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1 Introduction

How do geography and other barriers to the free flow of information shape the rate of knowledge

diffusion? In a range of relevant contexts, barriers impeding knowledge flows across individuals

negatively impact aggregate efficiency, motivating policies that aim to reduce such frictions.1 How-

ever, relatively little is known about how to efficiently implement these policies, particularly when

the policymaker is not fully-informed about the underlying knowledge that is diffusing.2 To achieve

the largest productivity gains, is it more effective to target the distribution of information across

agents in the network, or the structure of the network itself? In the latter case, is it more efficient

to target the weakest links, or the strongest?

To shed light on these questions, we develop an empirical model of product discrete choice

with learning dynamics on a social network. Under the assumptions of Bayesian learning and

static multinomial choice, we show that the model parameters may be estimated using a simple

non-linear estimator. We apply this to quantify the model using monthly data on the cholesterol-

drug prescription decisions of over 50,000 U.S. physicians during January 2000 through December

2010, a period featuring patent expirations, drug entry, and major aggregate shifts in product

choice. To understand how barriers to knowledge diffusion and learning impact the evolution of

choice efficiency, we simulate the quantified model under a series of targeted policy interventions.

These indicate that the evolution of efficiency is highly responsive to network structure changes,

particularly friction reductions that target the initially strongest bilateral links.

The model features a set of risk averse professionals (agents) positioned in social network. In

every period, multiple clients arrive for each agent, who makes a distinct, discrete product choice

on behalf of each. Agents do not know the true quality of each available product, but instead

hold idiosyncratic beliefs about these product qualities that evolve over time. In particular, agents

update idiosyncratic beliefs as information arrives from two sources: from the observation of their

own clients’ outcomes, and in addition, from learning through the social network about the outcomes

of others’ clients. The model specifies that agents receive more signals, and hence learn more from,

nearby professionals with high decision volumes. Thus, while each agent is connected to every other

agent in the network, the degree of connectedness differs across links, with strong links implying a

large flow of signals per period, and with weak links implying the opposite.

We show that this setup indicates a straightforward link between agents’ unobserved beliefs

about product qualities and their observable product choice shares. Moreover, when combined

with our network structure and Bayesian learning assumptions, this further implies a nonlinear

estimating equation characterizing the change in an agent’s relative prescription choice shares as

a function of three fundamentals: first, the precision of an agent’s own initial beliefs; second, the

distribution (mean and variance) of signals traveling over the network; and third, the complete

set of bilateral network links connecting each pair of agents. Because separately estimating N2

1For example, knowledge frictions across individual agents have been shown to partially explain the slow diffusion
of a cost-reducing innovation (Griliches 1957), as well as deviations from the law of one price (Jensen 2007).

2Banerjee et al (2013, 2014) and Akbarpour, Malladi, and Saberi (2018) both provide important results about
how to optimally target networked agents with an information seeding policy. These results are particularly relevant
when the policymaker holds the information about which agents in the social network are learning.
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unrestricted bilateral proximity parameters is infeasible given the large size of our dataset, we

parameterize the connections between agents, as well as their initial beliefs precision levels, as

functions of observable attributes. We show that, under this parameterization, the model can be

estimated using a simple, restricted nonlinear least-squares estimator.

This estimator is applied to quantify the model using comprehensive data from IMS Health

(now IQVIA) on the cholesterol-drug prescription decisions of U.S. physicians over the 11-year

period spanning January 2000 through December 2010. For each doctor and month, we observe

the number of prescriptions corresponding to each of the cholesterol therapies available in that

month, as well as the location (five-digit zipcode) and a decomposition of prescriptions by patient

insurance type for each doctor. We match these data with information on each doctor’s primary

medical specialty, medical school attended, medical school graduation year, total and cholesterol-

drug specific advertising exposure, and location-specific household income and population density.

Consistent with agents learning about unconditional product qualities, the prescription data reveal

substantial shifts in aggregate choice shares over the sample period (Figure 1) that differ across

U.S. locations (Figures 2 and 3).

Our estimates indicate that geographic and cohort proximity as well as shared medical school

and specialty are all statistically important determinants of network connectedness; moreover, it is

primarily distance variation that explains the shape of network connectedness across agents. Using

our product quality estimates, we further demonstrate that—although our estimation procedure

does not restrict this to be the case—agents’ choice shares are, on average, evolving over time in a

way that is consistent with agents’ idiosyncratic beliefs converging to the true product qualities, a

fundamental prediction of the model. We find that individual convergence rates are faster for agents

that are relatively well-connected to the network and for agents with relatively imprecise initial

beliefs, also in line with the predictions of the model. On the other hand, our estimates indicate

convergence rates are not systematically related to doctors’ exposure to direct pharmaceutical

advertising.

To understand the implications of the model for how information barriers shape the rate of

knowledge diffusion, we simulate our quantified model under a series of counterfactual scenarios.

These suggest that policies impacting the structure of the network itself may be particularly in-

fluential, especially when efforts to strengthen links target the network ties that are already the

strongest. By contrast, we find a relatively limited role for interventions targeting either weak net-

work links or the initial distribution of information across individual agents. Specifically, providing

certain individuals with additional signals in the initial period, which increases the precision of

their prior beliefs, or even providing agents the true product qualities, has only a negligible impact

on the aggregate rate of convergence. It is also important to note that this latter form of policy

intervention is unavailable in the context of our model, as the true product qualities are fundamen-

tally unobserved in real time. While one may estimate these ex post given historical data, it would

actually not be feasible to learn these qualities parameters at the time such knowledge could have

been valuable for information injection purposes.

This paper is related to a growing literature on knowledge diffusion. In particular, the theo-

retical framework in our paper resembles Eaton and Kortum (1996) in that we model individual’s
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knowledge evolution as determined, in part, by ideas arriving from others, with ideas arriving more

intensely from relatively nearby and informed sources. Our panel data allow us to estimate the

model using observed dynamics in agents’ product choices rather than cross-section differences in

productivity. Although we do not observe a direct measure of idea flows between physicians, we are

nevertheless able to estimate the role of the network in governing knowledge flows by relying on the

assumptions of Bayesian learning and static multinomial choice. This paper is also conceptually

related to Buera and Oberfield (2019) in that our model implies reductions in network frictions,

related to the idea of trade liberalization, increase the rate of knowledge diffusion, thus increasing

the rate of efficiency gain as agents’ beliefs thereby converge more rapidly to the truth.

More broadly, recent work considers firm networks as key for explaining trade flows, and in

particular has emphasized that the structure of network connections is important for both firm-

level and aggregate outcomes that may result from infrastructure improvements or reductions in

variable trade costs (Chaney 2014, Bernard and Dhingra 2016, Bernard and Moxnes 2018, Bernard,

Moxnes, and Saito 2019). Our model considers a related question in a distinct context. In particular,

we consider a parallel set of counterfactuals, but focus on different outcomes: instead of considering

the efficiency of bilateral, buyer-supplier matches that result after a reduction in bilateral frictions,

we evaluate the quantitative impact of this reduction in frictions on efficiency gains as agents’

rate of knowledge acquisition rises, improving decision quality. We further assess the value of

targeting reductions in frictions to certain parts of the network, and show that aggregate efficiency

is especially responsive to friction reductions aimed at the initially strongest network links.

Our model and results are related to recent work evaluating the dynamics of social learning in

networks (Banerjee et al 2013, 2014, Akbarpour, Malladi, and Saberi 2018). We emphasize that the

empirical model we develop may be used to characterize transition dynamics as knowledge diffusion

through the social network leads to aggregate efficiency gains. For this, our empirical approach

relies on techniques developed in models of static discrete choice (Train 2009) and of product choice

under Bayesian learning (Crawford and Shum 2005).

Because our quantification of the model involves a medical context, our work is also related

to two literatures in health economics. First, our framework is related to models of learning in

pharmaceutical markets including Erdem and Keane (1996), Ackerberg (2003), Crawford and Shum

(2005), and Arrow, Bilir and Sorensen (2018). We build on this work by modeling agents’ learning

about unobserved drug qualities as determined in part by the social network: in our model, agents

learn not only by their own experience, but also from the experiences of their social contacts. This,

combined with the population-level data we analyze, implies our analysis has direct implications

both for individuals’ learning and efficiency gains and for aggregate efficiency gains.3

Second, our model and results have implications related to the work documenting variations

in U.S. medical care (e.g. Wennberg et al 1996, Munson et al 2013, and Cooper et al 2015). We

contribute to this work by establishing a network-learning mechanism that can rationalize static

3Our results also add to the literature examining the determinants of new medical technology diffusion including
Coleman, Katz, and Menzel (1957, 1996), Skinner and Staiger (2007), and Agha and Molitor (2015). Note that,
because our data do not include individual patient characteristics, we are not able to estimating a model featuring
learning about match quality within each patient-physician pair, as in Crawford and Shum (2005).
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productivity disparities, and also explain how these disparities evolve over time. In addition, our

quantified model can provide guidance for policies aimed at reducing knowledge-based disparities by

intervening to change the strength of network connections and the distribution of initial information.

The rest of the paper is organized as follows. Section 2 presents a learning model of product

choice under uncertainty. Section 3 outlines the baseline estimation strategy. Section 4 describes

the data and provides descriptive evidence about aggregate evolution of prescription choice shares.

Section 5 presents our main estimates, section 6 provides estimates for alternative specifications, and

section 7 discusses quantitative implications of these estimates. Section 8 concludes. Derivations

and additional results may be found in the Appendix.

2 Empirical Model

This section presents an empirical model of learning among individual professionals positioned in

a social network. The framework is developed in general terms; in sections 3 and 4, we go on to

provide estimation and data details specific to the medical setting we evaluate as a quantitative

application of the model.

