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Abstract

In intermediated markets, trading takes time and intermediaries extract rents. We estimate
a structural search-and-bargaining model to quantify these trading delays, intermediaries’
ability to extract rents, and the resulting welfare losses in government and corporate bond
markets. Using transaction-level data from the UK, we identify a set of clients who are active
in both markets. We exploit the cross-market variation in the distributions of these clients’
trading frequency, prices, and trade sizes to estimate our structural model. We find that trad-
ing delays and dealers’ market power both play a crucial role in explaining the differences in
liquidity across the two markets. Dealers’ market power is more severe in the government
bond market, while trading delays are more severe in the corporate bond market. We find
that the welfare loss from frictions in the government and corporate bond markets are 7.8%
and 12.2%, respectively, and our decomposition implies that this loss is almost exclusively
caused by trading delays in the corporate bond market, while trading delays and dealers’
market power split the welfare loss equally in the government bond market. Using data from
the COVID-19 crisis period, we also find that these welfare losses might more than triple
during turbulent times, revealing the fragility of the OTC market structure.
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“... liquidity—the ability to trade when and where you want to trade,
in significant size and without much cost.”

— Larry Harris, Trading & Electronic Markets:
What Investment Professionals Need to Know

(2015, p. 1)

1 Introduction

How large are trading frictions in over-the-counter (OTC) financial markets? How much do these
frictions and the associated welfare losses vary across markets and across normal and turbulent
times? What is the role of search frictions facing clients and of intermediaries’ market power
in explaining these cross-market differences? To give quantitative answers to these questions,
we estimate a dynamic structural model of OTC market liquidity for the corporate as well as
government bond markets—two of the most important markets in the financial system.

We find that search frictions in the UK government bond market are quantitatively modest
with the estimated welfare loss amounting to less than 4% compared to the frictionless benchmark.
In contrast, search frictions in the UK corporate bond market are more severe and estimated to
generate a welfare loss of around 12%. Perhaps surprisingly, we find that dealers’ ability to extract
rents is significantly larger in the government bond market leading to a welfare loss of almost 4%,
while the welfare loss from dealers’ rent extraction is negligible in the corporate bond market. In
sum, the welfare impact of OTC trading frictions is quite sizable in both markets with a total
welfare loss of 7.79% in the government bond market and of 12.17% in the corporate bond market.
A re-estimation of the model parameters to fit data from the COVID-19 crisis implies that these
percentage welfare losses became 3.2 times as large in both markets during the crisis, pointing to
the fragility of the OTC market structure when faced with a large negative shock.

To arrive at these estimates, our paper makes a contribution to both the theoretical and empir-
ical literatures on OTC markets. Our empirical analysis uses a non-anonymous transaction-level
dataset which covers close to the universe of all secondary market trades in the UK government
and corporate bond markets. Importantly, we are able to identify a common set of clients who
are actively trading in both markets and who drive the majority of the trading volume in the
client-dealer segment of both markets. This unique feature of the data allows us to exploit cross-
market differences in all three main dimensions of market liquidity: trading frequency, trade size,
and transaction price. Comparing trading frictions across markets is a hard task because client
composition is endogenous to the given market in question. Our approach of keeping the set of
clients fixed in the two markets goes a long way in addressing these selection issues, allowing for
a comparison of the trading frictions that the same clients face in two different markets.

The theoretical contribution of the paper is to develop a model of OTC trading with two-
sided search and bilateral bargaining that can be structurally estimated using transaction-level
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data with client identities. The model is based on the stationary version of Lagos and Rocheteau
(2009), which we extend to allow for multi-dimensional heterogeneity in client characteristics.
These extensions are motivated by the substantial client-level heterogeneity we document in both
the government bond and the corporate bond market. We introduce client heterogeneity both
in the frequency of preference shocks and of the arrival of trading opportunities that, in turn,
translates into heterogeneity in clients’ endogenous trade frequencies as in the data.

In our dynamic model, clients have heterogeneous and time-varying marginal utility for holding
a perfectly divisible homogenous asset, and so, they ideally want to hold different amounts of the
asset from one another and over time. In the estimated version of our model, clients’ marginal
utility types are binary, high or low, and change over time following client-specific continuous-time
Markov chains. Thus, a given client has an ideal high-type asset position and an ideal low-type
asset position in mind. If a client’s current taste matches her ideal asset position, the client is
happy and does not need to trade. However, a switch of the client’s taste from high to low, or
vice versa, makes the client want to update her asset position accordingly. Importantly, these two
ideal asset positions and the resulting trade size the client wants to trade are affected by how
frequently she expects to switch to the opposite taste type and how frequently she can match a
dealer to trade. These are the novel client heterogeneity dimensions of our model relative to Lagos
and Rocheteau (2009).

Clients in our model can trade only with dealers and only in a bilateral fashion subject to search
and bargaining frictions, while dealers can trade amongst themselves multilaterally and without
frictions. Bilateral bargaining in our model leads to client-specific bid and ask prices. When
switching from the low-type asset position to the high-type position, the client pays a negotiated
ask price per share of the asset bought from the dealer. Vice versa, when switching from the high-
type asset position to the low-type position, the client receives a negotiated bid price per share
of the asset sold to the dealer. In the end, our model generates client-specific trade frequencies,
trade sizes, and prices as in the data. This close resemblance of our model’s endogenous outcomes
with the transaction-level data from the real-world fixed-income markets allows us to identify the
deep parameters of our model.

Despite rich heterogeneity in the model, we derive a number of equilibrium objects that are
readily observable from the data as (integral transforms of) closed-form expressions. These in-
clude trading volume, price dispersion, the distribution of clients’ average trade frequencies, and
client-specific average trade size. We then use these data moments to estimate some of the deep
parameters of our structural model. The estimation results reveal that trading delays are vastly
different across the two markets. Average trading delays in the government bond market can be
measured in minutes, whereas in the corporate bond market they can be measured in hours with
a median of around three quarters of a trading day. These results highlight the large differences
in the severity of search frictions that the two bond markets exhibit. Moreover, the estimation
implies that the share of transaction surpluses that dealers capture is about three times as large
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in the government bond market as in the corporate bond market, which means that dealers have
significantly higher market power in the government bond market compared to the corporate bond
market.1 These findings pose a challenge to the common view that high dealer market power and
severe search frictions must co-exist in an intermediated market. We find that, despite the reason-
ably low level of search frictions, government bond dealers can exert a significant market power
over their clients.

Our analysis highlights the importance of utilizing information regarding all three dimensions
of market liquidity, trade frequency, trade size, and price, to have a full understanding of the
drivers of market liquidity, which are the deep parameters of our model. For example, it would
be impossible to distinguish between how often clients need to trade (clients’ preference shock
frequency) and how often they can trade (clients’ matching efficiency with dealers) by looking at
their trade frequencies only. However, we show that endogenous trade frequency increases with
both preference shock frequency and matching efficiency, while endogenous trade sizes decline
with preference shock frequency but increase with matching efficiency. Thus, by using both trade
frequency and trade size information, it is possible to simultaneously identify preference shock
frequency and matching efficiency.

Similarly, it would be impossible to distinguish between search frictions (inverse of matching
efficiency) and dealers’ market power by looking at price dispersion only because both search
frictions and dealers’ market power are positively related with the endogenous price dispersion.
However, as argued, we are able to identify the level of search frictions using information on trade
frequency and trade size. Thus, the additional unique information on price dispersion allows us
to identify dealers’ ability to extract rents that we name dealers’ market power. Our empirical
analysis shows that average trade frequency in the government bond market is more than six
times that of the corporate bond market. This contributes to a large difference between the
estimated matching efficiency levels in the two markets. Despite this large difference between the
two markets in terms of search frictions, price dispersion of government bonds is only around half
of the corporate bond price dispersion. Thus, our estimation “rationalizes” this with a significantly
larger dealer market power in the government bond market.

To compare the two markets in terms of the welfare consequences of their friction levels, we
use our parameter estimates and calculate the market participants’ welfare in equilibrium, in
the first-best allocation (the solution to an unconstrained planner’s problem), and in the second-
best allocation (the solution to a constrained planner’s problem). We confirm that the first-best
allocation coincides with the frictionless benchmark allocation and that the second-best coincides

1Share of transaction surpluses captured by sellers in bargaining with buyers is widely used in monetary eco-
nomics literature to model sellers’ market power, as it provides a convenient way to model market power in the
presence of continuum of agents. See, for example, Lagos and Wright (2005) and Choi and Rocheteau (2021). In
modeling OTC financial markets, it is not only convenient, but accurate: “These search-and-bargaining features
are empirically relevant in many markets, such as those for mortgage-backed securities, corporate bonds, emerging
market debt, bank loans, derivatives, and certain equity markets” (Duffie, Gârleanu, and Pedersen, 2005, p. 1815).
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with the allocation which would obtain if dealers did not have any market power. This analysis
allows us to decompose the total welfare loss into a component caused by dealers’ market power
and another component caused purely by search frictions. We find that the total welfare losses
in the government and corporate bond markets are 7.79% and 12.17%, respectively, and our
decomposition implies that this loss is almost exclusively caused by search frictions in the corporate
bond market, while search frictions and dealers’ market power split the welfare loss equally in the
government bond market. To gauge the reliability of our welfare loss estimations, we calculate the
minimum and the maximum welfare loss implied by the 95% confidence intervals of our baseline
parameter estimates. The resulting bounds are 6.63% and 9.51% for the welfare loss in the
government bond market and 11.09% and 13.64% in the corporate bond.

In the last part of the paper, we re-estimate the model parameters to match trading activity
during the COVID-19 crisis. Our parameter estimates imply that the total welfare losses in the
government and corporate bond markets are 25.44% and 39.63%, respectively, and our decom-
position implies that this loss is almost exclusively caused by search frictions in the corporate
bond market as in normal times, while dealers’ market powers’ share in the welfare loss in the
government bond market increased from around 50% to 60%. Overall, these estimates imply that
the welfare losses from OTC market frictions are especially severe during turbulent times. One
counterfactual exercise we conduct is about what the resulting welfare losses would be if the OTC
market structure was not particularly fragile during turbulent times. To this end, we calculate
the welfare losses by keeping matching efficiency and dealers’ market power exactly at the level of
normal times, but accommodating the clients’ preference parameters that reflect the COVID-19
shock. We find that the total welfare loss in the government and corporate bond markets would
be 10.72% and 15.25%, respectively. This counterfactual analysis implies that the vast majority
of the additional welfare loss during turbulent times is because of the fragility of the OTC market
structure when faced with a large negative shock.

1.1 Related Literature

There is a vast literature on empirical analysis of OTC financial markets. See, for example,
Garbade and Silber (1976), Edwards, Harris, and Piwowar (2007), Jankowitsch, Nashikkar, and
Subrahmanyam (2011), Di Maggio, Kermani, and Song (2017), O’Hara, Wang, and Zhou (2018), Li
and Schürhoff (2019), Dick-Nielsen, Poulsen, and Rehman (2021), and Kondor and Pintér (2022).
While these papers offer reduced-form empirical analyses to determine stylized facts specific to
OTC markets and to test some economic hypotheses that may explain those stylized facts, we
offer a structural empirical analysis of the determinants of OTC market liquidity through the
lens of a search-based model. Hotchkiss and Jostova (2017), Cestau, Hollifield, Li, and Schürhoff
(2019), and Bessembinder, Spatt, and Venkataraman (2020) provide recent surveys of the empirical
literature.
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A theoretical literature following Duffie, Gârleanu, and Pedersen (2005) and Lagos and Ro-
cheteau (2009, henceforth LR) that modeled OTC financial markets with a search-based frame-
work focused mostly on offering qualitative insights. A non-exhaustive list of such papers includes
Duffie, Gârleanu, and Pedersen (2007), Vayanos and Wang (2007), Vayanos and Weill (2008),
Chang and Zhang (2016), Chiu and Koeppl (2016), Bethune, Sultanum, and Trachter (2018), Far-
boodi, Jarosch, and Shimer (2018), Üslü (2019), Üslü and Velioğlu (2019), and Hugonnier, Lester,
and Weill (2020), among others. See Weill (2020) for a recent survey. In this paper, we use insights
from this literature to quantitatively compare the severity of search frictions and the market power
of intermediaries across different OTC markets. Inspired by the empirical studies documenting a
high level of heterogeneity among clients, we develop an intermediated OTC market model with
ex-ante heterogeneity by extending LR and structurally estimate it.2

The list of papers that adopt an intermediated OTC market framework with a competitive
inter-dealer market similar to LR includes Lagos and Rocheteau (2006), Lester, Rocheteau, and
Weill (2015), Sultanum (2018), Chang and Zhang (2021), Colliard, Foucault, and Hoffmann (2021),
Chiu, Davoodalhosseini, and Jiang (2022), and Kargar, Lester, and Weill (2022), among others.
These papers focus mainly on offering theoretical insights and a few of them incorporate calibrated
numerical examples. In contrast, we structurally estimate our model to compare the distributions
of clients’ exposure levels to frictions and the dealers’ market power in the UK government bond
and corporate bond markets. Accordingly, we also quantify the welfare loss from search and
intermediation frictions in these markets.

Structural estimation of dynamic decentralized trading models is an understudied area. Ex-
amples include Feldhütter (2012), Gavazza (2016), Brancaccio, Li, and Schürhoff (2017), Buchak,
Matvos, Piskorski, and Seru (2020), Hendershott, Li, Livdan, and Schürhoff (2020), Liu (2020),
and Coen and Coen (2021). With the exception of Coen and Coen (2021), these papers model the
trade of an indivisible unit of an asset, while we model trading a divisible asset with trade sizes
optimally chosen. Accordingly, while these papers can be regarded as estimating a version of the
Duffie, Gârleanu, and Pedersen (2005) model (an indivisible asset model), we estimate a version of
the LR model (a divisible asset model). There are several reasons behind this modeling choice we
make. First, trade size heterogeneity is a prevalent empirical fact in markets for financial assets as
we show in the UK government bond and corporate bond markets and as Üslü (2019) shows in the
US corporate bond market. Second, as LR argues, optimally choosing their trade size provides
clients with a flexibility to respond to trading frictions, which, in turn, affects the endogenous
outcomes like liquidity and welfare. Third, and relatedly, this allows us to use information on
trade sizes to identify the deep parameters of our model. Trade sizes are especially important
in identifying simultaneously the clients’ preference shock frequency and matching efficiency with

2Empirical work that studied heterogeneity among clients in OTC markets includes O’Hara, Wang, and Zhou
(2018) and Hendershott, Li, Livdan, and Schürhoff (2020), among others.
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dealers from transaction-level data.3 In their independent, contemporaneous work, Coen and Coen
(2021) also allow for endogenous trade sizes in a decentralized market with all-to-all trading à la
Üslü (2019). They analyze the quantitative impact of post-crisis regulations on the functioning
of the inter-dealer market and the degree of substitutability of liquidity provision by dealers and
by clients in the UK corporate bond market. We abstract away from the inter-dealer market
frictions, and focus exclusively on the frictions in the client-dealer segment of the UK government
and corporate bond markets, instead. As in Üslü (2019), Coen and Coen (2021) assume that all
market participants split transaction surpluses in half. This precludes the possibility of identifying
dealers’ market power within the context of their model, while it is one of our main motivations
in this paper.4

There is also a literature on structural estimation of static decentralized trading models. See,
for example, Eisfeldt, Herskovic, Rajan, and Siriwardane (2018), Allen, Clark, and Houdec (2019),
Allen and Wittwer (2021), Hendershott, Livdan, and Schürhoff (2021), and Beltran (2022). Be-
cause of their static nature, these models do not feature explicit trading delays, and typically rely
on reduced-form search costs. Our dynamic model, instead, features trading delays, and search is
costly because of delayed trade, not because there are physical search costs. This is arguably a
realistic approach to search in financial markets.5 Another strand of literature estimates auction
models to analyze primary markets. We instead study the secondary market trading in OTC fi-
nancial markets. For examples of the estimation of primary market auction models, see Kang and
Puller (2008), Hortaçsu and McAdams (2010), and Kastl (2011), among others. Clark, Houdec,
and Kastl (2021) provide a survey of this literature.

Finally, there is a tradition of estimating structural search models in labor economics, industrial
organization, and financial intermediation literatures. A non-exhaustive list of papers includes
Eckstein and Wolpin (1990) and Gautier and Teulings (2015) from labor economics; Hong and
Shum (2006), De los Santos, Hortaçsu, and Wildenbeest (2012), and Galenianos and Gavazza
(2017) from industrial organization; and Hortaçsu and Syverson (2004), Woodward and Hall
(2012), and Egan (2019) from financial intermediation. See Eckstein and van den Berg (2007) and
Gavazza and Lizzeri (2021) for more comprehensive surveys. Apart from studying different markets
and having a special focus on comparing markets, another important feature of our analysis is

3For example, Gavazza (2016) can also identify simultaneously the preference shock frequency and the matching
efficiency in the market for business aircraft, in which the traded asset is naturally indivisible and trade sizes are
fixed at one. The fraction of aircraft for sale is an observed variable in his dataset, which helps him identify the
preference shock frequency and the matching efficiency in the absence of trade size variation. In transaction-level
data from financial markets, there is no counterpart of the fraction of aircraft for sale, but there is trade size
variation, which motivates our modeling choice.

4In addition, the semi-centralized market structure in our model inherited from LR allows us to obtain the
theoretical moments in closed form or as integral transforms of some closed-form expressions. Hence, our generalized
method of moments (GMM) estimation makes use of theoretical moments of analytical form, while Coen and Coen
(2021) rely on numerical solutions of the equilibrium objects and so their GMM estimation takes the form of a
nested loop where a nonlinear solver is used to search over endogenous objects as well as model parameters.

5See Weill (2020) for a discussion.
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that we place a particular emphasis on endogenous trade sizes and financial asset divisibility,
while these papers model negotiating over an indivisible unit of labor or of a financial or consumer
product.

The rest of the paper is organized as follows. Section 2 introduces the dataset we use and
provides descriptive statistics for the data moments we employ in the structural estimation stage.
Section 3 introduces the structural model environment, characterizes its equilibrium, and derives
formulae for the theoretical moments. Section 4 describes the estimation procedure, reports the
parameter estimates and the bootstrap standard errors, and presents our counterfactual analyses
regarding welfare. Section 5 re-estimates the model parameters to fit data from the COVID-19
crisis. Section 6 concludes.

