acemoglu and Jensen (2015)) were developed in the context of economies
with a continuum of agents, the results in this paper should potentially be straightforward to
apply on equilibrium concepts, Molavi (2019) develops for the boundedly rational agents working
with misspecified models in macroeconomic environments.

48The reader is referred to Corollary 1 in Lanzani (2022).
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A Mathematical Preliminaries

In this section, we provide the necessary mathematical preliminaries required to go through the
proofs. Let X be a set. A subset Á of X ˆ X denotes a binary relation on X. A binary relation
Á is a partial order if it is reflexive, transitive, and anti-symmetric. A partially ordered set, or
a poset, is a pair pX,Áq that consists of a set X and a partial order Á. A binary relation Á

is closed if the graph of Á is a closed subset of X ˆ X. The poset pX,Áq is a lattice if for any
x, x1 P X, the greatest lower bound (infimum) x ^ x1 and the least upper bound (supremum)
x _ x1 are in X, where ^ and _ denote the meet and join operations, respectively. A subset
A Ď X is a sublattice of lattice X if A is a lattice that contains the meet x ^ x1 and join x _ x1

for all each pair of elements of A are defined with Á . For any subset A of a poset X, we denote
the supremum and infimum of A by supA and inf A, respectively. That is, supA is the least
element in X such that supA Á a, for all a P A. Similarly, inf A is the greatest element in X

such that a Á inf A, for all a P A. A lattice X is complete if both inf A and supA are in X for
any A Ď X. A chain is a totally ordered poset. A poset X is (countably) lower chain complete
if any (countable) chain A Ď X has its infimum in X. The poset is (countably) upper chain
complete if any such chain has its supremum in X. The poset is (countably) chain complete if
it is both upper and lower (countably) chain complete. Let X and Y be subsets of R. Set Y

dominates X in the strong set order if for any x in X and y in Y , we have max tx, yu in Y and
min tx, yu in X.

Let MpXq denote the space of probability measures defined on a compact subset of X Ă

Rn. Although even if X is a lattice, the poset pX,Ástq is not a lattice as pointed in Kamae,
Krengel, and O’Brien (1977). For e.g., for pR2,Ástq let p1 “ 0.5pϵa ` ϵbq, p2 “ 0.5pϵa ` ϵcq, p3 “

0.5pϵc ` ϵbq, p4 “ 0.5pϵa ` ϵdq, where a “ p0, 0q, b “ p0, 1q, c “ p1, 0q, d “ p1, 1q. Then, both
p3 and p4 are supremum, which is a contradiction. However, pR2,Ástq is chain-complete.49 A
correspondence T : X Ñ 2Y is upper-hemicontinuous at a point x0 P X if for any sequence
txnunPN such that txnu Ñ x0, yn P T pxnq, y0 P T px0q implies yn Ñ y0. We will require the
following existence theorem in Smithson (1971) for chain-complete (non-lattice) spaces, and
refer the interested reader to his paper for further details.

Theorem (Smithson’s fixed point theorem (1971)). Let X be a chain-complete poset equipped
with partial order Á, and T : X Ñ 2X a Type I (Type II) monotone correspondence. Suppose
for any chain C in X and any monotone selection f from the restriction of T to C, f : C Ñ X,

there exists y0 P T psupCq such that y0 Á fpxq for all x P C. Then if there exists a point e P X

and a point y P T peq such that y Á e, then T has a fixed point.
49This also holds true for increasing and convex order, Áicx.
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B Proofs

This section is divided into four parts. Part (i) proves two auxiliary lemmas that are instrumental
for our main results. Part (ii) proves Theorems 1 and 2 of the paper and part (iii) proves
Theorems 3 and 4, respectively. Part (iv) does the welfare comparison.

The proofs for Theorems 1 and 2 are structured in three steps, with the proof technique
similar to that in Acemoglu and Jensen (2015). For Theorem 2, the first step involves showing
that for any fixed model distribution µ P M1pΘq, the set of stationary distributions on states
and actions, m˚, induced by the optimal policy correspondence G, will be Type I (Type II)
monotonic in the primitives p. The second step involves constructing a mapping θ̂ that for each
given µ and p yields a set of model distributions, µ1s. It is the fixed points of this map that
are the equilibrium model distributions µ˚, given p. Finally, the third step involves the least
and greatest selections from this map will be increasing in p. This in turn leads us to give a
new existence proof of Theorem 1 that relies on the monotonicity and identification properties
of the equilibrium map, T . The rest of the proofs (Theorems 3 and 4) shall follow an analogous
structure. Proof of Theorem 5 is based on the Taylor expansion of the utility function and on
an application of a new result proven by Canonne (2022) on entropy bounds.

