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Abstract

The rise of information technology and big data analytics has given rise to “the new econ-

omy.” But are its economics new? This article constructs a classic growth model with data

accumulation. Data has three key features: 1) Data is a by-product of economic activity; 2)

data enhances firm productivity; and 3) data is information used for resolving uncertainty. The

model can explain why data-intensive goods or services, like apps, are given away for free, why

firm size is diverging, and why many big data firms are unprofitable for a long time. While

these transition dynamics differ from those of traditional growth models, the long run features

diminishing returns. Just like capital accumulation, data accumulation alone cannot sustain

growth. Without improvements in non-data-productivity, data-driven growth will grind to a

halt.

Does the new information economy have new economics, in the long run? When the economy

shifted from agrarian to industrial, economists focused on capital accumulation and removed land

from production functions. As we shift from an industrial to a knowledge economy, the nature of

inputs is changing again. In the information age, production increasingly revolves around informa-

tion and, specifically, data. Many firms are valued primarily for the data they have accumulated.

As of 2015, global production of information and communications technology (ICT) goods and

services was responsible for 6.5% of global GDP, and 100 million jobs (United Nations, 2017).

Collection and use of data is as old as book-keeping. But recent innovations in computing and arti-

ficial intelligence (AI) allow us to use more data more efficiently. How will this new data economy
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evolve? Because data is non-rival, increases productivity and is freely replicable (has returns to

scale), current thinking equates data growth with idea or technological growth. This article uses a

simple framework to argue the contrary, that data accumulation is more like capital accumulation,

which, by itself, cannot propel growth in the long run.

Data is information that can be encoded as a binary sequence of zeroes and ones. That broad

definition includes literature, visual art and technological breakthroughs. We are focusing more

narrowly on big data because that is where the technological breakthroughs have taken place that

have spawned talk of a new information age or economy. Machine learning or artificial intelligence

are prediction algorithms. They predict the probability of a customer buying, a picture being a

cat, or anything else. Much of the big data firms use for these predictions are transactions data. It

is personal information about online buyers, satellite images of traffic patterns near stores, textual

analysis of user reviews, click through data, and other evidence of economic activity. Such data is

used to forecast sales, earnings and the future value of firms and their product lines. Data is also

used to advertise, which may create social value or might simply steal business from other firms.

We will consider both possibilities. But the essential features of the data we consider are that it is

user-generated and that it is used to predict uncertain outcomes.

Data and technology are not the same. They entail different benefits and different costs. Trans-

actions data is information used to forecast unknown outcomes. The benefits of forecasting and

inventing technologies differ: Because perfect foresight models never feature infinite profits, perfect

forecasts must yield finite gains. If the gain to a perfect forecast is finite, the return to better

and better forecasts must be diminishing. Production costs also differ. Producing new technology

requires resources: skilled labor, a laboratory and prototypes. In contrast, data is a by-product of

economic activity. Producing and selling generates data about the volume of sales, the means of

payment, and characteristics of buyers. Sometimes collecting and processing the data to extract

knowledge is costly. But data itself is not produced in a lab. More data comes from more economic

activity. This difference in production matters. One of the fundamental insights of Romer (1990) is

that monopolies are necessary to incentivize idea production. This is not true of data production.

Because data is a by-product of economic transactions and data is less prone to leakage, no extra

incentives are needed for its production.

The key features of the model reflect these differences. In the model, data is information,
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generated by past economic activity, used to forecast future unknown states. Like all information,

it has returns to scale. Data can be used to make one unit of capital more valuable, or one thousand

units more productive. The more productive capacity the data is matched with, the greater are

the gains in output. In that sense, data is similar to technology. At the same time , the key insight

of the model, that causes the data economy to resemble the manufacturing economy, is that data

has diminishing returns. The diminishing returns arise from the fact that forecast errors give rise

to profit losses. Data can mitigate those losses. But the best possible outcome is that data reduces

forecast errors to zero. With perfect forecasting, zero operational mistakes, profits are large, but

not infinite. In fact, many macro models have no uncertainty. Such environments are infinite-data

limit economies.

Put differently, data cannot sustain long-run growth because data, like all information, is a

means of reducing uncertainty. Uncertainty is bounded below by zero. Unless a perfect forecast

gives a firm access to a pure, real, limitless arbitrage, the perfect forecast generates finite payoff.

An arbitrage of real goods, at the aggregate level, is as real as alchemy. It is not possible. Thus, if

the payoff to data is bounded above, the returns, at some point, must diminish, so as not to exceed

that upper bound.

The frictionless data model looks much like a simple Solow (1956) model. There are inflows of

data from new economic activity and outflows, as data depreciates. The depreciation comes from

the fact that the state is constantly evolving. Firms are forecasting a moving target. Economic

activity many periods ago was quite informative about the state at the time. However, since the

state has random drift, such old data is less informative about what the state is today. When

data is scarce, little is lost due to depreciation. As data stocks grow large, depreciation losses are

substantial. The point at which data depreciation equals the inflow of new data is a data steady

state. Firms with less data than their steady state grow in data, and therefore in productivity and

investment. If a firm ever had more data than its steady state level, it should shrink. But without

any other source of growth in the model, data-driven growth, like capital-driven growth eventually

grinds to a halt.

Our result should not be interpreted to mean that data does not contribute to growth. It

absolutely does, in the same way that capital investment does. If non-data-technology (referred

to hereafter as “productivity” or “technology”) continues to improve, data helps us find the most
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efficient uses of these new technologies. The accumulation of data may even reduce the costs of

technological innovation by reducing its uncertainty, or increase the incentives for innovation by

increasing the payoffs. The point is simply that, even if data is non-rival, freely replicable and

productive, if it is used for forecasting, as most big data is, it cannot sustain infinite growth. We

still need innovation for that.