2 Data and Measurement

2.1 Data Source and Sample Selection

To compare trading frictions across government and corporate bond markets, we use a regulatory,
trade-level dataset, which covers close to the universe of secondary market trades in the UK
markets. A main advantage of the so-called ZEN database is that, unlike other datasets typically
employed in the literature (e.g. TRACE), it contains the identities of both counterparties for each
transaction in addition to information on the time stamp, the transaction amount and price, the
International Securities Identification Number, the account number, and buyer-seller flags.6 The
granularity of the dataset also allows us to identify clients who trade in both government and
corporate bonds in a given time period. This feature of the data enables us not only to explore
heterogeneity in search frictions across clients, but across markets as well.7

Our baseline sample covers the period between Aug 2011 and Dec 2017. We filter out duplicates
and erroneous entries, and exclude all inter-dealer trades as well as client-to-client trades. We
identify 574 clients who are active in both markets, and whose trades cover the majority of total
client trading volume. Moreover, our definition of dealers is the set of gilt-edged market makers
(GEMMs) who perform market-making functions in both bond markets. Their number fluctuates
around 20 in our sample.8 We end up with approximately 1.15 million trades in 57 nominal

6See Czech, Huang, Lou, and Wang (2021), Czech and Pintér (2020), and Kondor and Pintér (2022) for further
details and recent applications of this dataset that mainly focused on identifying informed trading in corporate and
government bond markets.

7This is a major advantage of our dataset compared to those used in the recent OTC literature using structural
search models. For example, Hendershott, Li, Livdan, and Schürhoff (2020) are only able to observe a subset
(insurance companies) of clients in one market (corporate bonds) only.

8Certain large clients (particularly in the corporate bond market) have emerged to perform market making
functions. We exclude them from our set of dealers, and focus on GEMMs in order to have a common set of dealers
across the two markets. Note that the ZEN database is maintained by the UK’s Financial Conduct Authority
(FCA), and the database contains all secondary market transactions, where at least one of the counterparties is
an FCA-regulated entity. Given that all GEMMs as well as many of the active clients are FCA-regulated, our
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government bonds and about 1.12 million trades in about 2700 corporate bonds. Further details
on our data construction procedure are provided in Appendix B. Another common name in the
UK for nominal government bonds is conventional gilts. Thus, we use the gilt market and the UK
government bond market interchangeably throughout the paper.

Risk characteristics are an important dimension that can make the representative corporate
bond distinct from government bonds. To mitigate this issue, we aim to control for heterogeneity
in risk profiles across the two markets by excluding high-yield corporate bonds.9 In addition,
from the set of investment-grade bonds we keep the 57 bonds that have the highest number of
transactions, thereby obtaining a sample of about 187,000 corporate bond transactions that has
the same number of distinct assets as our sample of government bonds.10 Our sample selection
aims to minimize cross-market heterogeneity in payoff risk and adverse selection risk, thereby
facilitating a better identification of the cross-market differences in search and intermediation
frictions.

Moreover, identifying a common set of clients as well as dealers who operate in corporate
and government bonds also mitigates some of the selection problems that may impede any cross-
market analysis. For example, certain clients such as foreign central banks may specialize in
trading government bonds and these clients may have very different characteristics as well, i.e., the
composition of clients may be endogenous to the given market, which would make the comparison
of frictions across markets more difficult.

2.2 Data Description

Table 1 presents summary statistics of the main variables for both markets that will be used in
the empirical analysis. The variables are computed separately for each market on each trading
day.

To measure price dispersion, we first compute the absolute deviation of each transaction price
in our dataset from the hourly average transaction price. We scale this deviation by the hourly
average price so that we can compute daily averages of the transaction-specific absolute deviations
across all available bonds in the given market. We compute daily average dispersion (across all
available bonds) by weighting each observation by the size of the corresponding trade (Jankow-
itsch, Nashikkar, and Subrahmanyam, 2011). As shown in Table 1, average price dispersion is

dataset covers virtually the entire secondary market trading activity in UK corporate and government bonds.
For further details on the identities of GEMMs, see https://www.dmo.gov.uk/responsibilities/gilt-market/market-
participants/.

9We match our corporate bond dataset with information on corporate bond ratings from Thomson Reuters
Eikon, covering the three major rating agencies Moody’s, Standard & Poor’s (S&P), and Fitch. Ratings of Moody’s
are used as the default option because of the firm’s large market coverage. S&P ratings are used if ratings from
Moody’s are not available for the given bond. Fitch ratings are used as a third option.

10Corporate bonds that are traded less frequently are more likely to be subject to adverse selection risk (Ronen
and Zhou, 2013; Benmelech and Bergman, 2018).
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about 6.4 bps in the government bond market and about 10.7 bps in the corporate bond mar-
ket.11 Since Garbade and Silber (1976), price dispersion has often been used as a proxy for the
severity of trading frictions in decentralized financial markets. The newly documented fact that
price dispersion is about 40% larger in corporate bonds than government bonds is suggestive of
corporate bond markets being more frictional than government bond markets. However, without
additional information on clients’ trading intensities and other quantities, price dispersion alone
is not informative on the nature of the trading frictions (search vs. intermediation frictions) and
on the exact difference in welfare losses due to trading frictions across the two markets.

To measure average intensity, we compute the mean of the total number of transactions of
the each of the 574 clients on each trading day. In addition, we compute intensity dispersion as
the mean of the absolute deviation of clients’ total number of transactions from average intensity.
Both measures are scaled by the number of assets (57) in each sample. The second and third rows
of Table 1 shows that average intensity and intensity dispersion are 0.023 and 0.036, respectively,
in the government bond market, and they are 0.0038 and 0.0068 in the corporate bond market.
That is, average intensity and intensity dispersion are about 5-6 times larger in the government
bond market compared to corporate bonds. While the recent empirical literature (O’Hara, Wang,
and Zhou, 2018) studied intensity in corporate bond markets, the cross-market comparison in
intensities is novel. The large difference in intensity measures across the two markets is again
indicative of the corporate bond market being more frictional than the government bond market.
However, without a structural model and additional empirical moments, the challenge remains to
identify whether clients in corporate bond markets are unable or unwilling to trade more than in
government bond markets.

We measure bond turnover as total daily trading volume scaled by our proxy for asset supply,
the amount of issued bond outstanding. The natural logarithm of turnover in our sample is about
2.1 log points larger in government bonds (-4.8) than in corporate bonds (-6.9).

Finally, recent search models of OTC markets (LR) predict that the severity of trading frictions
faced by a client is an important determinant of the trade size demanded by the given client. To
measure average trade size, we first compute the daily mean of the nominal size of each clients’
trades, and then compute the mean across the clients. We scale this measure by asset supply as
well. We find that the natural logarithm of scaled average trade size is similar (-11.38 vs. -11.40)
across the two markets. The similarity of these two values is driven by the fact asset supply is

11To link these estimates to the existing measures of price dispersion in the literature, note that Jankowitsch,
Nashikkar, and Subrahmanyam (2011) used a sample from the TRACE database to find a mean price dispersion
of about 50 bps in the US corporate bond market. Their estimate is measured in standard deviations and used
end-of-day price quotes as the benchmark price. As a cross-check, we tried to compare our results and sample
to theirs, by (i) including all available corporate bonds in our calculation, (ii) converting our absolute deviation
based measure into standard deviation, (iii) and using end-of-day price quotes as benchmark price. We find price
dispersion to be about 40 bps in government bonds and 72 bps in corporate bonds. Our choice of using higher-
frequency (hourly instead of end-of-day) benchmarks aims to mitigate the over-estimation of dispersion that can
be caused by the arrival of intra-day news in the market.
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Table 1: Summary Statistics

Government Bonds Corporate Bonds
Variable Mean sd Mean sd N
Price Dispersion 0.0006368 0.0002587 0.0010714 0.0009618 1614
Average Intensity 0.0231884 0.0051587 0.0038278 0.0009539 1614
Intensity Dispersion 0.0361403 0.0076654 0.00681 0.0015803 1614
Log Turnover -4.803826 0.4256643 -6.90944 0.6709676 1614
Average Log Trade Size -11.38151 0.3800972 -11.40813 0.6642129 1614

Notes: This table summarizes the empirical moments that we use in the structural estimation. Price dispersion is the scaled mean
absolute deviation of transaction prices from the average transaction price in the given hour. Average intensity is the mean of the
clients’ number of transactions. Intensity dispersion is the mean absolute deviation of clients’ number of transactions from average
intensity. Turnover is computed as the daily trading volume scaled by asset supply. Average trade size is the mean (across clients) of
clients’ mean trade size scaled by asset supply. The sample includes 1614 trading days over the period Aug 2011 - Dec 2017.

considerably larger in government bonds than in corporate bonds.12 We scale both volume and
average trade size in both markets to be able to estimate our model parameters using scale-free
empirical moments.

3 A Model of Intermediated OTC Markets

To capture the rich client heterogeneity observed in fixed-income markets in practice, we extend
the stationary version of LR along two dimensions. Namely, clients in our model are ex-ante
heterogeneous in the frequency at which they switch valuation types as well as the frequency at
which they receive trade opportunities. In addition, we allow these cross-sectional frequency dis-
tributions to have a continuous unbounded support. While this introduces some technical hurdles
for the equilibrium characterization, it allows us to make use of parsimonious and realistically
skewed distributions in the structural estimation stage.

3.1 The Economic Environment

Time is continuous and runs forever. The economy is populated by a continuum of clients and a
continuum of dealers whose measures are both normalized to one.

There is a long-lived asset in exogenous supply A > 0. There is also a perishable good, called
numéraire, that all agents consume and produce. Negative net consumption is allowed in the
sense that if an agent produces more numéraire good to support her purchase of the asset than
she consumes, her net consumption becomes negative. The flow utility of a client is

c+ εu (a) ,
12Asset supply is about £750 billion and £60 billion in our estimation subsample for the UK government and

corporate bonds, respectively. Unscaled average trade size would be more than 10 times larger in government
bonds, consistent with Belsham, Rattan, and Maher (2017).
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where c is her net consumption of the numéraire, a is her asset position, and ε is her current
taste type. The felicity function u : [−M,M ] → R is twice continuously differentiable, strictly
increasing, strictly concave, and defined for an arbitrarily large M > 0. Clients also discount the
future at rate r > 0.

Clients are heterogeneous in their taste types whose variation over time is governed by a
continuum of pair-wise independent Poisson processes. Upon an arrival, the shocked client’s new
taste type, ε′, is drawn from the cdf F : [εl, εh] → R. These Poisson taste shocks generate
time-varying exogenous heterogeneity across clients, and so, generate the fundamental motive
to trade. In addition to the current taste heterogeneity, clients are heterogeneous with respect
to two permanent characteristics, χ1 > 0 and χ2 > 0, where χ1 refers to the rate at which a
client receives taste shocks and χ2 the rate at which she receives trade opportunities with dealers.
We denote with χ = (χ1, χ2) a client’s two-dimensional permanent characteristics. The cross-
sectional distribution of clients’ characteristics is represented by the joint cdf G : R2

+ → R. We
follow Vayanos and Wang (2007) in interpreting a large-χ1 client as a liquidity trader and a small-
χ1 as a buy-and-hold trader. Similarly, we follow O’Hara, Wang, and Zhou (2018) in interpreting
a large-χ2 client as an active trader and a small-χ2 as a passive trader.

Dealers’ utility flow is assumed to be c; i.e., they do not derive utility from holding the asset.
Dealers can trade the asset instantaneously in a competitive inter-dealer market at the market-
clearing price P . Accordingly, we assume without loss of generality that dealers do not hold
any position in the asset as they do not derive utility from holding the asset. Clients can trade
only with dealers, infrequently, and in a bilateral fashion, i.e., with one dealer at a time. Clients
receive trading opportunities at the arrival times of a continuum of pair-wise independent Poisson
processes with client-specific arrival rates of χ2.

Upon the arrival of a trade opportunity shock, the shocked client is matched with a dealer
picked randomly and uniformly from the pool of dealers. Each meeting between a dealer and
a client is followed by a Pareto-optimal bargaining game during which the bargaining parties
determine a trade quantity that maximizes the joint-surplus of the trade and a trade price that
splits the maximized joint-surplus between the dealer and the client. In the end, the dealer
captures a fraction η ∈ [0, 1] of the surplus, while the client captures the remaining share 1− η.13

3.2 Equilibrium Definition

Let V (ε, a, χ) refer to the continuation utility of a client with the current taste type of ε, current
asset position a, and the permanent characteristic vector χ. If this client meets a dealer at this

13This Pareto-optimal bargaining solution can be understood as the generalized Nash solution or the proportional
Kalai solution. Aruoba, Rocheteau, and Waller (2007) show that the Nash solution and the Kalai solution may
be very different when agents trade divisible assets with a payment constraint. We do not run into this problem
because our agents are assumed to be able to produce the numéraire good, and so, our agents do not have any
payment constraint. Therefore, both the Kalai and the Nash solutions generate the same Pareto-optimal result we
describe.

12



moment, the number of shares of the asset the client buys, q (ε, a, χ), solves

max
q∈R

V (ε, a+ q, χ)− V (ε, a, χ)− Pq, (3.1)

where V (ε, a+ q, χ) − V (ε, a, χ) represents the client’s contribution to surplus creation and is
equal to the change in her continuation utility after she has bought q units of the asset (or after
she has sold −q units if q is negative). The last term, −Pq, represents the dealer’s contribution to
the surplus creation and is equal to the cost of obtaining q units of the asset from the inter-dealer
market (or the benefit of selling −q units in the inter-dealer market if q is negative). Note that
the trade price between the client and the dealer does not enter the joint-surplus formula because
it is simply a transfer of the numéraire from one party to the other when both have a linear utility
in that.

Trade price that the client pays to the dealer per unit of the asset traded is denoted by p (ε, a, χ)
and is equal to

p (ε, a, χ) = P + η
V (ε, a+ q (ε, a, χ) , χ)− V (ε, a, χ)− Pq (ε, a, χ)

q (ε, a, χ) . (3.2)

Since the joint-surplus in the numerator of the fraction in (3.2) is non-negative by the optimal
choice of q (ε, a, χ), this means that the dealer charges a markup over the inter-dealer price P
when selling the asset to the client (q (ε, a, χ) > 0). Vice versa, the dealer obtains a markdown
when buying the asset from the client (q (ε, a, χ) < 0).

The continuation utility V (ε, a, χ) satisfies the following Hamilton-Jacobi-Bellman (HJB)
equation:

rV (ε, a, χ) = εu (a) + χ1

εĥ

εl

[V (ε′, a, χ)− V (ε, a, χ)] dF (ε′)

+ χ2 [V (ε, a+ q (ε, a, χ) , χ)− V (ε, a, χ)− q (ε, a, χ) p (ε, a, χ)] . (3.3)

A client’s “flow” continuation utility, rV (ε, a, χ), equals the sum of three terms. The first term is
the client’s current utility flow from holding a units of the asset when of taste type ε. The second
term is the flow value of switching to another taste type ε′ at a Poisson rate of χ1. The last term is
the flow value of changing the asset position from a to a+ q (ε, a, χ) by paying q (ε, a, χ) p (ε, a, χ)
units of the numéraire, which is also an infrequent possibility arriving at a Poisson rate of χ2.

Let Φχ (ε, a) denote the stationary joint cdf of clients’ taste types and asset positions conditional
their permanent characteristics. The stationarity of this cdf is guaranteed by the following inflow-
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outflow equation:

χ1F (ε)
εĥ

ε

Φχ (dε′, a) + χ2

ε̂

εl

M̂

−M

I{a≤a′+q(ε′,a′,χ)}Φχ (dε′, da′)

= χ1 (1− F (ε)) Φχ (ε, a) + χ2Φχ (ε, a) . (3.4)

The first term of the LHS and of the RHS stand in for the inflow and the outflow due to taste
shocks, respectively. Similarly, the second terms stand in for the inflow and the outflow due to
trade.

To understand the first term of the LHS, note that a client with characteristics χ = (χ1, χ2),
an asset position smaller than a, and a taste type larger than ε switches to a taste type smaller
than or equal to ε with probability F (ε) following a taste shock that occurs at rate χ1. Thus,
the multiplication of χ1, the probability F (ε), and the measure of such clients gives us the inflow
to Φχ (ε, a) due to taste shocks. Similarly, the first term of the RHS, the outflow due to tastes
shocks, is equal to the multiplication of the Poisson intensity of taste shock, χ1, the probability,
1 − F (ε), that the new taste type is larger than ε, and the measure of clients from whom the
outflow is originating.

The second term of the LHS, the (gross) inflow to Φχ (ε, a) due to trade, is the multiplication
of the Poisson intensity of trade opportunities for this class of clients, χ2, and the measure of a
subset of clients with characteristics χ. The indicator function inside the integral makes sure that
a candidate inflow client wants to hold an asset position less than a so she indeed creates an inflow.
The second term of the RHS, similarly, stands in for the (gross) outflow from Φχ (ε, a), which is
equal to the multiplication of the Poisson rate of trade opportunities and the measure of clients
with characteristics χ who have an asset position smaller than a and a taste type smaller than ε.

In addition to the stationarity condition (3.4), there are three additional feasibility or account-
ing identities that Φχ (·, ·) must satisfy:

χ2ˆ

0

χ1ˆ

0

M̂

−M

εĥ

εl

Φχ′ (dε, da)G (dχ′1, dχ′2) = G (χ1, χ2) (3.5)

for all χ ∈ supp (dG),
M̂

−M

εĥ

εl

Φχ (dε, da) = 1, (3.6)
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for all χ ∈ supp (dG), and

∞̂

0

∞̂

0

M̂

−M

εĥ

εl

aΦχ (dε, da)G (dχ1, dχ2) = A. (3.7)

Equation (3.5) implies that the equilibrium conditional distribution of clients’ states is consistent
with the exogenous distribution of client characteristics, (3.6) follows from the fact that Φχ (·, ·)
is a conditional cdf, and (3.7) guarantees that all units of the asset are held by clients, i.e., the
inter-dealer market clears and dealers do not hold inventory.

Taking stock, we define a stationary equilibrium as follows.

Definition 1 A stationary equilibrium is (i) a function V : [εl, εh] × [−M,M ] × R2
+ → R for

clients’ continuation utilities, (ii) a function q : [εl, εh] × [−M,M ] × R2
+ → R for clients’ trade

sizes, (iii) a function p : [εl, εh]× [−M,M ]× R2
+ → R for clients’ transaction prices, (iv) a joint

cdf Φχ : [εl, εh] × [−M,M ] → R for clients’ taste types and asset positions conditional on their
characteristics χ ∈ supp (dG), and (v) an interdealer market price P ∈ R such that

• Given (ii) and (iii), (i) solves the HJB equation (3.3).

