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Do disadvantaged students benefit from attending top colleges? There is compelling evi-
dence that admission to a selective college raises graduation rates and earnings (Hoekstra,
2009; Cohodes and Goodman, 2014), and in some cases estimated returns are even larger for
low-income or minority students (Dale and Krueger, 2002). Since disadvantaged students
often have lower achievement levels, however, other work argues that they may be “over-
matched” at top colleges, and thus more likely to drop out or switch majors (Arcidiacono
et al., 2016). The debate on this question persists because it is hard to separate quality effects
of selective colleges—such as greater resources—from match effects that arise when students
are less prepared than their peers (Arcidiacono and Lovenheim, 2016). Students who choose
to attend a more selective college typically experience both effects simultaneously.

This paper exploits a natural experiment to isolate how the match between a student
and her college peers affects course grades, graduation rates, and earnings. We use data
from a selective public university in Colombia that “tracked” students into different cohorts
by admission exam scores. From this we develop a regression discontinuity design that
estimates the effects of a large increase in mean classmate ability for students in the same
college and major. We find that marginal admits to higher-ability cohorts were more likely
to fail first-year courses and drop out of college, and had lower earnings one decade later.

To interpret these effects, we develop a model that embeds classmate externalities in a
standard human capital framework. The model’s testable implications show that the most
compelling explanation for our results is that individuals learned less in more able classes.
We provide suggestive evidence that class composition affected both teaching and student
effort. In sum, our paper highlights the importance of match effects in college, and it shows
that exposure to more able peers can in some cases harm an individual’s career trajectory.

Our empirical setting is a large flagship university in the country of Colombia. Students
apply to separate majors at the flagship, and admission is based solely on national exam
scores. Related work has used similar settings to estimate the earnings return to selective
institutions or majors (Hastings et al., 2013; Kirkebøen et al., 2016). In these papers, affected
students attend schools with higher-ability peers, but also different resources and courses of
study. Thus the estimates reflect both quality and match effects of selective programs.

A unique admissions system at the flagship allows us to isolate the match between a stu-
dent and her college peers. From 2000–2003, several architecture, business, and engineering
programs used admission scores to “track” students into separate fall and spring cohorts.
The 60 highest-scoring applicants were admitted to a fall cohort, and the next 60 applicants
were admitted to a spring cohort. This affected the mean ability of a student’s classmates
because admission cohorts take core courses together. Since the flagship is highly selective,
85 percent of applicants accepted their admission offer with no discontinuity at the tracking
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threshold. As a result, marginal admits to the fall cohort took first-year courses in which
the mean student scored eight percentile points higher on the national admission exam.

We use a regression discontinuity design that compares students admitted to the same
program, but who took courses with different mean classmate ability. We collected data on
students’ admission scores and grades in each flagship course, and match these to adminis-
trative records on other colleges attended and formal sector earnings.

Our main finding is that students in more able classes had lower grades, graduation rates,
and post-college earnings. Marginal admits to higher-ability cohorts were five percentage
points more likely to fail first-year courses, and eight percentage points less likely to complete
the program. Most students who dropped out did not enroll in another college program. One
decade after applying, these students had 11 percent lower daily earnings than those just
below the tracking threshold, consistent with their lower educational attainment.

To understand the mechanisms for these results, we develop a model that illustrates how
an individual’s classmates can affect her returns to college. For this we augment a standard
human capital model (Becker, 1964) with two types of classmate externalities. First, we
allow a student’s learning to vary with mean classmate ability, consistent with the linear-
in-means model of Manski (1993). The learning externality can be a priori either positive
or negative, as it is the net effect of peer interactions (Sacerdote, 2001), teaching responses
(Duflo et al., 2011), and other classmate influences on human capital accumulation.

Second, classmates can affect an individual’s returns through information externalities.
We allow the program a student enrolls in to provide information on her unknown ability.
A peer externality arises because students have higher expected ability when they enroll in
more selective programs. This can affect a professor’s decision on how to set grades, and thus
whether to pass or fail a given student. It can also affect an individual’s labor market returns
if employers use program identity as a signal of ability (MacLeod and Urquiola, 2015).

In this framework, we show that our results are most consistent with negative learning
externalities from more able classmates. In particular, positive learning spillovers and in-
formation externalities do not explain why a given student would be more likely to fail in
a higher-ability class. If ability is positively related to learning and professors grade benev-
olently, both of these externalities reduce the probability of failing because students have
higher expected returns in more able classes. Our model predicts that more higher-ability
classmates increase the likelihood of failing only if they reduce a student’s learning.

We derive testable implications of our model and show evidence that individuals learned
less in more able classes. Marginal admits to high-ability cohorts also received lower grades in
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advanced courses, and they had lower earnings even conditional on graduation.1 Our model
shows that such effects arise only if classmates directly affect individual learning. We also
show that our results cannot be explained by tracking effects on the timing of enrollment.

Finally, we provide suggestive evidence that learning externalities resulted from both pro-
fessor and student responses to class composition. The negative effects appear only in pro-
grams that used tracking admissions for four years; we find no effects in programs that used
tracking for a single year. Thus learning externalities were larger in programs where profes-
sors had more time to adjust teaching practices. Further, we find negative effects only for
male students. This is consistent with evidence that changes in relative classroom position
have a greater impact on effort for men than for women (Murphy and Weinhardt, 2018).

Our paper contributes to work on the returns to college or major selectivity. There is
compelling evidence that admission to selective college programs raises graduation rates and
earnings (Hoekstra, 2009; Hastings et al., 2013; Goodman et al., 2014; Kirkebøen et al., 2016;
Chetty et al., 2017; Canaan and Mouganie, 2018; Hoxby, 2018; Zimmerman, 2019), and in
some cases the returns are largest for students from disadvantaged backgrounds (Dale and
Krueger, 2002, 2014; Saavedra, 2009; Zimmerman, 2014). Arcidiacono and Lovenheim (2016)
summarize this work as demonstrating that there are positive quality effects of selective
colleges, defined as factors that produce better outcomes for all students.

Other work focuses on the match between a student and her college peers. Arcidiacono
et al. (2011, 2014, 2016) find that affirmative action can reduce major completion and grad-
uation rates for students whose achievement is far below that of their peers. Riehl (2019)
shows that similar effects can arise if college admission exams become less informative. An-
drews et al. (2016) and Dillon and Smith (2018) find evidence of a complementarity in
earnings between student ability and college quality. These papers suggest that students can
be “overmatched” in programs with higher-ability peers, but the results often rely on strong
assumptions about unobservable determinants of college choice.2

We use the same identification strategy as in work that finds benefits to college selectivity,
but find large negative effects in isolating the match component of these returns. If match
effects are also important in other settings, our results suggest that selective programs have
a large positive value added beyond peer mechanisms (MacLeod et al., 2017). This could
stem from higher expenditures (Bound et al., 2010; Deming and Walters, 2018) or access
to certain labor markets (MacLeod and Urquiola, 2018). Since our results exclude quality

1 There is an inherent selection issue in analyzing both of these outcomes because marginal admits to higher-
ability cohorts were less likely to graduate. We implement a selection correction method in the spirit of Lee
(2009) using the fact that drop-out rates are strongly related to students’ first-year grades.
2 Other reduced form work exploits affirmative actions bans but finds no direct evidence of mismatch (Cortes,
2010; Backes, 2012; Hinrichs, 2012). Related research examines the causes of “overmatch” or “undermatch”
(Hoxby and Avery, 2013; Smith et al., 2013; Dillon and Smith, 2017; Cortes and Lincove, 2019).
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effects, they do not necessarily imply that programs like affirmative action can harm students.
But they show that negative effects may be more likely when admission policies lead to large
achievement gaps between an individual and her college peers.

Our paper also relates to work on peer effects in college. This work exploits random
assignment of students to roommates (Sacerdote, 2001; Zimmerman, 2003; Stinebrickner and
Stinebrickner, 2006), social groups (Foster, 2006; Lyle, 2007), military squadrons (Carrell
et al., 2009, 2013), and tutorial groups (Booij et al., 2017), and mostly finds either zero
or positive effects of higher-ability peers on a student’s GPA (Sacerdote, 2011). We find
negative effects of more able peers in a less-studied reference group: the college classroom.3

This is consistent with work showing that a student’s relative rank affects schooling outcomes
(Elsner et al., 2018; Murphy and Weinhardt, 2018; Ribas et al., 2018).4 Our empirical design
is most similar to Duflo et al. (2011), who find no achievement differences for students near
a tracking threshold in Kenyan primary schools. Our results highlight the importance of
student drop-out for understanding peer effects in college classrooms.

The paper proceeds as follows. Section 1 develops a model of the returns to college
with classmate externalities. Section 2 describes the flagship’s tracking admissions and our
identification strategy. Section 3 shows how tracking affected peer composition and grades in
first-year courses. Section 4 presents effects on graduation and earnings. Section 5 concludes.

1. Model

This section develops a model that shows how classmates can affect a student’s returns
to college. We define two types of peer externalities—learning and information—and embed
them into a standard human capital model. We show how these externalities affect a pro-
fessor’s incentives for which students to pass. Lastly, we derive predictions for peer effects
in grades, graduation rates, and earnings under different classmate externalities.

1.1. Peer learning externalities. Students arrive at college with heterogeneous ability.
We let θit denote individual i’s skill at the start of year t, where t = 0 is the first year of college.
θi0 is thus a student’s skill at the beginning of college. We use the terms “skill” and “ability”
interchangeably; both refer to human capital as defined by labor market productivity.

Students accumulate skill by taking courses. For simplicity we assume there is one class per
year, and thus we index courses by t. Skill accumulation is given by the recursive equation

θi,t+1 = θit + vit,(1)

3 There is more evidence on classroom peer effects at the K–12 level (Hoxby, 2000; Hoxby and Weingarth,
2005; Lavy et al., 2012). This work often exploits natural variation in cohort composition, which is less likely
to be exogenous in higher education because students have more flexibility in choosing schools and courses.
4 These papers use identification strategies that isolate the role of student effort. We consider a broader set
of mechanisms that matter in college classrooms, including professor behavior and information externalities.
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where vit is individual’s i skill return from course t. A student’s skill at the start of the next
year is her previous year’s skill plus the value added from her course that year.

We suppose that the skill return to college, vit, is given by the linear specification:

vit = µ+ γθit + βθ̄t.(2)

The parameter µ is the mean return to the course, and γ is the effect of individual skill, θit,
on course value added. We assume that γ > 0, i.e., the return to college is increasing in
individual ability. Below this assumption will yield the prediction that more able students
obtain more schooling on average—a well-documented empirical regularity.

The parameter β allows an individual’s skill return to vary with the mean ability of her
classmates, which we denote by θ̄t. This allows for a linear-in-means peer learning externality
(Manski, 1993). Classroom learning spillovers could arise for many reasons, including peer
interactions (Sacerdote, 2001), changes in instruction (Duflo et al., 2011), and student effort
responses (Murphy and Weinhardt, 2018). The reduced form parameter β reflects the net
effect of these mechanisms. Its sign is a priori ambiguous and is a key question in our
analysis. We can shut down learning externalities by considering the case β = 0.5

1.2. Peer information externalities. We also allow classmates to affect individual out-
comes through information channels. For this we begin by assuming that students do not
perfectly know their pre-college skill, θi0. This assumption is motivated by high drop-out
rates at the university in our analysis, where almost half of enrollees do not graduate.

Students have priors on their ability from the skill distribution in the first-year class. We
assume ability at the start of the first course is normally distributed, θi0 ∼ N(θ̄0, σ

2), and
students know the mean, θ̄0, and the variance, σ2, of this distribution.6 This assumption is
motivated by our empirical setting, in which a selective university admits small cohorts to
each major, and these cohorts take initial courses together. In this context, students may
have expectations on their own skill from knowledge of the admission process.

Students learn about their skill through course grades. At the end of each class, students
receive a grade, git, that is a noisy measure of their current skill:

git = θi,t+1 + εgit,(3)

where εgit
i.i.d.∼ N(0, σ2

g) and the error variance, σ2
g , is known. Skill accumulation is recursive,

so a student’s grade in course t is a signal of her skill at the start of the next year, t+ 1. We

5 The parameter β corresponds to what we identify in our empirical analysis: the returns to a large increase
in mean classmate ability, θ̄t. β is unlikely to characterize all potential classmate externalities. In the model
we assume β > −γ, which ensures that the mean skill return, E[vit|θ̄t] = µ+ (γ + β)θ̄t, is increasing in θ̄t.
6 Appendix B.4 shows that this classroom ability distribution can be microfounded by assuming college
programs are perfectly selective based on Gaussian admission scores (MacLeod and Urquiola, 2015).
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refer to git as a raw grade because it measures skill on an absolute scale. For example, git
might represent the number of correct answers on coursework and exams. Below we specify
how professors convert raw grades into normalized scores, as they are typically reported.

In this setup, a student’s expectations for her skill after one year of college are

E[θi1|θ̄0, gi0] = ρ0

ρ0 + ρg
θ̄End0 + ρg

ρ0 + ρg
gi0,(4)

where θ̄End0 = E[θi1|θ̄0] = µ + (1 + γ + β)θ̄0 denotes mean skill at the end of the first year.
This term equals the prior, θ̄0, plus the mean skill return. The parameters ρg = 1/σ2

g and
ρ0 = 1/(σ(1 + γ))2 are the precisions of gi0 and θ̄End0 for unknown skill, θi1. Equation (4) is
an application of Bayes’ rule under normality (DeGroot, 2004, Section 9.5). Expected skill
is a linear combination of the accumulated prior, θ̄End0 , and the individual’s grade, gi0, where
each term is weighted by its relative precision. Below we show that mean skill at the end of
the first year, θ̄End0 , differs from mean skill in the next class, θ̄1, if students drop out.

Our model includes two other actors—professors and employers—and we assume both
have the same information on individual ability as students. Specifically, professors do not
know an individual’s initial ability, θi0, but they know mean pre-college skill, θ̄0, grades, git,
and their distributions. Employers observe course choices and grades via student transcripts,
and they know the distributions of these variables from their experience in the labor market.7

Equation (4) illustrates the peer information externality. Professors and employers expect
that individuals with the same grade, gi0, have higher skill when they take courses with more
able peers, θ̄End0 . We can shut down this externality by considering a case with perfectly
precise grades, ρg = ∞ (equivalently, σ2

g = 0). In this case information frictions disappear
after the first year because course grades reveal individual skill, E[θi1|θ̄0, gi0] = θi1.

1.3. Wage determination. We follow the benchmark employer learning model in spec-
ifying how individual skill affects earnings (Jovanovic, 1979). Students enter a perfectly
competitive labor market after college where the only friction is that employers do not know
individual skill. An individual’s log wage is equal to her expected skill given the employer’s
information. In addition to courses and grades, employers observe a measure of a worker’s
on-the-job performance, yit, at the end of each year, where

yit = θi,t+1 + εyit(5)

with εyit
i.i.d.∼ N(0, σ2

y). We assume all employers observe yit, and ignore any post-college skill
accumulation due to on-the-job training (Farber and Gibbons, 1996).

7 One could argue that students know their own ability better than other actors. Conversely, professors
or employers may be better informed about a student’s potential returns from their knowledge of advanced
coursework or labor market institutions. We abstract from these possibilities for simplicity.
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Under these assumptions, an individual’s log wage in year t, wit, is defined to be

wit = E[θit|θ̄0,gi,yi,t−1],(6)

where gi is a vector of individual i’s grades, and yi,t−1 is her history of productivity signals.
Wages as defined by equation (6) exhibit the standard properties of employer learning models.
An individual’s wage converges to her true skill over time as employer inferences improve.
Characteristics that are observable at labor market entry—mean classroom ability, θ̄0, and
grades, gi—decline in importance over a worker’s career (Altonji and Pierret, 2001).

1.4. Professor grading standards. We now describe professors’ incentives in setting grades
when there are peer externalities. This links our model and empirics, as it shows why stu-
dents may be more or less likely to pass courses with higher-ability classmates.

We model the professor by letting her choose a failure threshold F that determines which
students pass the class. For simplicity, we focus on the first-year professor and assume college
consists of only two courses, t ∈ {0, 1}. First-year students with raw grades above the failure
threshold, gi0 > F , continue to the upper-level course, t = 1. Students with gi0 < F drop
out and enter the labor market. We abstract from the possibility of retaking courses.

The failure threshold allows for a simple translation of raw grades into normalized grades
as they are typically reported. We let g̃i0 denote a student’s normalized grade, and define it
as the difference between the individual’s raw grade and the failure threshold:

g̃i0 = gi0 − F.(7)

With this normalization, a student passes the first-year course if g̃i0 > 0 and fails otherwise.8

To illustrate the professor’s incentives in grading, we consider three possible choices of F :
(1) Professors choose the same F that an individual student would choose;
(2) Professors choose F to maximize the average return given learning externalities; and
(3) Professors choose F to maintain a fixed grading curve.

Below we present expressions for the failure threshold in each case and describe the main
mechanisms. Appendix B.1 contains full derivations.

1.4.1. Individual grading standards. A benchmark case is to let professors make the same
schooling decisions as individuals would themselves. This reflects a benevolent professor who
passes students who benefit from staying in college, and fails students who do not.

We follow Becker (1964) in assuming that individuals would continue in college if the
expected return exceeds the cost. To focus on the role of classmates, we abstract from
heterogeneity in costs by assuming that students stay in college if the expected wage return
8 Grades are often normalized further to match a common scale (e.g., 0–4 in the U.S.). Our model abstracts
from these additional normalizations since we assume all actors know the grade distribution.
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exceeds an interest rate, r.9 Equation (6) defines wages with and without the upper-level
course, and the student’s information on her skill includes her prior, θ̄0, and her first-year
grade, gi0. Appendix B.1 shows that an individual would choose to stay in college if

E[vi1|θ̄0, gi0] > r.(8)

In other words, students persist in college if the expected skill return from the upper-level
course, vi1, exceeds the cost of an additional year, r.

Under the assumption that skill returns are increasing in individual ability, γ > 0, the
decision rule (8) is equivalent to a benevolent professor’s grade threshold that we denote
by F Ind. Students whose expected returns exceed r have first-year grades gi0 > F Ind, and
students with gi0 < F Ind choose to drop out. Using equations (2) and (4), this threshold is

F Ind =
(

1 + ρ0

ρg

)
r − µ− βθ̄1

γ
− ρ0

ρg
θ̄End0 .(9)

The individual grade threshold, F Ind, depends on information externalities because ex-
pected returns are increasing in the accumulated prior, θ̄End0 . All else equal, imperfect infor-
mation causes higher-ability classes to have lower failure thresholds, which makes students
more likely to pass. This effect disappears if grades are perfectly precise, ρg =∞.

Learning externalities also affect the individual threshold because expected returns vary
with mean ability in the advanced course, θ̄1. We characterize this term in the next section,
but students naturally expect that θ̄1 is increasing in mean pre-college ability, θ̄0. An increase
in θ̄0 raises the return to college if learning externalities are positive, β > 0, which leads to
a lower failure threshold. If β < 0, higher peer ability increases F Ind.

1.4.2. Optimal grading standards. The individual grade threshold assumes that professors
do not internalize the effect of student drop-out on mean skill in the upper-level class, θ̄1. If
there are learning externalities, however, the professor may have an incentive to “weed out”
some students to raise average skill in the advanced classroom.