When data has adjustment costs and purchased data is not as relevant as a firm’s own data,

a firm can remain data poor for a long time. This is similar to a growth poverty trap, but at

the firm-level. Industries, or countries concentrated in a few industries may also get stuck in this

trap. Thus, data could explain some of the increase in inequality, across firms, industries, or even

countries that adopt data technologies at different rates.

To understand these trends, a theoretical framework is essential. Econometrics alone predicts

the future based on past trends or correlations. In the midst of a structural transformation, when

covariances are changing, such extrapolations are likely to be flawed. Therefore, we use a model

to guide our thinking about which changes are logical outcomes, and which are not. The model

also offers guidance for measurement. Measuring and valuing data is complicated by the fact that

frequently, data is given away, in exchange for a free digital service. Our model makes sense of

this pricing behavior and assigns a value to goods and data that have a zero transactions price.

In so doing, it moves beyond price-based valuation, which often delivers misleading answers when

valuing digital assets.

Related literature. Work on information frictions in business cycles, ( Veldkamp (2005), Or-

donez (2013) and Fajgelbaum et al. (2017)) have early versions of a data-feedback loop whereby

more data enables more production, which in turn, produces more data. In each of these models,

information is a by-product of economic activity; firms use this information to reduce uncertainty

and guide their decision-making. These authors did not call the information data. But it has all

the hallmarks of modern transactions data. The data produced was used by firms to forecast the

state of the business cycle. Better forecasting enabled the firms to invest more wisely and be more

profitable. These models restricted attention to data about aggregate productivity. In the data

economy, that is not primarily what firms are using data for. But such modeling structures can be

adapted so that production can also generate firm- or industry-specific information. As such, they
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provide useful equilibrium frameworks on which to build a data economy.

In the growth literature, our model builds on Jones and Tonetti (2018). They explore how

different data ownership models affect the rate of growth of the economy. In both models, data is

a by-product of economic activity and therefore grows endogenously over time. What is different

here is that data is information, used to forecast a random variable. In Jones and Tonetti (2018),

data contributes directly to productivity. It is not information. A fundamental characteristic of

information is that it reduces uncertainty about something. When we model data as information,

not technology, the long-run predictions reverse. Instead of long-run growth, there is long-run

stagnation.

Other authors consider the interaction of artificial intelligence (AI) and innovation. Agrawal et

al. (2018) develops a combinatorial-based knowledge production function and embeds it in the clas-

sic Jones (1995) growth model to explore how breakthroughs in AI could enhance discovery rates

and economic growth. Lu (2019) embeds self-accumulating AI in a Lucas (1988) growth model

and examines growth transition paths from an economy without AI to an economy with AI and

how employment and welfare evolves. Aghion et al. (2017) explore the role of AI for the growth

process and its reallocative effects. The authors argue that Baumol (1967)’s cost disease leads to

the declining share of traditional industries’ GDP, as they become automated. This decline is offset

by the growing fraction of automated industry. In such an environment, AI may discourage future

innovation for fear of imitation, undermining incentives to innovate in the first place.

While some big data is used to facilitate innovation, most of the “new economy” data is web

searches, shopping behavior and other evidence of economic transactions. While the existence of

such data has inspired innovations such as the sharing economy and recommendations engines,

those new ideas are distinct from the data itself. The contents of transactions data is not likely,

by itself, to reveal a breakthrough technology. Whether data and innovation are complements is

a separate question that these studies shed light on. The accumulation of data used solely for

prediction is driving a large and growing sector of the economy. Our contribution is to understand

the consequence of big data and the new prediction algorithms alone, for economic growth.

In the finance literature, Begenau et al. (2018) grow the data processing capacity of financial

investors, instead of modeling firms’ use of their own data. Such studies complement this work by
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illustrating other ways in which abundant data is re-shaping the economy.

Finally, the model builds on the five-equation toy model in Farboodi et al. (2019), which was

designed to explore the size distribution of heterogeneous firms. In this paper, we add features

such as adjustment costs and tradeable data. These features make the model more suitable for

answering questions about time-series dynamics and the long run.

1 A Data Economy Growth Model

A Model of Data as a Productive and Tradeable Asset Time is discrete and infinite. There

is a continuum of competitive firms indexed by i. Each firm can produce kαi,t units of goods with

ki,t units of capital. These goods have quality Ai,t. Thus firm i’s quality-adjusted output is

yit = Ai,tk
α
i,t (1)

The quality of a good depends on a firm’s choice of a production technique ai,t. Each period

firm i has one optimal technique, with a persistent and a transitory components: θi,t + εa,i,t.

Neither component is separately observed. The persistent component θi,t follows an AR(1) process:

θi,t = θ̄+ρ(θi,t−1− θ̄)+ηi,t. The AR(1) innovation ηi,t is i.i.d. across time. We explore two possible

correlations of ηi,t across firms. First, we consider independent θ processes (corr(ηi,t, ηj,t) = 0, ∀i 6=

j). Then we consider an aggregate θ process (corr(ηi,t, ηj,t) = 1, ∀i, j). The transitory shock εa,i,t

is i.i.d. across time and firms and is unlearnable.

The optimal technique is important for a firm because the quality of a firm’s good, Ai,t, de-

pends on the squared distance between the firm’s production technique choice ai,t and the optimal

technique θi,t:

Ai,t = Āi

[
Â− (ai,t − θi,t − εa,i,t)2

]
. (2)

The role of data is that it helps firms to choose better production techniques. One interpretation

is that data can inform a firm whether blue or green cars or white or brown kitchens will be more

valued by their consumers, and produce accordingly. Transactions help to reveal these preferences

but they are constantly changing and firms must continually learn to catch up. Another interpre-
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tation is that the technique is inventory management, or other cost-saving activities. Observing

many establishments with a range of practices and many customers provides useful information for

optimizing business practices.