• Given (i) and (v), (ii) maximizes the joint surplus (3.1).

• Given (i), (ii), and (v), (iii) splits the maximized joint surplus between the client and the
dealer according to (3.2).

• Given (ii), (iv) satisfies the stationarity and feasibility conditions (3.4)-(3.7).

• (v) is implied by (ii) and (iv), i.e., the interdealer market clears by Walras’ law.

3.3 Equilibrium Characterization

Substituting (3.2) into (3.3),

rV (ε, a, χ) = εu (a) + χ1

εĥ

εl

[V (ε′, a, χ)− V (ε, a, χ)] dF (ε′)

+ χ2 (1− η) [V (ε, a+ q (ε, a, χ) , χ)− V (ε, a, χ)− q (ε, a, χ)P ] .

Using (3.1) and with a change of variable,

rV (ε, a, χ) = εu (a) + χ1

εĥ

εl

[V (ε′, a, χ)− V (ε, a, χ)] dF (ε′)

+ χ2 (1− η) max
a′
{V (ε, a′, χ)− V (ε, a, χ)− (a′ − a)P} .
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Rearrangement implies,

[r + χ1 + χ2 (1− η)]V (ε, a, χ) = εu (a) + χ1

εĥ

εl

V (ε′, a, χ) dF (ε′)

+ χ2 (1− η) max
a′
{V (ε, a′, χ)− (a′ − a)P} (3.8)

or

V (ε, a, χ) =
r εu(a)

r
+ χ1

εh́

εl

V (ε′, a, χ) dF (ε′) + χ2 (1− η) max
a′
{V (ε, a′, χ)− (a′ − a)P}

r + χ1 + χ2 (1− η) .

The auxiliary HJB equation (3.8) shows that a client’s current continuation value is equal to the
weighted average of three values: the value of holding a units of the asset forever while keeping
the current taste type ε, the value of keeping a units forever with a randomly drawn taste type
from the cdf F , and the value of holding the optimal amount by trading at the interdealer price
P while keeping the taste type ε. The first one affects the continuation utility because the client
is impatient (r > 0), and so, its weight is r/ (r + χ1 + χ2 (1− η)). The second one affects the
continuation value because the client receives taste shocks at the Poisson rate χ1, and so, its
weight is χ1/ (r + χ1 + χ2 (1− η)). The last one affects the continuation value because the client
gets to trade at the Possion rate χ2. The weight of this term is, however, weighted down by
1 − η because the intermediating dealer will capture a share, η, of the trade surplus. Thus,
the weight of the last term turns out to reflect a bargaining-adjusted Poisson rate χ2 (1− η):
χ2 (1− η) / (r + χ1 + χ2 (1− η)).

The first key step in the characterization of the equilibrium is to solve the auxiliary HJB
equation (3.8) given P . One challenge in establishing the existence and uniqueness of the solution
to (3.8) is that it does not define a contraction mapping because we allow χ1 and χ2 to be arbitrarily
large, χ ∈ [0,∞)2. This eliminates the possibility of a uniform contraction modulus. To overcome
this challenge, we exploit local contraction techniques developed by Martins-da Rocha and Vailakis
(2010) to show the existence and uniqueness of the solution to (3.8). Then, we follow a method
of undetermined coefficients to obtain this unique solution in closed form.

Proposition 1 Given P , the unique solution to the auxiliary HJB equation (3.8) has the following
functional form:

V (ε, a, χ) = χ2 (1− η)
r + χ2 (1− η)Pa+ 1

r + χ2 (1− η)
(r + χ2 (1− η)) ε+ χ1ε̄

r + χ1 + χ2 (1− η) u (a) + κ0 (ε, χ) , (3.9)
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where

ε̄ ≡
εĥ

εl

εdF (ε) .

and for some κ0 : [εl, εh]× R2
+ → R.

Now, one can easily determine the terms of trade between a client and a dealer using (3.1) and
(3.2).

The FOC of the joint surplus maximization (3.1) is

V2 (ε, a′, χ) = P,

where V2 (·, ·, ·) refers to the derivative with respect to the second argument. Using (3.9) and after
rearranging, one obtains that the optimal asset position of a client with the taste type of ε and
characteristics χ is

a? (ε, χ) = (u′)−1
[

r + χ1 + χ2 (1− η)
(r + χ2 (1− η)) ε+ χ1ε̄

rP

]
, (3.10)

i.e., a client with these characteristics will end up holding a? (ε, χ) units of the asset after meeting
a dealer regardless of her initial asset position a. Thus, the bilateral trade quantity between this
client and the dealer is

q (ε, a, χ) = (u′)−1
[

r + χ1 + χ2 (1− η)
(r + χ2 (1− η)) ε+ χ1ε̄

rP

]
− a. (3.11)

Given P , (3.9) and (3.11), (3.2) gives the negotiated price, p (ε, a, χ), between the given client and
dealer.

Equipped with (3.10) and (3.11), we derive the stationary equilibrium distribution in closed
form in Proposition 2.

Proposition 2 Let a? (·, ·) be given by (3.10), and let the function ε̃χ : [−M,M ]→ supp (dF ) be
defined such that ε̃χ(a) = sup {ε ∈ supp (dF ) : a ≥ a? (ε, χ)}. Then, for any χ ∈ supp (dG),

Φχ (ε, a) = χ1F (ε)F (ε̃χ(a)) + χ2F (min {ε, ε̃χ(a)})
χ1 + χ2

. (3.12)

As part of the proof of Proposition 2, we show in the Appendix that the fraction (or density)
of type-χ clients whose current asset position is a? (ε, χ) is equal to the fraction (or density) of
type-χ clients who have a current taste type of ε, which is dF (ε). This allows us to re-write (3.7)
as

∞̂

0

∞̂

0

εĥ

εl

a? (ε, χ) dF (ε)G (dχ1, dχ2) = A.
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Using (3.10), this equation allows us to determine the interdealer market price P , which is the
only remaining equilibrium object that is yet to be determined.

Proposition 3 Assume u′ (∞) = 0 and u′ (0) = ∞. Then, the unique equilibrium interdealer
market price P solves

∞̂

0

∞̂

0

εĥ

εl

(u′)−1
[

r + χ1 + χ2 (1− η)
(r + χ2 (1− η)) ε+ χ1ε̄

rP

]
dF (ε)G (dχ1, dχ2) = A. (3.13)

Taking stock, the equilibrium defined in Definition 1 is characterized by Propositions 1–3 in
closed form up to the interdealer market price P . With some additional parametric assumptions,
P can be obtained in closed form as well. For example, as in the original LR model, P is available
in closed form when u (a) = log (a). In the next subsection, we assume an iso-elastic utility
function, which nests the log utility as a special case, and a binary taste-type structure to obtain
explicit formulas for endogenous liquidity measures such as bid-ask spread, trade volume, and
price dispersion.

3.4 A Special Case

We let u (a) = a1−γ

1−γ . We assume that clients’ taste types take on binary values ε ∈ {0, 2σ} for
σ > 0. This setup provides an important simplification as there will be a one-to-one mapping
between client characteristics χ and unsigned trade sizes due to binary taste types. That is, fixing
characteristics χ, a high-type client currently stuck with the low-type optimal position will buy
q (χ) units of the asset upon meeting a dealer; vice versa, a low-type client currently stuck with
the high-type optimal position will sell q (χ) units, where

q (χ) ≡ a? (2σ, χ)− a? (0, χ) .

For further simplicity, we impose some symmetry conditions: the distribution F has two equal
mass points at ε = E [ε] ± σ, which means that one natural interpretation for parameter σ is
preference volatility. This also implies that upon receiving a taste shock a client preserves her
current taste with probability 1/2 or switches to the opposite taste type with probability 1/2. In
other words, a low-type (resp. high-type) client with characteristics χ = (χ1, χ2) switches to high
type (resp. low type) at the Poisson rate of χ1/2.

Let us start by calculating the optimal holding of each client type in this special case. Using
(3.10) and our assumptions on the utility function and the taste types,

a? (E [ε]± σ, χ) =
[(

1± r + χ2 (1− η)
r + χ1 + χ2 (1− η)

)
σ

rP

]1/γ

. (3.14)
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Note that this optimal holding takes as given the interdealer market price P . Now we calculate
the equilibrium value of P so that we can write all equilibrium objects in terms of exogenous
parameters and distributions. With a slight abuse of notation “dG (χ′) = G (dχ′1, dχ′2)”, Equation
(3.13) can be re-written as

1
2

ˆ

R2
+

[
(1 + Σ (χ′)) σ

rP

]1/γ
dG (χ′) + 1

2

ˆ

R2
+

[
(1− Σ (χ′)) σ

rP

]1/γ
dG (χ′) = A,

where
Σ (χ) ≡ r + χ2 (1− η)

r + χ1 + χ2 (1− η)
is the endogenous demand rescaling coefficient that represents clients’ individually optimal re-
sponse to frictions. After rearranging,

P = σ

r


1

2A

ˆ

R2
+

[
(1 + Σ (χ′))1/γ + (1− Σ (χ′))1/γ]

dG (χ′)


γ

. (3.15)

Substituting (3.15) into (3.14), the equilibrium optimal holding of each client type is

a? (E [ε]± σ, χ) = A
(1± Σ (χ))1/γ

1
2

´
R2

+

[
(1 + Σ (χ′))1/γ + (1− Σ (χ′))1/γ

]
dG (χ′)

, (3.16)

and, in turn, the equilibrium trade quantity of client χ is

q (χ) = A
(1 + Σ (χ))1/γ − (1− Σ (χ))1/γ

1
2

´
R2

+

[
(1 + Σ (χ′))1/γ + (1− Σ (χ′))1/γ

]
dG (χ′)

. (3.17)

In the context of search and matching models, exposure to frictions is conveniently represented by a
Poisson intensity, χ2. It stands in for many unmodeled features like the level of connectivity to the
interdealer market, search ability, or ability to quickly close a deal with dealers perhaps thanks to
repeat relations. The equilibrium trade quantity (3.17) reveals the standard relationship between
trade aggressiveness and exposure to frictions. Controlling for χ1, a more active trader (i.e., with
larger χ2) trades in larger quantities because she is less afraid of being stuck with a suboptimal
position following a taste shock. This is represented by a larger Σ (χ) as χ2 increases. On the other
hand, controlling for χ2, a larger χ1 leads to lower Σ (χ) and lower trade quantities, because a
large-χ1 trader switches her taste type very frequently and trades in a way to hedge herself against
the risk of being stuck with a suboptimal position following a taste shock. The fact that χ1 and
χ2 have opposite effect on trade sizes makes trade size information very useful to simultaneously
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identify χ1 and χ2 from the data. Other endogenous objects such as trading intensity are typically
increasing in both χ1 and χ2. Therefore, adding trade-size-related information to the list of data
moments brings some unique information and helps us identify the deep parameters of our model.

Next, we determine the equilibrium transaction prices in our special case. Let us start by
defining α (χ) ≡ p (2σ, a? (0, χ) , χ) and β (χ) ≡ p (0, a? (2σ, χ) , χ) as the ask and the bid price
between a client of type χ and a dealer. Note that these two are the only realized transaction
prices for this client in our special case: The client pays α (χ) per unit to the dealer when she
buys q (χ) units from him, and vice versa, she receives β (χ) per unit from the dealer when she
sells q (χ) units to him. We calculate these prices using (3.2):

α (χ) = (1− η) q (χ)P + η {V (2σ, a? (2σ, χ) , χ)− V (2σ, a? (0, χ) , χ)}
q (χ)

and
β (χ) = (1− η) q (χ)P + η {V (0, a? (2σ, χ) , χ)− V (0, a? (0, χ) , χ)}

q (χ) .

These formulas for bid and ask prices are already intuitive in their current form. When the client
has all the bargaining power (η = 0), both the bid and the ask price are equal to P , which means
that the bid-ask spread is zero and the dealer’s transaction surplus is zero. When the dealer has
all the bargaining power (η = 1), bid and ask prices are equal to the client’s “reservation prices,”
which leaves the client with zero transaction surplus and maximizes the bid-ask spread that goes
to the dealer.

As an intermediate step, note that Equation (3.9) implies

V (ε, a? (2σ, χ) , χ)− V (ε, a? (0, χ) , χ) = χ2 (1− η)
r + χ2 (1− η)q (χ)P

+ 1
r + χ2 (1− η)

(r + χ2 (1− η)) ε+ χ1σ

r + χ1 + χ2 (1− η) ∆u (χ) ,

where

∆u (χ) ≡ [a? (2σ, χ)]1−γ

1− γ − [a? (0, χ)]1−γ

1− γ

= 1
1− γ

 A
1
2

´
R2

+

[
(1 + Σ (χ′))1/γ + (1− Σ (χ′))1/γ

]
dG (χ′)


1−γ [

(1 + Σ (χ))
1
γ
−1 − (1− Σ (χ))

1
γ
−1
]
.

Thus,

α (χ) = (1− η)P + η

r + χ2 (1− η)

(
χ2 (1− η)P + (1 + Σ (χ))σ∆u (χ)

q (χ)

)
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and
β (χ) = (1− η)P + η

r + χ2 (1− η)

(
χ2 (1− η)P + (1− Σ (χ))σ∆u (χ)

q (χ)

)
.

3.4.1 Digression: Bid-Ask Spreads

Define
s (χ) ≡ α (χ)− β (χ) .

From the formulas above,
s (χ) = η

2σ
r + χ1 + χ2 (1− η)

∆u (χ)
q (χ) .

Assuming γ = 1 (log utility) and using the equilibrium trade quantity (3.17),

s (χ) = ησ

A

∆u (χ)
r + χ2 (1− η) . (3.18)

To analyze the qualitative properties of s (χ), we use the lemma below.

Lemma 1 Assume γ = 1. Then, ∆u (χ) / [r + χ2 (1− η)] is strictly decreasing in both χ1 and χ2.

Lemma 1 has an unambiguous prediction for the relationship between how frequently a client
trades and the bid-ask spread she faces. A client trades frequently either because she is a liquidity
trader (high χ1) or an active trader (high χ2). Either way, the second factor of the bid-ask spread
(3.18) is lower for a client who trades more frequently compared to that of a client who trades less
frequently, as stated by Lemma 1. First, ∆u (χ) is decreasing in χ1, and so is the second factor
of s (χ). Second, it is decreasing in χ2, because while both its numerator and its denominator
increase with χ2, the numerator is concave but the denominator is linear. Thus, the effect coming
from the denominator is stronger and makes the second factor of s (χ) a decreasing function of χ2

as well. Taking stock, a client who trades frequently faces a smaller bid-ask spread. This result is
consistent with the findings of O’Hara, Wang, and Zhou (2018) on the US corporate bond market
and our findings in Appendix C on the UK government bond and corporate bond markets.

3.4.2 Going Back to Characterization: Equilibrium Distribution

So far, we have derived the equilibrium inter-dealer market price, value functions, bilateral dealer-
client trade quantities and prices. What remains is to derive the equilibrium distribution, and
then, we can derive price- and quantity-related moment formulae, allowing us to connect the model
to the data.

The result (3.10) that there is a unique optimal holding for any client (ε, χ) implies the following
support for the equilibrium asset holding distribution for clients with characteristics χ:

A (χ) = {a? (ε, χ) : ε ∈ supp (dF )} .
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Indeed, any client (ε, χ) either holds her optimal position a? (ε, χ) or is still stuck with a previously
optimal position a? (ε′, χ) for some ε′ 6= ε because she is yet to trade with a dealer after her latest
taste shock. For our special case with the binary taste types, this set contains two elements:

A (χ) = {a? (0, χ) , a? (2σ, χ)} .

As a result, the equilibrium distribution admits a simple representation as a conditional probability
mass function (pmf). Let φχ (ε, a) be the equilibrium joint pmf of taste types and asset positions
conditional on client characteristics. Equation (3.12) implies for our special case that

φχ (ε, a) =


0 if a /∈ A (χ)
1
4
χ1+2χ2
χ1+χ2

if a = a? (ε, χ)
1
4

χ1
χ1+χ2

if a = a? (ε′, χ) for ε′ 6= ε.

(3.19)

Equation (3.19) effectively shows the mass of clients who are happy with their current holding and
the mass of those who are unhappy with their current holding. Considering that only the latter
type will trade in equilibrium, the rate at which the χ-clients trade with dealers is

χ2
1
4

χ1

χ1 + χ2
dG(χ) + χ2

1
4

χ1

χ1 + χ2
dG(χ) = χ2

1
2

χ1

χ1 + χ2
dG(χ),

where χ2 is the per-client meeting rate, dG(χ) is the mass of those clients, and 1
2

χ1
χ1+χ2

is the
fraction of χ-clients who are unhappy with their current holding: Half of them are of low taste
type but holding a high position and the other half are of high taste type but holding a low
position. Thus, although a client with characteristics χ = (χ1, χ2) meets a dealer at the exogenous
Poisson intensity of χ2, her endogenous trading intensity is

θ (χ) ≡ χ2

2
χ1

χ1 + χ2
. (3.20)

Price dispersion In our model and in the data, different dealer-client pairs trade at different
prices. The magnitude of this deviation from the law of one price is quantified by price dispersion.
We calculate the equilibrium price dispersion as the trade size-weighted mean absolute deviation
of dealer-client transaction prices from the inter-dealer market price normalized by the inter-dealer
market price:

σp =

´
R2

+

Ḿ

−M

εh́

εl

θ (χ) q (χ) |p (ε, a, χ)− P |Φχ (dε, da) dG (χ)

P
´
R2

+

Ḿ

−M

εh́

εl

θ (χ) q (χ) Φχ (dε, da) dG (χ)
.
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And, using the fact that half of the transactions happen at client-specific bid prices and the other
half at client-specific ask prices in our special case,

σp =

´
R2

+

θ (χ) q (χ) α(χ)−β(χ)
2 dG (χ)

P
´
R2

+

θ (χ) q (χ) dG (χ) .

Hence, in our special case, the equilibrium price dispersion is equal to the half of (a weighted
average of) the realized bid-ask spreads.