Our second rule allows for this by supposing that the professor sets F to maximize the
average return among her students. The failure threshold that maximizes the average return
balances two effects. First, a higher value of F increases mean skill in the upper-level
classroom, θ̄1, which affects the return to future coursework if there are learning externalities,
β 6= 0.10 Second, a higher F reduces the fraction of students who pass the class and thus
9 Card (2001) derives a version of this simplified human capital model. See Appendix B.1 for details.
10 Given the normality assumptions, mean skill in the upper-level class is given by

θ̄1 = θ̄End
0 + ρgσ0g

ρ0 + ρg
λ

(
F − θ̄End

0
σ0g

)
,

where σ0g is the standard deviation of first-year grades, gi0, and λ(·) is the inverse Mills ratio for the standard
normal distribution. θ̄1 is increasing in both F and θ̄0. See Appendix B.1 for details.
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cannot accumulate further skill. We refer to this grading standard as the optimal threshold,
and denote its value by F ∗.11 Appendix B.1 shows that the optimal threshold is given by

F ∗ =
(

1 + ρ0

ρg

)
r − µ
γ + β

− ρ0

ρg
θ̄End0 .(10)

One can show that F ∗ > F Ind if and only if β > 0 (see Appendix B.1). Thus if there are
positive learning externalities, the professor has an incentive to “weed out” some students
who would choose to stay in college because higher mean skill, θ̄1, benefits other students in
the upper-level class. If β < 0, the professor cannot influence upper-level class composition
because the individual’s schooling decision binds, F Ind > F ∗. If there are no learning
externalities, β = 0, the individual and optimal failure thresholds coincide, F ∗ = F Ind.

The key difference between the individual and optimal thresholds is that F ∗ does not
depend on θ̄1. This means that the optimal threshold is not increasing in mean classroom
ability (i.e., dF ∗/dθ̄0 ≤ 0). Professors who maximize the average return may “weed out”
some students, but they are not more likely to fail a given student in a higher-ability class.
The intuition is that the benefit of failing a student—which raises her peers’ learning if
β > 0—is offset by the cost of preventing her from taking further coursework.

1.4.3. Fixed grading standards. Lastly, we consider the possibility that professors use a fixed
grading curve. With a fixed curve, the same proportion of students fail regardless of mean
classroom ability. We denote this threshold by F Fixed, and let q be the fraction of students
whom the professor wishes to fail. Appendix B.1 shows that the fixed failure threshold is

F Fixed = θ̄End0 + σ0gΦ−1(q),(11)

where Φ−1(·) is the inverse standard normal CDF, and σ0g is the standard deviation of first-
year grades, gi0. The fixed failure threshold increases one-for-one with mean end-of-year
skill, θ̄End0 . Importantly, a fixed curve increases the likelihood that a given student fails in a
more able class, even if there are no peer externalities.

Anecdotally, many professors grade on a fixed curve, but this grading rule can be harmful
if there is a large increase in mean classroom skill. If the returns to college are increasing in
individual ability, the threshold F Fixed fails more and more students who would benefit from
further coursework as θ̄0 increases. Thus professors may not choose to use the same curve if
they experience a significant change in the average ability of their students.

Ultimately, the question of how professors grade is an empirical one, and professors likely
differ in their standards. We now derive testable predictions that allow us to distinguish
between peer externalities and professor grading choices in the data.

11 Formally, we define the optimal threshold as F ∗ = argmax
F

E[wit(Gi)−Gir|θ̄0, F ], where Gi is an indicator

for gi0 > F , wit(Gi) is the wage given Gi, and r is the cost of an additional year of college.
9



1.5. Peer effects in first-year grades. This section characterizes peer effects in first-year
grades. We define this peer effect as the expected change in a student’s normalized grade,
g̃i0, from an increase in mean classmate ability, θ̄0, holding fixed individual ability, θi0. We
let π0 denote the peer effect in first-year grades, and define it formally as:

π0 = dE[g̃i0|θi0, θ̄0]
dθ̄0

= dE[gi0|θi0, θ̄0]
dθ̄0

− dF

dθ̄0
.(12)

Grade peer effects can arise through either the student’s raw grade, gi0, or the professor’s
failure threshold, F . We develop two propositions that help separate these channels. Below
we state the propositions and describe the intuition. Appendix B.2 contains details.

Proposition 1. If peer effects in first-year grades are positive, π0 > 0, then either:
• Higher-ability classmates increase individual learning, β > 0; or,
• Classmates have information externalities, ρg <∞.

If peer effects in first-year grades are negative, π0 < 0, then either:
• Higher-ability classmates reduce individual learning, β < 0; or,
• Professors use fixed grading standards, F Fixed.

Proposition 1 describes what one learns from the sign of grade peer effects, π0. Positive
peer effects can arise for two reasons. First, if learning externalities are positive, β > 0, an
individual accumulates more skill in higher-ability classes and thus has a higher expected
raw score, gi0. Second, information externalities lead to lower failure thresholds in more able
classes when professors use either individual or optimal grading standards, F Ind or F ∗.

Grade peer effects can be negative if learning externalities are negative, β < 0, because
more able classmates reduce a student’s expected raw score, gi0. Higher-ability classmates
can also reduce an individual’s grade if professors use a fixed grading curve, F Fixed, even if
there are no other externalities. Since our empirical analysis finds evidence that π0 < 0, we
develop a second proposition that helps distinguish between these two possibilities.

Proposition 2. If professors use fixed grading standards, F Fixed, then peer effects in first-
year grades, π0, are decreasing in the skill return to individual ability, γ.
If professors use optimal grading standards, F ∗, then π0 increases with γ.

Proposition 2 describes how grade peer effects, π0, vary with the return to individual skill,
γ. This helps distinguish between fixed and optimal grading standards.12 If professors use a
fixed curve, then the failure threshold, F Fixed, increases one-for-one with mean end-of-class
skill, θ̄End0 . An increase in mean pre-college ability, θ̄0, has a bigger effect on the failure
12 The relationship between π0 and γ cannot be signed in general if F = F Ind. Thus Proposition 2 allows
us to reject either fixed or optimal grading standards, but it does not rule out individual grading standards.
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threshold when when γ is large because θ̄End0 = µ+ (1 + γ+ β)θ̄0. In other words, more able
peers induce more curving when grades are strongly related to individual ability.

If professors use optimal standards, F ∗, then grade peer effects increase with γ. This
effect arises from information externalities. Professors set lower failure thresholds in more
able classes because students have higher expected ability. Information externalities are
more pronounced when γ is large, leading to a more positive peer effect in grades.

1.6. Peer effects in graduation and wages. We conclude by describing peer effects in
college graduation and post-college wages. As above, we define a peer effect as the expected
change in each outcome from an increase in mean pre-college ability, θ̄0, holding fixed in-
dividual skill, θi0. We briefly describe the mechanisms and summarize the predictions in
Proposition 3. Appendix B.3 provides details.

Peer effects in graduation reflect the same mechanisms as peer effects in grades. In our
model, graduation is equivalent to passing the first-year class since college is only two years
long.13 An individual passes the class if her normalized grade, g̃i0, is greater than zero. Thus
peer effects in graduation have the same sign as peer effects in first-year grades, π0.

Peer effects in wages reflect a broader set of mechanisms. Wages depend on an individual’s
skill, which classmates can affect directly through learning externalities, β. Classmates can
also affect skill accumulation indirectly by influencing whether individuals continue onto
upper-level courses. Lastly, classmates can affect wages through information channels if
employers use grades or priors on peer ability to infer individual skill.

Appendix B.3 shows that information mechanisms cause individuals to earn higher wages
when they take classes with more able peers.14 This holds because individuals have higher
expected skill in more able classrooms. Peer effects in wages can only be negative if higher-
ability classmates reduce individual skill. To distinguish between direct and indirect skill
mechanisms, one can examine peer effects on wages or other measures of skill within the
population of students who persist in college. Conditional on graduation, higher-ability
classmates lead to lower wages only if there are negative learning externalities, β < 0.

Proposition 3 summarizes the predictions for graduation and wage peer effects.

Proposition 3.
(a) Peer effects in graduation have the same sign as peer effects in first-year grades, π0.
(b) Peer effects in log wages can be negative if learning externalities are negative, β < 0,

or if higher-ability classmates reduce the probability of graduation.
(c) Conditional on graduation, peer effects in wages (or skill) are negative only if β < 0.

13 Upper-level professors have no incentive to fail students in their last year of college in our model.
14 One could test for the role of information externalities by looking at changes in wage peer effects over
workers’ careers, as in Altonji and Pierret (2001). We show this theoretically in Appendix B.3, but our data
do not contain enough years of labor market experience for us to carry out this test.
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We now turn to our empirical analysis, which exploits a natural experiment to shed light
on the peer mechanisms in Propositions 1–3.

2. Data and identification

This section describes a tracking admission system at a Colombian flagship university,
which allows us to identify how classmates affect an individual’s returns to college. We give
background on the flagship, our data, and the admissions system. We then present our
empirical specification and show that tracking affected an individual’s college peers.

2.1. The flagship university. The setting for our paper is Universidad del Valle, or Uni-
valle, as it is often known. Univalle is a public flagship university in Cali, Colombia—the
country’s third largest city and the capital of the Valle del Cauca region. Like most Colom-
bian flagships, Univalle offers a wide range of undergraduate and graduate programs and
is much less expensive than comparable private colleges. These features make Univalle the
largest and most selective university its region, and one of the more selective colleges in the
country. In our sample, the median Univalle enrollee scored at the 88th percentile on the
national college admission exam, and its yield among admitted students was 85 percent.

Each year Univalle offers admission to roughly 50 undergraduate majors that we refer to
as “programs.” As in many countries, prospective college students in Colombia apply to
both an institution and a major. Admissions at Univalle are based solely on a student’s
performance on a national standardized exam called the ICFES.15 The ICFES is similar
to the U.S. SAT exam, but it is taken by nearly all high school graduates in the country.
Admissions are determined by a program-specific weighted average of scores on different
ICFES subject tests. The highest scoring applicants are admitted, with admission cutoffs
determined by the number of available slots in each program.

Many programs at Univalle are offered twice per year, i.e., students can begin college in
either January or August. Semi-annual admissions are the norm in Colombia because high
schools also operate on two different academic calendars (Riehl, 2015). Univalle’s test score
admissions and semi-annual cohorts are the basis of our identification strategy below.

2.2. Data sources. For our analysis we use two datasets provided by the flagship university:
(1) Lists of applicants to Univalle’s undergraduate programs from 2000–2003. These lists

contain each applicant’s admission score and admission outcome.
(2) Transcript records for all students in our sample of programs who enrolled in Univalle.

The data contain course names, dates, and grades for all classes that each student
took at the flagship through 2017, as well as their graduation outcome.

15 The ICFES exam is now called Saber 11, but we use the name from the time period of our data.
12



Table 1. Tracking admissions example — Fall 2003 applicants to architecture

(A) (B) (C)

Admit Admit
rank score Admission decision

1 404.16
. . . . . . Admitted to Fall 2003 cohort
60 315.75

61 315.05
. . . . . . Admitted to Spring 2004 cohort
132 259.14

133 258.94
. . . . . . Rejected
426 14.01

Notes: The admission score (column (B)) is a weighted average of an applicant’s ranks on each ICFES subject score.

We combine the flagship data with three individual-level administrative datasets:
(1) Records from the ICFES national standardized college admission exam that include

all students who took the exam in 1998–2003. These data contain students’ test
scores on the different exam subjects and their demographic characteristics. We also
use ICFES records on a college exit exam (described below).

(2) Records from the Ministry of Education on students who enrolled in nearly all colleges
in the country between 1998–2012.16 These records contain each student’s institution,
program of study, date of entry and exit from college, and graduation outcome.

(3) Earnings records from the Ministry of Social Protection for the years 2008–2012.
These data contain monthly earnings and days of employment for any college enrollee
working in the formal sector.

We link the flagship and administrative data sources using individuals’ names, birthdates,
and ID numbers (see Appendix C.1). The resulting dataset allows us to observe admission
scores, college choices, graduation outcomes, and earnings for all Univalle applicants, even if
they attended another university. We observe college courses and grades only for applicants
who enrolled in the flagship. We discuss this potential sample selection concern below.

2.3. Tracking admissions. Most programs at Univalle used separate admission cycles for
the fall and spring cohorts. A few programs, however, used a “tracking” admission system
that allows us to identify classmate peer effects on an individual’s returns to college.

Table 1 gives an example of tracking for the flagship’s architecture program. In 2003,
426 students applied to the architecture cohort that would begin in the fall of that year.
The flagship computed admission scores that were weighted averages of applicants’ ICFES
16 College admissions in Colombia are decentralized; students apply to individual schools and each institution
determines its own criteria. Nonetheless the Ministry tracks enrollment and graduation at almost all colleges.
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Table 2. Programs with tracking admissions

(A) (B) (C) (D) (E) (F) (G) (H)

Apply Total Total Mean Grad
pools applied admitted cohort size rate

Group Program Years Fall Fall Spring Fall Spring

Arch Architecture 2000–03 7 1,488 231 234 50 50 0.53

Accounting (day) 2000–03 7 928 283 292 67 64 0.58
Accounting (night) 2000–03 7 921 202 191 46 44 0.53

Bus Business Admin (day) 2000–03 7 1,171 295 289 68 62 0.63
Business Admin (night) 2000–03 7 940 207 196 45 44 0.49
Foreign Trade 2003 1 126 45 49 45 40 0.64

Chemical Engineering 2000 2 233 75 60 59 49 0.50
Electrical Engineering 2000 2 129 66 60 60 52 0.41

Eng Electronic Engineering 2000 2 403 72 60 58 56 0.54
Materials Engineering 2001 2 120 64 56 59 54 0.30
Mechanical Engineering 2001 2 209 69 57 56 59 0.24

Total 2000–03 46 6,668 1,609 1,544 56 53 0.53

Notes: Column (A) shows the years in our sample that each program used tracking. Column (B) shows the number
of application pools in these programs and years. In 2000–2002, each program had separate admissions for students
applying with pre- and post-2000 ICFES scores. In 2003, all applicants had to submit post-2000 exam scores.

Column (C) shows the total number of applicants (all applicants applied in the fall). Columns (D)–(E) show
the total number of students admitted to the fall and spring cohorts. Columns (F)–(G) show the mean number of
students who enrolled in each cohort. Column (H) shows each program’s graduation rate across all cohorts.

subject scores. The top 60 students based on this score were admitted to the fall cohort
(August 2003). The next 62 students were also admitted, but to an architecture cohort
that began in the spring (January 2004). All other applicants were rejected. We call this
“tracking” because students were tracked into fall and spring cohorts by admission scores.

Table 2 shows the programs and years in which the flagship used tracking. The architecture
program had tracking admissions from 2000–2003. Accounting and business administration
also used tracking in these four years, including separate day- and night-time programs.17

Foreign trade and five engineering programs had tracking admissions for one year during this
time period. All other Univalle programs did not use tracking; they were either offered only
once per year or had separate admissions for fall and spring cohorts.

Throughout this paper, we use the term “application pool” to refer to the set of students
who applied to the same program at the same time, and thus faced the same admission
cutoff. From 2000–2002, programs had two separate application pools each fall because the
ICFES exam underwent a major reform in 2000 (Riehl, 2019). The flagship allowed students
to apply using either old or new exam scores, and had separate cutoffs for the two groups.
After 2002, the flagship accepted only post-reform ICFES scores. Column (B) in Table 2
17 Architecture and the five business programs used tracking admissions through 2004, but we do not have
data on 2004 applicants. These programs switched back to semi-annual application cycles in 2005.
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shows that our data contain 46 application pools across all programs and years. Roughly
6,700 students applied to programs with tracking admissions in these years (column (C)).

We use the term “cohort” to refer to the group of students who began in the same program
at the same time. Nearly 3,200 applicants were admitted to any cohort, for an overall
admission rate of 47 percent (columns (D)–(E)). Admission totals were similar for fall and
spring cohorts, with about 50–70 admits per cohort in each program. Since the flagship is
considered the top college in the area, 85 percent of admitted students accepted their offer.
This led to fall and spring cohorts of 45–65 students per program (columns (F)–(G)).

Despite the flagship’s selectivity, graduation rates are low in all programs (column (H)).
The mean graduation rate across all programs and cohorts is 53 percent, with completion
rates below one-third in several engineering programs. This shows that students have signif-
icant uncertainty about their suitability for college coursework at the time of enrollment.

Tracking created variation in an individual’s classmates because enrollment cohorts usually
take core courses together. For example, the 60th ranked student in Table 1 was admitted
to a higher-ability fall cohort, and would typically take classes with more able peers if she
enrolled. The 61st ranked applicant would often be in classrooms with less able peers from the
flagship’s spring cohort. Below we quantify how tracking affected both cohort and classroom
peer composition, and also consider potential effects of differences in enrollment timing.

2.4. Regression discontinuity specification. The tracking admission system lends itself
to a regression discontinuity (RD) design. A growing body of research uses RD designs to
analyze the effects of attending a more selective university or field of study (e.g., Hastings
et al., 2013; Kirkebøen et al., 2016). This is similar to analyzing the lower threshold in Table
1 because rejected applicants often attend less selective programs. In this paper, we focus
instead on the first threshold in Table 1. This allows us to compare students admitted to
the same college and major, but who took classes with peers of different ability.

Our benchmark empirical specification is the stacked RD regression

(13) yip = πDi + αbxi + αaDixi + γp + εip if |xi| ≤ h,

where yip is an outcome for individual i in application pool p. The running variable, xi, is a
student’s admission rank (column (A) in Table 1) normalized so the last student above the
tracking threshold in each pool has xi = 0. Di is an indicator for having an admission score
above the tracking threshold. We allow for different coefficients on the running variable above
and below the threshold by including both xi and Dixi. The regression includes application
pool fixed effects, γp, which are defined by an applicant’s program, year, and whether she
applied with old or new ICFES scores (column (B) in Table 2). We cluster standard errors
at the individual level, as a few students applied to more than one flagship program.
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Our sample includes applicants to the flagship programs and years in Table 2. We only
include students admitted to either a fall or spring cohort (columns (D)–(E)). We also drop
94 students who were admitted through special disadvantaged group quotas. Our regressions
focus on the subset of applicants whose admission ranks are within h positions of the tracking
threshold. Our benchmark model uses h = 30, which is roughly the mean of the Calonico
et al. (2014) bandwidths across all dependent variables. Appendix Tables A5–A8 show our
main results using other bandwidths, and Appendix Figures A3–A6 show RD graphs of our
main outcomes by program group. Appendix C.1 provides details on our sample.

The coefficient of interest, π, estimates the effect of admission to the high-ability cohorts
at the tracking threshold. We present estimates that pool across all programs, as well as
separate estimates for the architecture, business, and engineering groups defined in Table 2.

The main identification assumption is that individuals near the tracking threshold do not
have perfect control of their admission score (Lee and Lemieux, 2010). Although students
likely have an idea about the program’s quota and standards, there is uncertainty in the
final admission decision stemming from other applicants. A violation of the identification
assumption would arise if, for example, students could petition the admission officer to move
the tracking cutoff. This is unlikely given the formulaic nature of admissions.

As a test of this assumption, Figure 1 shows how individual characteristics vary across the
tracking threshold. The y-axis in both panels is a student’s predicted first-year GPA, which is
estimated from a linear regression of first-year GPA on individual covariates including gender,
age, national exam score, and socioeconomic traits. This dependent variable combines many
pre-determined characteristics into a single index measured in GPA units. The x-axis is a
student’s rank in their application pool. We normalize these ranks to increase in admission
scores, and so that the last student above the tracking threshold has rank zero. Dots are
means of the dependent variable in five rank bins, and lines are predicted values from separate
local linear regressions above and below the threshold.