2.1 Setup

Consider a set I of agents (indexed by either i or j) arrayed on a network. Suppose that in each

period t = 1, 2, ..., T , agent i faces the arrival of a measure Rit of clients νi. For each client νi, i

chooses a single product (indexed by d) in period t from a set Dt of available products. Suppose

client νi receives the following reward from product d at t

udt(εdt(νi)) = βTd + εdt(νi),

where βTd captures the true unconditional quality of product d. These true qualities {βTd }d∈Dt are

not fully known to agent i. In particular, we assume that for each d, i holds beliefs about the value

of βTd at t that are summarized by a normal distribution with mean βidt and variance σ2
idt. The

match values εdt(νi) are, on the other hand, observed perfectly by agent i at t (though not by the

econometrician); these are assumed to follow a Gumbel distribution F (ε) with shape parameter θ.4

Letting Uidt(εdt(νi), βd) denote the agent-i utility of choosing product d for client νi at t given

beliefs βd ∼ N(βidt, σ
2
idt) about the quality of d, we specify that

Uidt(εdt(νi), βd) = − exp(−α(βd + εdt(νi))),

where α > 0 is the coefficient of absolute risk aversion. This implies (see Appendix A.1) that the

4That is, F (x) = P{εdt(νi) ≤ x} = e−e
−x/θ

.
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expected utility for i of choosing product d for client νi at t is, given her current beliefs,

Uidt(εdt(νi), βidt, σidt) ≡ Eβd [Uidt(εdt(νi), βd)|βidt, σidt]

= − exp

(
−αβidt +

α2σ2
idt

2
− αεdt(νi)

)
. (1)

For each client νi, i thus compares (1) across products d ∈ Dt and chooses that which maximizes

i’s expected utility from the product choice for νi,

Uit(εt(νi),βit,σit,Dt) ≡ max
d∈Dt
{Uidt(εdt(νi), βidt, σidt)},

where βit, σit, and εt(νi) are vectors that contain, respectively, each product-specific value of βidt

and σidt corresponding to i at t, as well as each product-specific value of εdt(νi) corresponding client

νi at t. Considering all of the clients served at t, i’s period payoff Wit(βit,σit,Dt) is therefore

Wit(βit,σit,Dt) = RitEε[Uit(εt(νi),βit,σit,Dt)]. (2)

2.2 Conditional Product Choice

We first characterize the decision rule for each agent, and the corresponding choice shares, condi-

tional on a set of current beliefs. We then characterize the expected utility of agents given their

optimal choice shares and beliefs. Specifically, let

d∗it(εt(νi),βit,σit) = argmax
d∈Dt

{Uidt(εdt(νi), βidt, σidt)}

be the optimal product chosen for client νi at t by agent i. Letting πidt(βit,σit) denote the share

of clients for whom i chooses product d during period t, the law of large numbers implies,

πidt(βit,σit) = Pr{d = d∗it(εt(νi),βit,σit)}.

Applying this, along with the distributional assumption for εt(νi), the following result summarizes

the relationship between agent-i’s conditional choice shares and current beliefs about the quality

of each product d ∈ Dt.

Result 1: Given agent i’s current beliefs summarized by (βit,σit) about product qualities

{βTd }d∈Dt, the share of product d in agent i’s overall decision outcomes in period t is

πidt(βit,σit) =
exp(βidt − ασ2

idt/2)∑
d′∈Dt exp(βid′t − ασ2

id′t/2)
. (3)

The proof for Result 1 appears in Appendix A.2. This result has straightforward implications for

the expected period payoff of agent i, which we characterize next.
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2.3 Expected Utility with Optimal Product Choice

Specifically, given that each agent i serves a continuum of clients per period, and in light of Result

1, it is possible under the assumptions above to characterize the expected payoff of i at t given i’s

current beliefs. The following result thus characterizes i’s expected period utility conditional on

her current beliefs.

Result 2: Given agent i’s current beliefs and the corresponding optimal product choices made

on behalf of clients in period t, the expected utility (2) of agent i in period t is

Wit(βit,σit,Dt) = −Rit × Γ(1 + θα)×

∑
d∈Dt

exp

[
1

θ

(
βidt −

ασ2
idt

2

)]−θα . (4)

The proof for Result 2 appears in Appendix A.3. Equation (4) indicates the agent-i period payoff is

increasing in i’s patient volume Rit, i’s perceived mean quality of each drug βit, and, importantly,

the precision of i’s beliefs σit about the quality of each drug, with the latter effect amplified by the

degree of risk aversion α. With this result in hand, we now specify the assumptions that govern the

determination and evolution of agent-i beliefs. To highlight the network structure of the model, we

focus on the case in which the evolution of beliefs is exogenously determined.

2.4 Evolution of Beliefs: Knowledge Diffusion in a Network

Suppose that in the initial period t = 0, agent i has a set of prior beliefs about the true quality

βTd of each product d. In particular, assume that for each d, agent i’s initial beliefs about βTd
are summarized by a normal distribution with mean βid0 and variance σ2

id0. Let Si0 denote the

general precision level of agent i’s prior beliefs, and assume it is common across products so that

σ2
id0 = σ2

d/Si0, where σ2
d is the fundamental variance associated with d. Agents with relatively high

levels of precision thus also have beliefs with relatively low levels of initial variance.5

In each period t, suppose agent i receives fijt product quality signals from every other agent

j ∈ I in the network (including j = i). Assume further that each signal reflects new information

realized at t as the outcome of agent j’s own period-t client outcomes, and is a vector with one

element per product d ∈ Dt. While we assume new signals contribute to the precision of posterior

beliefs, this contribution is subject to decay over time. Specifically, we assume that in period t, the

precision of agent i’s beliefs is determined by

Sit+1 = δSit +
∑
j∈I

fijt,

5Assuming differences across agents i in the precision Si0 of initial beliefs captures that, in many empirical settings,
including the one we consider below as a quantitative application, the initial observation in the data includes agents
that are heterogenous in both professional tenure (age) and decision volume (Rit). Along with other characteristics,
these may contribute to empirically relevant differences in the precision of initial beliefs by the first observation date.
Additional data details appear in section 4.
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where δ ∈ [0, 1] governs the rate of signal decay. Similar to Crawford and Shum (2005), we assume

that the value xijdnt of each signal n = 1, ..., fijt received by i from j about product d at t is an

independent draw from an unbiased normal distribution with mean βTd and variance σ2
d. Notice

that we may therefore express the mean value of signals received by i from j about d at t as follows,

xijdt =
∑fijt

n=1xijdnt/fijt = βTd + eijdt, where eijdt ∼ N(0, σ2
d/fijt). We specify that the volume of

signals fijt received by i from j at t is exogenous and proportional to both the network proximity

τij between i and j, and the measure Rjt of clients served by j in period t

fijt = τijRjt.

Thus, i receives more signals from agents j that are relatively nearby in the network and that

generate relatively more information through client decision outcomes of the current period.

Agent i updates her beliefs in each period on the basis of this information. Importantly, this

setup implies agent i’s posterior beliefs in period t+ 1 may be expressed recursively as a sequence

of normal distributions (e.g. DeGroot 1970) with mean

βidt+1 =
βidtδSit +

∑
j∈I(β

T
d + eijdt)fijt

Sit+1
, (5)

where the discount factor δ, precision Sit, flow of new signals fijt, true product-d quality βTd , and

noise eijdt are defined above. The variance of i’s posterior beliefs is similarly updated as follows

σ2
idt+1 = σ2

d/Sit+1. (6)

3 Estimation

In this section, we derive estimating equations using the model described in section 2. We show

that these equations may be combined with available data to recover the parameters governing the

extent of knowledge diffusion across individual agents in the network and the corresponding rate

of change in agents’ product choices.

3.1 Estimation approach

To estimate the model, consider a spell during which the set of products remains unchanged.

Rearranging terms in the choice share equation (3) implies the following relationship between

choice shares πidt and unobserved mean beliefs (βidt, σ
2
idt) about the quality of product d,

βidt = lnπidt +
ασ2

idt

2
+ ηit, (7)

where ηit ≡ ln
(∑

d′∈Dt exp(βid′t − ασ2
idt/2)

)
is an individual-month specific unobserved term. The

evolution of mean beliefs βidt is captured by the Bayesian updating rule (5), which combined with
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the static discrete choice equation (7) above implies

lnπidt+1 +
ασ2

idt+1

2
+ ηit+1 =

δSit
Sit+1

(
lnπidt +

ασ2
idt

2
+ ηit

)
+
∑
j∈I

τijRjt
Sit+1

(βTd + eijdt).

Differencing with respect to a reference good d′, and using the variance updating rule σ2
idt+1 =

σ2
d/Sit+1 in (6), we thus arrive at the following equation

[lnπidt+1 − lnπid′t+1]− [lnπidt − lnπid′t] =

−
α(1− δ)(σ2

d − σ2
d′)

2Sit+1
+
∑
j∈I

τijRjt
Sit+1

(βTd − βTd′ − [lnπidt − lnπid′t]) + uidt, (8)

where the precision of agent-i beliefs at t follows Sit+1 = δSit +
∑

j∈I τijRjt, and the error term is

uidt ≡
∑

j∈I τijRjt(eijdt − eijdt′)/Sit+1.