Specifically, data is informative about θi,t. The role of the temporary shock εa is that it prevents

firms, whose payoffs reveal their productivity Ai,t, from inferring θi,t at the end of each period.

Without it, the accumulation of past data would not be a valuable asset. If a firm knew the value

of θi,t−1 at the start of time t, it would maximize quality by conditioning its action ai,t on period-t

data ni,t and θi,t−1, but not on any data from before t. All past data is just a noisy signal about

θi,t−1, which the firm now knows. Thus preventing the revelation of θi,t−1 keeps old data relevant

and valuable.

The next assumption captures the idea that data is a by-product of economic activity. The

number of data points n observed by firm i at the end of period t depends on their production kαi,t:

ni,t = zik
α
i,t−1, (3)

where zi is the parameter that governs how much data a firm can mine from its cutomers. A data

mining firm is one that harvests lots of data per unit of output.

Each data point m ∈ [1 : ni,t] reveals

si,t,m = θi,t + εi,t,m, (4)

where εi,t,m is i.i.d. across firms, time, and signals. For tractability, we assume that all the shocks

in the model are normally distributed: fundamental uncertainty is ηi,t ∼ N(µ, σ2
θ), signal noise is

εi,t,m ∼ N(0, σ2
ε ), and the unlearnable quality shock is εa,i,t ∼ N(0, σ2

a).

In order to model data as a tradeable asset, we need to allow for the possibility that the amount

of data a firm produces is not the same as the amount of data they use. The difference between

the two is the amount of data purchased from or sold to other firms.1 Let ωit be the amount of

1Data here is used exclusively by one firm. This is not true to the idea that data is a non-rival good that can be
used by many firms at once. However, in a purely competitive environment, any firm allowed to use and sell a piece
of data would sell all its data to as many buyers as possible. Such a strategy would produce revenue from data sales
and would, because of the perfect competition assumption, not affect any of the prices faced by the firm. In order
to have a meaningful choice with non-exclusive use of data requires moving to a imperfect competition model. See
Jones and Tonetti (2018) for an example. Such a model involves far more complexity than is required to make the
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data used by firm i a time t. If ωit < nit, the firm is selling data. If ωit > nit, the firm purchased

data. Let the price of one piece of data be π.

Finally, we introduce data adjustment costs. They capture the idea that a firm that does not

store or analyze any data cannot freely transform itself to a big-data machine learning powerhouse.

That transformation requires new computer systems, new workers with different skills, and learning

by the management team. As a practical matter, data adjustment costs are important because

they make dynamics gradual. If data is tradeable and there is no adjustment cost, a firm would

immediately purchase the optimal amount of data, just as in models of capital investment without

capital adjustment costs. Of course, the optimal amount of data might change as the price of data

changes. But such adjustment would mute some of the cross-firm heterogeneity we are interested

in.

Each firm’s flow of new data ni,t allows it to build up a stock of knowledge Ωi,t that it uses

to forecast future economic outcomes. Adjusting the level of data usage incurs a data adjustment

cost. If a firm’s data stock was Ωi,t and becomes Ωi,t+1, the firm’s period-t output is diminished

by Ψ(∆Ωi,t+1) = ψ(∆Ωi,t+1)2, where ∆ represents the percentage change: ∆Ωi,t+1 = (Ωi,t+1 −

Ωi,t)/Ωi,t. The percentage change formulation is helpful because it makes doubling one’s stock of

knowledge equally costly, no matter what units data is measured in.

Firm Problem. A firm chooses a sequence of production, quality and data-use decisions ki,t, ai,t, ωi,t

to maximize

E0

∞∑
t=0

βt
(
PtAi,tk

α
i,t −Ψ(∆Ωi,t+1) + π(ni,t+1 − ωit)− rki,t

)
(5)

Firms update beliefs about θi,t using Bayes’ law. Each period, firms observe last period’s

revenues and data, and then choose capital level k and production technique a. The information

set of firm i when it chooses ai,t is Ii,t = [{Ai,τ}t−1
τ=0; {{si,τ,m}

ni,τ
m=1}tτ=0].

Here, we take the rental rate of capital as given, just to show the data-relevant mechanisms as

clearly as possible. It could be that this is a small open economy facing a world rate of interest

r. But, of course, one should embed this problem in an equilibrium context where capital markets

clear. Similarly, one can add labor markets and endogenize the demand for goods. The model here

is only a sketch of an idea that should be explored in a fuller economic context.

simple points made here.
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Equilibrium

Pt denotes the equilibrium price per quality unit of goods. In other words, the price of a good

with quality A is APt. The inverse demand function and the industry quality-adjusted supply are:

Pt = P̄ Y −γt , (6)

Yt =

∫
i
Ai,tk

α
i,tdi. (7)

Firms take the industry price Pt as given and their quality-adjusted outputs are perfect substitutes.

Solution The state variables of the recursive problem are the prior mean and variance of beliefs

about θi,t−1, last period’s revenues, and the new data points. Taking a first order condition with

respect to the technique choice, we find that the optimal technique is a∗i,t = Ei[θi,t|Ii,t]. Let

the posterior precision of beliefs be Ωi,t := Ei[(Ei[θi,t|Ii,t] − θi,t)2]−1. Thus, expected quality is

Ei[Ai,t] = Ā− Ω−1
i,t − σ2

a. We can thus express expected firm value recursively.