Figure 1 shows no evidence of a discontinuous change in individual characteristics at the
tracking threshold. The sample in Panel A includes all applicants, and the continuity of
predicted GPA suggests that the admissions committee did not manipulate applicant ranks.
In Panel B, the sample includes only students who chose to enroll in the flagship university.
This balance test is important because our data only contain grades for Univalle enrollees.
The characteristics of flagship enrollees do not change significantly at the tracking threshold,
and the predicted GPAs of applicants and enrollees are similar overall. The results in Figure
1 are corroborated by McCrary (2008) density tests (Appendix Figure A1) and covariate
balance tests (Appendix Tables A1–A2). Applicant and enrollee traits are similar because
the vast majority of applicants choose to enroll in the flagship, as we show in the next section.
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Panel B. Flagship enrollees

Figure 1. Predicted first-year GPA (using individual characteristics)

Notes: The x-axis is a student’s admission rank normalized so that zero is the first rank above the tracking threshold.
The y-axis is an applicant’s predicted first-year GPA from a regression with the covariates in Appendix Tables A1.
Dots are means in five-rank bins. Lines are from separate above- and below-threshold local linear regressions using
a triangular kernel with a 30 rank bandwidth. The sample for Panel A includes all applicants who were admitted to
flagship programs with tracking admissions (columns (D)–(E) in Table 2). Panel B includes only flagship enrollees.

2.5. Enrollment outcomes and cohort peer characteristics. This section shows that
the flagship’s tracking admissions altered the cohort peers of applicants near the threshold.

Figure 2 shows that tracking affected students’ starting cohorts, but not overall flagship
enrollment. These graphs are similar to the RD diagrams in Figure 1, but each panel plots
a different enrollment outcome on the y-axis. In Panel A, the dependent variable is an
indicator for enrolling in one of the flagship’s fall cohorts. The fall enrollment rate was
roughly 85 percent for applicants above the tracking threshold, and almost zero percent
below the threshold. In Panel B, the dependent variable is an indicator for enrolling in any
flagship cohort. Below-threshold students also enrolled in the flagship at an 85 percent rate,
and there is no discontinuity in overall enrollment at the threshold. Thus most of these
students enrolled in a spring flagship cohort.

Tracking caused large differences in average peer ability in an individual’s cohort. In Panel
C, we measure cohort peer ability using percentile scores on the national ICFES admission
exam. This variable ranges from zero to one and represents an individual’s percentile in
the national distribution of exam takers. Students below the tracking threshold enrolled in
programs where the average student scored at the 77th percentile on the ICFES exam. Mean
cohort ability jumps to the 87th percentile at the tracking threshold. Thus tracking induced
a 10 percentile increase in mean cohort ability for marginal admits to the fall cohorts.

An increase in peer ability meant that applicants just above the tracking threshold were
lower in their cohort’s ability distribution. We illustrate this in Panel D by graphing an
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Figure 2. Cohort enrollment and peer characteristics

Notes: This figure contains RD graphs (as in Figure 1) for the dependent variables in the panel titles. In Panel C,
ICFES percentile is an individual’s rank among all test takers in her cohort using the mean score across subjects.
The sample for Panels A–C includes all flagship applicants. The sample for Panel D includes flagship enrollees.

individual’s percentile rank in their cohort based on admission scores. Individuals just below
the tracking threshold are near the top of their cohort’s admission score distribution, while
individuals just above the threshold are among the lowest ranked students in their cohort.
This is a mechanical effect of tracking admissions.18

In sum, the vast majority of students in each application pool attended the same college
program, but tracking induced significant differences in their cohort peers. The next section

18 Cohort rank does not fall perfectly from one to zero at the threshold because a small number of students
enroll in cohorts other than the one they were admitted to. Appendix Table A3 shows that the tracking
effects in Figure 2 had similar magnitudes in architecture, business, and engineering programs.

18



Table 3. Examples of first-year required courses

Architecture Business Engineering

% % % % % %
Course took pass Course took pass Course took pass

Graphics I 0.95 0.62 Basic Mathematics 0.94 0.63 Calculus I 0.91 0.48
Projection Geometry 0.94 0.62 Calculus 0.89 0.72 Vector Geometry 0.94 0.56
Workshop Project I 0.97 0.68 Intro to Accounting 0.98 0.78 Linear Algebra 0.93 0.58
Intro to Technology 0.93 0.76 Computing I 0.96 0.92 Physics I 0.91 0.65
Theory I 0.94 0.81 Colombian Politics 0.93 0.94 Calculus II 0.90 0.70

Notes: This table shows the five most common first-year required courses for the three program groups in Table 2.
We define first-year required courses as those that were taken by 75 percent or more of a cohort’s graduates, and for
which the modal graduate took the course in her first year. “% took” is the proportion of a cohort’s graduates who
took the course. “% pass” is the proportion of course enrollees who passed the class.

shows how cohort peer composition translated into classroom peer composition, and the
resulting effects on academic performance.

3. Peer effects in first-year grades

This section shows how tracking admissions affected classmate ability and grades in first-
year courses at the flagship. Our main result is that marginal admits to the flagship’s fall
cohorts received lower grades in classes with more able peers. We present evidence that
this result is due to peer effects rather than differences in the timing of college enrollment.
Lastly, we use testable implications from Propositions 1–2 to show that these peer effects
reflect learning externalities more than grade curving.

3.1. First-year courses and classrooms. To estimate peer effects in grades, we focus on
required first-year courses because students typically took these classes with their cohort
peers. We use the term “course” to refer to classes that have the same name, and we identify
first-year required courses from the data. Specifically, we restrict attention to courses that
were taken by at least 75 percent of a cohort’s graduates, and in which the modal graduate
took the course in her first year. We exclude other elective courses because students had
discretion on whether and when to take them.19

Table 3 shows the five most common first-year required courses in each program group.
These include introductory courses related to the major such as Intro to Accounting and
Physics I, as well as math courses like Calculus and Geometry. Most courses were taken
by over 90 percent of the program’s graduates. Passing rates ranged from below 60 percent
in some math courses to above 90 percent in several business courses. Appendix Table A4
shows that students took nine first-year required courses on average.
19 We use a data-driven method to define first-year required courses since program requirements change
slightly over time. Our results are similar using other definitions, or including all first-year courses.
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We use the terms “classroom” and “classmates” to refer to the set of students who took
a course in the same room at the same time. In many cases, courses were offered in several
sections, but the large majority of students in any classroom were from the same cohort.
On average, first-year classrooms contained 36 students, and 77 percent of an individual’s
classmates were from her own program and cohort (Appendix Table A4).20

Our data do not contain information on professors, but Univalle faculty often teach the
same courses in the fall and spring. It is also common for faculty to teach multiple sections
of a course in a single semester. Some courses like Calculus and Physics were required in
more than one program, and were thus taught by multiple professors. In sum, students in
the fall and spring cohorts of a given program were likely taught by many but not all of the
same professors. We discuss the role of professors in more detail below.

3.2. Tracking effects on classmates and grades. Table 4 shows how tracking admis-
sions affected classroom peers and grades in first-year required courses. Each coefficient is
an estimate of π from a separate RD regression (13). These regressions are at the individ-
ual/course level with an observation for each individual’s first attempt at each course. The
top row is the pooled estimate across all programs. Other rows present separate estimates
for the three program groups in Table 2.

Columns (A)–(B) show that tracking affected the mean ability of individual’s classmates.
On average, individuals marginally admitted to the fall cohort took first-year courses with
classmates who scored eight percentile points higher on the national ICFES exam (column
(A)). As a result, these students were nearly 70 percentile points lower in the classroom
distribution of admission scores (column (B)). These effects appear in all program groups,
although there were slightly larger peer differences in business programs.

Column (C) shows that marginal admits to higher-ability cohorts received lower first-year
grades. Crossing the tracking threshold reduced first-year course grades by 0.13 points on
average. Colombian grades are on a 0–5 scale with 0.1 point increments (see Appendix Figure
A2), and 0.2 points is roughly the difference between a B+ and a B on the U.S. scale. The
negative effects occurred in architecture and business programs. In particular, admission to
high-ability architecture cohorts reduced students’ first-year performance by almost a full
letter grade. The grade effect is positive but imprecisely estimated in engineering programs.

Figure 3 shows RD graphs of the results in column (C). Panel A displays the pooled effect
for architecture and business programs. Average grades drop at the tracking threshold, and
the full distribution of grades is similar in the fall and spring cohorts. Panel B shows the
analogous graph for engineering programs. There is little evidence that tracking affected
first-year engineering grades, and the mean grade is much lower in the spring cohorts.

20 Students from other cohorts were often retaking the course after previously failing it.
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Table 4. Tracking effects on classroom composition and grades in first-year courses

(A) (B) (C) (D)

Classroom composition Course grade

Mean ICFES Class rank
percentile by admit Numerical Passing

in class score grade grade

All programs 0.079∗∗∗ −0.686∗∗∗ −0.126∗∗ −0.045∗∗
(0.003) (0.015) (0.061) (0.020)

Architecture 0.042∗∗∗ −0.587∗∗∗ −0.472∗∗ −0.166∗∗
(0.006) (0.049) (0.206) (0.076)

Business 0.090∗∗∗ −0.731∗∗∗ −0.164∗∗ −0.044∗∗
(0.004) (0.017) (0.070) (0.021)

Engineering 0.068∗∗∗ −0.625∗∗∗ 0.161 0.017
(0.005) (0.028) (0.136) (0.049)

N 14,267 14,327 14,327 14,327

Mean, ranks [−5,−1] 0.791 0.844 3.476 0.821

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
column header. The sample includes flagship enrollees within 30 ranks of the tracking threshold. Regressions are at
the individual/course level with an observation for each individual’s first attempt at each first-year required course.
The first row shows the pooled estimate across all programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01

Column (D) in Table 4 shows that marginal admits to high-ability tracks were also less
likely to pass first-year courses. The dependent variable is an indicator for receiving a
passing grade, which is a value of 3 or above on the Colombian scale. Tracking decreased the
course passing rate by 4.5 percentage points on average, with effects only in architecture and
business programs. This effect is a 25 percent increase in the overall course failure rate, and
a doubling of the failure rate in architecture. In practice, this meant that affected students
would have to retake the course to continue in the program.

3.3. Course timing. The flagship’s tracking admissions also affected the timing of when
individuals took first-year courses. Applicants above the tracking threshold typically began
the flagship program in August of the year they applied, while most below-threshold appli-
cants started in the following January. This section provides evidence that differences in
course timing are unlikely to explain the grade results in Table 4.

Delayed enrollment could have hindered spring cohort students in several ways. All stu-
dents in our sample applied to a fall program and were presumably ready to begin at that
time. The enrollment lag may have caused students to forget material, consistent with work
on learning loss during academic breaks (Cooper et al., 1996). All else equal, any harmful
effects of delayed enrollment would cause us to find positive effects of tracking.
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Figure 3. Grades in first-year courses

Notes: This figure contains RD graphs (as in Figure 1) with grades in first-year required courses as the dependent
variable. The graphs include an observation for each individual’s first attempt at each course. Panel A includes
flagship enrollees in architecture and business programs. Panel B includes enrollees in engineering programs.

On the other hand, delayed enrollment may have helped spring cohort admits if there are
benefits to starting college when one is older. Work on age-at-testing finds that students who
are old for their grade perform better on standardized exams (Bedard and Dhuey, 2006),
with some age benefits observed as late as age 18 (Black et al., 2011).21 The hypothesized
mechanisms in this work do not fully match our setting because students in the flagship’s fall
and spring cohorts had similar ages in their pre-college years. Further, it is unclear whether
age benefits on standardized exams also exist for college coursework.

Table 5 explores the potential influence of age on our results. Columns (A)–(B) show
how tracking affected the time at which students took first-year courses. In column (A),
the dependent variable is the time in years between individuals’ flagship applications and
the beginning of each first-year course. On average, marginal admits to the fall cohort took
these courses roughly half a year earlier than individuals just below the tracking threshold.
Column (B) shows that marginal fall cohort students were also about five months younger
at the start of their first-year courses, but the estimated age effects are much less precise.

The imprecise estimates in column (B) argue against age effects as a primary mechanism
for the grade results. The age estimates are noisy because Colombian college students vary
significantly in age. In Colombia, most students do not begin college right after high school,
and the average time off is nearly three years (Riehl, 2015). In our sample, the average
flagship applicant is 19.1 years old, and the standard deviation of applicant ages is 3.5 years.

21 Black et al. (2011) find that a one year increase in age-at-test at around age 18 raises scores on a Norwegian
IQ exam by one-tenth of a standard deviation. In their setting, older individuals also have more schooling.
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Table 5. Tracking effects on first-year course timing and grades by age

(A) (B) (C) (D) (E)

Course timing Course grade

Years from Age in yrs Age at Age at Controls
application at start application application for age in
to course of course < median ≥ median months

All programs −0.433∗∗∗ −0.398 −0.119 −0.151∗ −0.158∗∗
(0.019) (0.278) (0.086) (0.085) (0.062)

Architecture −0.425∗∗∗ −0.195 −0.622∗∗ −0.172 −0.470∗∗
(0.057) (0.682) (0.276) (0.315) (0.206)

Business −0.465∗∗∗ −0.312 −0.101 −0.253∗∗ −0.184∗∗∗
(0.024) (0.376) (0.098) (0.098) (0.070)

Engineering −0.350∗∗∗ −0.789∗ 0.141 0.133 0.081
(0.038) (0.448) (0.196) (0.189) (0.139)

N 14,327 14,311 7,017 7,294 14,311

Mean, ranks [−5,−1] 0.953 20.558 3.506 3.454 3.476

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
column header. The sample includes flagship enrollees within 30 ranks of the tracking threshold. Regressions are at
the individual/course level with an observation for each individual’s first attempt at each first-year required course.
Columns (C)–(D) split the sample based on the median age in each application pool. Regressions in column (E)
include fixed effects for age in months at the start of each course. The first row shows the pooled estimate across all
programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01

The variation in course timing induced by tracking—six months—is small in comparison to
the sample variation in ages, which makes age-related mechanisms less plausible.

Columns (C)–(D) in Table 5 corroborate this argument by showing that the grade results
are similar across age groups. These columns estimate the regressions in column (C) of Table
4 separately for students who are below or above the median age in their application pool.
The mean age at application is 17.2 for the below-median sample and 20.7 for the above-
median sample. Crossing the tracking threshold reduced first-year grades for both younger
and older students. The mean effect is slightly more negative for older students, but we
cannot reject identical point estimates for any program group. Appendix Table A9 shows
that we also find negative grade effects across age quartiles. The stability of these estimates
argues against age-at-testing effects because there is evidence that age benefits decrease as
students become older (Bedard and Dhuey, 2006; Cascio and Schanzenbach, 2016).

Column (E) in Table 5 shows that grade effects are similar even when we explicitly control
for an individual’s age in each course. These regressions are identical to those in column (C)
of Table 4, but we include a full set of dummies for a student’s age in months at the start of
each course. This specification is potentially endogenous because identification comes from
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students who applied to the flagship at different ages. Nonetheless, marginal fall cohort
students had lower grades than spring cohort students who took classes at similar ages, and
the point estimates are close to those in Table 4. Controlling for age makes little difference
because age is a weak predictor of academic performance in our data. Appendix Table
A10 shows that age has a small negative correlation with grades—both in the raw data and
conditional on students’ birth years and ICFES exam scores.

In sum, we find little evidence that grades and tracking effects are related to student age.
These effects are thus likely the causal effect of differences in individuals’ classmates.

3.4. Grade curving. The above results show that exposure to higher-ability flagship peers
reduced students’ grades and course passing rates. This section uses Propositions 1–2 from
our model to show that these effects are not primarily driven by grade curving.

Proposition 1 describes two reasons why a given student could be more likely to fail in
higher-ability classes. First, more able classmates may have externalities that reduce learning
for students near the bottom of the class, which would cause these individuals to earn lower
raw course grades. Second, professors may use fixed grading curves, which would increase
the likelihood of failing in more able classes even if there are no learning externalities.

In our setting, the importance of learning and grading mechanisms depends on how flagship
professors responded to tracking. Tracking may have affected learning if the variation in
classroom ability caused professors to teach differently. To our knowledge, Univalle faculty
also had full discretion in setting grades, and some professors may have been reluctant to
adjust their curves. Learning and grading mechanisms are both components of the returns
to attending a college with higher-ability peers. Nonetheless it is useful to examine whether
our results are primarily due to learning or grading effects.

To explore the role of curving, we first ask if course grade distributions were the same in
fall and spring cohorts. Panel A of Figure 4 plots the mean grade in each first-year required
course, where we compute separate means for classrooms with mostly fall and mostly spring
cohort students. The x-axis is the mean grade in classrooms where the majority of students
were from the fall cohort of a given program. The y-axis is the mean grade in classrooms
where most students were from the subsequent spring cohort of the same program. Black
circles are architecture and business courses, and red triangles are engineering courses.

Panel A shows that mean grades varied significantly between fall and spring cohort class-
rooms. While there is a strong correlation between average grades in the two cohort groups
(0.65), many courses lie off the 45 degree line that represents identical means. Hollow sym-
bols depict courses where the mean grades are statistically different at p < 0.05. We reject
identical means in 41 percent of courses, including many architecture and business courses.
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Figure 4. Grade distributions in first-year fall and spring cohort classrooms

Notes: This figure plots grade distributions in first-year required courses. We assign the classrooms of each course to
a program and cohort, where cohorts are defined by enrollment year and semester. “Fall cohort classrooms” are those
in which at least 50 percent of students were from the fall cohort of a given program. “Spring cohort classrooms” are
those in which at least 50 percent of students were from the spring cohort of a given program. We omit classrooms
with no cohort majority or with fewer than ten students. 591 classrooms fit these criteria.

In Panel A, dots depict the mean grade at the program/cohort/course level. The x-axis is the mean grade in fall
cohort classrooms. The y-axis is the mean grade in the subsequent spring cohort’s classrooms of the same program
and course. There are 456 program/cohort/course cells, and thus 228 dots. Panel B is similar to Panel A, but dots
depict the standard deviation of grades at the program/cohort/course level.

Black circles are architecture and business courses. Red triangles are engineering courses. Hollow symbols indicate
that grade means/standard deviations are statistically different in fall and spring cohort classrooms at p < 0.05.

The mean absolute deviation between fall and spring cohort average grades is 0.38 points—
more than half of a letter grade on the U.S. scale.

Panel B of Figure 4 shows an even weaker relationship between grade variances in first-year
courses. This graph is similar to Panel A, but it plots the standard deviation of grades in fall
(x-axis) and spring (y-axis) cohort classrooms. Grade standard deviations are only mildly
correlated in the two cohort groups (0.17), and many courses lie far from the 45 degree line.
We reject identical standard deviations in 40 percent of courses at p < 0.05. Thus many
professors used different grade distributions in fall and spring cohort classrooms.

Appendix Table A11 shows that the grade effects in Table 4 are not systematically related
to whether courses had similar or distinct grade distributions in the fall and spring cohorts.
We estimate tracking effects on grades separately for courses with distinct grade distributions
in Figure 4 (hollow symbols) and courses with similar distributions (solid symbols). If our
results were primarily driven by curving, one would expect to find effects only in courses with
similar grade distributions. Instead, tracking induced lower grades in both course groups.
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Proposition 2 provides a testable implication of our model that sheds light on how flagship
professors graded. The proposition describes how peer effects in first-year grades, π0, relate
to the skill return to individual ability, γ, under different grading methods. If professors
use fixed curves, F Fixed, then grade peer effects should be more negative in courses with
larger values of γ. Higher-ability peers have a bigger effect on a fixed curve when the return
to individual ability is large. If instead professors use optimal grading standards, F ∗, then
grade peer effects should be less negative in courses with higher values of γ. This is due
to information externalities; more able classmates have a greater effect on an individual’s
expected ability when γ is large, which induces more lenient grading.