Notice that while (8) summarizes the restrictions implied by the model for the prescription

shares of agent i, product d, and month t given all underlying parameters, the set of parameters

in (8) includes N2 proximity terms τij , N initial precision levels Si0, and 2(|Dt| − 1) relative drug

quality and variance terms. Even with a relatively small population of N = 5, 000 individual

agents, and even with a sufficiently large set of product-time observations per agent, this would

amount to over 25 million parameters, the estimation of which, given the nonlinearities in (8), is

infeasible. We therefore redefine both the proximity τij and precision Si0 terms as functions of

observable variables. In particular, we propose that the proximity between agents i and j may be

summarized by a linear function of observable bilateral proximity variables including geographic

proximity, the extent of professional experience, professionals school attended, and so on. We

specify that τij = τ(bτ ,Y ij), where bτ is the vector of coefficients governing the contribution of

bilateral proximity variables Y ij to the strength of the social network connection between agents

i and j. Similarly, we specify that the initial precision of agent-i beliefs may be summarized by

a linear function of observable agent-i characteristics, including local demographics, professional

specialty, experience, and per-period choice volume among others. Thus, Si0 = S(bS ,Xi0), where

bS is the vector of coefficients governing the initial precision of agent-i beliefs as a function of

observed period-0 characteristics Xi0. Using these two parameterizations, we modify (8) above to

arrive at

[lnπidt+1 − lnπid′t+1]− [lnπidt − lnπid′t] =

−
α(1− δ)(σ2

d − σ2
d′)

2Sit+1(bτ , bS , δ)
+
∑
j∈I

τ(bτ ,Y ij)Rjt
Sit+1(bτ , bS , δ)

(βTd − βTd′ − [lnπidt − lnπid′t]) + uidt, (9)

where the following restriction on the precision of beliefs is satisfied in every period

Sit+1(bτ , bS , δ) = δt+1S(bS ,Xi0) +

t∑
u=0

δt−u
∑
j∈I

τ(bτ ,Y ij)Rju. (10)
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To estimate (9), we set the quarterly discount factor to δ = 0.9873, implying an annual discount

factor of 0.95 and assume a value for the coefficient of absolute risk aversion α using an estimate

from the recent literature.6 In addition, to establish the scale of the estimation, we set one of the

parameters of the function τij = τ(bτ ,Y ij) to take a value of 1; notice that without fixing the scale,

there are multiple sets of parameters that solve (9). With these restrictions, the set of unknown

parameters to estimate in this single-spell baseline model is thus Θ = {{βT , σ2}d∈Dt\d′ , bτ , bS}.
Estimates of Θ may be recovered by evaluating (9) above using nonlinear least squares, restricting

the beliefs precision levels according to (10).

To capture a time horizon featuring changes in the set of available products Dt, we generalize

the specification above. In particular, we divide the sample period into distinct spells k = 1, 2, ..,K

demarcated by product entry events, and allow the βTd to differ across spells. We thus estimate a

modified version of (9),

[lnπidt+1 − lnπid′t+1]− [lnπidt − lnπid′t] =

−
α(1− δ)(σ2

d − σ2
d′)

2Sit+1(bτ , bS , δ)
+
∑
j∈I

τ(bτ ,Y ij)Rjt
Sit+1(bτ , bS , δ)

(βTdk − βTdk′ − [lnπidt − lnπid′t]) + uidt, (11)

and the set of parameters is Θ = {{βTdk}d∈Dt\d′,k∈1,..,K , {σ2}d∈Dt\d′ , bτ , bS}.
With an estimate Θ̂ in hand, it is straightforward to estimate the standard error for each of its

elements. In particular, the standard error for the kth parameter of Θ is the square root of the kth

diagonal element of the estimated variance-covariance matrix

V = (Ĵ ′Ĵ)−1Ĵ ′Ω̂Ĵ(Ĵ ′Ĵ)−1,

where Ĵ is the Jacobian matrix evaluated at Θ̂, and Ω̂ = diag(û2
idt) for residuals uidt defined by

either (9) or (11) above when evaluated at Θ̂.

4 Data and Measurement

In this section, we describe the context and dataset we use for our quantitative application of

the model, and present descriptive statistics on the population of agents, product choice set, and

product choice dynamics at both aggregate and individual levels.

4.1 Prescriptions by U.S. Physicians

Estimating the model described in section 2 above requires data on all product choice decisions

for agents positioned in the social network. Decisions by each agent must be observed for the full

product choice set Dt, and on a repeated basis over a period of time. Finally, it is necessary to

observe the location and other characteristics of each individual agent that may be relevant for

determining the network structure.

6The value α = 0.99 is from Crawford and Shum (2005); see section 5.
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Our quantitative application relies on a dataset from IMS Health (IQVIA) that satisfies each

of these requirements. In particular, our analysis uses physician-level prescription choice data from

the IMS Health Xponent database for the complete class of drugs targeting cholesterol control.7

These data provide a quarterly prescription count during January 2000 through December 2010

for each U.S. prescriber associated with a minimum of ten cholesterol-drug prescriptions in 2010.

Given the low level of this threshold, our dataset includes the full decision history for nearly all

U.S. cholesterol drug prescribers during this period. Importantly, the comprehensive coverage of

our data imply that our estimation procedure is able to avoid sampling bias that may arise in

network settings with partial data (e.g. Chandrasekhar and Lewis 2016).

Each prescriber in the Xponent dataset is identified not only by a unique medical education

number, but also by name (first name, last name, middle name), and location (a five-digit U.S.

zipcode). Using these latter identifiers, we match each prescriber in our Xponent database with

a) attributes data contained in the CMS Physician Compare database, and b) drug marketing and

advertising data disclosed under the Physician Payments Sunshine Act, part of the 2010 Affordable

Care Act, which were obtained from ProPublica. Observable attributes in a) include the medical

school attended, medical school graduation year, primary medical specialty, and gender.8 In addi-

tion, beginning in 2006, our Xponent prescription data are reported separately according to four

patient insurance-coverage categories: Medicare, Medicaid, privately-insured, and cash payer. We

use these insurance data to construct a time-invariant public insurance share for each doctor i.9

Finally, we include location-specific demographic data (county-level household income and popula-

tion density) from the U.S. Census 2000, matched to physicians based on a link between five-digit

zipcodes and U.S. counties. Using the advertising data for pharmaceutical products b), we simi-

larly construct time-invariant, doctor-specific measures of drug marketing exposure at two levels:

including all drugs, and restricting attention to the class of cholesterol drugs as in our quantification

of the model. This measurement approach is motivated by the delayed coverage of the advertising

data, which span the dates August 2013 through December 2015.10

Importantly, because the attributes data described above help to ensure that our character-

ization of physicians, including the physician social network, is sufficiently rich, our quantitative

analysis restricts attention to prescribers appearing in the Xponent data, the Physician Compare

dataset, and the Propublica advertising dataset. Note that the CMS Physician Compare database

includes essentially the full population of physicians; prescribers excluded from our analysis are

primarily nurse practitioners, registered nurses, clinical pharmacists, and physician assistants who

7IQVIA, formerly IMS Health, also maintains data on additional drug classes. These additional data are not
available for this study, however, as the customized data extracts involved are unusually large.

8The data also include a group practice identifier and an identifier for the hospital at which the doctor has
admitting privileges, but in practice these attributes overlap substantially with the five-digit zipcode and thus are
currently not included in our analysis.

9While it would have been ideal to consider the full detail of the patient insurance data, we take the approach of
building a fixed coverage index as these data are available only during the final five years of the sample period.

10Information relevant to measuring dynamics in the physician network are also observed, including a) changes in
an individual doctor’s location (zipcode), and b) entry of new doctors. The latter is likely to be a relevant source of
network variation, as approximately 40 percent of matched physicians enter the dataset after the completion of the
first quarter observed.
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may be viewed as inherently less likely to interact as agents within the physician social network.11

Because it is unlikely that different formulations of the same molecule have relevant differences

in perceived quality, we aggregate drugs to the molecule level; for example, Mevacor and its generic

equivalent, lovastatin, are treated as the same product in our empirical analysis. To account for

(unobserved) differences in pricing that may coincide with the introduction of a new or generic

version of a drug, however, we allow true molecule qualities (the common patient payoff βTd ) to

differ in our estimation across spells, demarcated respectively by the successive introduction dates

of three generic versions and three new drugs containing novel molecules. In summary, for our

application, an agent is thus a doctor, a client is a patient, a period is a quarter, and a product is

a molecule, the chemical compound that defines an associated prescription drug.

As an important goal in our analysis is to determine the aggregate implications of our individual-

level learning model (e.g. the evolution of aggregate choice shares), we restrict attention to a)

physicians with total prescription volumes at the 25th percentile or above, and b) molecules with

at least three percent of the total prescription volume over the sample period. With these two

restrictions in place, we retain over 90 percent of the prescriptions, while reducing the presence

of zeros in the prescription share data by a factor of approximately three.12 Our final estimation

sample has 53,040 doctors, 44 quarters, and up to 7 molecules.

4.2 The Choice Set and Drug Entry

While the U.S. market for cholesterol drugs is already of immediate interest given its size, an im-

portant feature of this drug class for our analysis is the number of significant events over the sample

period affecting this class of drugs.13 Specifically, in the initial quarter in the data, four relevant

products were available: Lipitor, Mevacor, Pravachol, and Zocor.14 Patents expired for three of

these products during the sample period, resulting in the entry of generic lovastatin (December

2001), pravastatin (April 2006), and simvastatin (June 2006). In addition, three drugs based on

new molecules were approved for sale in the United States during the sample period: Crestor (Au-

gust 2003), Vytorin (July 2004), and Zetia (November 2004). The complete list of molecules and

respective introduction dates appears in Table 1.

These six entry events are important for our analysis because they are consistent with the idea

that physicians’ effective knowledge depreciates over time (captured by δ in our model). This, in

turn, provides a motive for doctors’ ongoing acquisition of knowledge. For example, suppose that

some or even all physicians begin their medical career fully informed regarding the relative patient

11Specifically, the Physician Compare database includes data for each physician treating patients that participate
in Medicare or Medicaid. Recent work shows that between 92 and 96 percent of U.S. physicians accept Medicare
patients during the sample period (Bishop, Federman, and Kayhani 2011).