Lemma 1 The optimal sequence of capital investment choices {ki,t} and data use choices {ωi,t}

solves the following recursive problem:

V (Ωi,t) = max
ki,t,ωi,t

Pt

((
Ā− Ω−1

i,t − σ
2
a

)
kαi,t −Ψ(∆Ωi,t+1)

)
+ π(ni,t+1 − ωit)− rki,t + βV (Ωi,t+1)

(8)

where ni,t = zik
α
i,t and

Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+ ωi,tσ

−2
ε (9)

See Appendix for the proof. This result greatly simplifies the problem by collapsing it to a

deterministic problem with only one state variable, Ωi,t. The reason we can do this is that quality

Ai,t depends on the conditional variance of θi,t and because the information structure is similar to

that of a Kalman filter, where the sequence of conditional variances is generally deterministic.

Valuing Data In this formulation of the problem, Ωi,t can be interpreted as the amount of data

a firm has. Technically, it is the precision of the firm’s posterior belief. But according to Bayes’ rule

for normal variables, posterior precision is the discounted precision of prior beliefs plus the precision

9



of each signal observed. In other words, the precision of beliefs, Ω is a linear transformation of the

number of all past used data points, {ωis}ts=0. Ωit captures the value of past observed data through

the term for the discounted prior precision, Ωi,t−1.

The marginal value of one additional piece of data, of precision 1, is simply ∂Vt/∂Ωit. When we

consider markets for buying and selling data, ∂Vt/∂Ωit represents the firm’s demand, its marginal

willingness to pay for – or to sell – data.

Measuring data. The model suggests two possible ways of measuring data. One is to measure

output or transactions. If we think data is a by-product of economic activity, then a measure of that

activity should be a good indicator of aggregate data production. At the firm level, a firm’s data

use could differ from their data production, if data is traded. But one can adjust data production

for data sales and purchases, to get a firm-level flow measure of data. Then, a stock of data is

a discounted sum of data flows. The discount rate depends on the persistence of the market. If

the data is about demand for fashion, then rapidly changing tastes imply that data has a short

longevity and a high discount rate. If the data is mailing addresses, that is quite persistent, with

small innovations. An AR(1) coefficient and innovation variance of the variable being forecasted

are sufficient to determine the discount rate.

The second means of measuring data is to look at what actions it allows firms to choose. A

firm with more data can respond more quickly to market conditions than a firm with little data

to guide them. To use this measurement approach, one needs to take a stand on what actions

firms are using data to inform, what variable firms are using the data to forecast, and to measure

both the variable and the action. One example is portfolio choice in financial markets Farboodi

et al. (2018). Another example is firms’ real investment David et al. (2016). Both measure the

covariance between investment choices and future returns. That covariance between choices and

unknown states reveals how much data investors have about the future unknown state. A similar

approach could be to use the correlation between consumer demand and firm production, across a

portfolio of goods, to infer firms’ data about demand.

Which approach is better depends on what data is available. One difference between the two

is the units. Measuring correlation gives rise to natural units, in terms of the precision of the

information contained in the total data set. The first approach of counting data points, measures
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the data points more directly. But not all data is equal. Some data is more useful to forecast a

particular variable. The usefulness or relevance of the data is captured in how it is used to correlate

decisions and uncertain states.

2 Results: Long Run Growth in a Data Economy

When data results from economic activity, reduces forecast errors and improves the value of firms’

goods, there is both a force for increasing and a force for decreasing returns. This section explores

how these two forces interact and what long-run economic trajectories are possible.

Our goal is not to make precise quantitative foreacasts of future growth. The model is far too

simple for that. Rather, the goal is to illustrate the forces at work and to compare and contrast

them with more traditional growth models. Illustrating with figures is helpful. Figures require

putting numbers on parameters. Table 1 lists the parameters, which were chosen to be simple,

to conform with standing economic intuition, or because they delivered the trade-off we sought to

illustrate. The data mining parameter zi is varied across exercises.

Table 1: Parameters

ρ r β α ψ γ Ā P̄ π σ2
a σ2

θ σ2
ε

0.8 0.2 0.98 0.5 2.5 2 1 0.025 0.01 0.25 0.025 1

Aggregate data inflows and outflows. Just like we typically teach the Solow (1956) model by

examining the inflows and outflows of capital, we can gain insight into our data economy growth

model by exploring the inflows and outflows of data. The inflows of data are new pieces of data that

are generated by economic activity. The number of new data points ni,t was assumed to be data

mining ability times last-period’s physical output: zik
α
i,t−1. By Bayes’ law for normal variables,

the total precision of that information is the sum of the precisions of all the data points: ni,tσ
−2
ε .

That is the quantity represented by the line inflows in Figure 1. How can data flow out? It is not

really leaving. It is just depreciating. Data depreciates because data generated at time t is about

next period’s optimal technique θt+1. But that means that data generated s periods ago is about

θt−s+1. Since θ is an AR(1) process, it is constantly evolving. Data from many periods ago, about
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a θ realized many periods ago is not as relevant as more recent data. So, just like capital, data

depreciates.

Note that since we are examining the aggregate amount of data in the economy, we ignore

data purchases and sales, because they just move data around, rather than changing the aggregate

amount. If we allowed data to have multiple simultaneous users, this would need to change.

The extent of data depreciation can be seen in (9), the law of motion for the stock of knowledge

Ωi,t. The second term of that law of motion is exactly the inflows described above. The first term of

the law of motion is the amount of data carried forward from period t:
[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
.