To test this proposition, Figure 5 displays estimates of grade peer effects and returns to
individual skill in each first-year course. The y-axis depicts grade peer effects, π0, which are
the RD coefficients from separate grade regressions for each course. The x-axis depicts the
course’s return to individual skill, γ, which we define as the coefficient from a regression of
grades on admission scores for each course. This measure of γ is based on the assumption that
the return to individual skill is larger in courses where grades are more related to admission
scores. These regressions include classroom fixed effects so that we use only within-classroom
variation to identify γ.22 We normalize our estimates of γ to have standard deviation one,
and report the linear relationship between π0 and γ.

The results in Figure 5 suggest grades are more related to students’ expected returns than
to fixed curves. A one standard deviation increase in the course’s return to individual skill,
γ, is associated with a 0.09 point increase in the estimated grade peer effect, π0. This is
consistent with an information benefit to more able classmates; tracking had a bigger effect on
mean end-of-class skill in courses with large values of γ, which induced more lenient grading.
For example, engineering courses (red triangles) had higher returns to individual ability and
also more positive grade peer effects on average. Figure 5 suggests a less important role for
fixed grading curves, which would induce a negative relationship between π0 and γ.

In sum, Figures 4–5 suggest that our results are not driven solely by grade curving. While
some professors may have used fixed curves, grade distributions vary significantly across
flagship courses, and this variation does not explain the negative effects of tracking. This
suggests that the grade results in Table 4 are primarily due to peer learning externalities.

3.5. Learning externalities. This section describes two potential sources of learning ex-
ternalities from the flagship’s tracking admissions. First, the variation in grade effects across
programs is consistent with teaching responses. As shown in Table 2, most architecture and
business programs used tracking admissions for all four years in our sample. By contrast,
22 Appendix C.2 shows that the coefficient on admission scores in this regression is proportional to the γ
term in our model. We use a leave-out estimator for γ—students in other admission pools who took the
same course—so that γ is not mechanically related to the estimated peer effect, π0. See Figure 5 for details.
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Figure 5. Return to individual ability, γ, and grade peer effects, π0, in first-year courses

Notes: This figure plots estimates of returns to individual skill, γ, and grade peer effects, π0, in first-year required
courses. Dots are estimates for program/application year/course cells (225 in total).

The y-axis depicts grade peer effects, π0, which are the RD coefficients from estimating equation (13) separately
for each cell with grades as the dependent variable.

The x-axis depicts returns to individual skill, γ, which are coefficients from regressing course grades on admission
scores in regressions with classroom fixed effects. For this we estimate a “leave-out” regression for each cell using
students in other programs and/or application years who took the same course. Our data contain 254 total cells, but
we exclude 29 cells for which this leave-out estimator is infeasible. We normalize γ to have standard deviation one.

Grey circles are architecture and business courses. Red triangles are engineering courses. The solid line is the
linear relationship between π0 and γ, and we report the slope coefficient and robust standard error (in parentheses).

engineering programs had tracking for a single year before returning to semi-annual admis-
sions. Thus architecture and business professors had more time to adapt teaching to the
variation in classroom ability induced by tracking. This may have improved learning for top
students in lower-ability cohorts, leading them to earn higher first-year grades.23

Second, heterogenous effects by gender suggest that tracking affected student effort. Ap-
pendix Table A12 estimates tracking effects on first-year grades by student gender. The
negative effects are overwhelmingly driven by males. For men, crossing the tracking thresh-
old increased the course failure rate by six percentage points in business programs and 26
percentage points in architecture. These effects are close to zero for women. It is hard to
explain gender-specific effects through changes in professor teaching or grading alone. One
possible mechanism is that men in lower-ability cohorts increased their effort as a result of
their higher relative rank, consistent with results in Murphy and Weinhardt (2018).

While our results are consistent with teaching and effort responses, other types of learning
externalities are possible. Tracking may have affected social groups inside or outside of the
classroom (Carrell et al., 2013). Learning and grading mechanisms could also interact; for

23 Another hypothesis is that it may be easier to adapt curricula in architecture/business than in engineering.
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example, students may have reduced effort after receiving lower grades than they anticipated
(Wiswall and Zafar, 2015). Regardless of the mechanisms, our results provide clear evidence
that exposure to more able classmates reduced individuals’ academic performance. We now
turn to the longer-term consequences of these initial grade effects.

4. The returns to college peers

This section shows that marginal admits to the high-ability flagship cohorts were less
likely to graduate and had lower earnings one decade later. We present evidence that these
students also had lower skill even conditional on completing the program. This suggests that
the negative earnings return comes from peer learning externalities in addition to graduation
effects, consistent with Proposition 3 in our model.

4.1. Tracking effects on graduation. The flagship’s tracking admissions induced some
students in high-ability cohorts to fail first-year courses. This section shows that these
students also had lower graduation rates, consistent with Proposition 3(a).

Figure 6 shows the mean effect of tracking on flagship graduation rates across all programs
and cohorts. Panel A plots the proportion of students who graduated from their flagship
program (y-axis) by each year since the time of application (x-axis). The red circles depict the
flagship graduation rate for students just below the tracking threshold—those with admission
ranks between−5 and−1. Green triangles show this mean effect plus the RD estimate, which
is the π coefficient from a separate estimation of equation (13) for each year. Vertical dashed
lines are 95 percent confidence intervals for the RD coefficient.

Panel A shows that applicants just below the tracking threshold graduated at higher rates
in the long run. Students began graduating 4–5 years after application, which is the nominal
completion time for most programs.24 The RD estimate is positive in these years, consistent
with the six-month enrollment delay for applicants below the threshold. Over the next
several years, however, below-threshold graduation rates caught up to and surpassed those
for above-threshold students. By ten years after application, marginal admits to the high
ability cohorts were eight percentage points less likely to have completed the program.

Panel B in Figure 6 shows the overall flagship graduation rate. This graph is similar to
the RD graphs in Figures 1–3, but the dependent variable is an indicator for completing the
flagship program by 2017. The tracking effect is noisily estimated as graduation rates are
only moderately correlated with admission ranks. Nonetheless, there is evidence of a drop
in flagship completion rates at the tracking threshold.

Columns (A)–(B) in Table 6 provide more detail on the flagship graduation effects. As in
Table 4, this table displays RD coefficients for the dependent variables listed in the column
24 On-time completion is five years in all programs except Foreign Trade (4.5 years) and nighttime busi-
ness/accounting (six years).
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Figure 6. Tracking effects on flagship graduation

Notes: Panel A shows the proportion of flagship enrollees who graduated from the flagship (y-axis) by years since
application (x-axis). Red dots depict the flagship graduation rate for enrollees with admission ranks between −5 and
−1. Green triangles are equal to the red dots plus the π coefficients from the RD regression (13). Vertical dashed
lines are 95 percent confidence intervals for the RD coefficient using standard errors clustered at the individual level.

Panel B contains an RD graph (as in Figure 1) with an indicator for graduating from the flagship by 2017 as the
dependent variable. The sample includes all flagship enrollees.

header. Column (A) shows that crossing the tracking threshold led to an average decrease
of 0.64 years of full-time flagship enrollment. Column (B) shows the flagship graduation
estimates that correspond to Figure 6. The negative persistence and graduation effects
appear in architecture and business programs, consistent with the results for first-year grades.
Tracking effects on flagship completion are positive but imprecisely estimated in engineering.

Column (C) shows that marginal admits to high-ability cohorts were also less likely to earn
a degree from any college. These regressions use Ministry of Education data that allow us
to observe graduation at nearly all Colombian colleges up to 12 years after application. The
dependent variable is an indicator for finishing any college program, and the sample includes
all applicants regardless of flagship enrollment. Crossing the tracking threshold reduced the
degree attainment rate by nine percentage points, with effects concentrated in architecture
and business. The point estimates are similar to those in column (B), which shows that most
students who dropped out of the flagship did not complete another program.

The estimates in columns (A)–(C) of Table 6 are consistent with Proposition 3(a), which
states that peer effects in grades and graduation rates have the same sign. Although our
model abstracts from the possibility of retaking courses, our results show that the extra costs
from failing first-year classes prevented some students from obtaining a college degree.25

25 Appendix Table A13 shows that marginal admits to the high-ability cohorts were four percentage points
more likely to retake first-year courses after failing, but few enrolled in another college program.
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Table 6. Tracking effects on educational attainment and earnings

(A) (B) (C) (D) (E) (F)

Earnings
after Earnings

Educational attainment 5–9 years after 10–12 years

Full-time Any Annual
years at Flagship college Log daily Log daily earnings
flagship graduate degree earnings earnings in USD

All programs −0.644∗∗∗ −0.084∗ −0.089∗∗ −0.023 −0.115∗ −913
(0.185) (0.044) (0.042) (0.042) (0.067) (734)

Architecture −1.053∗ −0.098 −0.185 −0.131 −0.358∗ −3,617∗∗
(0.629) (0.138) (0.120) (0.124) (0.215) (1,781)

Business −0.857∗∗∗ −0.137∗∗ −0.113∗∗ −0.042 −0.098 −1,121
(0.212) (0.055) (0.052) (0.049) (0.082) (971)

Engineering 0.167 0.075 0.016 0.126 −0.063 229
(0.422) (0.088) (0.087) (0.104) (0.129) (1,354)

N (all programs) 1,665 1,665 1,865 3,887 2,158 2,158

Mean, ranks [−5,−1] 3.537 0.582 0.634 10.282 10.592 7,987

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in
the column header. The dependent variable in column (A) is the number of academic years in which students took
eight or more flagship courses. We observe flagship graduation through 2017 (column (B)) and graduation at other
Colombian colleges through 2012 (column (C)). The earnings regressions include an observation for each year in which
individuals have positive earnings in 5–9 years (column (D)) and 10–12 years (columns (E)–(F)) after application
using 2008–2012 labor market data. Annual earnings in column (F) are expressed in 2012 U.S. dollars.

The sample for columns (A)–(B) includes flagship enrollees. The sample for columns (C)–(F) includes all flagship
applicants. All regressions include only applicants within 30 ranks of the tracking threshold. The first row shows the
pooled estimate across all programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01

4.2. Tracking effects on earnings. This section shows that the decline in graduation rates
from exposure to higher-ability classmates also led to lower post-college earnings. This is
consistent with a negative peer effect on skill accumulation, as in Proposition 3(b).

Panel A in Figure 7 shows that below-threshold students began to earn more than above-
threshold students one decade after applying. This graph is similar to Panel A in Figure
6, but the dependent variable is log daily earnings measured 5–12 years after application—
the period we can observe in our data. The two groups had similar earnings 5–9 years
after application, but Figure 6 shows that many students were still working on their degrees
during these years. Ten years after application—when nearly all students’ college careers
were complete—earnings for below-threshold students began to rise more quickly. After 12
years, the earnings gap between the two groups was more than 0.1 log points.

Panel B in Figure 7 shows mean log daily earnings for the period of 10–12 years after
application. The graph exhibits less variation than that in Panel B of Figure 6 because
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Figure 7. Tracking effects on earnings

Notes: Panel A shows log daily earnings for flagship applicants (y-axis) by years since application (x-axis). The
graph is defined as in Panel A of Figure 6 with log daily earnings in that year as the dependent variable.

Panel B contains an RD graph (as in Figure 1) with log daily earnings as the dependent variable. The sample
includes all flagship applicants and any earnings observations we observe 10–12 years after flagship application.

admission ranks are more related to daily earnings than to flagship graduation. Thus there
is clear evidence of a decrease in earnings at the tracking threshold.

Columns (D)–(E) in Table 6 show the RD estimates that correspond to Figure 7. The
pooled estimate for daily earnings measured 5–9 years later is negative but small in magnitude
(D)). After 10–12 years, crossing the tracking threshold led to an 11 percent decrease in
earnings on average, and this estimate is significant at the ten percent level (column (E)).
The point estimates are largest in architecture and business programs, consistent with the
grade and graduation effects. This includes an earnings decrease of more than 0.35 log points
from admission to the higher-ability architecture cohorts.

Appendix Table A14 shows that tracking did not significantly affect the formal employment
rate. We observe earnings only for individuals employed at firms that were registered with the
government agency that provided our labor market data. Roughly 30 percent of applicants
do not appear in these records; this includes both informal workers and individuals who
are out of the labor force. However, the probability of formal employment does not change
significantly at the tracking threshold for either of the time periods in Table 6. We find no
discontinuity in part because most students worked during college, and graduation had little
impact on employment rates. We also find no mean effect on the number of days of work,
but in architecture programs, crossing the tracking threshold led to a decrease of roughly 70
days of employment per year. This is unlikely to change the sign of the earnings estimate
because wages are typically much lower in the informal sector.
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Column (F) in Table 6 shows effects on total annual earnings measured 10–12 years after
flagship application. Applicants just below the tracking threshold earned $8,000 per year
on average in 2012 U.S. dollars. Crossing the threshold decreased earnings by about $900.
The magnitude of this effect is similar to the daily earnings effect in column (E), but the
variation in hours worked makes the annual estimates less precise. Admission to higher-
ability architecture cohorts reduced annual earnings by more than 40 percent on average,
although this estimate has a large standard error.

From Proposition 3(b), the earnings results suggest a negative peer effect on skill accu-
mulation. Our model allows classmates to have both information and skill externalities, but
information mechanisms alone would lead to positive earnings estimates. Exposure to more
able classmates can only reduce earnings if it causes individuals to gain less skill. The af-
fected flagship students may have had lower skill because they learned less in higher-ability
classrooms, or because they were less likely to take upper-level courses. The last section
presents results that help distinguish between learning and persistence mechanisms.

4.3. Tracking effects on skill for flagship graduates. This section shows that exposure
to higher-ability classmates reduced skill accumulation even among the population of flagship
graduates. This suggests that the negative earnings return to peer ability was due in part
to classmate learning externalities, as in Proposition 3(c).

We analyze skill peer effects by estimating tracking effects on upper-level course grades,
college exit exam scores, and earnings conditional on graduation. Since tracking affected the
composition of students for whom we observe these outcomes, we adjust our estimates for
selection using a method similar to the Lee (2009) bounds for sample attrition.

We begin by examining upper-level course grades. Tracking may have affected upper-level
grades by impacting an individual’s learning in the first year, or by altering peer composition
in upper-level courses. Appendix Table A15 shows that admission to a fall cohort also
increased peer ability in upper-level courses, but this effect is roughly half of the magnitude
as for first-year courses because the timing of advanced coursework is more flexible. To isolate
the effect of first-year classmates, we exploit this variation in course timing by including
fixed effects for upper-level classrooms in our regressions. These dummies absorb any effect
of upper-level peers on learning or professor grading; the RD coefficients are identified only
from students on either side of the tracking threshold who sat in the same classrooms. The
estimates thus reflect only persistent effects of first-year classmates on learning.26

26 A student’s choice of when to take upper-level courses is often idiosyncratic, but it is not explicitly random.
This creates a possible endogeneity when we include classroom fixed effects. Appendix Table A16 shows that
our results for architecture and business programs are similar when we exclude these classroom dummies.
This suggests that course timing and upper-level peer ability are not important drivers of our results.
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Table 7. Tracking effects on skill for flagship graduates

(A) (B) (C) (D) (E) (F)

Upper-level Exit exam score Log daily earnings
course grade (SD units) after 10–12 years

Un- Selection Un- Selection Un- Selection
adjusted adjusted adjusted adjusted adjusted adjusted

All programs −0.050 −0.132∗∗∗ 0.032 −0.153 −0.147∗ −0.146
(0.044) (0.048) (0.156) (0.171) (0.086) (0.091)

Architecture −0.101 −0.307∗∗ 0.141 −0.241 −1.053∗∗∗ −1.338∗∗∗
(0.105) (0.130) (0.351) (0.394) (0.252) (0.351)

Business −0.048 −0.122∗∗ −0.005 −0.161 −0.038 −0.062
(0.054) (0.057) (0.189) (0.207) (0.102) (0.107)

Engineering 0.022 −0.017 0.145 0.154 −0.131 −0.148
(0.082) (0.096) (0.428) (0.440) (0.185) (0.187)

N 34,637 34,244 484 462 1,210 1,144

Mean, ranks [−5,−1] 3.640 3.750 0.758 0.926 10.659 10.687

Classroom dummies Y Y
Selection weights Y Y Y

Notes: This table displays π coefficients from RD regressions (13). In columns (A)–(B), the dependent variable is
the student’s grade in upper-level required courses, with an observation for each course taken by each student. In
columns (C)–(D), the dependent variable is the student’s college exit exam score normalized to (0, 1) for each exam
field and cohort. These regressions include only students whose exam field matches their program at the flagship.
The dependent variable in columns (E)–(F) is log daily earnings measured 10–12 years after application. These
regressions are similar to column (E) in Table 6, but the sample includes only flagship graduates.

All regressions include only applicants within 30 ranks of the tracking threshold. The first row shows the pooled
estimate across all programs. Other rows show estimates by program group. Columns (A)–(B) include classroom
fixed effects. Columns (B), (D), and (F) are estimated with selection weights, which we compute separately for each
dependent variable and program group using the method as in Figure 8. See Appendix Tables A16–A18 for details.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01

Column (A) in Table 7 shows how tracking affected upper-level grades. We focus on
upper-level courses that were required for the program, which we identify using the same
method as for first-year required courses.27 Regressions are at the individual/course level
with the student’s course grade as the dependent variable. These regressions are similar to
equation (13), but they include a fixed effect for each upper-level classroom. The results
show that crossing the tracking threshold led to a small decrease in upper-level grades, with
negative but insignificant point estimates in architecture and business programs.

The estimates in column (A) are likely biased for the true skill peer effects because tracking
affected the composition of students who took upper-level courses. Crossing the tracking
threshold increased drop-out rates and thus reduced the probability of taking upper-level

27 Specifically, we define upper-level required courses as those that were taken by more than 75 percent of a
program’s graduates, and for which the modal graduate took the course after her first year.
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Figure 8. Selection correction in upper-level courses — Architecture programs

Notes: Panel A plots kernel densities of first-year GPA for architecture students in upper-level required courses. The
solid line is the GPA distribution for students with admission ranks [−5,−1]. The dashed line is the GPA distribution
for students with admission ranks [0, 4]. We include an observation for each upper-level required course taken by each
student. We demean first-year GPA so that both distributions would be mean zero if all students took all courses.

In Panel B, the dashed line is replicated from Panel A. The solid line is the GPA distribution for admission ranks
[−5,−1] computed with weights that equal the ratio of the rank [0,4] and rank [−5,−1] densities in Panel A.

courses. This can cause upward bias in the estimated grade effects because more able students
are more likely to persist in the program. In other words, above-threshold students who took
upper-level courses must have had especially high ability to persist despite tracking.

To address this bias, we use a selection-adjustment procedure in the spirit of Lee (2009).
Lee derives bounds for a treatment effect when treatment induces data censoring. This
matches our setting because tracking affected the likelihood that we observe upper-level
grades. Following his insight, we correct for selection by re-weighting the distributions of
ability in upper-level courses to be the same on both sides of the tracking threshold.28

Figure 8 illustrates our selection adjustment in architecture programs. Panel A plots
distributions of ability for students who took upper-level courses, where we use first-year GPA
as our measure of ability. The solid line is the ability distribution for students just below
the tracking threshold (admission ranks −5 to −1) pooled across all upper-level courses.
The dashed line is the ability distribution for above-threshold students (ranks 0 to 4). We
demean first-year GPA so that it would be mean zero in both groups if all students stayed
in the program. The rightward shift of the dashed line shows that above-threshold students
who took upper-level courses were positively selected. In other words, the above-threshold
architecture students who persisted in college had especially high first-year GPAs.

28 Our approach differs from Lee’s because our goal is to compute a point estimate for the treatment effect
without selection, while Lee uses quantiles of the outcome distribution to bound the treatment effect.
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Panel B illustrates our correction procedure. We adjust for selection by re-weighting the
below-threshold ability distribution to match the above-threshold density. These weights are
equal to the ratio of the above- and below-threshold densities in Panel A. This reduces weight
on below-threshold students with low first-year GPAs, and increases weight on students with
high first-year GPAs. Panel B replicates Panel A with the below-threshold density computed
using these selection weights. The two ability distributions now coincide.