The equilibirum mapping T associated with the Berk-Nash equilibrium (Definition 5)
is a set-valued function on the product space of probability measure on states and actions,
and parameter space, T : W Ñ 2W , where W “ M1pS ˆ Xq ˆ M1pΘq such that T pm,µq “

Mpm,µq ˆ M pΘQpmqq, where

pm,µq ÞÑ Mpm,µq ”

"

m1 P M1pS ˆ Xq : m1 P Fpµq & m1
Sp¨q “

ż

SˆX
Qp¨|s, xqmpds, dxq

*

(16)

for any µ P M1pΘq,Fpµq is the set of all m1 that satisfies the condition of optimality and
stationarity as in Definition 5.

(i) Auxiliary Lemmas
Towards this end, we begin by proving two lemmas. They adapt lemmas in Acemoglu and
Jensen (2015) that are established for exogenous shock processes to our setting of endogenous
Markov decision process. Lemma 1 shows that under assumptions 1 and 2, the optimal policy
correspondence, defined in Eq (8), G : S ˆ P Ñ 2X is increasing in the strong-set order and the
least and the greatest selection are increasing in s.

Lemma 1. Let the regular SMDP satisfy assumptions 1 and 2. Then for any given p, the optimal
policy correspondence G : S ˆ P Ñ 2X is increasing in the state s in the strong set order. In
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particular, it has a least and a greatest selection, and they are increasing in the state s.50

Proof. Given a model distribution µ, and corresponding to a Bellman solution V of Eq. (5),

Gps, µ, pq “ argmax
xPX

ups, xq ` δ

ż

S

V ps1, µ, pqQ̄µpds1|s, xq, (17)

where Q̄µ “

ż

Θ

Qθµpdθq. Given Assumptions 1 and 2, and by the application of Theorem 3.9.2
in Topkis (1998), the expression on the right-hand side is supermodular in ps, xq. Therefore, the
optimal policy correspondence will be increasing in s in the strong-set order. Further, given the
optimal correspondence, the greatest and least selection exist and are increasing in the state.

The next lemma transfers the monotonic nature of the optimal policy correspondence to its
corresponding fixed point map, T, in terms of Type I (Type II) monotonicity.

Lemma 2. If the optimal policy correspondence G : S Ñ 2X has an increasing greatest (least)
selection, then the fixed point correspondence T is Type I (Type II) monotone with respect to
Ást. Further, if G depends on a primitive p P P such that G : S ˆ P Ñ 2X and the greatest
(least) selection from G is increasing in p, then the fixed point correspondence T indexed by p,
Tp is Type I (Type II) monotone in M1pS ˆ Xq with respect to Ást.

Proof. We only prove the above statement for the greatest selection in the Type I case.51 Con-
sider probability measures, ν1, ν2 P MpS ˆ Xq such that ν2 Ást ν1. To prove that the fixed point
correspondence T is Type I monotone, we need to show that for any λ1 P Tν1, there exists a
λ2 P Tν2 such that λ2 Ást λ1. That is, if λ1 P Tν1, then there exists a measurable selection
g1 : S Ñ X, such that, for all A ˆ B P BpS ˆ Xq,

λ1pA,Bq “

ż

SˆX
QpA|s, g1psqqχB pg1psqq ν1pds, dxq

and therefore, there must exist a selection g2 such that λ2 P Tν2, and λ2 Ást λ1. From Lemma
1, we know that such a greatest selection exists, and therefore, for all A ˆ B P BpS ˆ Xq,

λ2 Ást λ1 ðñ

ż

S
fps, g2psqqQpds|s, g2psqqν2psq ě

ż

S
fps, g2psqqQpds|s, g2psqqν1psq

ě

ż

S
fps, g1psqqQpds|s, g1psqqν1psq

The first inequality follows from ν2 Ást ν1. The second inequality follows from Q being
monotone and g2 being the greatest selection. With an identical argument, one can prove for

50We suppress the dependence on M1pΘq for notational convenience.
51The rest of the cases follow analogously.
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the case where the greatest selection from G is to be increasing in p, and therefore, T indexed
by p, Tp is Type I (Type II) monotone in M1pS ˆ Xq, with respect to Ást .