3.4.3 Welfare

One of our main motivations to write this model of OTC market is to quantify the welfare loss
caused by the frictions characteristic of OTC markets. Accordingly, we calculate various measures
of social welfare in our model environment. Naturally, the first one is social welfare evaluated at
the equilibrium allocation:

WEq ≡ 1
r

ˆ

R2
+

M̂

−M

εĥ

εl

εu (a) Φχ (dε, da) dG (χ)− 1
r

εĥ

εl

εu (A) dF (ε) . (3.21)

Let us highlight the key properties of our model environment that make WEq a sensible measure
of social welfare. The first term represents the present value of all utility benefits stemming from
clients’ asset holdings. Any transfer of numéraire between clients and dealers net out to zero
thanks to quasi-linear and transferable utility, and so, the welfare is generated by clients’ utility
flows only. In our model, clients’ utility flows change over time due to exogenous time variation in
their ε and endogenous time variation in their a. However, the distribution of utility flows across
clients stays the same in the stationary equilibrium. Hence, the present value calculation reduces
to dividing the aggregate utility flow by the discount rate r.14 Because we want WEq to capture
the welfare created by OTC trading opportunities, we subtract a baseline level of welfare from the
first term of WEq. Our choice of baseline welfare is the level of welfare in an “autarky” allocation
in which every client’s holding is always equal to the per-capita supply, A, of the asset and none
of the clients trades as they switch from one taste type to another. That is, our baseline welfare
measures the level of welfare obtained when clients forego all the gains from trade.

The second welfare measure we calculate is the unconstrained efficient or first-best welfare, i.e.,
the level of welfare when a benevolent social planner decides the allocation of assets across agents

14To be more precise, we make use of the equality 1
r =

∞́

0
e−rtdt for r > 0.
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without any constraint apart from the usual resource constraints:

WFB ≡ max
{a(ε)}ε∈supp(dF )

1
r

εĥ

εl

εu [a (ε)] dF (ε)− 1
r

εĥ

εl

εu (A) dF (ε) ,

subject to
εĥ

εl

a (ε) dF (ε) = A

and
−M ≤ a (ε) ≤M

for all ε ∈ supp (dF ). Again, in writing down this welfare measure, we use the fact that how
numéraire is allocated across agents is irrelevant to social welfare due to transferable utility and
the fact that the distribution of taste types across clients is stationary.

The last welfare measure we calculate is the constrained efficient or second-best welfare, i.e.,
the level of welfare when a benevolent social planner can modify only the terms of trade when
agents get to trade, but otherwise is subject to the constraints stemming from the OTC market
structure as well as the usual resource constraints:

WSB ≡
∞̂

0

e−rt


ˆ

R2
+

M̂

−M

εĥ

εl

εu (a) Φ∗χ (dε, da | t) dG (χ)

 dt−
1
r

εĥ

εl

εu (A) dF (ε) . (3.22)

The planner maximizes WSB with respect to controls, q (ε, a, χ | t), subject to the laws of motion
for the state variables, Φ∗χ (dε, da | t), and to the feasibility condition of asset reallocation,

ˆ

R2
+

M̂

−M

εĥ

εl

χ2q (ε, a, χ | t) Φ∗χ (dε, da | t) dG (χ) = 0. (3.23)

Note that using prices as control variable is redundant for the usual reason that any transfer of the
numéraire good from one agent to another does not affect WSB because of quasi-linear preferences.

The next proposition presents these three welfare notions as functions of model primitives.

Proposition 4 In our special case with iso-elastic utility and binary taste types, the values of
social welfare evaluated at the first-best, the second-best, and the equilibrium allocations are

WFB = σ

r

A1−γ

1− γ
(
21−γ − 1

)
,
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WSB = σ

r

A1−γ

1− γ



´
R2

+

[(
2r+χ1+2χ2
r+χ1+χ2

) 1
γ
−1 χ2+χ1/2

χ2+χ1
+
(

χ1
r+χ1+χ2

) 1
γ
−1 χ1/2

χ2+χ1

]
dG (χ)

1
2

´
R2

+

[(
2r+χ1+2χ2
r+χ1+χ2

)1/γ
+
(

χ1
r+χ1+χ2

)1/γ
]
dG (χ)


1−γ − 1

 ,

and

WEq = σ

r

A1−γ

1− γ



´
R2

+

[(
2r+χ1+2χ2(1−η)
r+χ1+χ2(1−η)

) 1
γ
−1 χ2+χ1/2

χ2+χ1
+
(

χ1
r+χ1+χ2(1−η)

) 1
γ
−1 χ1/2

χ2+χ1

]
dG (χ)

1
2

´
R2

+

[(
2r+χ1+2χ2(1−η)
r+χ1+χ2(1−η)

)1/γ
+
(

χ1
r+χ1+χ2(1−η)

)1/γ
]
dG (χ)


1−γ − 1

 ,

respectively.

One lesson from Proposition 4 is that the efficiency implications of LR apply to our generalized
setup as well. That is, the second-best welfare would obtain in equilibrium if dealers’ share of
transaction surplus were zero. As in the model of LR, clients in our model reduce their trade
quantities by inefficiently large amount because they cannot internalize all the gains from trade
due to η > 0. This means that while the source of inefficiency in this model is search frictions
(χ2 <∞), the source of constrained inefficiency is dealers’ market power (η > 0).

In our quantitative analysis below, Proposition 4 plays a key role. After we estimate the
model parameters for the gilt market and the UK corporate bond market, we use Proposition 4 to
calculate WFB, WSB, and WEq for each market. This allows us to understand and compare the
extent to which OTC market frictions affect the participants’ well-being in two of Europe’s largest
fixed-income markets. In particular, we calculate

(
WFB −WEq

)
/WFB to quantify the welfare loss

from the real-world frictions relative to what could obtain in a perfect world. Then, we decompose
this relative welfare loss to a component due to dealers’ market power,

(
WSB −WEq

)
/WFB, and

a component due purely to search frictions,
(
WFB −WSB

)
/WFB.

4 Estimating the Model

4.1 Bringing the Model to the Data

In what follows, we estimate the special case of our model with iso-elastic utility and binary taste
types (presented in Section 3.4) for the gilt market and the UK corporate bond market. We have
to determine five parameters, r, σ, γ, A, and η, and one distribution, G (χ1, χ2), for each market.
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4.1.1 Summary of Model Equations for Estimation

The equations for the observable empirical objects to be used in the estimation are:

θ =
ˆ

R2
+

θ (χ) dG (χ) , (4.1)

σθ =
ˆ

R2
+

∣∣∣θ (χ)− θ
∣∣∣ dG (χ) , (4.2)

log q̄

A
= log

ˆ

R2
+

q (χ)
A

dG (χ) = log
ˆ

R2
+

 (1 + Σ (χ))1/γ − (1− Σ (χ))1/γ

1
2

´
R2

+

[
(1 + Σ (χ′))1/γ + (1− Σ (χ′))1/γ

]
dG (χ′)

 dG (χ) ,(4.3)

log T = log
ˆ

R2
+

(
θ (χ) q (χ)

A

)
dG (χ)

= log
ˆ

R2
+

θ (χ) (1 + Σ (χ))1/γ − (1− Σ (χ))1/γ

1
2

´
R2

+

[
(1 + Σ (χ′))1/γ + (1− Σ (χ′))1/γ

]
dG (χ′)

 dG (χ) , (4.4)

σp =

´
R2

+

θ (χ) q (χ) α(χ)−β(χ)
2 dG (χ)

P
´
R2

+

θ (χ) q (χ) dG (χ) , (4.5)

Going over the intensity-based, quantity-based, or price-based moments listed above, the entire
distribution G is necessary to calculate any endogenous measure. Therefore, we try to determine
it entirely. In doing so, we impose further parametric assumptions. First, we parameterize clients’
characteristics, χ = (χ1, χ2), by assuming a one-to-one relationship between χ1 and χ2:

χ2 = λ log (1 + χ1) , (4.6)

where the parameter λ > 0 will be estimated. Intuitively, this assumption imposes that clients,
who have a higher exposure to taste shocks, are likely to receive more trading opportunities as well.
This positive relationship is micro-founded in the literature, for example, by Vayanos and Wang
(2007) with endogenous market segmentation and by Hendershott, Li, Livdan, and Schürhoff
(2020) with endogenous client-dealer relationships.15 Here, we take this positive association as

15Vayanos and Wang (2007) let agents with different taste shock intensity choose the segment of the market in
which to trade. They show that an asymmetric equilibrium exists in which high-taste-shock-intensity agents trade
in a liquid segment and low-taste-shock-intensity agents trade in the illiquid segment. Hendershott, Li, Livdan,
and Schürhoff (2020) allow clients with different taste shock intensity to choose the number of dealers in their
relationship set. The optimal number of dealers is increasing in taste shock intensity, which allows high-taste-
shock-intensity clients to trade more frequently than low-taste-shock-intensity clients.
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given and let the data tell us about its strength (λ). Equation (4.6) effectively reduces the two-
dimensional client heterogeneity by one dimension, which simplifies the estimation of the model.

With this simplification, it suffices to pin down the marginal distribution of χ1, G (χ1). Our
second parametric assumption is related to this. We assume an exponential distribution, G (χ1) ∼
Exp (δ). Then, to estimate four deep parameters, δ, λ, η, and γ, we use information regarding five
different data moments: (i) the mean (4.1) and (ii) the mean absolute deviation (4.2) of clients’
trade intensities, (iii) the natural logarithm of average trade size normalized by the per-capita
asset supply (4.3), (iv) the natural logarithm of bond turnover, log T , calculated as above in (4.4),
and (v) price dispersion scaled by the inter-dealer price (4.5).

The remaining parameters are the preference parameters and the per-capita asset supply: r,
σ, and A. We set r equal to 5% per annum as is common.16 Since we use an iso-elastic utility
function, the only role A plays is to scale up and down the equilibrium quantities and prices.
Thus, we normalize A to be 1.17 What remains to be determined is the preference volatility
parameter, σ. It is easy to see that the only role of σ is to scale up and down all the price levels,
α (χ), β (χ), and P . Hence, it does not affect our normalized price dispersion measure (4.4), and
so, it does not affect any of the endogenous moments we match in our estimation procedures.
Similarly, the welfare measures stated in Proposition 4 are only scaled up or down by σ, and so,
the relative welfare measures we are interested in are not affected by σ either. Therefore, we leave
the parameter σ out of our estimation.

4.1.2 Estimation

A unique feature of the dataset we use is that it contains the identities of both counterparties for
each trade. This allows us to design an empirical framework that compares the market structures,
and not the different pool of participants or assets the markets contain. That is to say, the
subsample we use for estimation contains trades of the same clients both in the gilt and the
corporate bond markets. In addition, it contains trades of a subset of corporate bonds that are
similar to gilts in terms of payoff and adverse selection risks. Therefore, allowing for different
utility curvatures (γ) for the gilt and the corporate bond markets would give our model an unfair
advantage in matching the data moments at best, and would lead to identification problems at
worst. For this reason, we assume a common utility curvature parameter for the two markets.18

We use generalized methods of moments (GMM) to estimate the model parameters for the
gilt market and the corporate bond market. We have eight moment conditions to estimate the
parameter vector ψ = (γ, δg, λg, ηg, δc, λc, ηc), which consists of seven parameters. Given that the

16See Duffie, Gârleanu, and Pedersen (2007), Feldhütter (2012), Lester, Rocheteau, and Weill (2015), and
Hugonnier, Lester, and Weill (2020) for example.

17See Lester, Rocheteau, and Weill (2015).
18We thank our discussant Liang Ma for this suggestion.
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structural model is over-identified, we use GMM for the estimation:

min
ψ∈Ψ

[(m̂ (ψ)−mS)�mS]′ Ŵ [(m̂ (ψ)−mS)�mS] , (4.7)

where � is Hadamard division, m̂ (ψ) is the vector of theoretical moments computed from the
model evaluated at the parameter vector ψ, mS is the vector of corresponding sample moments,
and Ŵ is a weighting matrix. Note that we follow Gavazza (2016) in using moments in percentage
deviation from their empirical targets to ensure that they have the same scale. In practice, we use
simple differences for the logged moments (i.e., we do not calculate percentage deviations for the
logged moments) because percentage deviations and log deviations are already of the same scale.

Six of our eight theoretical moments are average trade intensity, log bond turnover, and price
dispersion given by (4.1), (4.4), and (4.5), respectively, calculated separately for the gilt and the
corporate bond markets each. Our seventh moment is the ratio of intensity dispersion in the
gilt market to intensity dispersion in the corporate bond market that we name relative intensity
dispersion and calculate using (4.2). The Monte Carlo evidence from Section 4.5 implies that the
sample intensity deviation calculated from any dataset is a biased estimator of the theoretical
intensity dispersion implied by the parameters of the underlying data generating process. There-
fore, we do not use the intensity dispersion levels from the two markets as separate moments.
Nevertheless, the Monte Carlo evidence also reveals that relative intensity dispersion calculated
using two datasets is an unbiased estimator of the theoretical relative intensity dispersion implied
by the parameters of the respective data generating processes of the two markets. This allows
us to use relative intensity dispersion as a moment for estimation. Finally, our eighth moment
is the natural logarithm of average normalized trade size in the gilt market minus the natural
logarithm of average normalized trade size in the corporate bond market, which we name relative
log trade size and calculate using (4.3). Our parsimonious distributional assumptions for G (χ1)
in the two markets and the use of a common utility curvature parameter preclude the possibility
of identifying both the level of log average trade size and the level of log bond turnover in the
two markets at the same. Hence, we use the levels of log turnover as separate moments from the
two markets, and only use relative log trade size as a way of further disciplining the parameter
estimates for our cross-market analysis.

The sample moments, mS, are computed at daily frequency, yielding 1614 observations for
each moment condition. Given the relatively small sample, we follow Altonji and Segal (1996) by
using equally weighted moments, i.e., we use an identity matrix for Ŵ . By doing so, we avoid
having to estimate the optimal weighting matrix that can have poor finite sample properties.19

19See Altonji and Segal (1996) as well as Honore, Jorgensen, and de Paula (2020) for a recent discussion. In
Appendix D, we report the parameter estimates from a two-step GMM estimation, which are virtually identical to
the results of our baseline one-step GMM estimation.
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4.2 Empirical Results

The estimation is conducted jointly for the government bond market and the corporate bond
market. The parameter estimates are shown in column 1 and column 2 of Table 2 along with
bootstrap standard errors in parentheses for the government bond market and the corporate bond
market, respectively. There are three notable differences in the estimates across the two markets.
First, the average taste shock intensity in the government bond market (1/δg) is about 5.5 times
larger than the average taste shock intensity in the corporate bond market (1/δc). That is, clients
in the government bond market need to trade 5.5 times as often as they need to trade in the
corporate bond market. Moreover, the elasticity of trading opportunities with respect to taste
shock intensity (λ) as well as dealers’ market power (η) are substantially higher in government
bonds than in corporate bonds. This is primarily driven by the estimation algorithm trying
to match the empirical moments for the clients’ intensity distribution, log turnover, and price
dispersion that are markedly different across the two bond markets.

Table 2: Parameter Estimates

Government Bonds Corporate Bonds
(1) (2)

γ – Curvature of the utility function 17.95 17.95
(0.343) (0.343)

δ – Exponential distn. parameter for G (χ1) 22.58 124.9
(0.154) (0.907)

λ – Matching efficiency 4123.83 232.65
(570.264) (26.095)

η – Dealers’ market power 0.95 0.28
(0.0038) (0.0076)

Notes: This table reports the estimates of the parameters. The sample contains 1614 trading days covering the period 2011m8-2017m12.
The parameter estimates are obtained by minimizing the objective function (4.7). Bootstrap standard errors, shown in parentheses,
are based on 200 simulated datasets.

To illustrate the fit of the estimated model, Table 3 shows the moments computed from the data
as well as those implied by the model evaluated at the estimated parameters. Overall, the model
evaluated at the estimated parameters matches the data reasonably well in both markets. The
mean absolute difference between the eight empirical moments and the corresponding theoretical
moments is about 2.58%.

While Table 3 illustrates the fit of the targeted moments, Figure 1 plots the entire distribution
of trading intensity in the cross section of clients in both markets, which are essentially un-targeted
functions apart from their implied first two moments. Figure 1 shows that the distributions of
clients’ trading intensity in both markets are highly skewed both in the data and in our theory
evaluated at the estimated parameters. This implies that our exogenous structural assumptions
(i.e., exponential distribution for clients’ taste shock intensity and a logarithmic relation between
clients’ taste shock intensity and meeting intensity with dealers) do a good job in generating
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Table 3: Model Fit

Government Bonds Corporate Bonds
Moments Empirical Theoretical Empirical Theoretical

(1) (2) (3) (4)
Price Dispersion 0.00064 0.00064 0.0011 0.0011
Average Intensity 0.0232 0.0221 0.0038 0.0040
Log Turnover -4.8038 -4.9235 -6.9094 -6.6619
Relative Intensity Dispersion 5.3069 5.5498 1 1
Relative Log Trade Size 0.0266 0.0266 0 0

Notes: This table reports the values of the empirical moments and of the theoretical moments calculated at the estimated parameters.

Columns (1)-(2) and Columns (3)-(4) show the results for the government bond and corporate bond markets, respectively.

realistically skewed distributions of endogenous trade intensity in both markets.

Figure 1: Probability Density Functions of Clients’ Daily Trading Intensity
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Notes: This figure shows the theoretical and empirical probability density functions (pdf) of client-specific average daily trading intensity

for the gilt market in the left panel and for the UK corporate bond market in the right. Theoretical pdfs are the pdf of the endogenous

variable (3.20), implied by the estimated parameter values (as reported in Table 2). Empirical pdfs are one-dimensional kernel density

estimates of the cross-sectional empirical variable which is the time-series average of each client’s daily number of trades per bond.

4.3 Sources of Identification

Search-based models typically follow a general equilibrium approach. While individual agents take
the equilibrium distribution as given in calculating the option value of continuing search, their
individual actions generate the equilibrium distribution in question. As a result, a model structure
emerges whereby (almost) all exogenous parameters affect all endogenous outcomes, as pointed
out by Eckstein and van den Berg (2007) and Gavazza (2016). Although this is the case in our
model as well, it is instructive to study how model parameters affect certain key moments to get
a better understanding of the sources of identification. To that end, in Figure 2 and Figure 3,
we inspect how the eight moment conditions change as we perturb a given parameter around its
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estimated value.
To begin with, Figure 2 shows how the theoretical moments change as we perturb each of the

four gilt market parameters around their estimated values (denoted by the vertical line), while
keeping all other parameters fixed at their estimated values. Panels 2a, 2b, 2c and 2d show
the results for the curvature parameter (γ) for the utility function, the exponential distribution
parameter (δg) for G (χ1), matching efficiency (λg), and dealers’ market power parameter (ηg),
respectively.