Column (B) of Table 7 shows selection-adjusted tracking effects on upper-level grades. The
regressions are similar to those in column (A), but we weight below-threshold observations
by the selection weights. We compute these weights separately for each program group using
the method described for Figure 8. Appendix Table A16 provides details on this procedure,
and shows that the selection weights eliminate a discontinuity in the mean ability of students
who took upper-level courses, as intended.

The results in column (B) show that, after adjusting for selection, mean upper-level grades
were 0.13 points lower for marginal admits to high-ability cohorts. The selection-adjusted
estimates are similar to those for first-year grades (column (C) in Table 4), with effects
appearing only in architecture and business programs. The selection weights have less impact
in engineering because tracking did not significantly affect upper-level course taking.

The remaining columns in Table 7 show how tracking affected two other measures of end-of-
college skill. In columns (C)–(D), the dependent variable is a field-specific college exit exam
score. The Colombian exit exam is a national standardized test of skills that educators deem
to be important in each major (MacLeod et al., 2017). These estimates are underpowered
because the exam was optional at the time of our data, and only about one-third of students
in our sample took it. In columns (E)–(F), the dependent variable is log daily earnings 10–
12 years after application, but we restrict the sample to flagship graduates. Since tracking
affected the probability that we observe both outcomes, we compute selection weights using
the same method as for upper-level grades. Columns (C) and (E) present unadjusted tracking
effects, and columns (D) and (F) present estimates with selection weights. Appendix Tables
A17–A18 provide details.

The exit exam and earnings results provide further evidence that admission to the higher-
ability cohorts reduced end-of-college skill. There is no discontinuity in unadjusted exit
scores, but crossing the tracking threshold led to a 0.15 standard deviation decrease in exam
performance after adjusting for selection (column (D)). We cannot draw strong conclusions
from this estimate because of the small sample size. Yet we find similar results for earnings
conditional on graduation. Crossing the tracking threshold reduced earnings by roughly
15 percent within the population of flagship graduates, and the results are similar with and
without selection weights (column (E)–(F)). The negative earnings effects are especially large
in architecture, consistent with the results for other outcomes.
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The findings in Table 7 suggest that flagship classmates affected individual learning beyond
their impact on college persistence. Proposition 3(c) states that exposure to more able
classmates can only reduce earnings within the population of graduates if there are negative
learning externalities. This corroborates the evidence from Section 3 that tracking effects
on first-year grades reflect learning spillovers in addition to professor grading responses. In
sum, our data suggest that the negative returns to peer ability arose at least in part because
individuals learned less in the presence of more able classmates.

5. Conclusion

A common argument against affirmative action in college admissions is the “mismatch
hypothesis,” which states that disadvantaged students may actually be better off at less
selective schools (Sander and Taylor Jr, 2012). In a review of research on this topic, Ar-
cidiacono and Lovenheim (2016) note that economists should be naturally skeptical of this
argument. Policies like affirmative action merely expand the choice set of disadvantaged
applicants; they can always choose to attend other colleges. A necessary condition for mis-
match, therefore, is that students have uncertainty about their returns at different colleges.

This paper showed evidence of mismatch in an environment with significant uncertainty on
the prospects for college success. Our empirical setting was a selective flagship university in
Colombia where nearly half of all students drop out. In this context, we find that students
were more likely to fail courses when their own ability was below that of most of their
classmates. This had long-term consequences for individuals’ careers; the affected students
were less likely to obtain a college degree, and had lower earnings one decade later.

Our model also highlighted the crucial role of uncertainty in an individual’s college choice.
In the model, all students have positive returns to the college program ex ante, but returns
can be negative ex post for students who discover that they are relatively low ability. Mis-
match arises if students learn less in the presence of more able peers, but this can only occur
if students do not perfectly know their standing in the classroom at the time of enrollment.

Our results do not necessarily imply that lower-ability students can be worse off at selective
colleges. Our research design nets out quality benefits of selective schools by comparing
students who attended the same college programs. But our findings show that match effects
are important, and they suggest that mismatch is more likely when success is less certain.
If disadvantaged students are less informed about their suitability for college coursework,
concerns about relative ability may partially explain why they are often less likely to apply
to selective colleges (Hoxby and Avery, 2013; Dillon and Smith, 2017). Further research on
the relative returns to peer ability and school quality is important for evaluating policies
that aim to reduce inequality through selective college admissions.
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Figure A1. Density of admission scores relative to the tracking threshold

Notes: The x-axis is a student’s admission score (e.g., column (B) in Table 1) normalized so that zero is the first
rank above the tracking threshold. The y-axis shows the number of applicants within five unit bins.

Panel A shows the distribution of admission scores for all flagship applicants in Table 2. Using the McCrary (2008)
density test, the estimated discontinuity—i.e., the log difference in height at the threshold—is 0.011 with a standard
error of 0.073. Panel B shows the distribution of admission scores for students who enrolled in the flagship. The
estimated density discontinuity is 0.054 with a standard error of 0.078.
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Figure A2. Grade distributions in first-year required courses

Notes: This figure shows grade distributions in first-year required courses at the flagship. We define first-year required
courses as described in the notes to Table 3. The graphs include an observation for each individual’s first attempt at
each course. Colombian college grades are on a 0–5 scale at 0.1 point increments, with 3 or above denoting a passing
grade. The height of each bar is the number of grades for each 0.1 point increment as a proportion of all grades.

Panel A shows the grade distribution in all courses across all programs. Panels B–D show the grade distributions
for courses in architecture, business, and engineering programs.
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Figure A3. Main outcomes — All programs

Notes: This figure contains RD graphs (as in Figure 1) for the dependent variables in the panel titles. See Figures
2, 3, 6, and 7 for variable definitions. The sample for Panels A and F includes flagship applicants to all programs.
Panels B–E include the subset of these applicants who enrolled in the flagship.
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Figure A4. Main outcomes — Architecture

Notes: This figure contains RD graphs (as in Figure 1) for the dependent variables in the panel titles. See Figures
2, 3, 6, and 7 for variable definitions. The sample for Panels A and F includes flagship applicants to architecture
programs. Panels B–E include the subset of these applicants who enrolled in the flagship.
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Figure A5. Main outcomes — Business

Notes: This figure contains RD graphs (as in Figure 1) for the dependent variables in the panel titles. See Figures 2,
3, 6, and 7 for variable definitions. The sample for Panels A and F includes flagship applicants to business programs.
Panels B–E include the subset of these applicants who enrolled in the flagship.
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Figure A6. Main outcomes — Engineering

Notes: This figure contains RD graphs (as in Figure 1) for the dependent variables in the panel titles. See Figures
2, 3, 6, and 7 for variable definitions. The sample for Panels A and F includes flagship applicants to engineering
programs. Panels B–E include the subset of these applicants who enrolled in the flagship.
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Table A1. Balance tests — All applicants

(A) (B) (C) (D) (E) (F)

Mean,
ranks RD coefficients by program group

N [−5,−1] All Arc Bus Eng

Predicted GPA 1,338 3.382 0.001 0.001 −0.011 0.030
(0.015) (0.043) (0.021) (0.021)

Female 1,865 0.395 0.048 0.117 0.032 0.052
(0.039) (0.112) (0.052) (0.061)

Age 1,856 20.106 0.038 0.348 0.141 −0.405
(0.258) (0.567) (0.361) (0.402)

Years since HS graduation 1,694 1.720 0.066 0.334 0.022 0.052
(0.170) (0.476) (0.216) (0.342)

ICFES percentile 1,759 0.862 −0.003 0.039 −0.017 0.013
(0.010) (0.031) (0.014) (0.013)

Secondary educated mother 1,733 0.647 −0.032 −0.065 0.003 −0.115
(0.041) (0.099) (0.054) (0.082)

College educated mother 1,733 0.267 −0.005 0.215∗ −0.038 −0.041
(0.038) (0.124) (0.043) (0.089)

Secondary educated father 1,474 0.675 −0.059 −0.005 −0.044 −0.125
(0.047) (0.118) (0.062) (0.090)

College educated father 1,474 0.344 −0.009 0.169 −0.031 −0.064
(0.046) (0.138) (0.055) (0.096)

Family income > 2x min wage 1,739 0.316 −0.041 0.001 −0.031 −0.084
(0.040) (0.125) (0.048) (0.092)

p value: Jointly zero 0.859 0.159 0.936 0.683

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
row header. Predicted GPA is the fitted value from a regression of first-year GPA on all other covariates in the table.
The sample includes flagship applicants within 30 ranks of the tracking threshold.

Column (A) shows the number of non-missing observations across all programs. Column (B) shows the mean of
the dependent variable for students with admission ranks [−5,−1]. Column (C) shows the pooled RD coefficient
across all programs. Columns (D)–(F) rows show RD coefficients by program group.

The last row reports p values from F tests that the coefficients on all covariates (except predicted GPA) are equal
to zero.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A2. Balance tests — Flagship enrollees

(A) (B) (C) (D) (E) (F)

Mean,
ranks RD coefficients by program group

N [−5,−1] All Arc Bus Eng

Predicted GPA 1,227 3.378 0.011 0.049 −0.007 0.038
(0.016) (0.045) (0.021) (0.023)

Female 1,665 0.395 0.067 0.213∗ 0.034 0.080
(0.042) (0.127) (0.055) (0.066)

Age 1,663 19.900 0.074 0.176 0.246 −0.483
(0.275) (0.619) (0.378) (0.431)

Years since HS graduation 1,563 1.743 −0.021 −0.252 −0.016 0.109
(0.175) (0.324) (0.225) (0.394)

ICFES percentile 1,623 0.859 0.001 0.050 −0.013 0.014
(0.011) (0.031) (0.015) (0.015)

Secondary educated mother 1,594 0.641 −0.017 −0.111 0.026 −0.094
(0.044) (0.111) (0.056) (0.088)

College educated mother 1,594 0.269 −0.005 0.171 −0.030 −0.034
(0.040) (0.137) (0.044) (0.096)

Secondary educated father 1,313 0.652 −0.036 0.034 −0.024 −0.106
(0.050) (0.135) (0.065) (0.098)

College educated father 1,313 0.312 0.020 0.278∗ −0.023 −0.016
(0.048) (0.151) (0.058) (0.104)

Family income > 2x min wage 1,602 0.317 −0.021 0.010 −0.006 −0.071
(0.042) (0.134) (0.049) (0.097)

p value: Jointly zero 0.878 0.110 0.963 0.690

Notes: This table is similar to Appendix Table A1, but the sample includes only students who enrolled in the flagship.
The table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the row
header. Predicted GPA is the fitted value from a regression of first-year GPA on all other covariates in the table.
The sample includes flagship enrollees within 30 ranks of the tracking threshold.

Column (A) shows the number of non-missing observations across all programs. Column (B) shows the mean of
the dependent variable for students with admission ranks [−5,−1]. Column (C) shows the pooled RD coefficient
across all programs. Columns (D)–(F) rows show RD coefficients by program group.

The last row reports p values from F tests that the coefficients on all covariates (except predicted GPA) are equal
to zero.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A3. Tracking effects on cohort enrollment and peer characteristics

(A) (B) (C) (D)

Cohort mean Cohort rank
Enrolled in Enrolled in ICFES by admission
fall cohort either cohort percentile score

All programs 0.843∗∗∗ 0.012 0.095∗∗∗ −0.808∗∗∗
(0.020) (0.030) (0.004) (0.016)

Architecture 0.730∗∗∗ −0.062 0.073∗∗∗ −0.797∗∗∗
(0.070) (0.097) (0.010) (0.056)

Business 0.863∗∗∗ 0.003 0.107∗∗∗ −0.806∗∗∗
(0.024) (0.035) (0.005) (0.020)

Engineering 0.853∗∗∗ 0.073 0.076∗∗∗ −0.831∗∗∗
(0.041) (0.064) (0.008) (0.024)

N 1,865 1,865 1,803 1,665

Mean, ranks [−5,−1] 0.000 0.854 0.778 0.901

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
column header. In column (C), ICFES percentile is an individual’s rank among all test takers in her cohort using the
mean score across subjects. The sample for columns (A)–(C) includes all flagship applicants. The sample for column
(D) includes flagship enrollees.

The first row shows the pooled estimate across all programs. Other rows show estimates by program group.
Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A4. Summary statistics for first-year required courses

(A) (B) (C) (D) (E) (F)

Total # # courses # students % of classmates Mean %
Group Program students per student in classroom from own cohort grade pass

Arch Architecture 394 9.1 37.1 0.64 3.15 0.75

Accounting (day) 519 9.8 41.6 0.81 3.48 0.81
Accounting (night) 356 8.6 37.1 0.77 3.34 0.77

Bus Business Admin (day) 513 9.8 37.4 0.80 3.68 0.87
Business Admin (night) 349 6.9 34.4 0.80 3.54 0.84
Foreign Trade 84 8.1 33.1 0.80 3.59 0.85

Chemical Engineering 107 8.1 32.6 0.80 3.16 0.73
Electrical Engineering 109 8.4 30.0 0.74 2.99 0.67

Eng Electronic Engineering 98 9.1 31.7 0.68 3.27 0.78
Materials Engineering 109 7.3 26.2 0.84 2.90 0.60
Mechanical Engineering 110 8.2 26.6 0.85 2.87 0.61

Total 2,748 9.2 36.3 0.77 3.38 0.79

Notes: This table displays summary statistics on first-year required courses for each program in our sample. We
define first-year required courses as described in the notes to Table 3.

Column (A) is the total number of students in our sample who took any first-year required course. Column (B)
is the average number of first-year required courses taken by each student. Column (C) is the average number of
classmates in individual’s first-year courses. Column (D) is the average proportion of these students who are from
the individual’s own cohort, where cohort is defined by program and starting semester. Columns (E) and (F) are the
mean grade and mean course passing rate across all first-year required courses.
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Table A5. Tracking effects by RD bandwidth — All programs

(A) (B) (C) (D) (E) (F)

Mean,
ranks RD coefficients by bandwidth (in ranks)

N [−5,−1] 45 30 15 CCT

First-year required courses

Mean ICFES pctile in class 14,267 0.791 0.080∗∗∗ 0.079∗∗∗ 0.080∗∗∗ 0.079∗∗∗
(0.002) (0.003) (0.004) (0.004)

Class rank by admit score 14,327 0.844 −0.652∗∗∗ −0.686∗∗∗ −0.709∗∗∗ −0.708∗∗∗
(0.013) (0.015) (0.020) (0.019)

Numerical grade 14,327 3.476 −0.152∗∗∗ −0.126∗∗ −0.221∗∗∗ −0.089
(0.051) (0.061) (0.084) (0.065)

Passing grade 14,327 0.821 −0.047∗∗∗ −0.045∗∗ −0.086∗∗∗ −0.037∗
(0.017) (0.020) (0.027) (0.021)

Educational attainment

Full-time years at flagship 1,665 3.537 −0.693∗∗∗ −0.644∗∗∗ −0.847∗∗∗ −0.576∗∗∗
(0.157) (0.185) (0.252) (0.191)

Flagship graduate 1,665 0.582 −0.097∗∗ −0.084∗ −0.130∗∗ −0.093∗∗
(0.038) (0.044) (0.060) (0.044)

Any college degree 1,865 0.634 −0.085∗∗ −0.089∗∗ −0.101∗ −0.049
(0.036) (0.042) (0.057) (0.045)

Earnings

Log daily earnings 3,887 10.282 −0.028 −0.023 −0.006 −0.018
after 5–9 years (0.036) (0.042) (0.056) (0.051)

Log daily earnings 2,158 10.592 −0.093 −0.115∗ −0.132 −0.135∗
after 10–12 years (0.058) (0.067) (0.086) (0.071)

Annual earnings in USD 2,158 7,987 −610 −913 −1,744∗ −707
after 10–12 years (630) (734) (932) (760)

Skill of flagship graduates (with selection weights)

Upper-level course grade 34,244 3.750 −0.146∗∗∗ −0.132∗∗∗ −0.135∗∗ −0.086
(0.040) (0.048) (0.066) (0.055)

Exit exam score (SD units) 462 0.926 −0.284∗∗ −0.153 0.031 0.006
(0.136) (0.171) (0.203) (0.187)

Log daily earnings 1,144 10.687 −0.174∗∗ −0.146 −0.085 −0.138
after 10–12 years (0.080) (0.091) (0.122) (0.099)

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
row header. See Tables 4, 6, and 7 for variable and sample definitions. Regression specifications for the last three
rows match those in columns (B), (D), and (F) of Table 7.

The sample includes applicants to all programs who are within h ranks of the tracking threshold, where h is given
by the header in columns (C)–(F). CCT is the bandwidth recommended by Calonico et al. (2014).

Column (A) shows the number of non-missing observations for the h = 30 sample. Column (B) shows the mean
of the dependent variable for students with admission ranks [−5,−1]. Columns (C)–(F) report RD coefficients.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A6. Tracking effects by RD bandwidth — Architecture programs

(A) (B) (C) (D) (E) (F)

Mean,
ranks RD coefficients by bandwidth (in ranks)

N [−5,−1] 45 30 15 CCT

First-year required courses

Mean ICFES pctile in class 1,994 0.808 0.046∗∗∗ 0.042∗∗∗ 0.035∗∗∗ 0.041∗∗∗
(0.005) (0.006) (0.009) (0.007)

Class rank by admit score 2,002 0.755 −0.609∗∗∗ −0.587∗∗∗ −0.513∗∗∗ −0.482∗∗∗
(0.038) (0.050) (0.085) (0.097)

Numerical grade 2,002 3.490 −0.398∗∗ −0.472∗∗ −0.647∗∗ −0.647∗∗
(0.166) (0.207) (0.296) (0.296)

Passing grade 2,002 0.843 −0.127∗∗ −0.166∗∗ −0.240∗∗ −0.220∗∗
(0.061) (0.076) (0.115) (0.108)

Educational attainment

Full-time years at flagship 219 3.696 −0.903∗ −1.053∗ −1.790∗ −1.485∗
(0.516) (0.633) (0.927) (0.861)

Flagship graduate 219 0.609 −0.116 −0.098 −0.216 −0.129
(0.113) (0.139) (0.194) (0.180)

Any college degree 255 0.615 −0.198∗∗ −0.185 −0.153 −0.167
(0.100) (0.121) (0.161) (0.154)

Earnings

Log daily earnings 432 10.194 −0.141 −0.131 0.081 0.081
after 5–9 years (0.101) (0.125) (0.165) (0.148)

Log daily earnings 230 10.531 −0.276 −0.358 −0.069 −0.117
after 10–12 years (0.179) (0.217) (0.278) (0.247)

Annual earnings in USD 230 7,333 −3,232∗∗ −3,617∗∗ −2,189 −2,773
after 10–12 years (1,482) (1,800) (2,509) (1,930)

Skill of flagship graduates (with selection weights)

Upper-level course grade 3,071 4.065 −0.376∗∗∗ −0.307∗∗ −0.391∗∗∗ −0.351∗∗
(0.108) (0.128) (0.137) (0.138)

Exit exam score (SD units) 88 0.843 −0.331 −0.241 −0.002 −0.366
(0.331) (0.390) (0.515) (0.405)

Log daily earnings 91 10.785 −1.094∗∗∗ −1.338∗∗∗ −1.184∗∗ −0.866
after 10–12 years (0.290) (0.362) (0.493) (0.789)

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
row header. See Tables 4, 6, and 7 for variable and sample definitions. Regression specifications for the last three
rows match those in columns (B), (D), and (F) of Table 7.

The sample includes applicants to architecture programs who are within h ranks of the tracking threshold, where
h is given by the header in columns (C)–(F). CCT is the bandwidth recommended by Calonico et al. (2014).