We are now ready to prove Theorems 1 and 2. Throughout the proof, primitive p is restricted
to the set P ” tp1, p2u ordered by p2 Á p1.

(ii) Proofs for Theorems 1 and 2: The first step involves showing for a given model distribu-
tion µ P M1pΘq, the set of Berk-Nash equilibrium m induced by the optimal policy correspon-
dence G will be Type I (Type II) increasing in the primitives p P P. To this end, we first show
that under a positive shock, the fixed point correspondence T is Type I (Type II) increasing
in the primitives p. The fixed points of this correspondence are the Berk-Nash equilibrium m

for a given model distribution µ, and finally using a result in Acemoglu and Jensen (2015), we
show that the set of Berk-Nash equilibrium for a given model distribution is Type I (Type II)
increasing in the primitives.

Because of Lemma 1, the stationary optimal policy correspondence G will have a least and
a greatest selection that will be increasing in s and therefore, by Lemma 2, for a given model
distribution µ, and primitive p, Tµ,p : M1 pS ˆ Xq Ñ 2M1pSˆXq induced by the stationary optimal
policy correspondence, G, defined in (8) is Type I (Type II) monotone with respect to Ást. Now
from a routine modification of Theorem B3 in Acemoglu and Jensen (2015),52 the set of fixed
points, F : µ ˆ P Ñ 2M1pSˆXq, given by F pµ, pq “ tm P M1pS ˆ Xq : m P Tµ,pmu is non-empty
valued and upper hemicontinuous. The proof of upper-hemicontinuity of Tµ,p follows for the finite
case follows from Claim B (Page 744) in EP, while for the infinite case, it follows by invoking
the conditions in Definition 3 on a regular SMDP, as proved in Anderson, Duanmu, Ghosh, and
Khan (2023). From Lemma 2, Tµ,p is Type I (Type II) monotone in p, and therefore, from the
monotonicity theorem of Acemoglu and Jensen (2015) in the main text, the set of fixed points F
will be non-empty and Type I (Type II) monotone in p. Hence, the set of Berk-Nash equilibrium
m induced by the optimal policy correspondence G will be Type I (Type II) increasing in the
primitives p. This completes the first step.

The second step constructs a mapping θ̂ that for each given model distribution µ and primitive
p P P, yields a set of best-fit model distributions,

θ̂pµ, pq “ tθpmq ” argminθPΘKQpm, θq : m P F pµ, pqu. (18)

A model distribution µ˚ is an equilibrium belief if and only if µ˚ P θ̂pµ˚, pq. By assumption
52Theorem B3 in Acemoglu and Jensen (2015) builts on the existence theorem in Smithson (1971). It states

the following: Assume that the equilibrium mapping T is either Type I or type II monotone. In addition, assume
that the set of measures on state and actions has an infimum. Then T has fixed point. In addition, the fixed-point
correspondence is upper hemicontinuous if T is upper hemicontinuous.
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3 of point identification and therefore, by uniqueness, for each m, there will be a non-empty
unique θpmq. That is, one has a Dirac measure on θpmq. From Berge’s Maximum Theorem, θ is
continuous53 and given the upper hemicontinuity of F pµ, pq, θ̂ will be upper hemi-continuous.
The rest of this step follows Acemoglu and Jensen (2015). For a fixed µ, and given F pµ, ¨q

is Type I and Type II monotone in p, and increasing θpmq under Assumption 4, one can use
their Theorem 4 (pp. 601) to conclude that the least and greatest selections from θ̂pµ, ¨q will be
increasing in p holding µ fixed.54

The third and final step shows that if the least and the greatest selections of the upper-
hemicontinuous fixed point correspondence θ̂ are increasing in p, then the fixed points are increas-
ing in p. Since under Assumption 4, θ is a monotonic function of m, therefore, µmin ” θpδinf SˆXq

and µmax ” θpδsup SˆXq, where δSˆX denotes the degenerate measure on S ˆ X with its mass at
ps, xq. Therefore, µ Á µmin for all µ P θ̂ pµminq and µ À µmax for all µ P θ̂ pµmaxq. There-
fore, for every p P P , θ̂p¨, pq : rµmin, µmaxs Ñ 2rµmin,µmaxs. Notice in step 2 that F pµ, pq is a
convex-valued set of fixed points since Tµ,p is convex-valued; the proof of convex-valuedness
follows from EP. Therefore, the set of fixed points from F is convex-valued and given θpmq