Panel 2a shows that increasing the curvature parameter increases price dispersion and decreases
turnover in both markets; it also increases average trade size in the gilt market relative to the
corporate bond market, and leaves intensity-related variables unaffected. While all size- and price-
related moments contribute to the identification of the curvature of the utility function, we place
a particular emphasis on turnover because it is an unambiguously decreasing function of γ. As
the curvature, γ, goes up, trade sizes shrink, as can be seen from (3.17), but trade intensity stays
unaffected, leading to lower turnover. In turn, the estimation identifies 17.95 as the curvature
level that matches the empirical log turnover in the gilt market.

We view δg and λg as jointly identified by three data moments: the gilt average trade intensity,
intensity dispersion in the gilt market relative to the corporate bond market, and average trade
size in the gilt market relative to the corporate bond market. Panel 2c shows that an obvious
effect of increasing λg is to raise the gilt average trade intensity and the intensity dispersion in
the gilt market relative to the corporate bond market because of the increase in the meeting rates
χ2 = λg log (1 + χ1). Thus, the intensity-related moments can be considered the main identifier
of λg, given the exponential distribution parameter, δg, for G (χ1). However, the intensity-related
moments have an unambiguous relationship with δg, too: increasing δg contributes to a reduction
in the gilt average trade intensity and in the intensity dispersion in the gilt market relative to
the corporate bond market, as can be seen in Panel 2b. This is because increasing δg shifts
the whole distribution of the taste shock intensity inwards, thereby lowering its first and second
moments as well as lowering the meeting rates χ2 = λg log (1 + χ1), keeping λg and all other
parameters constant. Therefore, if we only relied on intensity-related moments, there would be
many combinations of δg and λg that generates the same level of intensity moments, leading to a
joint identification issue. Fortunately, the relative trade size moment can help resolve this issue.
Although δg and λg have opposite effect on the intensity moments, their effect on trade size is on
the same direction: average trade size in the gilt market relative to the corporate bond market
is an increasing function of both δg and λg. Both a reduced taste shock frequency (higher δg)
and an increased frequency of meetings with dealers (higher λg) increase clients’ aggressiveness,
leading to larger gilt trade sizes. Hence, δg and λg can be jointly identified once intensity- and
trade-size-related moments are both used.
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Figure 2: Illustrating the Sources of Identification for the Gilt Market Parameters
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(b) Exponential Distn. Parameter for G (χ1) (δg)
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(c) Matching Efficiency (λg)
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(d) Dealers’ Market Power (ηg)
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Notes: This figure shows how the theoretical moments change as we perturb one of the seven parameters around its estimated value

(denoted by the vertical line), while keeping all the other parameters fixed at their estimated values. Panels 2a, 2b, 2c, and 2d show

the results for the curvature parameter (γ), the exponential parameter for distribution G (χ1), for λg , and for ηg , respectively.

Panel 2d shows that when the share, ηg, of transaction surplus captured by dealers rises, price
dispersion rises, ceteris paribus. Accordingly, we view the price dispersion moment as the main
identifier of ηg. Average trade size in the gilt market relative to the corporate bond market falls
with ηg because clients pay higher rent to gilt dealers, which makes them cut down their demand
(standard effect of avoiding price impact in the LR environment). Intensity-related moments are
not impacted, as dealer bargaining power does not affect how often clients trade. This is a common
result of models in which endogenous transaction costs are proportional to transaction surpluses
such as LR and Üslü (2019).

Finally, Figure 3 shows how the theoretical moments change as we perturb each corporate bond
market parameter around their estimated values. The economics behind the results of Figure 3
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mirrors that of Figure 2.
The discussion of the sources of identification above highlights the importance of using all three

dimensions of market liquidity, trade frequency, trade size, and price, to have a full understanding
of the drivers of market liquidity, which are the deep parameters of our model. For example, it
would be impossible to distinguish between how often clients need to trade and how often they
can trade by looking at their trade frequencies alone. However, our estimation can simultaneously
identify δg and λg. The particular combination of δg = 22.58 and λg = 4123.83 generates the
gilt average trade intensity level of 0.0221. Panels 2b and 2c imply that one could increase δg
and λg simultaneously and generate the same level of average intensity. In doing so, however, one
would increase the gilt trade sizes, and so, would overshoot the empirical relative log trade size
moment. Thus, given γ and ηg, only a unique combination of δg and λg can match the empirical
trade intensity and the relative log trade size at the same time.

Similarly, it would be impossible to distinguish between search frictions and dealers’ market
power by looking at clients’ trade frequencies alone or price dispersion alone. However, our esti-
mation can simultaneously identify λg and ηg. The particular combination of λg = 4123.83 and
ηg = 0.95 generates the gilt price dispersion level of 0.00064. Panels 2c and 2d imply that one
could increase λg and ηg simultaneously and generate the same level of price dispersion. In doing
so, however, one would increase the average trade intensity, and so, would overshoot the empirical
average trade intensity. Thus, given γ and δg, only a unique combination of λg and ηg can match
the empirical trade intensity and the empirical price dispersion at the same time.

This realization helps one understand the differences of search frictions and dealers’ market
power across the government bond and the corporate bond market. Average trade intensity in
the gilt market is more than six times that of the corporate bond market. This contributes
to a large difference between the estimated matching efficiency parameters in the two markets,
λg >> λc. Despite this large difference between the two markets in terms of search frictions,
the gilt price dispersion is only around half of the corporate bond price dispersion. Thus, our
estimation “rationalizes” this with a significantly larger dealer market power in the gilt market,
ηg >> ηc. One may be concerned that our finding of significantly larger dealer market power in
the gilt market may be specific to the particular way we calculate price dispersion from transaction
data. In Appendix E, we show that more conventional ways of calculating price dispersion would
actually exacerbate this difference. We view our less extreme results more reliable because our
way of calculating price dispersion does a better job at eliminating some intra-day price volatility
caused by intra-day arrival of news.
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Figure 3: Illustrating the Sources of Identification for the Corporate Bond Market Parameters
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(b) Exponential Distn. Parameter for G̃ (χ1) (δc)
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(d) Dealers’ Market Power (ηc)
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Notes: This figure shows how the theoretical moments change as we perturb one of the seven parameters around its estimated value

(denoted by the vertical line), while keeping all the other parameters fixed at their estimated values. Panels 3a, 3b, 3c and 3d show

the results for the curvature parameter (γ), the exponential parameter G (χ1), for λc and for ηc.

4.4 Quantitative Assessment of Frictions and Welfare

A main advantage of using our structural model to study OTC markets is that we can estimate two
key objects that characterize the severity of trading frictions: average trading delays and dealers’
bargaining power. Table 4 shows the results for the two markets. Trading delays are expressed
in terms of days, and dealers’ bargaining power is expressed as the fraction of the surplus that
dealers get from each trade. Mathematically, the expected trading delay of a client with taste
shock intensity χ1 is 1/ (λ log (1 + χ1)) and the share of transaction surplus a dealer captures is η.

We find that trading delays could be measured in minutes with a median value of less than ten
minutes, and are thereby negligible in government bond markets —consistent with the calibration
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results of Vayanos and Weill (2008) for the US government bond market. In contrast, trading
delays in corporate bonds are substantially larger with a median value of around three quarters
of a day.

Table 4: Welfare Results I: Estimated Trading Delays and Dealers’ Bargaining Power

Government Bonds Corporate Bonds
(1) (2)

Average Trading Delays
Median 0.0080215 0.77668
p25 0.0040705 0.38941
p75 0.019158 1.8683

Dealers’ Bargaining Power 95.15% 28.12%
Notes: This table reports summary statistics for trading delays (upper panel) and dealers’ bargaining power (lower panel), implied by
the theoretical model evaluated at the estimated parameter values (as reported in Table 2). Trading delays are expressed as a fraction
of a trading day.

The lower panel of Table 4 shows the estimated shares of transaction surplus captured by
dealers in both markets, which we refer to as dealers’ bargaining power in short. The respective
bargaining power estimates of 95.15% and 28.12% in the gilt and the corporate bond markets
confirm the common view that dealers enjoy a high market power in bilateral OTC markets.20

Interestingly, our parameter estimates show that the dealer market power is significantly larger
in the gilt market where dealers provide liquidity more actively compared to the corporate bond
market.21

Table 5 estimates, separately for each bond market, the relative welfare loss caused by the
presence of OTCmarket frictions. For the calculation, we use the formulas presented in Proposition
4. The top panel of Table 5 reports a “95% confidence interval” for the welfare loss relative to the
first-best benchmark in each market. These intervals are calculated by finding the minimum and
the maximum welfare loss that a set of parameter combinations from the 95% confidence intervals
of our parameter estimates can generate. The medium panel reports the relative welfare loss levels
in both markets implied by the estimated parameter values exactly. These estimates imply that
the welfare loss caused by OTC frictions is quite sizable in both markets, while it is significantly
(almost 50%) larger in the corporate bond market than in the gilt market.

20See Duffie (2011), Di Maggio, Kermani, and Song (2017), Li and Schürhoff (2019), Schultz and Song (2019),
and Hendershott, Li, Livdan, and Schürhoff (2020) for a discussion.

21Feldhütter (2012) finds that dealers capture 97% of trade surpluses in the US corporate bond market. Similarly,
Hendershott, Li, Livdan, and Schürhoff (2020) find that the US corporate bond dealers capture 98% of the trade
surplus when selling to an insurance company and capture 94% when buying from an insurance company. Our
estimates imply that the US corporate bond market and the gilt market are very similar in terms of dealers’ market
power, but dealers in the UK corporate bond market have significantly lower market power. One reason behind this
difference is arguably the relatively more active client-to-client segment of the UK corporate bond market, which
acts as a competitive fringe and limits dealers’ market power. See Appendix F for more information. Another
explanation is the endogeneity of market power, η. Choi and Rocheteau (2021) show that as search frictions
mitigate, market participants have incentive increase their rent-seeking activities in order to have a higher market
power.
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We also decompose the welfare loss into two parts with different economic meanings: the part
attributed to technological constraints that cannot be relaxed unless the market structure itself
is changed (i.e., the welfare loss caused by the search frictions, characteristic of OTC markets)
and the remaining part that is due to imperfect competition between dealers (i.e., the welfare
loss caused by inefficient price impact avoidance of clients that a benevolent social planner could
eliminate via Pigouvian taxation). The bottom panel of Table 5 shows that, in the corporate bond
market, almost the entire loss can be attributed to search frictions with dealers’ market power
making a small contribution. In the gilt market, the decomposition of the welfare loss is more even
across the two components with dealers’ market power being the slightly more contributor. This
is not surprising given the high dealer bargaining power estimate of 95.15% in the gilt market.

Table 5: Welfare Results II: Estimated Welfare Losses

Government Bonds Corporate Bonds
(1) (2)

Min. - Max. Welfare Loss 6.637% - 9.511% 11.092% - 13.637%
Welfare Loss 7.7899% 12.174%
Due to Search Frictions 3.8871% 12.027%
Extensive Margin 1.4664% 4.9834%
Intensive Margin 2.4207% 7.0436%

Due to Dealers’ Market Power 3.9028% 0.1467%
Notes: This table reports the welfare losses in the government bond and corporate bond markets implied by the estimated parameter
values and standard errors (as reported in Table 2). The top panel reports the minimum and the maximum possible relative welfare
loss in each market implied by the 95% confidence intervals of the estimated parameter values. The medium panel reports the relative
welfare loss levels in each market implied by the estimated parameter values exactly. The bottom panel reports various decompositions.

Table 5 highlights two important lessons. First, even if the estimated median trading delays
sound reasonably small (a few minutes in the gilt market), the welfare loss caused by them can
be sizable. This again points to the importance of utilizing all dimensions of market liquidity
(frequency, trade size, and price) to correctly capture the market participants’ preferences and
multi-dimensional heterogeneity among them. Indeed, the curvature of the utility functions de-
termines how costly it is to be stuck with an undesirable asset position due to frictions. Further,
heterogeneity determines how variable welfare losses are across market participants, which affects
the quantification of aggregate effects in the presence of skewed distributions. The second lesson
that Table 5 highlights is that severe search frictions and high dealer market power do not have to
be coupled together. Indeed, our estimations imply that there are significantly less search friction
in the gilt market, while gilt dealers exert a high bargaining power against their clients at the
same time.

The last exercise we perform using our estimation is to further decompose the welfare loss
caused purely by search frictions into two components: a component that stems from the clients’
endogenous demand cutting behavior in response to search frictions (i.e., intensive margin effect)
and a component that stems from the fact that some clients will be stuck with wrong asset positions
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for some time even if they choose their second-best trade quantities (i.e., extensive margin effect).
Our estimation implies that in both markets, the extensive and intensive margins amount to 40%
and 60%, respectively. This points to the importance of taking into account the clients’ flexibility
to adjust their demand in response to frictions in financial markets. Existing structural models
of OTC markets such as Gavazza (2016) and Hendershott, Li, Livdan, and Schürhoff (2020) did
not consider this intensive margin effect by fixing trade sizes at one with their indivisible asset
assumption.

4.5 Monte Carlo Evidence

To confirm that the seven parameters in our model are recoverable using the eight moment con-
ditions, we have conducted a series of Monte Carlo simulations. Table 6 reports the details of
an example. In this particular simulation, we simulate 100 trade-level datasets, whereby each
dataset consists of 800 days, with 800 clients trading in each dataset. We use the parameter
values described by column 1 of Table 6.

Table 6: Monte Carlo Results

True Values Mean of Simulated Std of Simulated
(1) (2) (3)

γ – Curvature of the utility function 10 10.0005 0.11559
First Market
δI – Exponential distn. parameter for G (χ1) 22 22.118 0.1122
λI – Matching efficiency 3000 3000.5956 1.9891
ηI – Dealers’ market power 0.95 0.94922 0.0026106

Second Market
δII – Exponential distn. parameter for G (χ1) 125 123.9817 1.2947
λII – Matching efficiency 250 256.2822 14.3315
ηII – Dealers’ market power 0.3 0.30576 0.0077124

Notes: This table shows the results from a Monte Carlo simulation, where the data generation used the parameters shown in column
1. The mean (column 2) and standard deviation (column 3) of estimated parameters are based on the 100 Monte Carlo simulated
samples.

For each market, on each day and in each dataset, the simulation proceeds in five steps: (i)
the cross-sectional distribution of taste shock intensities of clients is simulated using exponential
distributions and parameters δI and δII in the first and the second market, respectively; (ii) the
Poisson arrival rates implied by (i) are used to simulate client-specific taste shock processes in
the two markets; (iii) the Poisson arrival rates implied by (i) and χ2 = λ log (1 + χ1) are used
to simulate client-specific random trading times in the two markets; (iv) assuming random initial
asset holding across clients consistent with the stationary equilibrium distribution, the information
obtained in steps (i)-(iii) is used to simulate the time-series of transactions (trade size and trading
costs) of each client, on each day in each market and in each dataset; (v) the simulated datasets
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are used to compute the eight simulated moments that correspond to the empirical moments used
in our baseline estimation in Section 4.1.2. Columns 2-3 of Table 6 summarize the results from
the Monte Carlo exercise. We find that the eight moment conditions are sufficient to recover the
seven model parameters with high precision and without bias.

Table 7: Monte Carlo Results: Absolute Intensity Deviation

Theoretical Moments Mean of Simulated Std of Simulated
Average Absolute Intensity Deviation (1) (2) (3)
First Market 0.016716 0.044444 0.00035533
Second Market 0.0029313 0.013251 0.053014
Ratio of First to Second 5.7026 5.5329 0.55362

Notes: This table shows the results from a Monte Carlo simulation, where the data generation used the parameter values shown in
column 1 of Table 6. Column 1 shows the implied theoretical moments for average absolute intensity deviation for the first market
(first row), the second market (second row), and for the ratio of these values (row 3). Column 2 (resp. 3) shows the values that are
obtained by taking the means (resp. standard deviations) across the 100 datasets.

In addition, we employ the Monte Carlo exercise to justify why we use the ratio of absolute
intensity deviations across the two markets as an empirical moment in the estimation, instead of
using the market-specific absolute intensity deviations as separate moments. As can be seen from
the table, average simulated absolute intensity deviations are a biased estimate of the absolute
intensity deviations implied by the true data generating processes. In contrast, we find that the
estimation comes very close to recovering the ratio of absolute intensity deviations across the two
markets (last row of Table 7). For this reason, we use the ratio of intensity deviations (instead of
the levels) as an empirical moment when estimating the model on real data.

5 Frictions during Turbulent Times

As an application of our framework, we present an analysis of the COVID-19 episode in the UK
through the lens of our structural model. More specifically, we first calculate how the empirical
moments used in the baseline estimation changed during February-April 2020. We then re-estimate
the model parameters, and quantify how trading delays, dealers’ market power, and the resulting
welfare losses from these frictions have changed during that turbulent period.

Background and literature The spread of the COVID-19 pandemic in early 2020 presented
a major shock to the global financial system, including fixed-income markets. The crisis was
characterized by large and persistent selling pressures across many asset classes. Recent studies
documented that these selling pressures were driven by bond mutual funds that suffered large
outflows (Falato, Goldstein, and Hortacsu, 2021; Ma, Xiao, and Zeng, 2022). Other papers em-
phasized the inability of the dealer sector to absorb inventory onto their balance sheets (Kargar,
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Lester, Lindsay, Liu, Weill, and Zuniga, 2021). As a consequence, liquidity dried up both in gov-
ernment bond markets (Duffie 2020; He, Nagel, and Song 2022) and in corporate bond markets
featuring large increases in trading costs (O’Hara and Zhou, 2021). Only the quick and large-scale
interventions by central banks across the world helped restore liquidity and avoid a prolonged
worsening of financing conditions (Haddad, Moreira, and Muir 2021).

In what follows, we utilize our structural framework to understand how clients’ preferences
and trading delays they face as well as dealers’ market power changed in the UK government and
corporate bond markets. This provides us with a unique opportunity to quantitatively assess the
resilience of different market structures to the large negative shocks to the financial system such
as the COVID-19 shock.