Column (A) shows the number of non-missing observations for the h = 30 sample. Column (B) shows the mean
of the dependent variable for students with admission ranks [−5,−1]. Columns (C)–(F) report RD coefficients.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A7. Tracking effects by RD bandwidth — Business programs

(A) (B) (C) (D) (E) (F)

Mean,
ranks RD coefficients by bandwidth (in ranks)

N [−5,−1] 45 30 15 CCT

First-year required courses

Mean ICFES pctile in class 9,306 0.756 0.091∗∗∗ 0.090∗∗∗ 0.093∗∗∗ 0.091∗∗∗
(0.003) (0.004) (0.005) (0.004)

Class rank by admit score 9,331 0.868 −0.695∗∗∗ −0.731∗∗∗ −0.752∗∗∗ −0.752∗∗∗
(0.016) (0.017) (0.022) (0.022)

Numerical grade 9,331 3.652 −0.206∗∗∗ −0.164∗∗ −0.236∗∗ −0.186∗∗∗
(0.059) (0.070) (0.098) (0.067)

Passing grade 9,331 0.865 −0.054∗∗∗ −0.044∗∗ −0.075∗∗∗ −0.044∗∗
(0.018) (0.021) (0.028) (0.021)

Educational attainment

Full-time years at flagship 1,081 3.857 −0.886∗∗∗ −0.857∗∗∗ −0.983∗∗∗ −0.749∗∗∗
(0.180) (0.211) (0.283) (0.223)

Flagship graduate 1,081 0.670 −0.140∗∗∗ −0.137∗∗ −0.176∗∗ −0.145∗∗∗
(0.047) (0.055) (0.074) (0.056)

Any college degree 1,179 0.651 −0.108∗∗ −0.113∗∗ −0.130∗ −0.079
(0.045) (0.052) (0.070) (0.057)

Earnings

Log daily earnings 2,863 10.324 −0.028 −0.042 −0.032 −0.040
after 5–9 years (0.042) (0.049) (0.065) (0.059)

Log daily earnings 1,189 10.597 −0.045 −0.098 −0.137 −0.141
after 10–12 years (0.069) (0.082) (0.103) (0.088)

Annual earnings in USD 1,189 8,250 −288 −1,121 −1,689 −1,247
after 10–12 years (801) (971) (1,228) (1,036)

Skill of flagship graduates (with selection weights)

Upper-level course grade 26,207 3.817 −0.126∗∗∗ −0.122∗∗ −0.140∗ −0.108∗
(0.048) (0.056) (0.079) (0.062)

Exit exam score (SD units) 310 0.967 −0.250 −0.161 −0.017 −0.053
(0.164) (0.206) (0.229) (0.226)

Log daily earnings 727 10.653 −0.075 −0.062 −0.082 −0.037
after 10–12 years (0.089) (0.107) (0.144) (0.103)

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
row header. See Tables 4, 6, and 7 for variable and sample definitions. Regression specifications for the last three
rows match those in columns (B), (D), and (F) of Table 7.

The sample includes applicants to business programs who are within h ranks of the tracking threshold, where h is
given by the header in columns (C)–(F). CCT is the bandwidth recommended by Calonico et al. (2014).

Column (A) shows the number of non-missing observations for the h = 30 sample. Column (B) shows the mean
of the dependent variable for students with admission ranks [−5,−1]. Columns (C)–(F) report RD coefficients.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A8. Tracking effects by RD bandwidth — Engineering programs

(A) (B) (C) (D) (E) (F)

Mean,
ranks RD coefficients by bandwidth (in ranks)

N [−5,−1] 45 30 15 CCT

First-year required courses

Mean ICFES pctile in class 2,967 0.882 0.068∗∗∗ 0.068∗∗∗ 0.066∗∗∗ 0.066∗∗∗
(0.005) (0.005) (0.007) (0.007)

Class rank by admit score 2,994 0.830 −0.563∗∗∗ −0.625∗∗∗ −0.676∗∗∗ −0.676∗∗∗
(0.024) (0.028) (0.035) (0.035)

Numerical grade 2,994 2.981 0.142 0.161 −0.001 −0.056
(0.117) (0.136) (0.180) (0.190)

Passing grade 2,994 0.684 0.023 0.017 −0.051 −0.083
(0.042) (0.049) (0.064) (0.069)

Educational attainment

Full-time years at flagship 365 2.595 −0.015 0.167 −0.044 −0.215
(0.362) (0.423) (0.577) (0.610)

Flagship graduate 365 0.333 0.040 0.075 0.024 0.024
(0.076) (0.088) (0.117) (0.117)

Any college degree 431 0.600 0.036 0.016 −0.002 0.000
(0.074) (0.087) (0.118) (0.106)

Earnings

Log daily earnings 592 10.166 0.043 0.126 0.028 0.008
after 5–9 years (0.088) (0.105) (0.137) (0.143)

Log daily earnings 739 10.605 −0.105 −0.063 −0.153 −0.225
after 10–12 years (0.114) (0.129) (0.165) (0.155)

Annual earnings in USD 739 7,778 −282 229 −1,806 −2,516
after 10–12 years (1,204) (1,352) (1,683) (1,833)

Skill of flagship graduates (with selection weights)

Upper-level course grade 4,966 3.179 −0.086 −0.017 0.106 0.082
(0.085) (0.104) (0.145) (0.116)

Exit exam score (SD units) 64 0.807 −0.107 0.154 0.258 −0.221
(0.330) (0.457) (0.730) (0.970)

Log daily earnings 326 10.781 −0.231 −0.148 0.025 −0.018
after 10–12 years (0.180) (0.187) (0.228) (0.227)

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
row header. See Tables 4, 6, and 7 for variable and sample definitions. Regression specifications for the last three
rows match those in columns (B), (D), and (F) of Table 7.

The sample includes applicants to engineering programs who are within h ranks of the tracking threshold, where
h is given by the header in columns (C)–(F). CCT is the bandwidth recommended by Calonico et al. (2014).

Column (A) shows the number of non-missing observations for the h = 30 sample. Column (B) shows the mean
of the dependent variable for students with admission ranks [−5,−1]. Columns (C)–(F) report RD coefficients.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A9. Tracking effects on first-year grades by age at application

Dependent variable: Numerical grade

(A) (B) (C) (D) (E)

RD coefficient by age at time of application (quartiles)

2nd 3rd p value:
Youngest quartile quartile Oldest All equal

All programs −0.076 −0.216∗ −0.032 −0.215∗ 0.614
(0.123) (0.125) (0.126) (0.115)

Architecture −0.864∗∗∗ −0.504 −0.264 0.136 0.136
(0.261) (0.450) (0.482) (0.341)

Business −0.074 −0.253∗ −0.031 −0.460∗∗∗ 0.122
(0.149) (0.145) (0.129) (0.145)

Engineering 0.465 0.019 0.136 0.221 0.740
(0.300) (0.276) (0.330) (0.212)

N 3,403 3,614 3,629 3,665

Mean grade, ranks [−5,−1] 3.513 3.499 3.297 3.594

Average age at application 16.7 17.6 18.8 22.5

Notes: This table displays tracking effects on first-year course grades—as in column (C) of Table 4—by quartile of
student age at the time of application. Columns (A)–(D) display π coefficients from separate RD regressions (13)
with grades in first-year required courses as the dependent variable. The columns separate the sample into quartiles
defined by age at the time of application. Column (E) reports p values from F tests that the coefficients are equal
for all four quartiles.

The sample includes flagship enrollees within 30 ranks of the tracking threshold. Regressions are at the individ-
ual/course level with an observation for each individual’s first attempt at each first-year required course. The first
row shows the pooled estimate across all programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A10. Effect of age on grades in first-year required courses

Dependent variable: Numerical grade

(A) (B) (C) (D) (E)

No Within Within Within ICFES
controls cohort class birth yr controls

Age in years × 2 −0.001 −0.003 −0.005∗∗ −0.021 −0.036∗
(0.002) (0.002) (0.002) (0.021) (0.021)

N 22,164 22,164 22,164 22,164 22,164
R2 0.000 0.074 0.350 0.358 0.374

Cohort dummies Y Y Y Y
Classroom dummies Y Y Y
Birth year dummies Y Y
ICFES subject scores Y

Notes: This table displays coefficients from a regression of student grades in first-year required courses on their ages
at the start of the course. We use age in years × 2 so that one unit represents six months in age.

The sample includes flagship enrollees in all programs. Regressions are at the individual/course level with an
observation for each individual’s first attempt at each first-year required course.

Column (A) reports the coefficient on age with no other controls. Column (B) adds cohort fixed effects, which
are defined by program and starting semester. Column (C) adds classroom fixed effects. Column (D) adds fixed
effects for year of birth. Column (E) adds linear terms for scores on the ICFES national college entrance exam in six
subjects (math, language arts, biology, chemistry, physics, and social science).

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A11. Tracking effects on first-year grades by course grade distribution

Dependent variable: Numerical grade

(A) (B) (C) (D)

Mean grade in St. deviation of grades in
fall & spring cohorts fall & spring cohorts

Different Similar Different Similar
means means SDs SDs

All programs −0.096 −0.179∗∗∗ −0.198∗∗∗ −0.106
(0.075) (0.069) (0.069) (0.073)

Architecture −0.725∗∗∗ −0.357 −0.855∗∗∗ −0.357
(0.265) (0.224) (0.210) (0.233)

Business −0.153∗ −0.220∗∗∗ −0.236∗∗∗ −0.152∗
(0.085) (0.080) (0.079) (0.082)

Engineering 0.265 0.078 0.077 0.214
(0.167) (0.151) (0.163) (0.151)

N 5,322 7,757 5,329 7,750

Mean, ranks [−5,−1] 3.419 3.533 3.660 3.368

Notes: This table displays tracking effects on first-year course grades—as in column (C) of Table 4—by the features
of the course’s grade distribution defined in Figure 4. The table shows π coefficients from separate RD regressions
(13) with the student’s grades in first-year required courses as the dependent variable.

Columns (A)–(B) separate first-year required courses based on their mean grade in fall and spring cohort class-
rooms, as shown in Panel A of Figure 4. Column (A) includes courses where fall and spring cohort classrooms have
statistically different mean grades at p < 0.05 (hollow symbols). Column (B) includes courses where fall and spring
cohort classrooms have statistically indistinguishable mean grades at p < 0.05 (solid symbols).

Columns (C)–(D) are similar to columns (A)–(B), but we separate courses based on the standard deviation of
grades in fall and spring cohort classrooms, as shown in Panel B of Figure 4.

The sample includes flagship enrollees within 30 ranks of the tracking threshold. Regressions are at the individ-
ual/course level with an observation for each individual’s first attempt at each first-year required course. The first
row shows the pooled estimate across all programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A12. Tracking effects on first-year course grades by student gender

(A) (B) (C) (D)

Numerical grade Passing grade

Women Men Women Men

All programs −0.079 −0.148∗ −0.025 −0.054∗
(0.083) (0.087) (0.026) (0.029)

Architecture −0.191 −0.605∗∗ 0.019 −0.260∗∗∗
(0.337) (0.271) (0.127) (0.099)

Business −0.049 −0.297∗∗∗ −0.021 −0.062∗
(0.090) (0.110) (0.026) (0.035)

Engineering −0.105 0.217 −0.020 0.032
(0.255) (0.151) (0.120) (0.053)

N 6,865 7,462 6,865 7,462

Mean, ranks [−5,−1] 3.585 3.402 0.842 0.806

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
column header. The sample includes flagship enrollees within 30 ranks of the tracking threshold. Columns (A) and
(C) include female students. Columns (B) and (D) include male students.

Regressions are at the individual/course level with an observation for each individual’s first attempt at each first-
year required course. The first row shows the pooled estimate across all programs. Other rows show estimates by
program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A13. Tracking effects on other schooling outcomes

(A) (B) (C) (D)

Flagship program Other programs

Retook Took the Started Finished
first-year advanced another another

course course program program

All programs 0.041∗∗∗ −0.062∗ 0.029 −0.009
(0.011) (0.036) (0.033) (0.019)

Architecture 0.121∗∗∗ −0.167 −0.042 −0.053
(0.042) (0.126) (0.095) (0.066)

Business 0.030∗∗∗ −0.082∗ 0.062∗ 0.002
(0.011) (0.042) (0.038) (0.015)

Engineering 0.031 0.057 −0.015 −0.023
(0.029) (0.080) (0.082) (0.058)

N (all programs) 14,327 51,528 1,865 1,865

Mean, ranks [−5,−1] 0.074 0.656 0.190 0.063

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
column header. In column (A), the dependent variable is an indicator equal to one if the student took the first-year
required course more than once. In column (B), the dependent variable is an indicator equal to one if the student took
the upper-level required course at all. The sample for columns (A)–(B) includes flagship enrollees, and regressions
include an observation for each potential individual/course pair.

In column (C), the dependent variable is an indicator equal to one if the student enrolled in the flagship program
she was admitted to and also enrolled in at least one other college program. In column (D), the dependent variable is
an indicator equal to one if the student enrolled in the flagship program she was admitted to and completed another
college program. We observe enrollment and graduation and other Colombian colleges through 2012. The sample for
columns (C)–(D) includes all flagship applicants.

All regressions include only applicants within 30 ranks of the tracking threshold. The first row shows the pooled
estimate across all programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A14. Tracking effects on formal employment

(A) (B) (C) (D)

5–9 years 10–12 years
after application after application

Has any # days Has any # days
formal of earnings formal of earnings

earnings per year earnings per year

All programs −0.024 −1.050 0.038 3.809
(0.036) (9.074) (0.044) (9.985)

Architecture −0.096 −73.258∗∗ −0.031 −62.056∗∗
(0.101) (34.178) (0.133) (30.988)

Business −0.022 9.312 0.022 1.750
(0.044) (10.668) (0.058) (13.378)

Engineering 0.022 −0.767 0.080 25.444
(0.075) (17.607) (0.080) (17.145)

N (all programs) 5,987 3,887 3,338 2,158

Mean, ranks [−5,−1] 0.707 267.833 0.691 283.441

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
column header. Regressions include an observation for each year in 5–9 years (columns (A)–(B)) and 10–12 years
(columns (C)–(D)) after application using 2008–2012 labor market data. The dependent variable in columns (A) and
(C) is an indicator equal to one if the student appears in the dataset in that year. The dependent variable in columns
(B) and (D) is the number of days with reported earnings in that year conditional on appearing in the dataset.

The regression sample includes all flagship applicants within 30 ranks of the tracking threshold. The first row
shows the pooled estimate across all programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A15. Tracking effects on peer composition in first-year and upper-level required courses

(A) (B) (C) (D)

Mean ICFES Class rank
percentile in class by admission score

First-year Upper-level First-year Upper-level
course course course course

All programs 0.079∗∗∗ 0.039∗∗∗ −0.686∗∗∗ −0.382∗∗∗
(0.003) (0.003) (0.015) (0.019)

Architecture 0.042∗∗∗ 0.013∗ −0.587∗∗∗ −0.246∗∗∗
(0.006) (0.007) (0.049) (0.059)

Business 0.090∗∗∗ 0.045∗∗∗ −0.731∗∗∗ −0.435∗∗∗
(0.004) (0.004) (0.017) (0.021)

Engineering 0.068∗∗∗ 0.024∗∗∗ −0.625∗∗∗ −0.214∗∗∗
(0.005) (0.004) (0.028) (0.036)

N 14,267 34,047 14,327 34,637

Mean, ranks [−5,−1] 0.791 0.817 0.844 0.745

Notes: This table displays π coefficients from separate RD regressions (13) using the dependent variable listed in the
column header. The sample includes flagship enrollees within 30 ranks of the tracking threshold. Columns (A) and
(C) include first-year required courses. Columns (B) and (D) include upper-level required courses. Regressions are
at the individual/course level with an observation for each individual’s first attempt at each required course.

The first row shows the pooled estimate across all programs. Other rows show estimates by program group.
Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A16. Tracking effects on upper-level course grades

(A) (B) (C) (D) (E) (F)

Demeaned first-year GPA
of students in upper-level courses Upper-level course grade

Un- Selection Within Un- Selection Within
adjusted adjusted class adjusted adjusted class

All programs 0.124∗∗∗ 0.023 −0.070 0.043 −0.040 −0.132∗∗∗
(0.040) (0.054) (0.051) (0.042) (0.049) (0.048)

Architecture 0.457∗∗∗ 0.059 −0.064 −0.012 −0.261∗ −0.307∗∗
(0.122) (0.139) (0.137) (0.112) (0.143) (0.130)

Business 0.098∗∗ 0.003 −0.018 0.006 −0.079 −0.122∗∗
(0.046) (0.062) (0.060) (0.049) (0.055) (0.057)

Engineering 0.127 0.149 −0.194∗∗ 0.254∗∗ 0.256∗∗ −0.017
(0.099) (0.129) (0.091) (0.110) (0.121) (0.096)

N 34,637 34,244 34,244 34,637 34,244 34,244

Mean, ranks [−5,−1] 0.216 0.338 0.338 3.640 3.750 3.750

Selection weights Y Y Y Y
Classroom dummies Y Y

Notes: This table displays tracking effects on grades in upper-level required courses with regressions weighted to
adjust for selection into observing this outcome. We compute selection weights separately for each program group
(architecture, business, and engineering) using the following procedure:

(1) Compute first-year GPA, gi, for each individual i, defined as the mean grade in all first-year required courses.
(2) Compute mean first-year GPA separately for students with admission ranks [0, 4] and [−5,−1]. Let ḡa =

E[gi|0 ≤ xi ≤ 4] and ḡb = E[gi| − 5 ≤ xi ≤ −1], where xi is individual i’s admission rank.
(3) Demean first-year GPA for all students. Let g̃i = gi − ḡa if xi ≥ 0, and g̃i = gi − ḡb if xi < 0.
(4) Estimate the kernel density of g̃i for students who took upper-level required courses. We use Stata’s kdensity

with the default options and include an observation for each course taken by each individual. We estimate
this density separately for ranks [0, 4] and [−5,−1], which yields the distributions fa(g̃i) and fb(g̃i).

(5) Compute selection weights as wi = 1 if xi ≥ 0, and wi = fa(g̃i)/fb(g̃i) if xi < 0, where wi = 0 if fb(g̃i) = 0.
The table displays π coefficients from separate RD regressions (13). In columns (A)–(C), the dependent variable

is demeaned first-year GPA, g̃i, for students who took upper-level required courses. This is a measure of selection
into taking upper-level courses. In columns (D)–(F), the dependent variable is the student’s upper-level course grade.
All regressions include an observation for each individual/course pair.

Columns (A) and (D) present unweighted estimates from equation (13). Columns (B) and (E) estimate this
specification with selection weights, wi. Columns (C) and (F) add classroom fixed effects to columns (B) and (E).

All regressions include only flagship enrollees within 30 ranks of the tracking threshold. The first row shows the
pooled estimate across all programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A17. Tracking effects on exit exam scores

(A) (B) (C) (D)

Demeaned first-year GPA Exit exam score
of exit exam takers (SD units)

Un- Selection Un- Selection
adjusted adjusted adjusted adjusted

All programs 0.212∗∗∗ 0.085 0.032 −0.153
(0.068) (0.061) (0.156) (0.171)

Architecture 0.501∗∗∗ 0.239 0.141 −0.241
(0.162) (0.197) (0.351) (0.394)

Business 0.205∗∗ 0.090 −0.005 −0.161
(0.080) (0.071) (0.189) (0.207)

Engineering 0.090 0.056 0.145 0.154
(0.169) (0.168) (0.428) (0.440)

N 484 462 484 462

Mean, ranks [−5,−1] 0.442 0.603 0.758 0.926

Selection weights Y Y

Notes: This table displays tracking effects on college exit exam scores with regressions weighted to adjust for selection
into observing this outcome. We compute selection weights separately for each program group (architecture, business,
and engineering) using the following procedure:

(1) Compute first-year GPA, gi, for each individual i, defined as the mean grade in all first-year required courses.
(2) Compute mean first-year GPA separately for students with admission ranks [0, 4] and [−5,−1]. Let ḡa =

E[gi|0 ≤ xi ≤ 4] and ḡb = E[gi| − 5 ≤ xi ≤ −1], where xi is individual i’s admission rank.
(3) Demean first-year GPA for all students. Let g̃i = gi − ḡa if xi ≥ 0, and g̃i = gi − ḡb if xi < 0.
(4) Estimate the kernel density of g̃i for students who took the exit exam. We use Stata’s kdensity with

the default options. We estimate this density separately for ranks [0, 4] and [−5,−1], which yields the
distributions fa(g̃i) and fb(g̃i).