12Gandhi, Lu, and Shi (2017) describes the bias that may arise in the presence of zeros in choice-share data.
13Chronic hypercholesterolemia and dyslipidemia, conditions in which abnormal levels of cholesterol or lipids are

present in the bloodstream, are common in the United States: according to the Centers for Disease Control and
Prevention, approximately 71 million U.S. adults suffer these chronic conditions. As a result, cholesterol drug sales
amounted to over $18 billion U.S. dollars in 2011 (Ledford 2013). In addition, two of the drugs considered in our
estimation, Lipitor and Crestor, are among the top ten pharmaceutical drugs according to 2010 U.S. sales. For further
discussion of this drug class, see Arrow, Bilir, and Sorensen (2019).

14Lescol was also available during this time, but due to its negligible share in total prescriptions and dispropor-
tionately high share of zero-shares in the data, it is omitted from our analysis as noted above.

11



payoffs of the different currently-available cholesterol drugs; if the product space is static, it is

unclear why such doctors rationally pay attention to signals about drug quality that other doctors

may send. Conversely, if knowledge depreciates due to changes in the set of available products and

their pricing, agents will rationally pay attention to signals about product quality. This feature of

our empirical setting is thus important for the assumptions of our model to be satisfied.

The seven molecules considered in our analysis are therapeutic substitutes: each aims at the

clinical endpoint of cholesterol or trigliceride reduction, and patients are typically prescribed only

one molecule rather than multiple products.15 Importantly, however, these molecules are only im-

perfect substitutes. First, while most of the cholesterol therapies we study are pure statins, which

act to reduce cholesterol synthesis in the liver by inhibiting a specific coenzyme [these include Lipi-

tor (atorvastatin), Mevacor (lovastatin), Pravachol (pravastatin), Zocor (simvastatin), and Crestor

(rosuvastatin)], other products rely on different mechanisms of action. In particular, Zetia (ezetim-

ibe), and thus also Vytorin (ezetimibe and simvastatin), are distinct in that cholesterol reduction

is achieved by reducing intestinal absorption of cholesterol. Beyond mechanisms, the molecules

we consider differ in therapeutic intensity. High doses of Lipitor and Crestor are typically more

effective at lowering low-density lipoprotein (LDL) cholesterol than alternatives (Law et al 2003),

for example. Therapeutic intensity is relevant not only because it may imply different molecules are

appropriate for different patients depending on disease severity, but also because evidence suggests

it is correlated with the intensity of adverse side effects. For example, evidence suggests high doses

of intense therapies such as Lipitor and Crestor may raise the incidence of adverse reactions, while

also indicating that therapies such as Vytorin may for certain patients be more appropriate care

for cases of severe cholesterol abnormality (Kastelein et al 2008).

As the above discussion suggests, abundant clinical evidence suggests that the benefits and risks

associated with statins are heterogeneous across patients.16 Our model captures this through the

match quality terms εdt(νi) in the patient-level physician payoff function. Because our data do not

include patient-level information, we abstract from the possibility that physicians learn about the

value of εdt(νi).
17 The evidence presented below nevertheless indicates learning about molecules’

average qualities is likely to be highly relevant given the substantial changes in aggregate market

shares observed during the sample period.

4.3 Descriptive Statistics

Evolution in Aggregate Choice Shares

Figure 1 plots the evolution in aggregate product choice volumes during the sample period.

Consistent with learning about βTd , substantial shifts in aggregate choice shares are evident. For

example, the aggregate choice share of Lipitor is initially above 50 percent, but falls to approxi-

mately 20 percent by the end of the sample period. This opposite occurs for simvastatin which

accounts for approximately 20 percent of the market initially, ultimately rising to around 45 per-

15See Arrow, Bilir, and Sorensen (2019) for a related discussion.
16See, for example, Brooks et al (2014).
17Crawford and Shum (2005) estimate a model of learning specifically about the patient-drug match for a distinct

drug class.
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cent. Figure 1 also reveals that the pattern of change in aggregate choice shares is gradual, in line

with the learning mechanism of the model outlined in section 2.

Across U.S. locations, the evolution of choice shares follows distinct patterns relative to the

aggregate shifts in Figure 1. For example, Figure 2 indicates New York, NY (three-digit zipcode

100), despite having similar initial choice shares, ultimately has larger shares for both Lipitor and

Crestor, and smaller shares for each of the three generics. Figure 3 considers instead the relatively

remote Hemet, CA (three-digit zipcode 925). Expansion in Hemet’s generic choice share is large

relative to Figures 1 and 2, while the Crestor share expands relatively less. These local differences

in choice share evolution are consistent with persistent information differences across U.S. locations,

but importantly, could also be explained by heterogeneity in patient payoffs βTd across locations.18

Table 2 thus considers the decision over whether to prescribe the branded versus generic version

of a particular molecule. Specifically, for each of the three molecules that experienced generic entry

during the sample period, Table 2 summarizes the distribution of generic prescription shares for that

molecule at different time horizons. The advantage of focusing on these shares is that it is possible to

compare prescribing of a branded product with its molecularly-equivalent generic, two distinct drugs

that have no relevant clinical differences. And, by examining these shares at different time horizons,

it is possible to determine whether stable heterogeneity in βTd across locations is likely to be the

only explanation for differences in choice shares across locations. Consider lovastatin, for example,

in column 1: after six months, the average generic prescription share for lovastatin—that is, the

share of lovastatin plus Mevacor prescriptions that are accounted for by generic lovastatin—across

sample physicians was 83.2 percent, with a doctor at the fifth percentile prescribing only Mevacor,

the relatively expensive branded version. After 12 months, the average rises to 90 percent, but the

fifth percentile physician still prescribes only Mevacor. By contrast, at the end of the sample period

in December 2010, the average generic share is essentially 100 percent, and even the fifth percentile

doctor prescribes exclusively generic lovastatin. This pattern of delayed substitution between two

molecularly equivalent products is evident for each of the three generics in our dataset, and strongly

suggests factors other than time-invariant patient heterogeneity contribute to prescribing differences

across locations, and also indivdual physicians. Importantly, this pattern of delayed substitution

is consistent with the influence of information frictions.19

5 Main Results

We estimate the model described in (10) and (11), specifying bilateral network proximity τij as a

function of individual characteristics observed in the data described above (section 4). In particular,

the network proximity function is parameterized as

τij = τ(bτ ,Y ij) = bτ,g Geographic Proximityij + bτ,s Same Medical Schoolij

+ bτ,c Cohort Proximityij + bτ,sp Same Medical Specialtyij ,

18In section 6 below, we extend our estimation approach to account for βTd heterogeneity across locations.
19See also Arrow, Bilir, and Sorensen (2019).
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where Geographic Proximityij ≡ (1+distanceij)
−1 is the inverse of one plus the geographic distance

separating doctors i and j. Cohort Proximityij is the analogous measure replacing distanceij with

the absolute difference between the respective medical school graduation years of doctors i and j.

Same Medical Schoolij and Same Medical Specialtyij are dummies indicating whether doctors i and

j either attended the same medical school, or practice within the same primary medical specialty.

Similarly, the initial precision of doctor-i beliefs Si0 is parameterized as

Si0 = S(bS ,Xi0) = bS,0 + bS,income Mean Household Incomei0 + bS,density Population Densityi0

+ bS,rDecision Volumei0 + bS,e Experiencei0 + bS,f Femalei

+ bS,c Cardiologyi + bS,im InternalMedicinei + bS,fp FamilyPracticei.

The first two variables, Mean Household Incomei0 and Population Densityi0, are demographic data

from the U.S. Census 2000, and correspond to the county in which doctor i is located. Decision

Volumei0 (Ri0) is the number of doctor-i prescriptions for the period t = 0, Experiencei0 is the

difference in years between t = 0 and the medical school graduation date of doctor i. Femalei

indicates whether doctor i is female, and Cardiologyi, InternalMedicinei, and FamilyPracticei are

primary medical specialty dummies indicating, respectively, whether i is a cardiologist, an internist,

or in family practice. The latter three specialties account for approximately 90 percent of physicians

in the data. As noted above, we set the annual discount factor to 0.95, implying a quarterly discount

factor δ = 0.9873. In addition, we use a value for the risk aversion parameter from the literature.

Specifically, Crawford and Shum (2005) estimates that α = 0.990 for a related empirical setting,

and we use this value for our estimation.20

5.1 Baseline Estimates by Professional Specialty

We begin by considering separately each of the three major medical specialties in the data: car-

diology, internal medicine, and family practice. In particular, we consider doctors i within each

specialty to be positioned in a closed network consisting exclusively of other doctors within the

same medical specialty as i. Corresponding estimates of (11) appear in Tables 3 through 5.

Estimates for cardiologists appear in Table 3, columns 1 and 3, with standard errors in columns 2

and 4 the right of each respective point estimate. Consider the estimates for bilateral proximity τij =

τ(bτ ,Y ij) in column 1, which evaluates the complete network specification. These indicate that

both a shared medical school and proximity in graduation dates are highly significant determinants

of network connectedness, relative to geography. In particular, the coefficient on the indicator for

shared medical school implies that, for geography to have the same contribution to τij as a common

medical school, cardiologists i and j would need to be located just four miles apart. The coefficient

on graduation year proximity implies that if doctors i and j graduate from medical school within

three years of each other, the contribution to τij would be equivalent to the impact of the two

doctors being separated by a distance of 61 miles. Nevertheless, variation in the underlying data

20Notice that α and δ are not separately identified from the signal variance terms σ2
d in (10). Thus, to the extent

that setting α = 0.990 or δ = 0.9873 is incorrect, it would affect the magnitude of these variance estimates.
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also determines the contribution of each component of bilateral connectedness to overall network

proximity τij . Interestingly, the data reveal that the relative importance of components is not

uniform across the distribution of connectedness across doctors i. To understand the respective

contributions of location, school, and graduation cohort to network proximity, Figure 4 plots the

distribution of τ i ≡ 1
N

∑
j τij across cardiologists i (solid line), which can also be interpreted

as an index of network centrality, as well as the mean value of each subcomponent. It is clear

that although the shape of the curve is determined by variation in graduation cohort among less-

connected doctors, this is not true among relatively connected doctors, for whom variation in

location is a more important determinant of the τ i distribution.