Data and stylized facts To conduct this analysis, we employ the MiFID II bond transaction
data, which covers the period from January 2018 to May 2020. While ZEN is generally regarded
as the predecessor of the MiFID II database, there are differences in the reporting requirements,
which makes it difficult to consistently merge it with our baseline sample. To obtain empirical
moments corresponding to the COVID-19 crisis, that can be used to re-estimate our model for
this period, we proceed as follows. We compute how much each of the eight moments changed
from the 2018-2019 period to the February-April 2020 period. We then use these percentage or
log changes to adjust the moment values from our baseline sample (reported in Table 1 and Table
3).

Table 8: Empirical Moments during COVID-19

Government Bonds Corporate Bonds
Variable Change Implied Moment Change Implied Moment

(1) (2) (3) (4)
Price Dispersion +53.6% 0.000978 +146.3% 0.002639
Average Intensity +17.9% 0.027338 -8.0% 0.003520
Log Turnover +0.223 -4.580826 +0.058 -6.851440
Relative Intensity Dispersion +26.0% 6.686867 0% 1
Relative Log Trade Size +0.052 0.078623 0 0

Notes: This table summarizes the empirical moments that are used for the structural estimation for the COVID-19 period (Feb-April
2020). Column (1) and (3) summarize how much the moments changed from the period 2018-2019 to the period February-April 2020.
Column (2) and (4) report the implied moments for the COVID-19 period. Price dispersion is the scaled mean absolute deviation
of transaction price from the average transaction price in the given hour. Average intensity is the mean of the clients’ number of
transactions. Turnover is computed as the daily trading volume scaled by asset supply. Intensity dispersion is the mean absolute
deviation of clients’ number of transactions from average intensity. Average trade size is the mean (across clients) of clients’ mean
transaction size scaled by asset supply.

Table 8 reports the corresponding changes in our estimation moments during the COVID-
19 crisis. Price dispersion experienced the largest change with 53.6% and 146.3% increases in
the government and corporate bond markets, respectively. Both average client intensity in the
gilt market (17.9%) and intensity dispersion in the gilt market relative to the corporate bond
market (26%) increased, but average client intensity decreased in corporate bonds (-8%). Turnover
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increased in both markets, but the increase was more pronounced in government bonds. Finally,
average trade size has the same pattern as turnover, and so, relative size increased.

The large increase in price dispersion is indicative of substantial worsening of trading frictions
during the crisis, with some notable cross-market differences emerging: (i) the increase in price dis-
persion was almost three times as large in corporate bonds; (ii) the corporate bond trade intensity
fell while an increase in intensity in government bonds was observed; and (iii) the corporate bond
volume and trade size only moderately changed compared to the government bond market. The
combination of these facts and the intuition behind the identification properties of our structural
model (see Section 4.3) suggest that the worsening of trading frictions during the COVID-19 crisis
was likely more severe in the corporate bond market, compared to the government bond market
which likely absorbed selling pressures to a larger extent. To quantify these effects, we now turn
to structural estimation.

Estimation results Using the moments reported in Table 8, we re-estimate our structural
model. The parameter estimates for the turbulent COVID-19 period is reported in Table 9. In
addition, Table 10 shows the fit of the model for this period.

Table 9: Parameter Estimates for the COVID-19 Period

Government Bonds Corporate Bonds
Normal Turbulent Normal Turbulent
(1) (2) (3) (4)

γ – Curvature of the utility function 17.95 9.10 17.95 9.10
δ – Exponential distn. parameter for G (χ1) 22.58 19.27 124.9 128.05
λ – Matching efficiency 4123.83 735.06 232.65 17.19
η – Dealers’ market power 0.95 0.98 0.28 0.37

Notes: This table reports the estimates of the parameters. The parameter estimates are obtained by minimizing the objective function

(4.7). Results in columns (1) and (3) are based on empirical moments from the period 2011m8-2017m12, as reported in Table 1 and

Table 3. Results in columns (2) and (4) are based on empirical moments from the COVID-19 period as reported in Table 8.

Table 10: Model Fit (COVID-19)

Government Bonds Corporate Bonds
Moments Empirical Theoretical Empirical Theoretical

(1) (2) (3) (4)
Price Dispersion 0.000978 0.000978 0.002639 0.002639
Average Intensity 0.027338 0.025911 0.003520 0.003688
Log Turnover -4.580826 -4.656439 -6.851440 -6.682323
Relative Intensity Dispersion 6.686867 7.025747 1 1
Relative Log Trade Size 0.078623 0.078644 0 0

Notes: This table reports the values of the empirical moments and of the theoretical moments calculated at the estimated parameters.

Columns (1)-(2) and Columns (3)-(4) show the results for the government bond and corporate bond markets, respectively.
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Table 9 reveals that there are some notable changes in the parameter estimates across the
two time periods. First, the elasticity of clients’ utility function, 1/γ, increased from 0.056 to
0.11. This doubling of the elasticity naturally relates to clients’ heightened desire to trade due
to the selling pressures during the COVID-19 crisis. Table 8 shows that log turnover increased
in both markets. Our model estimation accounts for this by increasing the estimated elasticity
of the utility function during COVID-19. Because of this particular change in preferences, being
able to trade is inherently more important for clients during the crisis. Thus, dealers’ immediacy
provision becomes even more crucial from a welfare standpoint.

Second, our estimation implies that the average taste shock frequency of the average client, 1/δ,
increased in the gilt market, while it declined in the corporate bond market during the COVID-19
crisis. This is consistent with the evidence that during turbulent times, investors rely more on
liquid assets and less on illiquid assets to manage their overall portfolio, leading to an apparent
“reverse flight to liquidity.” See, for example, Choi, Han, Shin, and Yoon (2020) and Ma, Xiao,
and Zeng (2022).

A comparison of matching efficiencies in Table 9 reveals that dealers significantly refrained
from immediacy provision in both markets. Matching efficiency declined by 83% and 93% in the
gilt and the corporate bond market, respectively. This finding lends support to the view that the
OTC market structure is not sufficiently resilient to large negative shocks such as the COVID-19
period around March 2020.

Finally, dealers exert more market power during the COVID-19 crisis according to the com-
parison of the market power estimates from Table 9. However, the magnitudes of the change are
noticeably different in the two markets. The share of the transaction surplus captured by dealers
in the gilt market increased by less than 3 percentage points but increased by almost 10 percentage
points in the corporate bond market. A strict comparison of these two numbers may not be very
revealing because the gilt market dealers already had a market power of 95% during the normal
times, without much room for further increase. However, combined with the difference in changes
in matching efficiency, the gilt market seems to be relatively more stable than the corporate bond
market.

This then raises the question: could one conclude that the gilt market is more stable from a
welfare perspective as well? Our results in Tables 11 and 12 shed some light on this question.

Table 12 shows that the percentage welfare loss tripled in both markets during the COVID-19
crisis compared to normal times. This means that although by looking at the changes in the
friction parameters λ and η, one might conclude that the gilt market is more resilient to negative
shocks, the explicit welfare accounting shows that the relative increase in welfare losses are the
same in the two markets. This is mainly because clients rely more on the gilt market during
turbulent times due to their reverse flight to liquidity behavior; as a result, a relatively mild
worsening of frictions in the gilt market leads to a relative welfare loss that is comparable to that
in the corporate bond market. Hence, from a relative welfare perspective, both markets seem
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Table 11: Welfare Results I: Estimated Trading Delays and Dealers’ Bargaining Power (COVID-
19)

Government Bonds Corporate Bonds
Normal Turbulent Normal Turbulent
(1) (2) (3) (4)

Average Trading Delays
Median 0.0080215 0.038495 0.77668 10.7769
p25 0.0040705 0.019582 0.38941 5.403
p75 0.019158 0.091801 1.8683 25.9252

Dealers’ Bargaining Power 95.15% 97.99% 28.12% 36.71%
Notes: This table reports summary statistics for trading delays (upper panel) and dealers’ bargaining power (lower panel), implied by
the theoretical model evaluated at the estimated parameter values. Trading delays are expressed as a fraction of a trading day. Results
in columns (1)-(4) are based on parameter values from the respective columns of Table 9.

Table 12: Welfare Results II: Estimated Welfare Losses (COVID-19)

Government Bonds Corporate Bonds
Normal Turbulent Normal Turbulent
(1) (2) (3) (4)

Welfare Loss 7.7899% 25.44% 12.174% 39.625%
Due to Search Frictions 3.8871% 10.378% 12.174% 38.837%
Due to Dealers’ Market Power 3.9028% 15.061% 0.1467% 0.7878%

Notes: This table reports the welfare losses in the government bond and corporate bond markets implied by the estimated parameter
values. The top panel reports the relative welfare loss levels in each market implied by the estimated parameter values exactly. The
bottom panel reports various decompositions. Results in columns (1)-(4) are based on parameter values from the respective columns
of Table 9.

equally fragile during turbulent times.

Counterfactual analysis Now that we have estimated the deep parameters of our model for
the COVID-19 period, we turn to a counterfactual analysis to investigate how resilient the OTC
market structure is when faced with a large negative shock. Table 9 shows that clients’ preferences
and market frictions both changed during the COVID-19 crisis. Two natural questions are, then,
how much of the additional welfare losses in turbulent times can be explained by the change in
clients’ preferences and how much of it is caused by the worsening of the OTC markets’ functioning.
To shed light on these questions, we calculate the welfare losses in the government and corporate
bond markets in a counterfactual scenario.

Table 13 shows the welfare losses that would have realized in the government and corporate
bond markets during the COVID-19 period if market frictions had not exacerbated. More specif-
ically, we use clients’ preference parameters (i.e., the elasticity of clients’ utility function and
the exponential distribution parameter for taste shock intensity) from the COVID-19 period that
reflect the change in clients’ inherent trading needs during turbulent times, but we keep mar-
ket friction parameters (i.e., matching efficiency and dealers’ market power) the same as normal
times. Comparing Table 12 and Table 13 implies that the welfare loss would increase from 7.79%
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Table 13: Estimated Welfare Losses (Counterfactual)

Government Bonds Corporate Bonds
(1) (2)

Welfare Loss 10.717 % 15.254%
Due to Search Frictions 6.1495% 15.092%
Due to Dealers’ Market Power 4.5671% 0.1617%

Notes: This table reports the welfare losses in the government bond and corporate bond markets implied by the parameter values
chosen for our counterfactual analysis. In both markets, parameters γ and δ are from columns (2) and (4) of Table 9 and parameters
λ and η are from columns (1) and (3) of Table 9.

to 10.72% in the government bond market and from 12.17% to 15.25% in the corporate bond mar-
ket, if the OTC market structure was fully resilient to large negative shocks like the COVID-19
shock of 2020. Considering that welfare losses actually rose to 25.44% and 39.63%, the majority
of the additional welfare losses during turbulent times occurs because OTC market intermediaries
are not as able or willing to supply liquidity as they are during normal times.

Note that our analysis is mainly concerned with quantifying search frictions and dealers’ market
power but is essentially agnostic about the sources of these frictions. Therefore, while we can
quantitatively demonstrate that the quality of intermediation for clients’ trades worsens during
turbulent times, understanding the role of OTC market dealers’ incentives, of frictions they face
in inter-dealer trade, and of regulations imposed on them goes beyond the scope of this paper and
is subject of an ongoing research agenda (e.g. Coen and Coen, 2021; Chiu, Davoodalhosseini, and
Jiang, 2022; Kargar, Lester, and Weill, 2022).

6 Conclusion

A theoretical literature following Duffie, Gârleanu, and Pedersen (2005) and Lagos and Rocheteau
(2009) generated a wealth of qualitative insights into understanding the role of search frictions
and dealers’ market power in OTC financial markets. We have developed a dynamic structural
model that uses transaction-level data with client identities and quantifies the search frictions and
dealers’ market power in question. Utilizing data on the UK government and corporate bond
markets, we find that clients’ search times in the government bond market can be measured in
minutes, whereas in the corporate bond market they can be measured in hours with a median
of around three quarters of a trading day. In addition, our estimation implies that the share of
transaction surpluses that dealers capture is about 95% in the government bond market, while it
is about 28% in the corporate bond market. That is, despite the reasonably low level of search
frictions, government bond dealers can exert a significant market power over their clients. These
findings pose a challenge to the common view that high dealer market power and severe search
frictions must co-exist in an intermediated market. Furthermore, we find that the welfare loss
from frictions in the government and corporate bond markets are 7.8% and 12.2%, respectively,
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and our decomposition implies that this loss is almost exclusively caused by search frictions in
the corporate bond market, while search frictions and dealers’ market power split the welfare loss
equally in the government bond market. One lesson from these findings is that even if search times
are reasonably small (a few minutes in government bonds), the welfare loss from search frictions
can be sizable (almost 4% in government bonds). Finally, using data from the COVID-19 crisis
period, we find that the welfare losses might more than triple during turbulent times, underlining
the fragility of the OTC market structure.

A future avenue for research is to incorporate a frictional inter-dealer market into our framework
to study the role of dealers’ costs and benefits in intermediation provision incentives and the
liquidity and welfare implications of regulations imposed on them. Another related avenue is
to leverage the dealer identities provided in the ZEN dataset to see how heterogeneous dealer
characteristics translate into their endogenous intermediation provision behavior or to understand
the contribution of dealer heterogeneity vis-a-vis client heterogeneity to market-wide liquidity
measures such as price dispersion.
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Supplement to “Comparing Search and Intermediation
Frictions Across Markets”

This online appendix contains proofs and additional empirical results omitted
from the printed manuscript.

Gábor Pintér1 Semih Üslü2

A Proofs

A.1 Proof of Proposition 1

First, we establish that the functional equation (3.8) admits a unique real solution, taking as given
the inter-dealer market price P . Our argument is adapted from the existence and uniqueness proofs
of the earlier models with unrestricted asset holdings, especially Lagos and Rocheteau (2006) and
Üslü (2019), and uses the fixed point tools for dynamic programming from Martins-da Rocha and
Vailakis (2010).

Rewrite (3.8) as

V (ε, a, χ)

=
εu (a) + χ1

εh́

εl

V (ε′, a, χ) dF (ε′) + χ2 (1− η) max
a′∈[−M,M ]

{V (ε, a′, χ)− (a′ − a)P}

r + χ1 + χ2 (1− η) . (A.1)

From (A.1), one can define the mapping O such that

(OV ) (ε, a, χ) = 1
r + χ1 + χ2 (1− η)

(
εu (a) + χ1

εĥ

εl

V (ε′, a, χ) dF (ε′)

+ χ2 (1− η) max
a′∈[−M,M ]

{V (ε, a′, χ)− (a′ − a)P}
)
. (A.2)

Then, showing (3.8) has a unique solution is equivalent to showing O has a unique fixed point.
Let T = [εl, εh] × [−M,M ] × R2

+ and let C (T ) be the set of bounded continuous functions on
T . Suppose V ∈ C (T ), then the theorem of the maximum implies that the maximization on the
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RHS of (A.2) has a continuous solution (Theorem 3.6 of Stokey and Lucas, 1989, p. 62). Then,
because u(·) is a continuous function defined on a compact set [−M,M ], O : C (T )→ C (T ). We
next prove Lemma 2 and Lemma 3 as intermediate steps to invoke the fixed point arguments of
Martins-da Rocha and Vailakis (2010).

Lemma 2 Let D = (dj)j∈R2
+
be a family of semidistances such that

dj (f, g) = sup
x∈[εl,εh]×[−M,M ]×[0,j]2

|f (x)− g (x)| .

Let σ be the weak topology on C (T ) defined by the family D. Then, (C (T ) ,D) is sequentially
σ-complete.

Proof. We need to show that every σ-Cauchy sequence in C (T ) converges to an element of C (T )
for the σ-topology (Martins-da Rocha and Vailakis, 2010, p. 1128). We proceed with three steps.
First, we determine a candidate limiting function f for any arbitrary σ-Cauchy sequence {fn} in
C (T ). Then, we establish that {fn} indeed converges to f for the σ-topology. Finally, we show
f ∈ C (T ).

1. Fix a σ-Cauchy sequence {fn} in C (T ). Then, the σ-Cauchy criterion implies that dj (fn, fm)→
0 as n,m→∞ for all j ∈ R+. Given x ∈ T , the sequence of real numbers {fn (x)} satisfies
the Cauchy criterion; and by the completeness of real numbers, it converges in the uniform
distance to a limit point—call it f (x). Note that while it is possible that one or both ele-
ments of x(3) may be∞, we still have fn(x) <∞ because {fn} belongs to a space of bounded
functions, and so, f(x) < ∞. Thus, the limiting values define a function f : T → R. We
then take our “candidate” limiting function for {fn} to be f .

2. Since {fn (x)} converges in the uniform distance to f (x) for all x ∈ T ,

dj (fn, f) = sup
x∈[εl,εh]×[−M,M ]×[0,j]2

|fn (x)− f (x)|

approaches zero for all j ∈ R+ as n diverges, which means {fn} converges to f for the
σ-topology.

3. We need to show that f is bounded and continuous. For continuity, it suffices to show that
for every j ∈ R+, every ε > 0 and every x ∈ T , there exists ζ > 0 such that

|f (x)− f (y)| < ε if dj (x, y) < ζ.
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Fix j, x, and ε. Choose k such that dj (f, fk) < ε/3, which is possible because {fn} converges
to f for the σ-topology. Then choose ζ such that

dj (x, y) < ζ implies |fk (x)− fk (y)| < ε/3,

which is possible as fk is continuous. Then,

|f (x)− f (y)| ≤ |f (x)− fk (x)|+ |fk (x)− fk (y)|+ |fk (y)− f (y)|

≤ 2dj (f, fk) + |fk (x)− fk (y)| < ε,

which establishes the continuity of f . Lastly, the boundedness of f follows because fn ∈
C (T ), and so, there exists N ∈ R such that sup

x∈T
|fn (x)| ≤ N and ≤ is a continuous relation.

Lemma 3 The mapping O : C (T )→ C (T ) is a 0-local contraction with respect to D.