(5) Compute selection weights as wi = 1 if xi ≥ 0, and wi = fa(g̃i)/fb(g̃i) if xi < 0, where wi = 0 if fb(g̃i) = 0.
The table displays π coefficients from separate RD regressions (13). In columns (A)–(B), the dependent variable

is demeaned first-year GPA, g̃i, for students who took the exit exam. This is a measure of selection into taking the
exam. In columns (C)–(D), the dependent variable is the student’s college exit exam score normalized to (0, 1) for
each exam field and cohort. In computing selection weights and in these regressions, we count students as taking the
exit exam only if their exam field matches their program at the flagship (e.g., applicants to the flagship’s accounting
program who took the accounting exit exam).

Columns (A) and (C) present unweighted estimates from equation (13). Columns (B) and (D) estimate this
specification with selection weights, wi.

All regressions include only flagship enrollees within 30 ranks of the tracking threshold. The first row shows the
pooled estimate across all programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A18. Tracking effects on earnings for flagship graduates

(A) (B) (C) (D)

Demeaned first-year GPA Log daily earnings
of flagship graduates after 10–12 years

Un- Selection Un- Selection
adjusted adjusted adjusted adjusted

All programs 0.095 0.026 −0.147∗ −0.146
(0.059) (0.057) (0.086) (0.091)

Architecture 0.756∗∗∗ 0.417∗∗∗ −1.053∗∗∗ −1.338∗∗∗
(0.163) (0.094) (0.252) (0.351)

Business 0.102 0.043 −0.038 −0.062
(0.064) (0.059) (0.102) (0.107)

Engineering −0.136 −0.062 −0.131 −0.148
(0.134) (0.148) (0.185) (0.187)

N 1,210 1,144 1,210 1,144

Mean, ranks [−5,−1] 0.375 0.471 10.659 10.687

Selection weights Y Y

Notes: This table displays tracking effects on earnings conditional on flagship graduation, with regressions weighted
to adjust for selection into observing this outcome. We compute selection weights separately for each program group
(architecture, business, and engineering) using the following procedure:

(1) Compute first-year GPA, gi, for each individual i, defined as the mean grade in all first-year required courses.
(2) Compute mean first-year GPA separately for students with admission ranks [0, 4] and [−5,−1]. Let ḡa =

E[gi|0 ≤ xi ≤ 4] and ḡb = E[gi| − 5 ≤ xi ≤ −1], where xi is individual i’s admission rank.
(3) Demean first-year GPA for all students. Let g̃i = gi − ḡa if xi ≥ 0, and g̃i = gi − ḡb if xi < 0.
(4) Estimate the kernel density of g̃i for students who graduated from the flagship. We use Stata’s kdensity

with the default options. We estimate this density separately for ranks [0, 4] and [−5,−1], which yields the
distributions fa(g̃i) and fb(g̃i).

(5) Compute selection weights as wi = 1 if xi ≥ 0, and wi = fa(g̃i)/fb(g̃i) if xi < 0, where wi = 0 if fb(g̃i) = 0.
The table displays π coefficients from separate RD regressions (13). In columns (A)–(B), the dependent variable

is demeaned first-year GPA, g̃i, for students who graduated from the flagship. This is a measure of selection into
graduation. In columns (C)–(D), the dependent variable is log daily earnings measured 10–12 years after application.
All regressions include an observation for each year in which individuals have positive earnings using 2008–2012 labor
market data.

Columns (A) and (C) present unweighted estimates from equation (13). Columns (B) and (D) estimate this
specification with selection weights, wi.

All regressions include only flagship enrollees within 30 ranks of the tracking threshold. The first row shows the
pooled estimate across all programs. Other rows show estimates by program group.

Parentheses contain standard errors clustered at the individual level.
* p < 0.10, ** p < 0.05, *** p < 0.01
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B. Theoretical appendix

B.1. Derivation of professor failure thresholds. This section derives the three professor
grading standards in Section 1.4:

• The individual failure threshold, F Ind, defined in equation (9)
• The optimal failure threshold, F ∗, defined in equation (10)
• The fixed failure threshold, F Fixed, defined in equation (11)

Individual failure threshold. We begin with the schooling decision that an individual student
would make herself in a standard human capital model. We use a simplified version of the
Becker (1964) model in which students choose to stay in college if the expected wage return
exceeds an interest rate, r. This schooling model can be derived following the assumptions
described in Card (2001). In short, it assumes students can borrow without constraint at
rate r, and it ignores tuition costs, disutility of college relative to work, earnings while in
school, and heterogeneity in hours worked.29

Given these assumptions, consider an individual’s schooling decision at the end of the first
year of college. The individual’s information on her unknown skill, θi1, includes her prior,
θ̄0, and her first-year grade, gi0. The individual remains in college if

E[wit(1)− wit(0)|θ̄0, gi0] > r,(B1)

where wit(0) is the individual’s log wage if she leaves after year t = 0, and wit(1) the log
wage if the individual stays in college for year t = 1.

Using the wage equation (6), expression (B1) simplifies to:

E
[
E[θi2|θ̄0,gi,yi,t−1]− E[θi1|θ̄0,gi,yi,t−1]

∣∣∣∣θ̄0, gi0

]
> r

E[θi2 − θi1|θ̄0, gi0] > r

E[vi1|θ̄0, gi0] > r.(B2)

The second line follows from the law of iterated expectations. The third line follows from
the definition of skill accumulation (equation (1)). Equation (B2) reproduces the decision
rule (8).

From equation (B2), the individual failure threshold, F Ind, is the value of gi0 such that:

E[vi1|θ̄0, gi0] = r.

29 With this simplification we abstract from the possibility that classmates affect the costs of college (e.g.,
disutility). We make this choice because we believe that the main outcome in our model—course grades—are
likely to be more related to a student’s returns to college than to her costs.
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Using the definitions of value added (equation (2)) and expected skill (equation (4)), this
threshold is given by

µ+ γ

(
ρ0

ρ0 + ρg
θ̄End0 + ρg

ρ0 + ρg
gi0

)
+ βθ̄1 = r

ρg
ρ0 + ρg

gi0 = r − µ− βθ̄1

γ
− ρ0

ρ0 + ρg
θ̄End0

F Ind =
(

1 + ρ0

ρg

)
r − µ− βθ̄1

γ
− ρ0

ρg
θ̄End0 ,

where the last line replicates equation (9).

Optimal failure threshold. The optimal failure threshold, F ∗, is the value of F that maximizes
the average return in the classroom. In this case, the professor considers the effect of her
failure threshold on mean skill in the upper-level classroom, θ̄1. Thus we denote θ̄1(F ) as a
function of F from the professor’s perspective. Given the normality assumptions, this term
is equal to

θ̄1(F ) = θ̄End0 + ρgσ0g

ρ0 + ρg
λ

(
F − θ̄End0

σ0g

)
,(B3)

where σ0g is the standard deviation of first-year grades, gi0, and λ(·) is the inverse Mills ratio
for the standard normal distribution.30 Mean skill in the advanced course, θ̄1(F ), is equal
to mean skill at the end of the first year, θ̄End0 , plus a nonnegative selection term that is
increasing in the failure threshold, F .

We define the optimal failure threshold, F ∗, as

F ∗ = argmax
F

E[wit(Gi)−Gir|θ̄0, F ],(B4)

where Gi is an indicator for passing the first-year class, or, equivalently in this model,
graduating from college. w(Gi) is individual i’s log wage given the graduation outcome, and
r is the cost of an additional year of college.

The mean return to college in equation (B4) is a weighted average of returns for two
groups: students who continue onto the advanced course, and students who drop out. If the
first-year professor sets a threshold, F , that determines an individual’s graduation outcome,

30 Specifically, σ2
0g = σ2(1 + γ)2 + σ2

g , and λ(·) = φ(·)/(1 − Φ(·)), where φ(·) and Φ(·) are the standard
normal density and cumulative distribution functions. Equation (B3) can be derived by E[θi1|θ̄0, gi0 > F ] =
E
[
E[θi1|θ̄0, gi0]|θ̄0, gi0 > F

]
= (ρ0θ̄

End
0 +ρgE[gi0|gi0 > F ])/(ρ0 +ρg), where E[gi0|gi0 > F ] = θ̄End

0 +σ0gλ(F̃ )
by the formula for a truncated normal variable gi0 with mean θ̄End

0 and standard deviation σ0g.
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Gi, the mean return can be expressed as

E[wit(Gi)−Gir|θ̄0, F ] = Pr[gi0 < F |θ̄0]
(
E[wit(0)|θ̄0, gi0 < F ]

)
+

Pr[gi0 > F |θ̄0]
(
E[wit(1)|θ̄0, gi0 > F ]− r

)
.

Students with initial course grades gi0 < F fail out of college and have expected earnings
defined by the non-graduate wage, wit(0). Students with grades gi0 > F earn the college
graduate wage, wit(1), but pay the cost of an additional year of school, r. Equivalently, the
mean return can be written as:

E[wit(Gi)−Gir|θ̄0, F ] = E[wit(0)|θ̄0] + Pr[gi0 > F |θ̄0]
(
E[wit(1)− wit(0)|θ̄0, gi0 > F ]− r

)
.

To evaluate this expression, note that Pr[gi0 < F |θ̄0] is equal to Φ(F̃ ), where Φ(·) is the
standard normal CDF, and we define F̃ = (F − θ̄End0 )/σ0g to be the normalized grading
threshold. Using this fact and the expressions for log wage (equation (6)) and value added
(equation (2)), the mean return is

E[wit(Gi)−Gir|θ̄0, F ] = θ̄End0 +
(
1− Φ(F̃ )

)(
µ+ (γ + β)θ̄1(F )− r

)
.(B5)

The professor’s optimal grade standard, F ∗, is the value of F that maximizes equation
(B5), which is given by:31

(
1− Φ(F̃ )

)
(γ + β) ρg

ρ0 + ρg
λ(F̃ )

(
λ(F̃ )− F̃

)
= 1
σ0g

φ(F̃ )
(
µ+ (γ + β)θ̄1(F )− r

)
(γ + β) ρg

ρ0 + ρg
σ0g
(
λ(F̃ )− F̃

)
= µ+ (γ + β)

(
θ̄End0 + ρg

ρ0 + ρg
σ0gλ(F̃ )

)
− r

(γ + β) ρg
ρ0 + ρg

(F − θ̄End0 ) = r − µ− (γ + β)θ̄End0

F ∗ =
(

1 + ρ0

ρg

)
r − µ
γ + β

− ρ0

ρg
θ̄End0 ,

where the last line replicates equation (10).
We note that F ∗ > F Ind if and only if learning externalities are positive, β > 0. This

follows from
r − µ
γ + β

>
r − µ− βθ̄1

γ

0 > β(r − µ)− (γ + β)βθ̄1

β

(
θ̄1 −

r − µ
γ + β

)
> 0.

31 The derivation of (10) uses the result that the derivative of the inverse Mills ratio is λ′(x) = λ(x)
(
λ(x)−x

)
.

Thus using (B3) it follows that dθ̄1(F )/dF = ρg/(ρ0 + ρg)λ′(F̃ ) = ρg/(ρ0 + ρg)λ(F̃ )
(
λ(F̃ )− F̃

)
.

67



One can show that the term in parentheses, θ̄1−(r−µ)/(γ+β), must be positive for students
to have chosen to enroll in the college in the first place.32 Thus it follows that F ∗ > F Ind if
and only if β > 0. If β < 0, the student’s schooling decision binds, i.e., F ∗ < F Ind.

Fixed failure threshold. The fixed failure threshold, F Fixed, is the threshold such that a
constant proportion of students, q, fail regardless of the skill composition of the class. Letting
Φ(·) denote the standard normal cumulative distribution function, this threshold can be
derived by:

Pr[gi0 > F |θ̄0] = q

Φ
(
F − θ̄End0

σ0g

)
= q

F Fixed = θ̄End0 + σ0gΦ−1(q)

where the last line replicates equation (11).

B.2. Details on Propositions 1–2. This section derives expressions for peer effects in
first-year grades, and uses these to prove Propositions 1 and 2 from Section 1.5.

We denote peer effects in first-year grades by π0. From equation (12), π0 is given by:

π0 = dE[gi0|θi0, θ̄0]
dθ̄0

− dF

dθ̄0
.(B6)

The first term on the righthand side of equation (B6) is the derivative of the individual’s
expected raw score, gi0, with respect to mean classroom skill, θ̄0. From equations (1)–(3),
the raw score is

gi0 = µ+ (1 + γ)θi0 + βθ̄0 + εgit.

Thus the derivative of the expected raw grade with respect to θ̄0 is:

dE[gi0|θi0, θ̄0]
dθ̄0

= β.(B7)

The second term on the righthand side of equation (B6) is the derivative of the professor’s
failure threshold, F , with respect to mean classroom skill, θ̄0. The term depends on whether
the professor uses individual grading standards, F Ind, optimal grading standards, F ∗, or
fixed grading standards, F Fixed. We derive each of these three derivatives separately.

Individual grading standards, F Ind, are defined by equation (9). In this case, the derivative
with respect to θ̄0 is complicated to compute because mean peer ability in advanced courses,
32 In this model all students have expected pre-college skill θ̄0. A student will choose to enroll in college only
if the expected return to doing so is greater than the return to no college, i.e., if E[wit(Gi)−Gir|θ̄0, F ] > θ̄0+r.
Using (B5), this evaluates to µ+ (γ + β)θ̄0 − r+

(
1−Φ(F̃ )

)(
µ+ (γ + β)θ̄1 − r

)
> 0. Since θ̄1 > θ̄0, for this

inequality to hold we must have µ+ (γ + β)θ̄1 − r > 0, which is equivalent to θ̄1 − (r − µ)/(γ + β) > 0.
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θ̄1, depends in part on F Ind (equation (B3)). We derive dF/dθ̄0 using the implicit function
theorem on equation (9) with F = F Ind:33

dF = −β
γ

(
1 + ρ0

ρg

)(
∂θ̄1(F )
∂F

dF + ∂θ̄1(F )
∂θ̄0

dθ̄0

)
− ρ0

ρg
(1 + γ + β)dθ̄0,

dF + β

γ
λ′(F̃ )dF = −β

γ

(
1 + ρ0

ρg

)
(1 + γ + β)

(
1− ρg

ρ0 + ρg
λ′(F̃ )

)
dθ̄0 −

ρ0

ρg
(1 + γ + β)dθ̄0,{

1 + β

γ
λ′(F̃ )

}
dF = (1 + γ + β)

{
− β

γ

(
1 + ρ0

ρg

)
+ β

γ
λ′(F̃ )− ρ0

ρg

}
dθ̄0,{

γ + βλ′(F̃ )
}
dF = (1 + γ + β)

{
−
(

1 + ρ0

ρg

)
(γ + β) + γ + βλ′(F̃ )

}
dθ̄0,

dF Ind

dθ̄0
= −(1 + γ + β)

{(
1 + ρ0

ρg

)
γ + β

γ + βλ′(F̃ Ind)
− 1

}
.(B8)

This derivation defines λ′(F̃ Ind) to be the derivative of the inverse Mills ratio evaluated at
the normalized grading threshold, F̃ Ind = (F Ind − θ̄End0 )/σ0g.

Optimal grading standards, F ∗, are defined by equation (10). The derivative with respect
to θ̄0 is

dF ∗

dθ̄0
= −ρ0

ρg
(1 + γ + β)(B9)

Finally, fixed grading standards, F Fixed, are defined by equation (11). The derivative with
respect to θ̄0 is

dF Fixed

dθ̄0
= (1 + γ + β)(B10)

Combining equations (B6)–(B10) yields the expression for peer effects in first-year grades,
π0, given the professor’s grading behavior:

π0 =



β +
(

1 + γ + β
){(

1 + ρ0

ρg

)
γ + β

γ + βλ′(F̃ Ind)
− 1

}
if F = F Ind

β +
(

1 + γ + β
)
ρ0

ρg
if F = F ∗

−
(

1 + γ
)

if F = F Fixed

(B11)

We use this expression for the derivations of Propositions 1 and 2 below.

Proposition 1. If peer effects in first-year grades are positive, π0 > 0, then either:

• Higher-ability classmates increase individual learning, β > 0; or,

33 Recall that mean classroom skill at the end of the first year is θ̄End
0 = µ+ (1 + γ + β)θ̄0.
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• Classmates have information externalities, ρg <∞.

If peer effects in first-year grades are negative, π0 < 0, then either:

• Higher-ability classmates reduce individual learning, β < 0; or,
• Professors use fixed grading standards, F Fixed.

We demonstrate the two statements in Proposition 1 by contradiction.
For the first statement, suppose conversely that β ≤ 0 and ρg = ∞. Consider equation

(B11) for each possible failure threshold, F :
• If F = F Ind, we have (γ + β)/(γ + βλ′(F̃ Ind)) ≤ 1 because β > −γ by assump-
tion (Section 1.1), and because the derivative of the inverse Mills ratio, λ′(F̃ Ind), is
bounded between zero and one. Thus the term in brackets, {·}, is non-positive when
ρg =∞. Since β ≤ 0 and (1 + γ + β) > 0, it follows that π0 ≤ 0.
• If F = F ∗, then π0 = β ≤ 0.
• If F = F Fixed, then π0 = −(1 + γ) < 0.

Thus if π0 > 0, it must be that either β > 0 or ρg <∞.
For the second statement, suppose conversely that β ≥ 0 and F 6= F Fixed.
• If F = F Ind, we have (γ+β)/(γ+βλ′(F̃ Ind)) ≥ 1 by a similar argument to that above.
Thus the term in brackets, {·}, is non-negative. Since β ≥ 0 and (1 + γ + β) > 0, it
follows that π0 ≥ 0.
• If F = F ∗, then π0 = β + (1 + γ + β)ρ0/ρg ≥ 0.

Thus if π0 < 0, it must be that either β < 0 or F = F Fixed.

Proposition 2. If professors use fixed grading standards, F Fixed, then peer effects in first-
year grades, π0, are decreasing in the skill return to individual ability, γ.

If professors use optimal grading standards, F ∗, then π0 increases with γ.

From equation (B11), we have:

dπ0

dγ
=


ρ0

ρg
if F = F ∗

−1 if F = F Fixed,

where ρ0, ρg > 0. We note that dπ0/dγ cannot be signed in general if F = F Ind.

B.3. Details on Proposition 3. This section provides details on Proposition 3 from Section
1.6, which characterizes peer effects in graduation and wages.

Proposition 3.
(a) Peer effects in graduation have the same sign as peer effects in first-year grades, π0.
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(b) Peer effects in log wages can be negative if learning externalities are negative, β < 0,
or if higher-ability classmates reduce the probability of graduation.

(c) Conditional on graduation, peer effects in wages (or skill) are negative only if β < 0.

We show parts (a), (b), and (c) in turn.