is a continuous function, θ̂pµ, pq is convex-valued. Hence, from Acemoglu and Jensen (2013),
θ̂p¨, pq : rµmin, µmaxs Ñ 2rµmin,µmaxs is upper hemicontinuous and convex valued and for each fixed
value of µ P rµmin, µmaxs, has least and greatest selections and are increasing in p and from
Corollary 2 in Milgrom and Roberts (1994) the least and greatest fixed points µ˚ P θ̂pµ˚, pq

will be increasing in p. Hence, we have proven that the least and greatest inferred models are
increasing in the primitives under a positive shock to a regular SMDP. From Theorem 2.8.3 in
Topkis (1998), and by treating a change (positive/negative) in µ as a change in primitive, the
remaining part of Theorem 2 follows.

Existence is yielded in Step 2 by the Kakutani-Fan-Glicksberg Theorem since our map
θ̂pµ, pq is convex-valued, upper hemi-continuous, and as is shown in EP, M1pΘq are locally
convex Hausdorff spaces.

(iii) Proof for Theorem 3: The parameter space Θ Ď R is one-dimensional, and hence, the
weighted KL divergence satisfies quasimodularity by triviality on the parameter space, Θ Ď R.
Hence, from Topkis (1978) and Milgrom and Shannon (1994), given an increase in the parameter
space from Θ1 to Θ2 in the strong-set order, the set of minimizers are increasing in the strong-set

53The function θQpmq is continuous if it is continuous in the weak˚topology on its domain.
54Theorem 4 in Acemoglu and Jensen (2015) guarantees least and greatest selections from a fixed point corre-

spondence.
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order, i.e.,
Θpm; Θ1q ” argmin

θPΘ1

KQpm, θq Ď argmin
θPΘ2

KQpm, θq ” Θpm; Θ2q

Therefore, if a change in model distribution is a positive shock then the proof follows on the
lines of Theorem 2. Thus, this completes the proof.

Proof for Theorem 4: Consider probability measures, ν1, ν2 P MpSˆXq such that ν2 Áicx ν1.

The proof of Type I and Type II monotonicity is similar to that of Theorems 1 and 2, albeit
requires that we work with increasing convex orders on the set of states and actions.

To prove that the fixed point correspondence T is Type I monotone in Áicx, we need to
show that for any λ1 P Tν1, there exists a λ2 P Tν2 such that λ2 Áicx λ1, that is, if λ1 P Tν1,

then there exists a measurable selection g1 : S Ñ X, such that, for all A ˆ B P BpS ˆ Xq,

λ1pA,Bq “

ż

SˆX
QpA|s, g1psqqχB pg1psqq ν1pds, dxq

and therefore, there must exist a selection g2 such that λ2 P Tν2, and λ2 Áicx λ1. From Lemma
1, we know that such a greatest selection exists, and therefore, for all A ˆ B P BpS ˆ Xq,

λ2 Áicx λ1 ðñ

ż

S
fps, g2psqqQpds|s, g2psqqν2psq ě

ż

S
fps, g2psqqQpds|s, g2psqqν1psq

ě

ż

S
fps, g1psqqQpds|s, g1psqqν1psq

The first inequality follows from ν2 Áicx ν1. The second inequality follows from Q being
monotone and g2 being the greatest selection. The only adjustment in the proof that remains
is that the best-fit set construction needs to incorporate Assumption 5 for it to have them
monotonic, i.e., the second step constructs a mapping θ̂ that for each given model distribution
µ and primitive p P P, yields a set of model distributions,

θ̂pµ, pq “ tθpmq ” argmin
θPΘ

KQpm, θq : m P F pµ, pqu. (19)

Hence, this completes the proof.

(iv) Proof for Theorem 5: The first part follows from the optimality of gps, θ˚q over gps, θ˚q,

under the objective welfare function W ps, θ˚q, where the expectation is taken with respect to
the true transition function, Q. Next, under correct learning parameterized by θ˚, and for an
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initial state s0, the objective welfare is given as,

W ps0, θ
˚q “ EQp¨|st´1,gpst´1,θ˚qq

«

8
ÿ

t“0

βtupst, gpst, θ
˚qq

ff

, t “ 0, 1, 2, . . . . (20)

Unwrapping the above expression,

W ps0, θ
˚q “ ups0, gps0, θ

˚qq ` β

ż

S

ups1, gps1, θ
˚qqQpds1|s0, gps0, θ

˚qq ` ...