The Ωi,t + σ−2
a term represents the stock of knowledge at the start of time t plus the information

about period t technique revealed to a firm by observing its own output. The information precision

is multiplied by the persistence of the AR(1) process squared, ρ2. If the process for optimal

technique θt was perfectly persistent then ρ = 1 and this term would not discount old data. If the

θ process is i.i.d. ρ = 0, then old data is irrelevant for the future. Next, the formula says to invert

the precision, to get a variance and add the variance of the AR(1) process innovation σ2
θ . This

represents the idea that volatile θ innovations add noise to old data and make it less valuable in

the future. Finally, the whole expression is inverted again so that the variance is transformed back

into a precision and once again, represents a (discounted) stock of knowledge. The depreciation of

knowledge is the end-of-period-t stock of knowledge, minus the discounted stock:

Outflows = Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
(10)

Figure 1 illustrates the inflows and outflows, in a form that looks just like the traditional Solow

model with capital accumulation. Depreciation is not linear, but is very close to linear. For other

parameter values, sometimes it has a noticeable concavity at low levels of knowledge Ω. The

inflows have diminishing returns. There are two reasons for this. The first is that more data raises

efficiency, which incentivizes more capital investment. But capital has diminishing returns because

the exponent in the production function is α < 1. But that is not the only reason. Even if capital

did not have diminishing marginal returns, inflows would still exhibit concavity. The reason is

that the returns to data are bounded. With infinite data, all learnable uncertainty about θ can be

resolved. With a perfect forecast of θ, the expected good quality is
(
Ā− σ2

a

)
, which is finite. Thus,
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Figure 1: Economy converges to a data steady state: Aggregate inflows and outflows of data.
Line labeled inflows plots zik

α
i,tσ
−2
ε for a firm i, that makes an optimal capital decision k∗i,t, with different levels of

initial data stock. Line labeled outflows plots the quantity in (10).

the optimal capital investment is finite. Since a function that is continuous and not concave will

always cross any finite upper bound, productivity, investment and data inflows must all be concave

in the stock of knowledge Ω.

Diminishing returns arise because we model data as information, not directly as an addition to

productivity. Information is used to forecast random variables. With infinite information, the best

forecast has perfect foresight. But perfect foresight does not typically mean infinite investment or

profits. Information has diminishing returns because its ability to reduce variance gets smaller and

smaller as beliefs become more precise.

Growth without data sales. We begin by looking at a simple version of the model where firms’

optimal techniques are independent (corr(ηi, ηj) = 0 ∀i 6= j). This implies that firms can only learn

from data that they themselves produce: ωit = nit, ∀i, t. They are allowed to buy data. But since

such data is not informative about their optimal action, it has no value to them.

Consider an economy of symmetric firms, all producing and accumulating data at the same

rate. Figure 2 shows how firms accumulate data rapidly. This accumulation helps them to produce

higher quality goods. The raw units of non-quality-adjust goods production in this example grows

proportionately to Yt. Production net of data adjustment cost is more volatile. When goods are

higher quality, firms produce more units of them. More production generates more transactions

data. The accumulation of data makes each unit of production generate more value. This can
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Figure 2: Data, Output and Price for firms that cannot sell their data.
Top panel plots Ωit for symmetric firms i, over time t. Bottom panel plots the market price of an average unit of the
good, which is price per quality unit, times the quality: PtAt and aggregate output Yt, which is measured in quality
units. Parameters listed in Table 1, with the data mining ability set to z = 10.

be seen in the rise in price for the higher-quality goods. The price per quality unit, Pt is falling

monotonically, as output rises. But the price for a unit of the good, PtAit, rises as the goods’

quality, Ait, improves.

Growth with data sales. Next, consider an economy with perfectly correlated optimal tech-

niques (corr(ηi, ηj) = 1 ∀i, j). In this economy, purchased data is just as relevant as the firms’ own

data. Now, firms will want to buy or sell data. The price of data π is fixed. This could be seen

as a small open economy buying and selling into a large international data market. When firms

sell data, one piece of their own data is perfectly substitutable for a piece of data generated by

another firm. For two firms selling an identical good to the same market, this might be close to

true. In many cases, a firms’ own data is more relevant for forecasting the variables of interest to

that firm: its demand, its future cost or its own future productivity. But certainly external data
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Figure 3: Data, Output and Price for poor data miners (zi = 1).
Top panel plots Ωit for symmetric firms i, over time t. Bottom panel plots the market price of an average unit of
the good, which is price per quality unit, times the quality: PtAt and aggregate output Yt, which is measured in
quality units, divided by At, to report units produced. Parameters listed in Table 1, with the data mining ability set
to z = 1.

is relevant and is frequently purchased. Thus the truth likely lies in between this case and the

previous, non-tradeable data one.

There are two interesting cases here. The first case is where the industry is not very good at

data mining (z = 1). In this case, the industry will be a net purchaser of data. Figure 3 illustrates

that firms in such an industry will accumulate data (rise in Ωit in the top panel), but will do so by

purchasing data nit − ωit < 0. Firms that are poor data miners need to buy data from others to

raise the quality of their production.

With a data market, an unproductive data producer is not condemned to produce low-quality

goods. Instead, they can purchase data from others. The firms in the example continue to purchase

data throughout their lifespan. Early on, data purchases increase the stock of knowledge. Once

the stock is sufficiently large, the same data purchases are just enough to offset the depreciation of

old data. As the net inflows of data slows, price and output level off as well.
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The opposite case is a highly productive data miner. In Figure 4, the firms in the economy all

have z = 25, meaning that every unit of production generates 25 signals. These firms do not use

most of their data. Instead, they sell most of their data. In the top panel of Figure 4, firms’ data

sales are positive and far exceed their data stock. These firms do not produce higher quality goods.