Proposition 3(a). Peer effects in graduation. In the model, graduation occurs if the indi-
vidual remains in college after the first year, which is determined by the condition gi0 > F .
Letting Gi denote graduation, the probability of graduating conditional on individual pre-
college ability, θi0, is

E[Gi|θi0, θ̄0] = Pr[gi0 > F |θi0, θ̄0] = Pr

[
εgi0
σg

>
F − θi1
σg

∣∣∣∣∣θi0, θ̄0

]
= 1− Φ(F̃i),

where we define F̃i = (F − θi1)/σg to be the failure threshold F normalized for an individual
with skill θi1 = µ+ (1 +γ)θi0 +βθ̄0 at the end of the first year. The peer effect in graduation
is therefore

dE[Gi|θi0, θ̄0]
dθ̄0

= −φ(F̃i)
dF̃i

dθ̄0
= φ(F̃i)

σg

(
β − dF

dθ̄0

)
= φ(F̃i)π0

σg
,(B12)

where φ(·) is the standard normal density and π0 is the grade peer effect defined by equation
(B6). Since φ(·) and σg are both positive, graduation peer effects have the same sign as
grade peer effects, π0. This demonstrates Proposition 3(a).

We note that graduation peer effects are large in magnitude only for students with F̃i ≈ 0.
These are the students with end-of-year skill near the failure threshold, i.e., θi1 ≈ F .

Proposition 3(b). Peer effects in wages. Proposition 3(b) states that peer effects in log wages
can be negative only if one of two conditions are met: 1) learning externalities are negative,
β < 0, or 2) higher-ability classmates reduce the likelihood of graduation. From Proposi-
tion 3(a), a negative graduation peer effect is equivalent to π0 < 0. Thus to demonstrate
Proposition 3(b), we derive the expression for peer effects in log wages, and then show it is
non-negative whenever both β ≥ 0 and π0 ≥ 0.

We denote the peer effect in log wages at year t by dE[wit|θi0, θ̄0]/dθ̄0. Using potential
outcome notation for wages given the graduation decision, wit(Gi), we can write the expected
wage of an individual with pre-college ability θi0 and mean classroom skill θ̄0 as

E[wit|θi0, θ̄0] =E[wit(0)|θi0, θ̄0] + Pr[gi0 > F |θi0, θ̄0]E[wit(1)− wit(0)|θi0, θ̄0, gi0 > F ],(B13)

where Pr[gi0 > F |θi0, θ̄0] = 1−Φ(F̃i) is the probability of graduating, and F̃i = (F − θi1)/σg
as above.

To evaluate equation (B13), we use the definitions of individual skill at the time of labor
market entry both with and without college graduation. From equations (1) and (2), skill is
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θi1 for individuals who dropped out of college, which is given by

θi1 = θi0 + vi0

= θi0 + µ+ γθi0 + βθ̄0.

Skill for college graduates, θi2, is given by:

θi2 = θi1 + vi1

= θi1 + µ+ γθi1 + βθ̄1

= µ(2 + γ) + (1 + γ)2θi0 + β(1 + γ)θ̄0 + βθ̄1.(B14)

Using these definitions, we evaluate each of the potential wage terms in equation (B13):
• We derive the term E[wit(0)|θi0, θ̄0, gi0 > F ] using the definition of log wage (equation
(6)) and applying Bayes’ Rule (similar to equation (4)):

E[wit(0)|θi0, θ̄0, gi0 > F ] = E
{
E[θi1|θ̄0, gi0,yi,t−1]

∣∣∣∣θi0, θ̄0, gi0 > F
}

= E

{
ρ0θ̄

End
0 + ρggi0 + (t− 1)ρyȳi,t−1

ρ0 + ρg + (t− 1)ρy

∣∣∣∣θi0, θ̄0, gi0 > F

}

= θi1 + ρ0

ρt
(1 + γ)(θ̄0 − θi0) + ρg

ρt
E[εgi0|ε

g
i0 > F − θi1]

= θi1 + ρ0

ρt
(1 + γ)(θ̄0 − θi0) + ρg

ρt
σgλ(F̃i).

In this expression we define ρt = ρ0 +ρg+(t−1)ρy to be the employer’s total precision
for θi1 in year t.
• Using a similar derivation, the term E[wit(0)|θi0, θ̄0] is given by:

E[wit(0)|θi0, θ̄0] = θi1 + ρ0

ρt
(1 + γ)(θ̄0 − θi0).

• Lastly we compute E[wit(1)|θi0, θ̄0, gi0 > F ]. This expression is more complicated
because individuals now have two years of skill accumulation. Specifically, individual
skill after two years of college is θi2, as defined in equation (B14). We also define θ̄E1
to be mean (potential) skill at the end of college, which is equal to

θ̄E1 = (2 + γ)µ+ (1 + γ)2θ̄0 + (1 + γ)βθ̄0 + βθ̄1.

Thus it follows that θi2 ∼ N(θ̄E1 , 1/ρ1) where ρ1 = 1/(σ2(1 + γ)4) is the precision of
θ̄E1 for θi2. Note that ρ1 = ρ0/(1 + γ)2 since ρ0 = 1/(σ2(1 + γ)2).

The expression for wit(1) is also complicated because employers observe two grades
for college graduates: an initial course grade, gi0, and an upper-level course grade, gi1.
The upper level grade has conditional mean θi2 since gi1 = θi2 + εgi1 by equation (3).
The first-year course grade, however, has conditional mean θi1 since gi0 = θi1 + εgi0.
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Thus we define ĝi0 to be:

ĝi0 = µ+ (1 + γ)gi0 + βθ̄1

= µ+ (1 + γ)(θi1 + εgi0) + βθ̄1

= θi2 + (1 + γ)εgi0.

The distribution of ĝi0 conditional on θi0 and θ̄0 isN(θi2, 1/ρ̂g), where ρ̂g = ρg/(1+γ)2.
Similarly, we define ŷi,t−1 = {yi2, . . . , yi,t−1} to be the vector of productivity signals
for college graduates, whose first period of employment is t = 2. Let ˆ̄yi,t−1 be the
mean of ŷi,t−1.

To simplify the derivation of equation (B13), we make the assumption that ad-
vanced course grades and on-the-job productivity signals are less precise for college
graduates. Specifically, let ρg1 and ρy1 denote the precisions of advanced course
grades, gi1, and productivity signals, yit, for college graduates. We assume ρg1 =
ρy1 = ρy/(1 + γ)2, where ρy is the precision of productivity signals for college
drop-outs. This simplifies the derivation of equation (B13) significantly because
the graduation/drop-out choice does not affect the relative precisions of different
productivity signals.34

With this assumption, we now can write E[wit(1)|θi0, θ̄0, gi0 > F ] as:

E[wit(1)|θi0, θ̄0, gi0 > F ] = E
{
E[θi2|θ̄0, gi0, gi1, ŷi,t−1]

∣∣∣∣θi0, θ̄0, gi0 > F
}

= E

{
ρ1θ̄

E
1 + ρ̂gĝi0 + ρg1gi1 + (t− 2)ρy1 ˆ̄yi,t−1

ρ1 + ρ̂g + ρg1 + (t− 2)ρy1

∣∣∣∣θi0, θ̄0, gi0 > F

}

= θi2 + ρ0

ρt
(1 + γ)2(θ̄0 − θi0) + (1 + γ)ρg

ρt
E[εgi0|ε

g
i0 > F − θi1]

= θi2 + (1 + γ)
{
ρ0

ρt
(1 + γ)(θ̄0 − θi0) + ρg

ρt
σgλ(F̃i)

}
.(B15)

Combining these three potential wage expressions, equation (B13) simplifies to:

E[wit|θi0, θ̄0] = θi1 −
ρ0

ρt
(1 + γ)(θi0 − θ̄0) +

(
1− Φ(F̃i)

){
vi1 −

ρ0

ρt
γ(1 + γ)(θi0 − θ̄0)

}
+ γ

ρg
ρt
σgφ(F̃i),

where vi1 = θi2 − θi1 by equation (1).

34 Since skill accumulation is recursive (equation (1)), the variance of skill increases when students remain
in school for a second year. If the precision of advanced course grades and productivity signals were the
same for college graduates and drop-outs, employers would place more weight on these signals for college
graduates. We abstract from this possibility here, as this is likely to be a second-order consideration in
educational choices and wage dynamics.
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The peer effect in log wages at year t is thus:35

dE[wit|θi0, θ̄0]
dθ̄0

= β + ρ0

ρt
(1 + γ) +

(
1− Φ(F̃i)

){
β

(
dθ̄1

dθ̄0
+ γ

)
+ ρ0

ρt
γ(1 + γ)

}

+ φ(F̃i)π0

σg

{
vi1 −

ρ0

ρt
γ(1 + γ)(θi0 − θ̄0)− γ ρg

ρt
(θi1 − F )

}
,(B16)

where φ(·) is the standard normal probability density function.
Equation (B16) is hard to sign in general because both skill and information mechanisms

depend on an individual’s own skill, θi0. We evaluate the sign of wage peer effects in the case
that matches our empirical setting. Specifically, we consider an individual with pre-college
ability above the classroom mean, θi0 > θ̄0. This matches our context because our RD
coefficients estimate the effects of a large increase in θ̄0 for individuals who otherwise would
have been near the top of the classroom ability distribution.

To demonstrate Proposition 3(b), we show that if π0 ≥ 0 and β ≥ 0, then equation (B16)
is non-negative. We consider the terms of equation (B16) in turn.

• If β ≥ 0, the first three terms in (B16) are non-negative because γ, ρ0, and ρt are
all positive, 1 − Φ(F̃i) ∈ (0, 1), and mean skill in the advanced class is increasing in
mean skill in the first-year class (dθ̄1/dθ̄0 > 0).
• To sign the fourth term, first note that φ(F̃i)π0/σg is non-negative when π0 ≥ 0. For
the expression in brackets,

vi1 −
ρ0

ρt
γ(1 + γ)(θi0 − θ̄0)− γ ρg

ρt
(θi1 − F ),(B17)

begin by considering an individual i′ whose ability, θi′0, is such that her skill at
the end of the first year is exactly equal to the failure threshold, i.e., θi′1 = F .
When F = F Ind or F = F ∗, the skill return to the advanced course is positive for
this individual, vi′1 > 0, when there is a positive cost to an addition year of college,
r > 0.36 If the majority of students pass the first-year class, as is true in our empirical
setting, then this individual has ability θi′0 < θ̄0. Thus expression (B17) is positive
for the individual with θi′1 = F .

Finally, note that expression (B17) is increasing in θi0, since the derivative of this
term with respect to θi0 is given by:

γ(1 + γ)
(

1− ρ0 + ρg
ρt

)
.

Thus expression (B17) is positive for any individual with θi0 > θ̄0.

35 The derivation of equation (B16) uses the fact that φ′(F̃i) = −φ(F̃i)F̃i and the definition F̃i = (F−θi1)/σg.
36 Recall from equation (B11) that π0 can only be positive if F = F Ind or F = F ∗.
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In sum, we have shown that dE[wit|θi0, θ̄0]/dθ̄0 ≥ 0 when β ≥ 0 and π0 ≥ 0 for an
individual with skill above the classroom mean. This demonstrates Proposition 3(b).

We note that given the right data, one could use changes in wage peer effects over time
to examine the role of information mechanisms. This is similar to the empirical analysis in
Altonji and Pierret (2001). In our model, the change in wage peer effects over time is given
by the derivative of equation (B16) with respect to t:37

dE[wit|θi0, θ̄0]
dθ̄0dt

= −ρ0ρy
ρ2
t

(1 + γ)
{

1 + γ

(
1− Φ(F̃i)−

φ(F̃i)π0

σg
(θi0 − θ̄0)

)}
+ φ(F̃i)π0

σg

ρgρy
ρ2
t

γ(θi1 − F )

One can show that this expression is negative in the case of θi1 > F , which implies that wage
peer effects decrease over a worker’s career if there are information externalities.

Proposition 3(c). Peer effects in wages (or skill) for graduates. Proposition 3(c) states that
peer effects in wages/skill for college graduates can only be negative if learning externalities
are negative, β < 0.

We derived the expression for mean wage conditional on graduation in equation (B15)
above:

E[wit(1)|θi0, θ̄0, gi0 > F ] = θi2 + (1 + γ)
{
ρ0

ρt
(1 + γ)(θ̄0 − θi0) + ρg

ρt
σgλ(F̃i)

}
,

where F̃i = (F − θi1)/σg and θi2 = µ(2 + γ) + (1 + γ)2θi0 + β(1 + γ)θ̄0 + βθ̄1.
Peer effect in wages conditional on graduation are thus given by:

dE[wit(1)|θi0, θ̄0, gi0 > F ]
dθ̄0

= β

(
1 + γ + dθ̄1

dθ̄0

)
+ ρ0

ρt
(1 + γ)2 − ρg

ρt
(1 + γ)λ′(F̃i)π0.(B18)

To sign the expression in (B18), note that γ, dθ̄1/dθ̄0, and λ′(F̃i) are all positive. If π0 < 0,
then (B18) can only be negative if β < 0.

In this model—as is standard in the employer learning literature—wages converge to an
individual’s true skill over time. That is, ρt → ∞ as t → ∞, and thus wit(1) → θi2. We
can therefore derive the expression for peer effects in skill for college graduates by setting
ρt =∞ in equation (B18):

dE[θi2|θi0, θ̄0]
dθ̄0

= β

(
1 + γ + dθ̄1

dθ̄0

)
.

As with equation (B18), skill peer effects for graduates can only be negative if learning
externalities are negative, β < 0. This demonstrates Proposition 3(c).

37 For this derivation, note that dρt/dt = ρy since ρt = ρ0 + ρg + (t− 1)ρy.
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B.4. Classroom ability distribution. In Section 1.2, we assume that ability in the first-
year course is normally distributed, i.e.,

θi0 ∼ N(θ̄0, σ
2).

One can microfound this ability distribution following MacLeod and Urquiola (2015). Sup-
pose ability in the full population of potential college students is distributed

θi0 ∼ N(0, 1/ρa).

Suppose also that students take a college admission exam and receive a test score

τi = θi0 + ετi ,

where ετi
i.i.d.∼ N(0, 1/ρτ ). If a college program admits only students with scores τi = τ0, and

admitted students take courses together, then ability in a first-year classroom is distributed
N(θ̄0, σ

2), with

θ̄0 = τ0ρτ
ρa + ρτ

σ2 = 1
ρa + ρτ

.
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C. Empirical appendix

C.1. Data and sample. This section provides details on our data merging and analysis
sample.

We use two datasets provided by the flagship university:
(1) Lists of applicants to Univalle’s undergraduate programs from 2000–2003.
(2) Transcript records for all students in our sample of programs who enrolled in Univalle.
Our sample includes flagship applicants to the programs and years with tracking admis-

sions, as listed in Table 2. Column (A) of Table C1 shows the total number of applicants to
the programs and cohorts in our sample. Our analysis includes only students admitted to
either a fall or spring cohort, as depicted in column (B).

We combine the flagship data with three individual-level administrative datasets:
(1) Records from the ICFES national standardized college admission exam that include

all students who took the exam in 1998–2003. This agency also provided records on
a college exit exam that we use for some analyses.

(2) Records from the Ministry of Education on students who enrolled in nearly all colleges
in the country between 1998–2012.

(3) Earnings records from the Ministry of Social Protection for the years 2008–2012.
We merge the three administrative datasets using national ID numbers, birth dates, and full
names. The appendix in Riehl (2019) provides details on the merge process and coverage of
these administrative datasets.

We merge the flagship application and transcript data into the administrative data using
applicants’ full names. Since roughly 85 percent of applicants enrolled in the flagship program
they were admitted to, most individuals match uniquely on name, program, and cohort. Most
applicants who enrolled in other programs also match uniquely on full name. In cases with
duplicate names, we use information from the administrative records on individuals’ exam
cohorts and high school location to identify the correct match; most Colombian students
stay in region for college and apply shortly after taking the ICFES entrance exam. Through
this process we are able to match over 99 percent of individuals in the flagship datasets to
our administrative records, as shown in column (C) of Table C1.

Column (D) in Table C1 shows that there were 94 applicants who were admitted through
special quotas for disadvantaged groups (e.g., indigenous students or students with disabil-
ities). Our full analysis sample is depicted in column (E), which is the difference between
columns (B) and (D).

Most of our regressions include the subset of applicants whose admission scores are within
h ranks of the tracking threshold. Our benchmark model uses h = 30, which is roughly
the mean of the Calonico et al. (2014) bandwidths across all dependent variables. Column
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Table C1. Analysis sample

(A) (B) (C) (D) (E) (F) (G)

Within 30 ranks of
All admission ranks tracking threshold

Total Total Merge Quota Full Benchmark Flagship
Group Program applied admitted rate admits sample sample enrollees

Arch Architecture 1,488 465 0.989 19 446 255 219

Accounting (day) 928 575 0.997 16 559 260 241
Accounting (night) 921 393 0.987 10 383 287 268

Bus Business Admin (day) 1,171 584 0.995 12 572 267 240
Business Admin (night) 940 403 0.995 16 387 304 274
Foreign Trade 126 94 0.989 3 91 61 58

Chemical Engineering 233 135 1.000 5 130 95 77
Electrical Engineering 129 126 0.992 1 125 111 97

Eng Electronic Engineering 403 132 1.000 4 128 78 60
Materials Engineering 120 120 0.992 0 120 70 61
Mechanical Engineering 209 126 0.992 8 118 77 70

Total 6,668 3,153 0.993 94 3,059 1,865 1,665

Notes: Column (A) shows the number of flagship applicants to the programs and years with tracking admissions
(see Table 2). Column (B) shows the subset of these applicants who were admitted to either a fall or spring cohort.
Column (C) shows the proportion of students who were matched to any of our administrative datasets using the
method described in the text. Column (D) shows the number of students who were admitted through special quotas
for disadvantaged groups. Column (E) shows our full analysis sample, which is the difference between columns (B)
and (D). Column (F) shows the subset of applicants from column (E) who are within 30 admission ranks of the
tracking threshold. Column (G) shows the subset of applicants from column (F) who enrolled in the flagship.

(F) shows the number of students in our analysis sample whose admission ranks are within
30 positions of the tracking threshold. In addition, when we analyze outcomes from the
transcript data, we restrict our sample to the subset of these applicants who enrolled in the
flagship, as shown in column (G).

C.2. Measure of return to individual ability. This section provides details on the mea-
sure of the return to individual ability that we use for Figure 5. Specifically, we show that
our measure is proportional to the γ parameter in our model.

Let γ̂ denote the measure of the return to individual ability that we use for Figure 5. We
define γ̂ as the coefficient from a within-classroom regression of first-year course grades on
individuals’ admission scores. Let τi denote individual i’s admission score as computed by
the flagship university for use in tracking admissions. As above, let g̃i0 denote individual’s
normalized first-year course grade. From equations (3) and (7), g̃i0 is given by

g̃i0 = θi1 + εgi0 − F

= µ+ (1 + γ)θi0 + βθ̄0 + εgi0 − F
78



where εgi0
i.i.d.∼ N(0, σ2

g). A within-classroom regression of g̃i0 on τi holds fixed mean classroom
ability, θ̄0. Thus we can define γ̂ as

γ̂ = cov(g̃i0, τi|θ̄0)
var(τi|θ̄0)

=
cov

(
µ+ (1 + γ)θi0 + βθ̄0 + εgi0 − F, τi

∣∣∣θ̄0
)

var(τi|θ̄0)

= (1 + γ)
(
cov(θi0, τi|θ̄0)
var(τi|θ̄0)

)
.

The term cov(θi0, τi|θ̄0)/var(τi|θ̄0) is the coefficient from a within-classroom linear projec-
tion of true skill θi0, on admission scores, τi. As long as true skill and admission scores are
related, cov(θi0, τi|θ̄0) 6= 0, then γ̂ is proportional to γ.
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