βt

ż

S

upst, gpst, θ
˚qqQpdst|st´1, gpst´1, θ

˚qq ` ...

(21)

Now, with the Berk-Nash parameter θ˚, the corresponding objective welfare under misspecified
learning is,

W ps0, θ˚q “ ups0, gps0, θ˚qq ` β

ż

S

ups1, gps1, θ˚qqQpds1|s0, gps0, θ˚qq ` ...

βt

ż

S

upst, gpst, θ˚qqQpdst|st´1, gpst´1, θ˚qq ` ...

(22)

Our objective is to find an upper bound for ||W ps0, θ
˚q ´ W ps0, θ˚q||, where ||¨|| denotes the

sup-norm in the function space. Comparing the first terms in Equations (21) and (22) and
by a Taylor expansion of ups0, gps0, θ

˚qq on ups0, gps0, θ˚qq, given that we assume that it is
continuously differentiable and strictly concave, we have,

||ups0, gps0, θ
˚qq ´ ups0, gps0, θ˚qq|| ď |

du

dg
|gps0,θ˚q||gps0, θ

˚q ´ gps0, θ˚q||.

The inequality follows from the concavity of u in policy function g and from taking the sup-norm
on both sides. Similarly, for the second term, we have,

β||
`

ż

S

ups1, gps1, θ
˚qqQpds1|s0, gps0, θ

˚qq ´

ż

S

ups1, gps1, θ˚qqQpds1|s0, gps0, θ˚qq
˘

||

ď β
`

ż

S

|ups1, gps1, θ˚qq| ¨ ||Qpds1|s0, gps0, θ
˚qq ´ Qpds1|s0, gps0, θ˚qq|| ` |

du

dg
|gps1,θ˚q||gps1, θ

˚q ´ gps1, θ˚q||
˘

(23)
This again follows from the strict concavity of u, a corresponding Taylor-expansion of the utility
function u, and the fact that the integral of the density function (always positive) is 1.

While we have corresponding upper bounds for the utility function, its first derivative, and
the difference in the policy functions under the two learning instances, we still need to establish
a corresponding upper bound for the total-variation (TV) norm for densities Q. Towards this
end, we rely on a lemma by Canonne (2022), that provides an almost stricter bound on the
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TV-norm between densities.55

Theorem (Bretagnolle–Huber bound, Canonne (2022)). For any two probability distribution
functions Q1, Q2 over R,

dTV pQ1, Q2q “ ||Q1 ´ Q2||1 ď 2
a

1 ´ e´KLpQ1||Q2q,

where dTV is the total variation norm between densities Q1 and Q2, and KL is the relative
entropy between Q1 and Q2.

Therefore, the first part of the right-hand side expression in Eq.(23) can be bounded as,

β
`

ż

S

|ups1, gps1, θ˚qq| ¨ ||Qpds1|s0, gps0, θ
˚qq ´ Qpds1|s0, gps0, θ˚qq||

˘

ď 2βm0

a

1 ´ e´KLpγ,Qq.

where the KL distance, KL1pγ,Qq, depends on the approximation error γ, and the true transition
function, Q, and also the particular state realization. For the second part, we have,

|
du

dg
|gps1,θ˚q||gps1, θ

˚q ´ gps1, θ˚q|| ď m1γ. (24)

By repeating the above step for all the terms in W ps, θ˚q and W ps, θ˚q, we have,

||W ps, θ˚q ´ W ps, θ˚q|| ď m1γ ` βpm1γ ` 2m0

a

1 ´ e´KL1pγ,Qqq ` β2pm1γ ` 2m0

a

1 ´ e´KL2pγ,Qqq ` . . .

ď
m1γ ` 2m0β

?
1 ´ e´KL˚pγ,Qq

1 ´ β

where KL˚pγ,Qq is the upper bound on the sequence of KL distances, tKL1, KL2, . . . , KLn...u.
Hence, we have established our upper bound between the two welfare quantities, and this com-
pletes the proof.

55Our choice of this particular bound over the well-known Pinsker bound is that as the KL divergence gets
larger, the Pinsker bound becomes vacuous and exceeds the trivial bound of 1. The BH bound, however, never
exceeds 1.
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