Proof. We need to show that for every j ∈ R+, there exists β ∈ [0, 1) such that dj
(
OV A, OV B

)
≤

βdj
(
V A, V B

)
for all V A, V B ∈ C (T ) (Martins-da Rocha and Vailakis, 2010, pp. 1128-1130). We

start by fixing V A, V B ∈ C (T ). Then,

(
OV A −OV B

)
(ε, a, χ) = χ1

r + χ1 + χ2 (1− η)

εĥ

εl

[
V A (ε′, a, χ)− V B (ε′, a, χ)

]
dF (ε′)

+ χ2 (1− η)
r + χ1 + χ2 (1− η)

[
max

a′∈[−M,M ]

{
V A (ε, a′, χ)− a′P

}
− max

a′′∈[−M,M ]

{
V B (ε, a′′, χ)− a′′P

}]

≤ χ1

r + χ1 + χ2 (1− η)

εĥ

εl

[
V A (ε′, a, χ)− V B (ε′, a, χ)

]
dF (ε′)

+ χ2 (1− η)
r + χ1 + χ2 (1− η)

[
V A (ε, a∗, χ)− V B (ε, a∗, χ)

]

≤ χ1

r + χ1 + χ2 (1− η)

εĥ

εl

∣∣∣V A (ε′, a, χ)− V B (ε′, a, χ)
∣∣∣ dF (ε′)

+ χ2 (1− η)
r + χ1 + χ2 (1− η)

∣∣∣V A (ε, a∗, χ)− V B (ε, a∗, χ)
∣∣∣ ,
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where a∗ = arg max
a′∈[−M,M ]

{
V A (ε, a′, χ)− a′P

}
. Following the same steps, one can also show

(
OV B −OV A

)
(ε, a, χ) ≤ χ1

r + χ1 + χ2 (1− η)

εĥ

εl

∣∣∣V A (ε′, a, χ)− V B (ε′, a, χ)
∣∣∣ dF (ε′)

+ χ2 (1− η)
r + χ1 + χ2 (1− η)

∣∣∣V A (ε, a∗, χ)− V B (ε, a∗, χ)
∣∣∣ .

Thus,

∣∣∣(OV A −OV B
)

(ε, a, χ)
∣∣∣ ≤ χ1

r + χ1 + χ2 (1− η)

εĥ

εl

∣∣∣V A (ε′, a, χ)− V B (ε′, a, χ)
∣∣∣ dF (ε′)

+ χ2 (1− η)
r + χ1 + χ2 (1− η)

∣∣∣V A (ε, a∗, χ)− V B (ε, a∗, χ)
∣∣∣ .

In turn,

sup
(ε,a)∈[εl,εh]×[−M,M ]

∣∣∣(OV A −OV B
)

(ε, a, χ)
∣∣∣

≤ χ1 + χ2 (1− η)
r + χ1 + χ2 (1− η) sup

(ε,a)∈[εl,εh]×[−M,M ]

∣∣∣(V A − V B
)

(ε, a, χ)
∣∣∣ ,

and finally,

sup
x∈[εl,εh]×[−M,M ]×[0,j]2

∣∣∣(OV A −OV B
)

(x)
∣∣∣
≤ j + j (1− η)
r + j + j (1− η) sup

x∈[εl,εh]×[−M,M ]×[0,j]2

∣∣∣(V A − V B
)

(x)
∣∣∣ ,

which more compactly can be written as

dj
(
OV A, OV B

)
≤ βdj

(
V A, V B

)
,

where
β ≡ j + j (1− η)

r + j + j (1− η) ,

which concludes the proof.
Now we are ready to apply Corollary 2.1 of Martins-da Rocha and Vailakis (2010) to argue

that O has a unique fixed point in C (T ). Lemma 2 shows that C (T ) is sequentially σ-complete.
Lemma 3 shows that O : C (T )→ C (T ) is a 0-local contraction. Hence, Corollary 2.1 of Martins-
da Rocha and Vailakis (2010) implies that O has a unique fixed point in C (T ).
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We next follow a guess-and-verify approach to determine the unique value function V . We
conjecture that

V (ε, a, χ) = κ0 (ε, χ) + κ1 (ε, χ)u (a) + κ2 (χ) a,

where κ0 (ε, χ), κ1 (ε, χ), and κ2 (χ) are the coefficients to be determined. Because D (ε, χ) does
not interact with the asset position, it does not affect the terms of trade as will be clear shortly.
Thus, we primarily focus on determining κ1 (ε, χ) and κ2 (χ).

One can apply the envelope theorem to the auxiliary HJB equation (3.8) to obtain:

[r + χ1 + χ2 (1− η)]V2 (ε, a, χ) = εu′ (a) + χ1

εĥ

εl

V2 (ε′, a, χ) dF (ε′) + χ2 (1− η)P,

where V2 (·, ·, ·) refers to the derivative with respect to the second argument. By using our conjec-
tured value function and matching coefficients, we obtain

κ2 (χ) = χ2 (1− η)
r + χ2 (1− η)P

and
κ1 (ε, χ) = 1

r + χ2 (1− η)
(r + χ2 (1− η)) ε+ χ1ε̄

r + χ1 + χ2 (1− η) ,

which complete the proof.

A.2 Proof of Proposition 2

With a change of variable a = a? (ε̃, χ), we re-write the stationarity condition (3.4) as

χ1F (ε)
εĥ

ε

Φχ (dε′, ε̃) + χ2

min{ε,ε̃}ˆ
εl

εĥ

εl

Φχ

(
dε′, d˜̃ε

)
= χ1 (1− F (ε)) Φχ (ε, ε̃) + χ2Φχ (ε, ε̃) ,

where (ε, ε̃) refers to the individual state of the client who is currently of type ε but holding the
target position associated with type ε̃. We take the differential of both sides with respect to ε:

χ1dF (ε)
εĥ

ε

Φχ (dε′, ε̃)− χ1F (ε) Φχ (dε, ε̃) + I{ε≤ε̃}χ2

εĥ

εl

Φχ

(
dε, d˜̃ε

)

= −χ1dF (ε) Φχ (ε, ε̃) + χ1 (1− F (ε)) Φχ (dε, ε̃) + χ2Φχ (dε, ε̃) .
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After rearranging,

χ1dF (ε)
εĥ

εl

Φχ (dε′, ε̃) + I{ε≤ε̃}χ2

εĥ

εl

Φχ

(
dε, d˜̃ε

)
= (χ1 + χ2) Φχ (dε, ε̃) . (A.3)

Aggregating over ε ∈ [εl, εh],

χ1

εĥ

εl

Φχ (dε′, ε̃) + χ2

ε̂̃

εl

εĥ

εl

Φχ

(
dε, d˜̃ε

)
= (χ1 + χ2)

εĥ

εl

Φχ (dε, ε̃) .

After cancellations, this equation holds if and only if

ε̂̃

εl

εĥ

εl

Φχ

(
dε, d˜̃ε

)
=

εĥ

εl

Φχ (dε, ε̃) .

The LHS is equal to F (ε̃) because χ and ε are independently distributed in the cross section of
clients. Then,

F (ε̃) =
εĥ

εl

Φχ (dε, ε̃) . (A.4)

In words, this equality means that in the stationary equilibrium, the fraction of type-χ clients
who have a current taste type of ε̃ or lower is equal to the fraction of type-χ clients whose current
asset holding is associated with ε̃ or lower. This “symmetry” between the marginal distribution
of taste types and the marginal distribution of asset holdings obtains in the original Lagos and
Rocheteau (2006) environment as well (p. 13). More specifically, the Lagos and Rocheteau (2006)
result is a special case of ours because (i) we have an arbitrary distribution of taste types that
may be discrete, continuous, or mixed, while Lagos and Rocheteau (2006) allowed only for discrete
distribution and (ii) we have heterogeneity in χ, and so, our equilibrium object is a conditional
distribution, while in the Lagos and Rocheteau (2006) environment all clients have the same χ.

We next substitute (A.4) into (A.3),

χ1dF (ε)F (ε̃) + I{ε≤ε̃}χ2dF (ε) = (χ1 + χ2) Φχ (dε, ε̃) .

After rearranging and integrationg over ε ∈ [εl, ε],

χ1F (ε)F (ε̃) + χ2F (min {ε, ε̃}) = (χ1 + χ2) Φχ (ε, ε̃) .

After reverting our initial change of variable, the formula in the proposition obtains.
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A.3 Proof of Proposition 3

Define

Ad (P ) ≡
ˆ

R2
+

εĥ

εl

(u′)−1
[

r + χ1 + χ2 (1− η)
(r + χ2 (1− η)) ε+ χ1ε̄

rP

]
dF (ε) dG (χ) .

An application of the inverse function theorem implies that Ad is strictly decreasing because u is
strictly concave. Hence, the market-clearing interdealer price P such that Ad (P ) = A is unique
whenever it exists. From the standard Inada limit conditions on u stated in the proposition,
Ad (0) =∞ and Ad (∞) = 0 and hence the existence of P ∈ (0,∞) is guaranteed by the interme-
diate value theorem.

A.4 Proof of Lemma 1

When γ = 1, ∆u (χ) = log [χ1 + 2x (χ2)] − log (χ1), where x (χ2) ≡ r + χ2 (1− η). It is easy to
verify that ∆u (χ) is strictly decreasing in χ1, and so is ∆u (χ) / [r + χ2 (1− η)]. To complete the
proof, we need to show that {log [χ1 + 2x (χ2)]− log (χ1)} /x (χ2) is strictly decreasing in χ2. It
suffices to show that

2x (χ2)
χ1 + 2x (χ2) < log [χ1 + 2x (χ2)]− log (χ1) .

By taking the exponential of both sides and rearranging, it suffices to show that

e
2x(χ2)

χ1+2x(χ2) − 2x (χ2)
χ1

< 1.

The LHS and the RHS are equal to each other when χ = 0. Thus, it suffices to show that the LHS
is strictly decreasing. That is, we need to show that the first derivative of the LHS is negative.
Equivalently,

1
[χ1 + 2x (χ2)]2

e
2x(χ2)

χ1+2x(χ2) − 1
χ2

1
< 0.

Again, the LHS and the RHS are equal to each other when χ = 0. Thus, the proof is done if the
LHS is strictly decreasing, which is obviously true because its first derivative is negative:

−e
2x(χ2)

χ1+2x(χ2)
χ1 + 4x (χ2)

[χ1 + 2x (χ2)]4
< 0.

A.5 Proof of Proposition 4

The formula for WEq follows easily by substituting (3.19), (3.16) and u (a) = a1−γ

1−γ into (3.21).
To calculate WFB, we solve the problem of an unconstrained planner. Because we are in our
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special case, the planner’s problem is:

WFB (εl) = max
a(0),a(2σ)

εl
r

[a (0)]1−γ

1− γ
1
2 + 2σ

r

[a (2σ)]1−γ

1− γ
1
2 −

σ

r

A1−γ

1− γ , (A.5)

subject to
1
2 (a (0) + a (2σ)) = A,

−M ≤ a (0) ≤M,

−M ≤ a (2σ) ≤M.

In our special case εl = 0 for simplicity, but setting up the planner’s problem directly for this
special case would be unnatural and create “discontinuities” with respect to frictional welfare
measures, because the planner would not care for the asset position of the low-type clients. But
this is true only for εl = 0, and the planner would have interior solution for low-type clients for any
other εl > 0. Thus, we first solve the planner’s problem for a generic εl > 0. Then, we calculate
the limit WFB ≡ lim

εl→0
WFB (εl).

Because M is an arbitrarily large number that can be chosen to allow for interior solutions,
we are fine as long as a (0) , a (2σ) < ∞. Because the second term on the RHS of (A.5) does not
depend on the control variables, the Lagrangian is

LFB = εl
2r

[a (0)]1−γ

1− γ + σ

r

[a (2σ)]1−γ

1− γ + µ
(
A− 1

2 (a (0) + a (2σ))
)
.

The FOCs for interior solution are

εl
2r [a (0)]−γ − µ

2 = 0

and
σ

r
[a (2σ)]−γ − µ

2 = 0.

Then,

a (0) =
(
εl
µr

)1/γ

and

a (2σ) =
(

2σ
µr

)1/γ

.

8



Substituting these into the resource constraint, the Lagrange multiplier is

µ = 1
r

ε1/γ
l + (2σ)1/γ

2A

γ ,
which in turn implies

a (0) = 2A ε
1/γ
l

ε
1/γ
l + (2σ)1/γ

and
a (2σ) = 2A (2σ)1/γ

ε
1/γ
l + (2σ)1/γ .

Substituting into (A.5),

WFB (εl) = εl
2r

(2A)1−γ

1− γ

 ε
1/γ
l

ε
1/γ
l + (2σ)1/γ

1−γ

+ (2A)1−γ

1− γ
σ

r

 (2σ)1/γ

ε
1/γ
l + (2σ)1/γ

1−γ

− σ

r

A1−γ

1− γ .

By taking the limit as εl → 0, one obtains WFB stated in the proposition.
What remains to show is the formula for WSB in the proposition. Since the endogenous

conditional asset holding distribution can be continuous as well as the exogenous distribution of
ε and χ, we potentially have a continuum of control variables as in Üslü (2019) and Farboodi,
Jarosch, and Shimer (2018); we follow these papers in appealing to van Imhoff (1982) and interpret
the integrals in the objective function as summation over discrete intervals with lengths dε and
da approaching zero.

Keeping in mind van Imhoff (1982)’s interpretation and because the second term of (3.22) does
not depend on the control variables, the planner’s current-value Hamiltonian can be written as

LSB (q|Φ) =
∞̂

0

M̂

−M

εĥ

εl

εu (a) Φχ (dε, da) dG (χ)

+ χ1

εĥ

εl

∞̂

0

M̂

−M

εĥ

εl

(ϑ (ε′, a, χ)− ϑ (ε, a, χ)) Φχ (dε, da) dG (χ) dF (ε′)

+
∞̂

0

M̂

−M

εĥ

εl

χ2 {ϑ (ε, a+ q (ε, a, χ) , χ)− ϑ (ε, a, χ)}Φχ (dε, da) dG (χ)

− ζ
∞̂

0

M̂

−M

εĥ

εl

χ2q (ε, a, χ) Φχ (dε, da) dG (χ) ,
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ϑ (ε, a, χ) denotes the current-value co-state variable associated with Φχ (dε, da); and ζ is the
Lagrange multiplier associated with the condition (3.23).

The FOC for optimization is

ϑ2 (ε, a+ q (ε, a, χ) , χ) = ζ, (A.6)

if χ > 0, Φχ (dε, da) > 0, and dG (χ) > 0.
In any optimum qe, the co-state variables must satisfy the ODEs,

∇n(ε,a,χ)LSB (qe|Φ) = rϑ (ε, a, χ)−
.

ϑ (ε, a, χ) , (A.7)

where n (ε, a, χ) is the degenerate measure which puts all the probability on the type (ε, a, χ) and
∇n denotes the Gâteaux differential in the direction of measure n:

∇nLSB (qe|Φ) = lim
ε→0

LSB (qe|Φ + εn)− LSB (qe|Φ)
ε

.

For small ε, we obtain up to second-order terms:

LSB (qe|Φ + εn)− LSB (qe|Φ) = ε

∞̂

0

M̂

−M

εĥ

εl

εu (a)n (dε, da, dχ)

+ εχ1

εĥ

εl

∞̂

0

M̂

−M

εĥ

εl

(ϑ (ε′, a, χ)− ϑ (ε, a, χ))n (dε, da, dχ) dF (ε′)

+ ε

∞̂

0

M̂

−M

εĥ

εl

χ2 {ϑ (ε, a+ qe (ε, a, χ) , χ)− ϑ (ε, a, χ)}n (dε, da, dχ)

− εζ
∞̂

0

M̂

−M

εĥ

εl

χ2q
e (ε, a, χ)n (dε, da, dχ) .

Thus,

∇n(ε,a,χ)LSB (qe|Φ) = εu (a) + χ1

εĥ

εl

(ϑ (ε′, a, χ)− ϑ (ε, a, χ)) dF (ε′)

+ χ2 {ϑ (ε, a+ qe (ε, a, χ) , χ)− ϑ (ε, a, χ)− ζqe (ε, a, χ)} .

Using (3.23), (A.7), and the FOC (A.6), the following ODE for the co-state variables obtains in
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any optimum:

rϑ (ε, a, χ)−
.

ϑ (ε, a, χ) = εu (a) + χ1

εĥ

εl

(ϑ (ε′, a, χ)− ϑ (ε, a, χ)) dF (ε′)

+ χ2 max
q∈[−M,M ]

{ϑ (ε, a+ q, χ)− ϑ (ε, a, χ)− ζq}

s.t.
∞̂

0

M̂

−M

εĥ

εl

χ2q (ε, a, χ) Φχ (dε, da) dG (χ) = 0.

Checking that the planner’s optimality conditions do not coincide with the equilibrium con-
ditions is easy. More specifically, the comparison with (3.8) reveals that the planner’s optimality
conditions and the equilibrium conditions would be identical if η = 0 and P = ζ in the equilibrium
condition, which means that the efficiency implications of LR apply to our generalized setup as
well. It also means WSB stated in the proposition obtains by substituting η = 0 into WEq.

B Data Construction

The primary data source for our baseline estimation is the ZEN dataset which was the UK’s
transaction reporting system administered by the Financial Conduct Authority during our sample
period 2011m8-2017m12. There is no public version of ZEN, which is why this dataset has been
used relatively rarely in the academic literature (recent exceptions include Benos and Zikes (2018),
Czech, Huang, Lou, and Wang (2021), and Kondor and Pintér (2022)). The structure of the ZEN
dataset is similar to the TRACE dataset often used to study the US corporate bond market, with
the important exception that almost all trade reports in the ZEN include the identities of the
counterparties. (See Ivanov, Orlov, and Schihl (2021) for a recent comparison between the ZEN
dataset and the TRACE dataset, using a common set of corporate bonds traded in both the UK
and US.)

All secondary market trades are reported in the ZEN dataset, where at least one of the coun-
terparties is an FCA-regulated entity. We drop duplicate trade reports as well as trade reports
with missing client identifiers. We also exclude trades with inter-dealer brokers (IDBs) as well
as trades of less than £1,000 in par value, and remove trades with erroneous price entries. We
end up with 1,277,555 and 1,231,507 observations for the sterling corporate and government bond
markets, respectively, covering 57 nominal government bonds and 2796 corporate bonds. From
our sample of clients, we are able to identify 574 clients who trade in both markets, leaving us
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with 1,225,347 and 1,222,272 observations in the two markets. About half of these clients can be
classified as hedge funds and asset managers, and the remaining half comprises of pension funds,
insurance companies, commercial banks, international organizations and others. From the sam-
ple of corporate bonds, we identify the 57 most frequently traded bonds that have an investment
grade rating according to Moody’s.3 This leaves us with 186,832 observations for corporate bonds,
covering 1614 trading days.