The estimates of doctors’ initial beliefs precision, Si0 = S(bS ,Xi0) indicate that household

income, population density, decision volume, and years of experience are all statistically important

determinants of an agent’s beliefs precision, where recall that in the model, higher values of Si0

imply a slower rate of beliefs updating, all else equal. Of these four components, only experience

enters negatively, suggesting those with more recent medical degrees have the most precise initial

beliefs, and in turn, the slowest rates of beliefs updating conditional on network position. This result

is consistent with the idea that knowledge depreciates over time, so that agents with less recent

medical training—which is relevant because both the set of drugs and available clinical evidence

about relative qualities change over time—have a relatively small effective stock of accumulated

signals, all else equal, when compared with recent graduates. Figure 5 shows the distribution of

implied Si0 values across cardiologists i (solid line) as well as each of its separate components.

Similar to the case of network connectedness τ i, the figure suggests the factors determining the

shape of the Si0 differ across the distribution; in particular, Si0 is strongly correlated with experience

among doctors with low Si0 values, but depends primarily on variation population density and

decision volume for those with relatively high Si0 values. Table 3 also shows estimates of the true,

unconditional drug qualities relative to the reference drug Lipitor, βTdk − βTd;k, for the first and last

spells. These estimates indicate not only a clear ranking of products based on quality, but also

relevant changes in this ranking between the spells. In particular, the estimated relative quality of

simvastatin is higher than that of pravastatin in the first spell, which is, in turn, higher than that of

lovastatin. While this relative ranking is maintained in spell 6, each of the relative quality estimates

increases to a highly significant extent, in part reflecting the price changes that occurred as patents

for each of these three molecules expired. Indeed, by the final spell, the positive estimate for

simvastatin indicates its unconditional quality surpasses that of Lipitor. The final-spell estimates

for new drugs indicate that the qualities of Zetia and Vytorin are both low relative to Lipitor,

while the quality of Crestor is significantly higher than Lipitor. Estimated relative variance terms

appear just below the quality parameters and indicate, unsurprisingly, that the signal distribution

is relatively imprecise (high variance) for newer varieties, with the exception of Crestor which is in

this respect indistinguishable from Lipitor.

Estimates for physicians specialized in internal medicine appear in Table 4, and estimates

for family practice doctors are in Table 5. While proximity in graduation dates and a shared

medical school are statistically important determinants of τij in all three professional specialties, it

is clear that the relative importance of a shared school is highest among cardiologists. Conversely,
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the relative importance of distance is substantially higher for family practice physicians than for

those in either of the other two specialties. These differences are also evident when comparing

the components of network connectedness τ i among doctors in internal medicine (Figure 6) and

family practice (Figure 8) with the analogous figure for cardiologists (Figure 4) discussed above.

Specifically, Figure 8 indicates that distance variation determines the shape of τ i across essentially

the complete population of family practice physicians, while internists resemble cardiologists in that

variation in cohort proximity is predominant in the lower range of the distribution. Regarding the

determinants of initial beliefs precision, comparing Figures 5, 7, and 9 reveal that the shapes of the

respective Si0 curves are similarly determined by underlying components across medical specialties.

The estimates of unconditional drug qualities reveal an important distinction between cardiol-

ogists and physicians specialized in family practice. In particular, relative to Lipitor, cardiologists

view Crestor favorably while other doctors do not; at the same time, family practice physicians are

substantially more favorable about all generic molecules (lovastatin, pravastatin, and simvastatin)

when compared with doctors in other specialties. Intuitively, this likely reflects sorting across spe-

cialties based on patients’ disease severity. As noted above, Lipitor and Crestor are high-intensity

products that are, accordingly, more appropriate care for those with severe cholesterol abnormal-

ities. If patients with such conditions are disproportionately served by cardiologists, it is to be

expected that cardiologists will choose Crestor and Lipitor high a higher propensity than the more

general physicians specialized in internal medicine and family practice. Alternatively, another pos-

sibility is that patients seeing the latter physician types are more price-sensitive than those seeing

cardiologists, and hence prefer to avoid relatively high-cost options like Crestor and Lipitor. This

result is initially harder to support, as Zetia and Vytorin are also relatively expensive, active-patent

molecules, yet both are viewed (relative to Lipitor) more favorably by family practice doctors than

by cardiologists. To better distinguish between these mechanisms, we extend the model in section

6 below to include a time-varying measure of drug prices.

5.2 Network Specification with All Specialties

Table 6 provides estimates of the model using a sample of all doctor specialties and locations. In

particular, given the size of the complete bilateral network (53, 0402 = 2.8 billion), we estimate

this comprehensive model with a ten percent random sample of the 53,040 physicians.21 Column

1 presents estimates of (11), while for comparison, column 3 imposes no time discounting, δ = 1.

This latter parameter restriction implies that the first term in (11) is equal to zero. Consider

first the estimates in column 1. These indicate that each network proximity covariate—proximity

in graduation dates, an indicator for shared medical school, and an indicator for common medical

specialty—has a positive and highly significant contribution to the network connectedness of doctors

in the data. Among these, a shared medical school is a particularly strong force for network

connectedness. For two doctors i and j, attending the same medical school is associated with an

increase in τij that is, on average, equivalent to the contribution of geographic proximity if i and

j were located only 9 miles apart. The distance equivalent for sharing a medical specialty is an

21Note that the region- and specialty-specific estimates are based on complete populations rather than samples.
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order of magnitude larger (92 miles), while that for sharing the same medical school graduation

year is four times larger (40 miles). The latter effect declines rapidly, moreover, and by ten years of

separation in graduation years, the impact of proximity falls to a distance equivalent of 409 miles.

To understand the full contribution of each determinant of network connectedness, we combine

the estimates with the data to compute each element of the implied τij matrix. Taking the mean

value for each doctor i, across all other doctors j, we build an index of mean network connectedness

for each doctor that appears as the solid line in Figure 4. This line reveals a distribution centered

around a median value of 0.0116, with a standard deviation of 0.004 and a skewness of 2.81 resulting

from a long upper tail of highly connected physicians. Figure 5 decomposes this line into its four

subcomponents, which indicate that, given the patterns in the data, geography is highly influential

in determining the shape of the distribution. Highly connected doctors in the upper tail have

unusually high geographic proximity to other doctors, but a similar range to doctors around the

median for school, cohort, and specialty. On the other hand, the very least-connected physicians

at the low end of the distribution have unusually low values among all four components of the

τij function. That variation in geography is a particularly important determinant of network

connectedness is reinforced by the distance-only model considered in Table 3.22 The distribution

of the mean network connectedness index for this simpler model also appears in Figure 4 (dotted

line) and follows almost exactly the shape of the distribution for the full network specification.

The estimates of the initial beliefs precision function Si0 in column 1 further indicate doctors

in locations with high levels of household income and population density have significantly more

precise prior beliefs about product quality. Doctors with high quarterly decision volumes also have

significantly more precise initial beliefs. While experience and gender are not important determi-

nants of initial beliefs’ precision in the overall physician sample, medical specialty does impact Si0.

In particular, internists have the most precise initial beliefs, followed by family practitioners, and

then by cardiologists, who have less-precise initial beliefs. These impacts of medical specialty are

relatively large compared with the median implied value of Si0, ranging from 15 to 25 percent of the

median, and also raise the possibility that other relevant differences exist across medical specialties.

Below, we thus estimate specialty-specific models that allow all parameters to differ depending on

whether a physician is a cardiologist, internist, or family practitioner.

The specification further provides estimates for the parameters (mean and variance) of the

signal distribution for each product. Considering first the true drug-d quality values βTd1 for the

initial spell, the estimates indicate that the signal distributions for Lovastatin, Pravastatin, and

Simvastatin all have lower mean values than the distribution for Lipitor, in line with the initial

dominance of Lipitor in the aggregate choice shares plotted in Figure 1. Also consistent with

the market shares in Figure 1, the signal distribution for Simvastatin is higher in the first spell

than that for Pravastatin, which is, in turn, higher than that for Lovastatin. Considering now

the final spell, the signal distribution for Simvastatin rises to a level a significantly higher mean

than that for Lipitor, and values for both Lovastatin and Pravastatin, while still negative, are also

significantly higher than in the first spell. The substantial increases in βTdk for these three products

22The specifications in Table 3 consider network proximity τij simply as a function of distance, restricting bτ,s, bτ,c,
and bτ,sp to take values of zero.
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likely reflects the patent expiration and resulting price declines experienced by each molecule over

the sample period, and moreover indicate the importance of allowing time variation in the signal

distribution. Interestingly, Zetia and Vytorin have the lowest βTdk values in spell 6 and also the

highest relative variance estimates, suggesting the signal distribution for these newer products is

highly dispersed around a relatively low mean. On the other hand, the mean and variance values

for Crestor are not significant, suggesting that the signal distribution parameters for Crestor are

statistically indistinguishable from those of Lipitor.

Comparing the estimates with time discounting δ < 1 in column 1 with those that restrict

δ = 1 in column 3 reveals that this restriction is primarily reflected by the βTdk estimates. The

spell-1 signal value is higher for Lovastatin, and lower for both Pravastatin and Simvastatin. Inter-

estingly, the estimated variance in the unrestricted model is positive for Lovastatin and negative

for Pravastatin and Simvastatin, suggesting the restricted model inability to control for differences

in signal dispersion may translate into biased quality estimates. Spell-6 mean signal values are

higher for all drugs in the restricted model. These qualitative differences are also evident in Table

7, which replicates Table 6 with the added restriction that the network specification depends only

on geographic proximity.