Instead, they produce a larger volume of low-quality goods. They do this because their main source

of revenue is not from their goods sales, it is from their data sales. In period 1, these firms set a

price of zero. They give goods away for free, like free apps for download, in order to mine data from

their customers and sell that data. This is optimal because the price of data is sufficiently high. If

all producers created lots of data, the equilibrium price of data would fall. But this illustrates how

a data producer who is more data-productive than other firms can endogenously become a data

provider.

Valuing zero-price goods (data barter). In many of these examples, the optimal price of a

firm’s good was initially close to zero (e.g., the period 1 price in Figures 2, 3 and 4). The reason

for the near-zero price is that the firm wants to sell many units, in order to accumulate data. Data

will boost the productivity of future production and enable future profitable goods sales. It could

also be that the firm wants to accumulate data, in order to sell it. Lowering the price is a costly

investment in a productive asset that yields future value. This is what makes a zero optimal price

possible.

Data poverty traps. In some cases, firms can experience slow growth for a while, before they get

enough data to produce productively, and their growth takes off. This is a special case that arises

for a subset of parameters. But it is an important case because this slow growth phase, in which the

firm produces low-quality goods, can be a barrier to entry. We will examine the simplest version of

our problem: One firm growing in an economy with no data sales. The previous results illustrated

what happens when a whole industry of competitive firms accumulates data and produces higher

quality goods. But sometimes one firm leaps ahead in their use of data, while others’ business

practices are stagnant. The next result explores the consequences of relative data mining prowess.

The difference between this exercise and the previous one is that with only one firm changing, we

hold the market price of goods, Pt fixed. Doing this also reveals what role the equilibrium price of

16



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

it, (
n

it-
it)

Stock of Knowledge and Data Sold

Stock
Sales

0 2 4 6 8 10 12 14 16 18 20
time

0

5

10

15

20

25

Y
t/A

t, P
tA

t

Total Output and Price of a Good

Output
Price

Figure 4: Data, Output and Price for productive data miners (zi = 25).
Top panel plots Ωit for symmetric firms i, over time t. Bottom panel plots the market price of an average unit of the
good, which is price per quality unit, times the quality: PtAt and aggregate output Yt, which is measured in quality
units. Parameters listed in Table 1, with the data mining ability set to z = 25.
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goods plays in our results.

Figure 5 illustrates such a case. It reveals that firm growth dynamics take on an S-shape.

The firm’s early growth is constrained by its ability to produce data at a small size. Because

the firm is small, it produces little data. Because the firm produces little data, its optimal size

is small. The adjustment cost keeps the firm from incurring a one-time fixed cost and jumping

to its optimal size. But the fact that this is just one firm also plays a role. When all firms are

unproductive, quality units are scarce. The scarcity drives up the equilibrium price of goods. High

prices induce firms to produce more, even though they are unproductive. But when only one firm

starts accumulating data and other already have, that equilibrium price mechanism is shut off,

slowing the data transition.

The firm in this example makes losses for the first four periods. It produces goods even though

its cost is higher than the price, because doing so generates data. This negative value production

is a costly investment in data, which enables future profitable production. In this example, that

strategy works for the firm because it faces no financing constraint. In reality, many firms that

make losses for years on end lose their financing and exit.

These results suggest that financially constrained young firms may never enter or make the

investment in data systems. By not paying the data adjustment costs, they can remain financially

viable. But by not collecting and using data, they never escape the trap of poor data and low

value-added.

In a country where data science skills are scarce, the labor cost of hiring a data analyst may

make this data adjustment cost very high. Thus scare data skilled labor might condemn an entire

economy of firms to this data poverty trap.

Data allocation choice. A useful extension of the model would be to add a choice about what

type of data to purchase or process. To do that, one needs to make the relevant state θit a vector

of variables. Then, use rational inattention.

Why is rational inattention a natural complement to this model? Following Sims (2003), ratio-

nal inattention problems consider what types of information or data is most valuable to process,

subject to a constraint on the mutual information of the processed information and the underlying

uncertain economic variables. The idea of using mutual information as a constraint, or the basis
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of a cost function, comes from the computer science literature on information theory. The mutual

information of a signal and a state is an approximation to the length of the bit string or binary

code necessary to transmit that information (Cover and Thomas (1991)). While the interpreta-

tion of rational inattention in economics has been mostly as a cognitive limitation on processing

information, the tool was originally designed to model computers’ processing of data. Therefore, it

would be well suited to explore the data processing choices of firms.

3 Data for Business Stealing

Data is not always used for a socially productive purpose. One might argue that many firms use

data simply to steal customers away from other firms. So far, we’ve modeled data as something

that enhances a firm’s productivity. But what if it increases profitability, in a way that detracts

from the profitability of other firms? Using an idea from Morris and Shin (2002), we can model

such business-stealing activity as an externality that works through productivity:

Ai,t = Â−
(
ai,t − θi,t − εa,i,t

)2
+

∫ 1

j=0

(
aj,t − θj,t − εa,j,t

)2
dj (11)

This captures the idea that when one firm uses data to reduce the distance between their chosen

technique ait and the optimal technique θ + ε, that firm benefits, but all other firms lose a little

bit. These gains and losses are such that, when added up to compute aggregate productivity, they

cancel out:
∫
Ait = Â. This represents an extreme view that data processing contributes absolutely

nothing to social welfare. While that is unlikely, examining the two extreme cases is illuminating.

What we find is that reformulating the problem this way makes very little difference for most

of our conclusions. The externality does reduce the productivity of firms and does reduce welfare,

relative to the case without the externality. But it does not change firms’ choices. Therefore, it

does not change data inflows, outflows or accumulation. It does not change firm dynamics. The

reason there is so little change is that the externality does not enter in a firm’s first order condition.