We use these two samples of government and corporate bonds (each including trades for 57
assets) to compute empirical moments related to average trade size, average client intensity, average
absolute intensity deviation and market turnover. Days in which a client does not trade enters the
intensity computations as zeros. To compute price dispersion, we keep trading hours with at least
two transactions occurring in that time window according to the time stamp of the trade report.
This leaves us with 1,037,595 and 77,858 transactions in the government and corporate bond
markets, respectively. To obtain daily measures of price dispersion, we first compute (normalized)
absolute deviations from the hourly average transaction price, and then average within the day
these deviations using the size of the trade as weights.

C On the Empirical Relation between Clients’ Execution
Costs and Trading Intensity

In Section 3.4.1 of the main text, we argued that one of the implications of our model is that a
client who trades more frequently faces a smaller bid-ask spread. This feature is consistent with
the empirical evidence of O’Hara, Wang, and Zhou (2018) that used the TRACE dataset on a
subset of US corporate bond transactions.

This appendix provides additional empirical evidence on the relation between clients’ execution
costs and their trading intensity using our datasets for the UK government and corporate bond
markets. We adopt the framework of O’Hara, Wang, and Zhou (2018) which studied this relation-
ship on a subset of the US corporate bond market which includes trades by insurance companies.
They find that an insurance company who trades in a similar size, on the same side (i.e buying or
selling), the same bond on the same day with the same dealer will face a more favorable execution
cost if the given company is a more active trader than if it is a less active trader. We revisit this
result in the context of the UK bond markets with an emphasis on exploring whether there are

3Information on corporate bond ratings is from Thomson Reuters Eikon, which covers the three major rating
agencies Moody’s, Standard & Poor’s (S&P), and Fitch. Ratings of Moody’s are used as the default option because
of the firm’s large market coverage. S&P ratings are used if ratings from Moody’s are not available for the given
bond. Fitch ratings are used as a third option.
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any significant differences in the cost-intensity relationship across government and corporate bond
markets.

To determine whether clients are more or less active, we use the last six months of clients’
trading volume to place clients into two groups.4 More active clients are in the top quintile of the
distribution, while the rest of the clients are classified as less active.5 The sample we use in this
exercise is the same as the one used in the estimation of our structural model.

Given that execution costs vary with the direction of trades, we first divide our sample of trades
into buys and sales. To control for the effect of trade size, we then divide buys and sales into
three trade-size categories based on the nominal value of trades: small (£1–£100,000), medium
(£100,000–£1,000,000) and large (above £1,000,000).6 For each trade-size category, in each bond,
on each day and for buy and sell trades separately, we then compute the average prices at which
more active and less active clients traded.

If execution costs were similar across more and less active traders, then this measure of price
difference should not be significantly different from zero. The baseline estimates of O’Hara, Wang,
and Zhou (2018) (reported in Table 2 of their paper) show a price difference of –0.17% for buys
and 0.36% for sales, based on their sample of insurance companies on the US corporate bond
markets. They argue that search and intermediation frictions are likely explanations behind these
price differences.

It is an interesting question on its own right whether these effects are present in other markets
(such as the government bond market) and whether they are specific only to insurance companies.
Our findings, based on a sample more representative of the trading universe, are summarised in
Table 14. The price difference in our full sample of government bonds is -0.0183% for buys and
0.0193% for sales; whereas the estimates using the full baseline sample of corporate bonds is -
0.0627% for buys and 0.0601% for sales. Comparing our estimates for the corporate bond market
to those of O’Hara, Wang, and Zhou (2018) reveals that our estimates are significantly smaller.
This is likely driven by the fact that in our baseline sample of corporate bonds we exclude bonds
that are infrequently traded in order to have a set of assets that are comparable to government
bonds in terms of payoff and adverse selection risk.

Comparing our estimates across the government and corporate bond markets reveals that the
4Using past trading volume as a sorting variable is motivated by Section 4.3.2. of O’Hara, Wang, and Zhou

(2018), which uses trading volume as a robustness check. Their baseline sorting variable is clients’ bond portfolio,
which is not available in our sample.

5This cutoff for classification delivers comparable groups (in terms of number of transactions) of more active
and less active clients in both markets.

6Note that O’Hara, Wang, and Zhou (2018) uses four size categories with the third and fourth categories being
“Round-lot” ($1,000,000–$5,000,000), and “Block” (above $5,000,000). Given the smaller trade sizes in the UK, we
would not have sufficient number of observations to estimate relative execution costs in the fourth size category.
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Table 14: Differences in Execution Costs for More Active and Less Active Clients

Buys
Government Bonds Corporate Bonds

PriceDiff p-value Nobs PriceDiff p-value Nobs
Full sample by trade-size category -0.0183% 0.000 51584 -0.0627% 0.000 9681
£1–£100,000 -0.0251% 0.000 20510 -0.0701% 0.001 5073
£100,000–£1,000,000 -0.0142% 0.000 23574 -0.0210% 0.052 1513
above £1,000,000 0.0013% 0.565 25478 -0.0121% 0.349 311

Sells
Full sample by trade-size category 0.0193% 0.000 51533 0.0601% 0.000 12494
£1–£100,000 0.0398% 0.000 20895 0.0729% 0.000 7471
£100,000–£1,000,000 0.0107% 0.000 25400 0.0271% 0.004 1468
above £1,000,000 0.0006% 0.803 25323 0.0280% 0.174 285

Notes: The table presents the differences in execution costs for more active and less active traders. A client is classified as more active
(less active) if its last six month of trading volume is inside (outside) the top quintile of the client distribution. The sample ,covering
the period of 2011m8–2017m12, is the same as the one used in the structural estimation of our baseline model. To obtain the price
difference estimates, we first separate our full sample of bond trades into clients’ buys and sells. Within each subsample, we then classify
each trade into three size categories based on its pound transaction value: small (£1 to £100,000), medium (£100,000 to £1,000,000)
and large (above £1,000,000. Then for each bond, trading day, and size category, we calculate the average price (as a percentage of
the par) for more active traders and for less active traders, and compute the difference. The p-values are based on standard errors that
are clustered at the bond level.

price difference is about three times larger for corporate bonds in the full sample. This is indicative
of more severe trading frictions in the corporate bond market compared to the government bond
market. Examining how the price difference varies across the trade size distribution reveals that
the majority of the effect in the full sample concentrates in the lower segment of the trade size
distribution. We find that the price difference is statistically insignificant for the largest size
category, consistent with the evidence by O’Hara, Wang, and Zhou (2018) for the US.

D Two-step GMM

Our baseline results are obtained using a one-step GMM estimator. This is suitable in our frame-
work, given that all our moments are approximately in percentage deviations, so assigning equal
weights implies invariance to changes in units. The Monte Carlo evidence in Section 4.5 also con-
firms that a one-step GMM is appropriate in recovering the structural parameters of our model
(for a reasonable set of parameters). As a robustness check, this section reports how much the
baseline parameter estimates would change if we used a two-step GMM estimator instead.

We follow recent practice (Gayle and Shephard, 2019; Honore, Jorgensen, and de Paula, 2020)
and choose the weighting matrix to be a diagonal matrix, whose elements are the inverse of the
diagonal variance-covariance matrix of the empirical moments. This is to avoid the well-known
problems with using the optimal weighting matrix, which can have poor small-sample properties
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Table 15: Parameter Estimates: Two-step GMM

Government Bonds Corporate Bonds
(1) (2)

γ – Curvature of the utility function 18.02 18.02
δ – Exponential distn. parameter for G (χ1) 22.05 123.84
λ – Matching efficiency 3836.16 186.07
η – Dealers’ market power 0.95 0.27

Notes: this table reports the point estimates of the parameters using a two-step GMM estimation. As weighting matrix, we use inverse
of the diagonal of the variance-covariance matrix of the empirical moments implied by our baseline point estimates using a one-step
GMM (Gayle and Shephard, 2019; Honore, Jorgensen, and de Paula, 2020).

(Altonji and Segal, 1996). Table 15 reports the point estimates from the two-step GMM estimation.
The results are similar to our baseline estimates implied by the one-step GMM (Table 2).

E Sensitivity Analysis

E.1 Price Dispersion and Dealers’ Bargaining Power

An interesting result implied by our structural estimation is the large estimated bargaining power
that dealers in the government bond market (ηg = 0.95) have compared to the corporate bond
market (ηc = 0.28). As argued in Section 4.3, empirical measures of price dispersion is a key source
of variation in the data that helps identify dealers’ bargaining power in the model. While price
dispersion in the corporate bond market is almost twice as high as in the government bond market
(11 bps vs 6.4 bps), this difference is dwarfed by the difference in aggregate turnover (about 2.1
log points) across the two markets. The model’s quantitative interpretation of these cross-market
differences leads to the higher estimated bargaining power of dealers in government bonds.

To further explore the relationship between bargaining power and price dispersion, we ask:
how much would price dispersion need to change in the model such that dealers’ bargaining power
in the government bond market would fall below that in the corporate bond market. To answer
this question, Figure 4 shows the counterfactual levels of price dispersion in both markets as we
change dealers’ bargaining power in the given market, while keeping all other parameters fixed.

Inspecting the solid blue line in panel (a) of Figure 4 reveals that price dispersion in government
bonds would have to fall from the observed 6.4 bps (horizontal dotted line) to about 1 bp, so that
the model-implied bargaining power of dealers is reduced from the estimated value of 0.95 (vertical
dash line) to 0.28 - the level estimated for corporate bonds. Using a similar reasoning, panel (b)
of Figure 4 shows that price dispersion in the corporate bond market would have to rise from 11
bps to more than 60 bps so that the model-implied bargaining power in corporate bonds would
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Figure 4: Price Dispersion and Dealers’ Bargaining Power

(a) Government Bond Market
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(b) Corporate Bond Market
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Notes: The blue solid lines in the left and right panels show the counterfactual measures of price dispersion in the government and
corporate bond markets, respectively, as we change dealers’ bargaining power from the estimated values (marked by the vertical dashed
black lines) while keeping all other parameters fixed. The horizontal dotted lines show the empirical levels of price dispersion computed
from the micro-data covering the period 2011m8-2017m12.

be comparable to that in the government bond market.
Overall, the comparative statics of Figure 4 suggests that in our structural framework and

given the constellation of empirical moments, it is unlikely that the result regarding dealers’
relative bargaining power across the two markets could easily be reversed.

E.2 The Effects of Price Dispersion Measurement

In our baseline estimation, we measure price dispersion as the absolute deviation of transaction
prices from a benchmark price. As benchmark, we used the hourly average transaction price of
the given bond. The literature often uses benchmark prices that vary at the daily frequency (e.g.
Jankowitsch, Nashikkar, and Subrahmanyam (2011) and Üslü and Velioğlu (2019)). Our choice
of using higher-frequency (hourly instead of end-of-day) benchmarks aims to mitigate the over-
estimation of dispersion due to the gradual arrival of news in the market, which might dominate
price dispersion measures using a benchmark price with lower-frequency variation.

In this section, we check how our baseline estimation changes if we used the daily average
transaction price as a benchmark price when measuring price dispersion in the corporate and
government bonds. Measured price dispersion in the government bond market would increase
from 0.00064 to 0.00127, while it would increase from 0.0011 to 0.0016 in the corporate bond
market. That is, measured price dispersion in government bond markets would almost double,
whereas the corresponding moment in the corporate bond market would increase by almost 50%
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compared to the values used in the baseline estimation. The question remains about the extent
to which these dramatic changes in the empirical moments would change the parameter estimates
and the associated welfare results. To answer this, we re-estimate the model after modifying the
price dispersion moments in both markets.

Table 16: Parameter Estimates

Government Bonds Corporate Bonds
(1) (2)

γ – Curvature of the utility function 9.42 9.42
δ – Exponential distn. parameter for G (χ1) 22.59 116.56
λ – Matching efficiency 2483.26 13.20
η – Dealers’ market power 0.99 0.23

Notes: this table reports the point estimates of the parameters using a one-step GMM estimation. Compared to our baseline set of
empirical moments, price dispersion is set to be 0.00127 and 0.0016 in the government and the corporate bond market, respectively.

The new parameter estimates are presented in Table 16. The empirical fit of the re-estimation
is virtually identical to that of our baseline. The re-estimation is able to match the increased price
dispersion moments by lowering the estimated matching efficiency parameters in both markets
(λg and λc). The estimate for parameter λg falls from 4124 to 2483 and λc falls from 233 to
13.2. That is, the model’s re-estimation interprets the changed dispersion moments as clients’s
value function becoming less stable in the time-varying arguments (asset position and taste) which
increases transaction surpluses, leading to a rise in price dispersion. Moreover, the partial effect of
reducing the matching efficiency parameters is to reduce turnover in both markets as well. Given
that the quantity moments are unchanged during this re-estimation, a reduction in the estimated
curvature parameter γ (from 17.9 to 9.4) is used to fit the data.

We next compute the total welfare loss under the new constellation of parameters. The results
in Table 17 show a sizeable increase in welfare loss compared to our baseline specification. Total
welfare loss in the government and corporate bond markets increases to 27% and 43%, respectively,
from the values 7.8% and 12% implied by our baseline. Now the source of welfare loss in the
government bond market tilts significantly towards dealer market power, while search frictions
and dealer market power split the welfare loss in half in our baseline estimation. This reveals that
although dealers’ market power naturally increases by small percentage points (from 95% to 99%),
its welfare impact is significant.

Overall, these results highlight the importance of price dispersion measurement when esti-
mating quantitative models of OTC markets and associated welfare losses. The ideal empirical
counterpart of our theoretical price dispersion measure would compare clients who would trade the
same bond at the same time. Our choice of using hourly average prices around which to compute
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Table 17: Estimated Welfare Losses

Government Bonds Corporate Bonds
(1) (2)

Total Welfare Loss 27.423% 42.954%
Due to Search Frictions 6.963% 42.646%
Due to Dealers’ Market Power 20.46% 0.30844%

Notes: the table reports summary statistics for trading delays (upper panel) and dealers’ bargaining power (lower panel), implied by
the theoretical model evaluated at the estimated parameter values (as reported in Table 16). Trading delays are expressed as a fraction
of a trading day.

price dispersion aims to come close to this ideal. Reducing the time window further would be
possible in the government bond market, where assets are traded frequently enough to carry out
such a calculation. However, we face data limitations in the corporate bond market, where assets
are not traded frequently enough to estimate price dispersion based on time windows less than an
hour.

F Further Details on the Dealer Sector

This section provides some institutional background on the dealer sector in the UK government
and corporate bond markets. We also present novel stylized facts on the role of the dealer sector
in providing liquidity for clients in both markets. The institutional background as well as the
stylized facts are aimed at motivating some of the modeling choices we make in our structural
estimation; they also motivate why we focus on a common set of dealers in our empirical design
for cross-market comparison.

Specifically, the dealer sector in our model is taken to be exogenous and we do not model
the endogenous nature of intermediation as Üslü (2019) and others. This is consistent with the
empirical observation that market making in the UK government bond market is performed by
designated primary dealers, also known as gilt-edged market makers (GEMMs). Their number
hovers around 20 during our sample. GEMMs have a number of obligations and enjoy certain
privileges. A quick summary of these based on BoE (1997); DMO (2011, 2021) is as follows.
There are three main obligations of GEMMs: (i) they are obliged to make on demand continuous
two-way prices, thereby providing continuous liquidity for clients; this also includes maintaining
some minimum level of secondary market share; (ii) they are expected to plan an active role in
primary auctions and to purchase a minimum level of new issuance; (iii) they are obliged to provide
the DMO with data and information as well as market intelligence. In return, the GEMMs enjoy
certain privileges such as (i) the eligibility to submit competitive bids directly to the DMO and
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to purchase a specified fraction of gilts on offer at auctions; (ii) preferred counterparty status (e.g.
DMO would deal directly only with GEMMs); (iii) access to the to the services of Inter-Dealer
Brokers (IDBs).

Table 18: Intermediation by Primary Dealers

Government Bonds
Volume Number of Transactions

billion £s % n %
Client Trades (2011m8-2017m12) 11,431.5 100% 1,439,093 100%

Primary Dealer as Counterparty 11,250.8 98.4% 1,277,555 88.8%
Other Counterparty 180.6 1.6% 161,538 11.2%

Corporate Bonds
Client Trades (2011m8-2017m12) 1944.8 100% 1,961,510 100%

Primary Dealer as Counterparty 1644.9 84.5% 1,231,507 62.8%
Other Counterparty 299.9 15.5% 730,003 37.2%

Notes: The table presents summary statistics based on the trade-level ZEN dataset for the government and corporate bonds markets
covering the sample 2011m8-2017m12. In the sample we include all trades where at least one of the counterparties is a client. These
client trades are then split into two subsamples: one where the other counterparty is a primary dealer, also known as a gilt-edged market
marker (GEMMs), and another subsample where the other counterparty is not a primary dealer. All identified clients are included in the
construction of the table, i.e. not only those that trade in both markets, as in our baseline. All assets are included in the computations,
i.e., 57 assets in the government bond market and 2796 assets in the corporate bond market. Further information on GEMMs can be
found on the website of the Debt Management Office https://www.dmo.gov.uk/responsibilities/gilt-market/market-participants/.

While GEMMs do not have the same status in the sterling corporate bond market as they have
in the gilt market, they continue to play an important role in providing liquidity for corporate
bond traders. To provide some stylized facts on this, Table 18 reports the fraction of all available
client trades in our sample that are intermediated by GEMMs and by non-GEMMs. In terms
of trading volume, we find that about 98% of the trades are intermediated by GEMMs in the
government bond market, while this share amounts to a still sizable 85% in the corporate bond
market. In terms of number of transactions, GEMMs intermediate about 89% and 63% of trades
in the government and corporate bond markets, respectively.7 The lower share of GEMMs in
corporate bond intermediation is suggestive of GEMMs facing relatively fiercer market-making
competition from non-GEMMs (e.g. other large clients) in this market. This is consistent with
the result, implied by the structural estimation, that dealers have lower market power in the
corporate bond market compared to the government bond market.

Overall, the dominant role of GEMMs in the provision of liquidity in both markets and their
stable presence in market making are a primary reason why we propose a theoretical framework
with exogenous intermediation structure and why we fix the identities of dealers (in addition to

7Note that the lower share of dealer intermediation when measured in number of transactions is indicative of
non-GEMM counterparties playing an increased role of intermediating smaller sized trades. This is consistent with
the extending role of trading platforms in bond markets (Bessembinder, Spatt, and Venkataraman, 2020).
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fixing the identities of clients) when comparing the two markets.
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