6 Robustness and Alternative Specifications

6.1 Advertising and Price Effects

The baseline specification estimated in section 5 above considers the product qualities βTdk about

which agents learn as capturing not only the true, unconditional efficacy of product d, but also any

other common determinants of product choice including product prices. While existing evidence

supports the idea that physicians learn and are thus uncertain about drug prices, the model above

considers quality as fixed within each spell k and is thus unable to address the possibility of within-

spell price changes.23 Indeed, if agents are sensitive to product price changes within a spell, some

of the variation in relative choice shares may be explained by prices rather than by learning about

βTdk. This may be relevant in the case of patent expirations, where initial generic entry is restricted,

implying a larger long-run than short-run price impact for affected molecules.

Relatedly, the decision by physician i to choose drug d rather than an alternative for a given

patient may depend not only on the unconditional quality of d, but also on i’s incentives to choose

d, including targeted advertising efforts by the firm promoting product d. This consideration is

particularly important if drug advertising targets doctors differentially depending on the charac-

teristics that determine learning rates in the model, including network connectedness τij and initial

beliefs precision Si0. If this were to be the case, this underlying correlation could impact the

interpretation of our estimates in a specification that omits advertising.

To address this concern, as well as the potential for within-spell price variation, we generalize

the static choice equation to include two additional covariates, a) total drug advertising spending

received by doctor i, and b) average U.S. pharmacy prices by molecule and date. Because our

23See, for example, Arrow, Bilir, and Sorensen (2019).
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measure of advertising is time-invariant, and thus already incorporated in the static choice equation

through ηit, we allow advertising exposure to differentially impact molecules that are still protected

by active patents by interacting this measure with Ddt, which indicates the patent status of d at t

and takes a value of 1 if the patent has expired and generic competition exists for d at t.24,25

With these changes, the static choice equation for agent i reflects price and advertising effects

as follows

Uidt(εdt(νi), βd) = − exp(−α(βd + εdt(νi) + ξPdt + γAdsi ×Ddt))

where Pdt is the product-d price at t, Adsi is pharmaceutical advertising spending received by agent

i, and Ddt indicates generic competition for molecule d at t. Notice that normal price sensitivity

would suggest ξ < 0, while the differential influence of marketing on choice for on-patent molecules

suggests γ < 0.

With the preferences above, the expected, agent-i utility for choosing product d for client νi at

t is, given her current beliefs,

Uidt(εdt(νi),βidt, σidt) ≡ Eβd [Uidt(εdt(νi), βd)|βidt, σidt]

= − exp

(
−αβidt +

α2σ2
idt

2
− αξPdt − αγAdsi ×Ddt − αεdt(νi)

)
. (12)

Agent i thus selects the product d ∈ Dt that maximizes i’s expected utility from the product choice

for νi. As before, defining this optimized expected utility,

Uit(εt(νi),βit,σit,Dt) ≡ max
d∈Dt
{Uidt(εdt(νi), βidt, σidt)}

agent i’s period payoff Wit(βit,σit,Dt) is

Wit(βit,σit,Dt) = RitEε[Uit(εt(νi),βit,σit,Dt)]. (13)

By the law of large numbers, it remains true that

πidt(βit,σit) = Pr{d = d∗it(εt(νi),βit,σit)}.

Applying this, along with the distributional assumption for εt(νi), physician i’s conditional choice

shares and current beliefs about the quality of each product d ∈ Dt are related according to the

24The advertising data are from ProPublica (see section 4 for details) and the price information is from the Mar-
ketscan Redbook database. The time coverage of the advertising data (2013-2015) unfortunately rule out including
a more detailed marketing measure varying by doctor, drug, and quarter.

25Beyond both considerations, a doctor may take patient-level pricing into account when selecting a product.
Although we do not have direct data on patient-specific pricing, beginning in 2006 our data indicate whether the
purchasing patient paid for the product using a private insurance plan, Medicaid, Medicare, or cash. Using this
information, we have constructed a time-invariant measure of public and private insurance shares that we interact
with product prices as an additional covariate in the physician choice specification, but our estimates indicate that
this is not a statistically important determinant of product choice.
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expression

πidt(βit,σit) =
exp(βidt − ασ2

idt/2 + ξPdt + γAdsi ×Ddt)∑
d′∈Dt exp(βid′t − ασ2

id′t/2 + ξPdt + γAdsi ×Ddt)
. (14)

To estimate the model with advertising and price effects, we note that (3) implies

βidt = lnπidt +
ασ2

idt

2
− ξPdt − γAdsi ×Ddt + ηit, (15)

where ηit ≡ ln
(∑

d′∈Dt exp(βid′t − ασ2
idt/2 + ξPdt + γAdsi ×Ddt)

)
is an individual-month specific

unobserved term. The evolution of mean beliefs βidt is captured by the Bayesian updating rule (5),

which combined with the static discrete choice equation (15) above implies

lnπidt+1 +
ασ2

idt+1

2
− ξPdt+t − γAdsi ×Ddt+1 + ηit+1 =

δSit
Sit+1

(
lnπidt +

ασ2
idt

2
− ξPdt − γAdsi ×Ddt + ηit

)
+
∑
j∈I

τijRjt
Sit+1

(βTd + eijdt).

Differencing with respect to a reference good d′, for which Dd′t = 0 holds for all t, and using the

variance updating rule σ2
idt+1 = σ2

d/Sit+1 in (6), we thus arrive at the revised equation

[lnπidt+1 − lnπid′t+1]− [lnπidt − lnπid′t] = γAdsi

(
Ddt+1 −

δSit
Sit+1

Ddt

)
+ ξ

(
Pdt+1 − Pd′t+1 −

δSit
Sit+1

[Pdt − Pd′t]
)
−
α(1− δ)(σ2

d − σ2
d′)

2Sit+1

+
∑
j∈I

τijRjt
Sit+1

(βTd − βTd′ − [lnπidt − lnπid′t]) + uidt, (16)

where the precision of agent-i beliefs at t follows Sit+1 = δSit +
∑

j∈I τijRjt, and the error term is

uidt ≡
∑

j∈I τijRjt(eijdt − eijdt′)/Sit+1. As in (11), specification (16) above can also be extended

to allow for differences in product qualities βTd across spells k.

Estimates of (16) appear in Tables 8 through 11. Tables 8 and 9, which allow spell-specific

βTd terms as in the baseline model, indicate that for each medical specialty (cardiology, internal

medicine, and family practice) as well as for the sample that includes all doctor specialties, agents

are highly responsive to advertising exposure. As expected, doctors with higher levels of direct

pharmaceutical marketing payments prescribe significantly lower shares of off-patent molecules

facing generic competition; these doctors thus prescribe significantly higher shares of relatively

expensive therapies protected by active patents. Interestingly, however, price sensitivity differs

across doctor groups: the estimates indicate statistically significant price sensitivity only among

family practice physicians.

On the other hand, estimated price sensitivity in a specification that allows spell variation in

product qualities may be low precisely because these quality terms already capture most of the
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relevant price variation in the data. A key motivation for allowing quality variation across spells

was precisely to capture the possibility of unobserved price changes resulting from product entry

and patent expiration events. Allowing for these changes, the price parameter ξ in Tables 8 and 9

is identified using only within-spell variation in prices, which is evidently relatively limited. On the

other hand, (16) may be estimated directly, without allowing spell variation in product qualities.

Accordingly, Tables 10 and 11 provide estimates that hold fixed βTd across the sample period. These

estimates indicate a highly significant degree of price sensitivity across all three specialties.

Importantly, across Tables 8 through 11, the estimates governing network proximity τij and

initial beliefs precision Si0 are essentially unchanged. Differences in estimated βTd and βTdk parame-

ters may impact the implications, however, and these alternative models are thus considered when

investigating the quantitative implications of the model in section 7 below.

6.2 Estimates by U.S. Region

An alternative assumption to the one implicit in our baseline estimation, in which physicians

participate in a nationwide social network, is that interactions are substantially more local, with

only negligible interactions occurring between agents on opposite coasts, for example. Given the

available data, we could estimate the model with nearly any geographic restriction (e.g. by U.S.

state, county, or MSA). In this section, we consider a broad division of the United States into four

distinct geographic regions and provide separate estimates for each region. These are defined by

one-digit zipcodes: New England (0 and 1), the East (2, 3, and 4), Central States (5, 6, and 7),

and the West (8 and 9). While the resulting estimates assume no social interactions across these

regions, they are otherwise more general as all parameters may differ across regions, including those

governing the strength of network connections, the initial precision of beliefs, and product qualities.

Region-specific estimates appear in Table 12 (New England, East) and Table 13 (Central, West).

Broadly, the estimates are similar to the baseline results in that they revealing the statistical im-

portance of each network covariate relative to geography (shared medical school, shared specialty,

and cohort proximity). It is notable that in the West, the estimated network coefficients are all

highest, consistent with a higher relative importance of proximity in school and specialty, compared

with geographic proximity. Indeed, the coefficient on graduation year proximity is statistically in-

distinguishable from that on geographic proximity. The rank-ordering of the network determinants

is nevertheless similar across regions: the coefficient on graduation year proximity exceeds the co-

efficient on shared medical school school, which in turn exceeds that on shared medical specialty.

In contrast to the baseline estimates, it is also notable that the initial precision of doctors’ initial

beliefs Si0 is only responsive to local incomes in New England.