It does not change its optimal choice of anything. Firm i’s actions have an infinitesimal, negligible

effect on the average productivity term
∫ 1
j=0

(
aj,t − θj,t − εa,j,t

)2
dj. Because firm i is massless in a

competitive industry, its actions do not affect that aggregate term. So the derivative of that term
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with respect to i’s choice variables is zero. If the term is zero in the first order condition, it means

it has no effect on choices of the firm.

Whether data is productivity-enhancing or not matters for welfare and the price per good, but

does not change our conclusions that a firm’s growth from data alone is bounded, that firms can

be stuck in data poverty traps, or that markets for data will arise to partially mitigate the unequal

effects of data production.

4 Conclusions

The economics of transactions data bears some resemblance to technology and some to capital.

It is not identical to either. Yet, when economies accumulate data alone, the aggregate growth

economics are similar to an economy that accumulates capital alone. Diminishing returns set in

and the gains are bounded. Yet, the transition paths differ. There can be regions of increasing

returns that create possible poverty traps. Such traps arise with capital externalities as well.

Data’s production process, with its feedback loop from data to production and back to data, makes

such increasing returns a natural outcome. When markets for data exist, some of the effects are

mitigated, but the diminishing returns persist. Even if data does not increase output at all, but is

only a form of business stealing, the dynamics are unchanged. Thus, while the accumulation and

analysis of data may be the hallmark of the “new economy,” this new economy has many economic

forces at work that are old and familiar.
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5 Appendix

Belief updating The information problem of firm i about its optimal technique θi,t can be

expressed as a Kalman filtering system, with a 2-by-1 observation equation, (µ̂i,t,Σi,t).

We start by describing the Kalman system, and show that the sequence of conditional variances

is deterministic. Note that all the variables are firm specific, but since the information problem is

solved firm-by-firm, for brevity we suppress the dependence on firm index i.
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At time t, each firm observes two types of signals. First, date t − 1 output provides a noisy

signal about θt−1:

yt−1 = θt−1 + εa,t−1, (12)

where εa,t ∼ N (0, σ2
a). We provide model detail on this step below. Second, the firm observes

nt = zkαt data points as a bi-product of its economic activity. The set of signals {st,m}m∈[1:ni,t] are

equivalent to an aggregate (average) signal s̄t such that:

s̄t = θt + εs,t, (13)

where εs,t ∼ N (0, σ2
ε /nt). The state equation is

θt − θ̄ = ρ(θt−1 − θ̄) + ηt,

where ηt ∼ N (0, σ2
θ).

At time, t, the firm takes as given:

µ̂t−1 = E
[
θt | st−1, yt−2

]
Σt−1 = V ar

[
θt | st−1, yt−2

]
where st−1 = {st−1, st−2, . . . } and yt−2 = {yt−2, yit−3, . . . } denote the histories of the observed

variables, and st = {st,m}m∈[1:ni,t].

We update the state variable sequentially, using the two signals. First, combine the priors with

yt−1:

E
[
θt−1 | It−1, yt−1

]
=

Σ−1
t−1µ̂t−1 + σ−2

a yt−1

Σ−1
t−1 + σ−2

a

V
[
θt−1 | It−1, yt−1

]
=
[
Σ−1
t−1 + σ−2

a

]−1

E
[
θt | It−1, yt−1

]
= θ̄ + ρ ·

(
E
[
θt−1 | It−1, yt−1

]
− θ̄
)

V
[
θt | It−1, yt−1

]
= ρ2

[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ
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Then, use these as priors and update them with s̄t:

µ̂t = E
[
θt | It

]
=

[
ρ2
[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ

]−1
· E
[
θt | It−1, yt−1

]
+ ntσ

−2
ε s̄t[

ρ2
[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ

]−1
+ ntσ

−2
ε

(14)

Σt = V ar
[
θ | It

]
=
{[
ρ2
[
Σ−1
t−1 + σ−2

a

]−1
+ σ2

θ

]−1
+ ntσ

−2
ε

}−1
(15)

Multiply and divide equation (14) by Σt as defined in equation (15) to get

µ̂t = (1− ntσ−2
ε Σt)

[
θ̄(1− ρ) + ρ ((1−Mt)µt−1 +Mtỹt−1)

]
+ ntσ

−2
ε Σts̄t, (16)

where Mt = σ−2
a (Σt−1 + σ−2

a )−1.

Equations (15) and (16) constitute the Kalman filter describing the firm dynamic information

problem. Importantly, note that Σt is deterministic.

Capital choice. The first order condition for the optimal capital choice is

αPtAitk
α−1
t − PtΨ′(·)

∂Ωt+1

∂kit
− r + βV ′(·)∂Ωt+1

∂kit
= 0

where ∂Ωt+1

∂kit
= αzik

α−1
it σ−2

ε and Ψ′(·) = 2ψ(Ωi,t+1 − Ωit). Substituting in the partial derivatives

and for Ωi,t+1, we get

kit =
[α
r

(
PtAit + ziσ

−2
ε (βV ′(·)− Ptψ(·))

)]1/(1−α)
(17)

Differentiating the value function in Lemma 1 reveals that the marginal value of data is

V ′(Ωit) = Ptk
α
it

∂Ait
∂Ωit

−Ψ′(·)
(
∂Ωt+1

∂Ωt
− 1

)
+ βV ′(·)∂Ωt+1

∂Ωt

where ∂Ait/∂Ωit = Ω−2
it and ∂Ωt+1/∂Ωt = ρ2

[
ρ2 + σ2

θ(Ωit + σ−2
a )
]−2

.