Estimated product qualities also differ substantially across the four regions. In New England

and the Eastern states, the relative quality estimates for Crestor are high and for Zetia and Vy-

torin are low, when compared with Central and Western states. Thus, conditional on prescribing

an expensive, active-patent drug, high intensity products Lipitor and Crestor are systematically

preferred in the East and Northeast. As described in the paragraph above, these effects seem more

likely to be explained by differences in disease severity across regions than purely by price; this is
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because the same regions that place a high preference on Lipitor and Crestor view Vytorin and

Zetia as relatively lower-quality options. Conversely, there is broad agreement regarding the rela-

tive quality of simvastatin, which in all regions has the highest estimated quality parameter. By

contrast, the quality of generic molecules pravastatin and simvastatin are highest in Eastern states,

and both exceed that of Lipitor, consistent with the idea that patients may have higher levels of

price sensitivity in these states.

7 Quantitative Implications

In this section, we investigate the quantitative implications of the model in section 2 and corre-

sponding estimates described in section 5. First, we evaluate the extent to which the data are

consistent with two main predictions of the model regarding the convergence of agents’ beliefs over

time. We then simulate the parameterized model and consider the quantitative implications of pol-

icy interventions that impact either the network structure or the initial distribution of information

across agents. Throughout the section, we focus on the estimates in Table 6, column 1 that include

physicians in all specialties and regions.

7.1 Convergence in Agents’ Idiosyncratic Beliefs

A straightforward implication of the model is that agents’ beliefs regarding the true, unconditional

product qualities converge over time to their true values. That is, within each spell k, the mean

βidt of individual i’s idiosyncratic beliefs about the true, unconditional quality of product d, βTdk,

converges over time to this true value, βTdk. This occurs in the model because agents are Bayesian

and the distribution of signals is unbiased. Thus, as time progresses, agents’ beliefs increasingly

reflect the mean value of signals received, which itself converges to the true value, and to a decreasing

extent reflect prior beliefs about product quality.

To assess whether the data are consistent with this prediction of the model, we proceed in three

steps. First, we map the estimated βTdk values to the prescription shares that they would imply for

an agent holding such beliefs. For this, we apply the static choice equation (7) as follows

lnπTidtk − lnπTid′tk︸ ︷︷ ︸
Convergence Target

= βTdk − βTd′k − α(σ2
d − σ2

d′)/(2Sit). (17)

Notice that the expression (17) above implies that two agents with identical (and correct) beliefs

about product qualities would nevertheless make different prescription choices in period t due to

differences in the precision of their beliefs, Sit, in period t. Second, we calculate the Euclidean

distance between a) the prescription share vector for a agent i that would be implied by ‘correct’

beliefs, with elements lnπTidtk − lnπTid′tk from (17), and b) agent i’s actual prescription vector

lnπidt − lnπid′t which is observed in the data. Third, we examine the evolution of this Euclidean

‘distance to the truth’ measure over time by considering how its mean value across agents changes

within a spell. An important feature of this setup is that the estimation procedure itself does not

place restrictions on the true, relative drug qualities βTdk−βTd′k that would imply convergence; these

22



quality parameters serve a role similar to that of simple product fixed effects reflecting average,

relative prescription shares during an entire spell.

Figure 12 plots the mean value of this Euclidean distance to the truth, for the final spell

considered in our analysis. This is a useful starting point because for 18 consecutive quarters, there

are no changes in the set of products available, nor their patent status. Consistent with the within-

spell convergence prediction of the model, the line in Figure 12 is monotonically decreasing, with a

highly significant downward slope of −0.291 (std. error 0.012). Because the prediction should hold

in all spells, not only the final spell, Figure 13 replicates the graph for the complete time horizon

of our analysis. This latter figure reveals convergence within each spell, with an average estimated

slope controlling for spell fixed effects of −0.331 (std. error 0.024).

Notice that Figure 13 also shows large increases in the Euclidean distance measure between

the first period of spells three and five relative to the final period of the preceding spells (spells

two and four). This likely reflects, in part, an mechanical increase in the distance measure, which

itself increases in the length of the vector considered: for example, as a new product is introduced

and the set of choices increases from three to four, the Euclidean distance measure increases even

if the mean prescription distance for each vector were held constant. To adjust for this, Figures

14 and 15 replicate Figures 12 and 13 but restrict attention to the set of four initially-available

products, Lovastatin, Simvastatin, Pravastatin, and the reference drug Lipitor. These restricted

figures confirm the pattern of within-spell convergence, with respective downward, within-spell

slopes of −0.0601 (std. error 0.0042) and −0.0851 (std. error 0.016), both highly significant.

Importantly, Figure 15 is further consistent with the idea that there is aggregate convergence in

agents’ beliefs not only within but also across spells.

7.2 Agents’ Convergence Rates, Network Position, and Initial Beliefs Precision

Beyond aggregate convergence, the model predicts heterogeneity in agents’ respective rates of con-

vergence to the truth in beliefs about product qualities. Specifically, the Bayesian updating expres-

sion (5) implies that when agent i forms posterior beliefs at t, the weight placed on new signals

received is strictly increasing in the ratio
∑

j τijRjt/Sit+1. It is thus simple to observe that, all

else equal, agents with higher degrees of network connectedness, as well as agents with less-precise

initial beliefs, converge to the truth at a greater rate. To evaluate whether the data are consistent

with this prediction regarding heterogeneous rates of convergence, we again consider the measure

of agent i’s Euclidean ‘distance to the truth’ in period t. Using this distance measure, as a first

step we obtain agent-specific estimates of the average linear rate of convergence as follows,

Euclidean Distance to Truthit = λi × t+ ηi + ηt + µit. (18)

Second, we project the estimated rates of convergence λi on the two agent-i characteristics that

determine convergence rates in the model: network connectedness τ i ≡ 1
N

∑
j τij , and the precision

of initial beliefs Si0. The estimates appear in Table 14. Consistent with the model, the estimates

reveal a negative and highly significant correlation between the average linear decline in the Eu-

clidean distance to the truth across agents i and their index of network connectedness τ i which is
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constructed using the data and estimates in Table 6. Moreover, the correlation remains significant

when including zipcode fixed effects in the regression. This implies that, for two agents located

in the same five-digit zipcode, for whom the only variation in network connectedness is due to

differences in specialty, school, or cohort, it remains true that relatively well-connected physicians

converge to the truth at correspondingly faster rates on average. Column 3 adds the initial beliefs

precision, again constructed using the data and estimates in Table 6; the positive and highly signif-

icant coefficient is again consistent with the model, suggesting that the beliefs of agents with high

levels of initial beliefs precision are also slower to converge to the truth.

Taken together, the results in Figures 12 through 15 and Table 14 are consistent with the

model predictions regarding aggregate beliefs convergence to the truth and also the heterogeneity

across agents in idiosyncratic convergence rates given variation in agents’ network position and the

precision of initial beliefs. These support the validity of the model and its assumptions for the data

setting we consider.

7.3 Simulating the Model

To further understand the model and its quantitative implications given the estimates described

in section 5, we simulate the full model and consider two sets of policy interventions that impact

individual and thus also aggregate rates of convergence. The first set of interventions we evaluate

are targeted changes to the network structure that change the τij values. Such interventions are

conceptually related to trade policy (e.g. Eaton Kortum 2002, Donaldson 2018). The second set

of interventions changes the distribution of initial beliefs’ precision Si0 across agents i and is thus

loosely related to the notion of information injection (e.g. Banerjee et al 2013, Akbarpour, Malladi,

and Saberi 2018). A key question in this literature that our analysis will consider is whether it is

more efficient to target well-connected versus peripheral agents and links.

To simulate the model, we begin by specifying agents’ prior beliefs βid0 to be consistent with

their own observed product choice shares in the initial period of the data, given their estimated

initial stock of signals Si0. That is, we define

βid0 − βid′0 = lnπid0 − lnπid′0︸ ︷︷ ︸
data

+α(σ2
d − σ2

d′)/(2Si0)︸ ︷︷ ︸
estimates and data

.

Using the values of {τij} and {Si0} implied by our data and the parameter estimates of the

model, we calculate the complete (deterministic) path of signal stocks Sit for each agent i and period

t > 0. Then, using the Bayesian updating rule and the estimated signal distribution parameters

{βTd } and {σ2
d}, we simulate mean beliefs βidt for all agents i, products d, and time periods t > 1.

Importantly, although the signal distribution is centered around βTd , the fact that agents draw

only a finite number of signals per period implies beliefs evolve only gradually over time. Using the

simulated data, we recompute the measure of agents’ Euclidean distance to the truth in prescription

shares that is implied by their beliefs in each period, and replicate the aggregate convergence graph,

Figure 12, described above. As in Figure 12, this simulation considers the final spell only, in which

the set of available products is fixed.
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The simulated version of Figure 12 appears in Figure 16, and shows a similarly decreasing

curve with a negative and highly significant slope of −0.502 (std. error 0.030). This matches the

aggregate figure qualitatively, and as a moment that is not targeted in our estimation, is reasonably

close in magnitude as well. That said, it is worth noting that the model predicts somewhat faster

convergence than exists in the data.

7.4 The Influence of Network Structure on Convergence

Having established that the simulated model features aggregate convergence to the truth with a

magnitude similar to that in the data, we now proceed to evaluate the quantitative implications

of policy interventions. We begin by considering two symmetric adjustments to the structure

of the network. The first intervention is to strengthen the weakest network links, and the second

intervention is its opposite, to weaken then strongest network links. To implement this, we simulate

the model after replacing all first-quartile τij values with the 25th-percentile τij value, thereby

flattening the bottom quartile of the τij distribution. Then, we resimulate the model after replacing

all fourth-quartile τij values with the 75th-percentile τij value, flattening the top quartile of the τij

distribution. Intuitively, the first intervention should speed aggregate convergence by increasing

the flow of signals spread over the network in each period, and for the same reason, the second

should slow aggregate convergence. To understand the quantitative impact of each intervention,

we replicate the aggregate convergence graph for the simulated baseline model in Figure 12 using

both counterfactual networks.