To solve this, we start with a guess of V ′ and then solve the non-linear equation above for kit.

Then, update our guess of V .
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Steady state The steady state is where capital and data are constant. For data to be constant,

it means that Ωi,t+1 = Ωit. Using the law of motion for Ω (eq 9), we can rewrite this as

nssσ
−2
ε +

[
ρ2(Ωss + σ−2

a )−1 + σ2
θ

]−1
= Ωss (18)

This is equating the inflows of data nitσ
−2
ε with the outflows of data

[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1−Ωit.

Given a number of new data points nss, this pins down the steady state stock of data. The number

of data points depends on the steady state level of capital. The steady state level of capital is given

by (17) for Ass depending on Ωss and a steady state level of V ′ss. We solve for that steady state

marginal value of data next.

If data is constant, then the level and derivative of the value function are also constant. Equating

V ′(Ωit) = V ′(Ωi,t+1) allows us to solve for the marginal value of data analytically, in terms of kss,

which in turn depends on Ωss:

V ′ss =

[
1− β∂Ωt+1

∂Ωt
|ss
]−1

Ptk
α
ssΩ
−2
ss (19)

Note that the data adjustment term Ψ′(·) dropped out because in steady state ∆Ω = 0 and we

assumed that Ψ′(0) = 0.

The equations (17), (18) and (19) form a system of 3 equations in 3 unknowns. The solution

to this system delivers the steady state levels of data, its marginal value and the steady state level

of capital.

Backwards induction solution Start by solving for the steady state where k, Ω and therefore

V and V ′ are equal at dates t, t+ 1 and forever in the future. Then, work backwards. What is the

t− 1 level of k and Ω that would result in t level being the steady state level.

In the period before the economy reaches steady state (ss− 1), the marginal value of data is

V ′ss−1 = Ptk
α
ss−1Ω−2

ss−1 −Ψ′(·)
(

∂Ωss

∂Ωss−1
− 1

)
+ βV ′ss

∂Ωss

∂Ωss−1

Since V ′ss is known, if we can solve for kss−1 and Ωss−1, we can retrieve the marginal value of data.

We need two more equations to solve for the three unknowns jointly: V ′ss−1, kss−1 and Ωss−1. The
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other two equations are the first order condition for capital (17) and the low of motion for Ω, (9).

These three equations form a backwards recursion that allows us to solve for equilibrium in the

date before steady state. Performing the same recursion allows us to solve backwards for a time

path of data and capital, leading up to steady state.

Proof of lemma 1 Lemma. The sequence problem of the firm can be solved as a non-stochastic

recursive problem with one state variable. Consider the firm sequential problem:

maxE0

∞∑
t=0

βt (PtAtk
α
t − rkt)

We can take a first order condition with respect to at and get that at any date t and for any level

of kt, the optimal choice of technique is

a∗t = E[θt|It].

Given the choice of at’s, using the law of iterated expectations, we have:

E[(at − θt − εa,t)2|Is] = E[V ar[θt|It]|Is],

for any date s ≤ t. We will show that this object is not stochastic and therefore is the same for

any information set that does not contain the realization of θt.

We can restate the sequence problem recursively. Let us define the value function as:

V ({st,m}m∈[1:nt], yt−1, µ̂t−1,Σt−1) = max
kt,at

E
[
Atk

α
t − rkt + βV ({st+1,m}m∈[1:nt+1], yt, µ̂t,Σt)|It−1

]
with nt = kαt−1. Taking a first order condition with respect to the technique choice conditional on

It reveals that the optimal technique is a∗t = E[θt|It]. We can substitute the optimal choice of at

into At and rewrite the value function as

V ({st,m}m∈[1:nt], yt−1, µ̂t−1,Σt−1) = max
kt

E
[(
Ā− (E[θt|It]− θt − εa,t)2

)
kαt − rkt

+ βV ({st+1,m}m∈[1:nt+1], yt, µ̂t,Σt)|It−1

]
.
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Note that εa,t is orthogonal to all other signals and shocks and has a zero mean. Thus,

V ({st,m}m∈[1:nt], yt−1, µ̂t−1,Σt−1) = max
kt

E
[(
Ā− ((E[θt|It]− θt)2 + σ2

a)
)
kαt − rkt

+ βV ({st+1,m}m∈[1:nt+1], yt, µ̂t,Σt)|It−1

]
.

Notice that E[(E[θt|It] − θt)
2|It−1] is the time-t conditional (posterior) variance of θt, and the

posterior variance of beliefs is E[(E[θt|It] − θt)2] := Σt. Thus, expected productivity is E[At] =

Ā−Σt − σ2
a, which determines the within period expected payoff. Additionally, using the Kalman

system equation (15), this posterior variance is

Σt =
[[
ρ2(Σ−1

t−1 + σ2
a)
−1 + σ2

θ

]−1
+ ntσ

−2
ε

]−1

which depends only on Σt−1, nt, and other known parameters. It does not depend on the realization

of the data. Thus, {st,m}m∈[1:nt], yt−1, µ̂t do not appear on the right side of the value function

equation; they are only relevant for determining the optimal action at. Therefore, we can rewrite

the value function as:

V (Σt) = max
kt

[
(Ā− Σt − σ2

a)k
α
t − rkt + βV (Σt+1)

]
s.t. Σt+1 =

[[
ρ2(Σ−1

t + σ2
a)
−1 + σ2

θ

]−1
+ zkαt σ

−2
ε

]−1

Finally, note that when we add data usage choice or adjustment costs, neither of these creates

a new state variable. Data use in incorporated in the stock of knowledge through (9), which still

represents one state variable.
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