The resulting graphs appear in Figures 17 and 18, which show the aggregate convergence curve

for the simulation under the counterfactual network (green line) and for comparison, under the

true network (black line). It is evident that, despite the qualitative symmetry in the two network

adjustments, the latter intervention targeting the strongest links with the highest τij values has

a substantially larger impact on convergence. Quantitatively, this intervention implies a slope of

-0.446 (std. error 0.021), which is statistically different from that of the simulated baseline model

−0.502 (std. error 0.030). On the other hand, the intervention targeting the weakest network links

has a negligible impact on convergence, as the resulting slope −0.507 (std. error 0.031) is not

statistically different from the baseline model. Thus, this simple policy intervention reveals that

adjusting the network structure can significantly impact the aggregate rate of beliefs convergence,

and that the largest impacts are achieved by targeting the strongest network links.

7.5 Initial Beliefs and the Rate of Convergence

A substantial literature has considered the importance of social networks for channeling knowledge

flows across individuals, and thereby determining aggregate rates of information ‘infection.’ In our

model, because agents always share unbiased signals about the true, unconditional drug qualities

about which they are learning, interventions that ‘seed’ the network with information by giving

certain agents the true drug qualities would not have a meaningful impact on the spread of knowl-

edge or convergence outcomes. Moreover, such policies would not be feasible as true drug qualities

are fundamentally unknown, including to policymakers. Nevertheless, it is possible to intervene in
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a way that relates to agents’ information by making changes to the distribution of initial signals

stocks, Si0. Again, the question we are interested in answering is whether targeting those with high

versus low values is more efficient in achieving faster convergence to the truth.

Similar to the network interventions described above, we proceed by considering two symmetric

adjustments. The first increases the initial beliefs precision Si0 for those with the lowest estimated

values, by replacing the first-quarter values with the 25th-percentile Si0 value. The second decreases

Si0 for agents with the highest values, replacing top-quartile values with the 75th-percentile Si0

value. We resimulate the model under both changes, where intuitively, the first intervention should

slow convergence and the second should increase its pace. To understand the quantitative impact

of each intervention, we again replicate the aggregate convergence graph for the simulated baseline

model in Figure 12 using both counterfactual distributions of Si0.

Aggregate convergence graphs for each of the two simulations appear in Figures 19 and 20. As

described above, the green line is the simulated convergence curve under the counterfactual model,

and the black line shows the baseline simulated model, for comparison. While the interventions have

the predicted effects on aggregate convergence, it is striking to observe that neither intervention has

a quantitatively important impact on convergence. Increasing precision for low-Si0 agents decreases

the convergence-curve slope from −0.502 (std. error 0.030) to −0.491 (std. error 0.028), a difference

that is not statistically different from zero. Similarly, decreasing Si0 for agents with the highest

values speeds convergence, but the resulting slope is only −0.504 (std. error 0.031), which is again

statistically identical to the baseline model.

Without knowing the relative costs of intervening to change Si0 or τij values, it is of course

not possible to undertake a full welfare analysis of which type of intervention is more efficient

for stimulating aggregate convergence. Moreover, the analysis above is best viewed as capturing

short-run implications; this is because our partial-equilibrium model does not permit agents to

determine their network position nor the intensity of their exposure to new signals through active

search. Despite these caveats, the simulation results strongly suggest that targeted interventions

impacting the structure of the network are substantially more potent than interventions affecting

the distribution of information (initial signal stocks) across agents.

8 Conclusion

This paper examines the diffusion of knowledge within a social network. We develop an empirical

model capturing general features of learning among professionals that make repeated decisions on

behalf of clients. Importantly, these professionals face uncertainty regarding the true, unconditional

qualities of the available choices, and it is about these unobserved qualities that agents in our model

learn. We show that under the dual assumptions that agents a) make static multinomial choices

in each period, and b) update idiosyncratic prior beliefs regarding product qualities in a Bayesian

fashion, we obtain a framework that offers a full characterization of not only the evolution of choice

efficiency at the agent level, but also at the aggregate level. This latter fact allows us to use the

model to consider the implications of micro-level policy interventions for aggregate ‘productivity

gains’ in the form of increased average efficiency of individuals’ decisions. Moreover, we show that
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estimating the parameters of the model along with standard errors is feasible using a restricted

nonlinear least-squares estimator.

To understand the qualitative and quantitative implications of the model, including possible

policy interventions that affect the fundamental distribution of knowledge or the network structure

itself, we use estimate the model for a context in which we are able to observe the choices of a

complete professional network over an 11-year period. In particular, we observe the cholesterol-drug

prescription decisions of over 50,000 U.S. physicians at a quarterly frequency during January 2000

through December 2010, a period during which the set of available products and their perceived

relative qualities experienced substantial change.

Among the parameters that we estimate are the true, unconditional product qualities that

agents learn about in the model. We use these estimates and the individual-level choice share data

to assess two of the model’s predictions regarding the convergence of agents’ beliefs over time to

their true values. In addition to predicting that agents’ beliefs about product qualities converge to

the truth, the model reveals two fundamental determinants of heterogeneity in agents’ idiosyncratic

rates of convergence: the beliefs of agents with relatively high levels of network connectedness and

relatively less-precise initial beliefs should converge to the truth at systematically higher rates. In

validation of our model and its assumptions, we find that the data are strongly consistent with

aggregate convergence to the truth, and also indicate the statistical importance of both sources of

heterogeneity in individual agents’ convergence rates.

Finally, our simulation of the model and policy interventions reveal novel insights relevant for

policies that aim to facilitate increases in the ‘productivity’ of agents decisions. These simulations

suggest that policies affecting the network structure may be particularly influential, especially when

targeting those network links that are already the strongest. By contrast, we find a relatively limited

role for interventions targeting weak links or the distribution of information across individual agents.
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Figure 1: Aggregate Evolution in Product Choices, January 2000 to December 2010
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Notes: For each date indicated on the horizontal axis, the height of each shaded region indicates
the aggregate prescription volume (number of prescriptions) filled during that period. Labels for
specific drugs appear on the region corresponding to that drug.
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Figure 2: Evolution in Product Choices in New York, NY, January 2000 to December 2010
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Notes: For each date indicated on the horizontal axis, the height of each shaded region indicates
the total prescription volume (number of prescriptions) filled in New York, NY (three digit zipcode
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Figure 3: Aggregate Evolution in Product Choices in Hemet, CA, January 2000 to December 2010
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Notes: For each date indicated on the horizontal axis, the height of each shaded region indicates the
total prescription volume (number of prescriptions) filled in Hemet, CA (three digit zipcode 925)
during that period. Labels for specific drugs appear on the region corresponding to that drug.
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Table 1: Major U.S. Cholesterol Drug Approvals,
January 2000–December 2008

Drug Name Release Date FDA Category

Lovastatin December 2001 Generic version
Zetia October 2002 Molecular entity
Crestor August 2003 Molecular entity
Vytorin July 2004 Combination
Lovaza November 2004 Molecular entity
Pravastatin April 2006 Generic version
Simvastatin June 2006 Generic version

Notes: This table lists all major U.S. Cholesterol Drug Introductions
during the period January 2000–December 2008. Each product was
approved for sale in the United States on the date indicated. As
indicated, new drug approvals are categorized by the FDA based on
whether the product is a new molecular entity, a new drug combina-
tion, a new dosage form, or a new generic equivalent.

Table 2: Evolution in the Within-Molecule Substitution to Generic

Generic Share in Prescriptions

Lovastatin Pravastatin Simvastatin
After six months

Mean 0.8320 0.8240 0.8642
St Dev 0.3364 0.2808 0.2129
5th Percentile 0 0 0.4286
95th Percentile 1 1 1

After 12 months
Mean 0.9057 0.8482 0.9779
St Dev 0.2606 0.2837 0.0866
5th Percentile 0 0 0.8750
95th Percentile 1 1 1

December 2010
Mean 0.9996 0.9942 0.9974
St Dev 0.0170 0.0534 0.0271
5th Percentile 1 1 1
95th Percentile 1 1 1
Notes: This table describes within-molecule, generic prescription
shares for lovastatin, pravastatin, and simvastatin across U.S. physi-
cians. The top panel describes the distribution of doctor-specific
prescription shares for each molecule six months after its patent ex-
piration. The center panel provides the analogous statistics for 12
months after patent expiration, and the bottom panel does the same
for the final month observed in our dataset, December 2010. The
upper-left number in Panel A (mean, Lovastatin, 0.8320) is the mean,
across physicians, fraction of cholesterol drug prescriptions for Lovas-
tatin in May 2002 that are accounted for by generic lovastatin. Below
the mean is the standard deviation of this fraction across physicians,
followed by 5th and 95th percentile values. Generic approval dates
are from the U.S. Food and Drug Administration; prescription data
are from IMS Health.
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Table 3: Baseline Estimates by Specialty – Cardiology

Complete Network Geography Only
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.2083a 0.0432
Graduation Year Proximity 0.0644a 0.0060

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.2192a 0.0510 0.0832a 0.0116
County Population Density 0.7089a 0.1414 0.9705a 0.0849
Initial Prescription Volume 49.560a 6.6972a 10.763 1.1623
Experience -879.75a 104.86 -152.67a 17.777
Female -34.032 24.867 -10.348b 4.7554
Constant 42.6329a 5.5213 4.6549a 0.9094

Distribution of Signal Values
Relative Mean by Drug, First Spell, βTd1 − βTd′1

Lovastatin -3.7981a 0.0821 -3.4937a 0.0430
Pravastatin -1.4330a 0.0515 -1.3798a 0.0274
Simvastatin -0.6553a 0.0436 -0.5992a 0.0234

Relative Mean by Drug, Final Spell, βTd6 − βTd′6
Lovastatin -1.9895a 0.0490 -1.8914a 0.0388
Pravastatin -0.7660a 0.0366 -0.7456a 0.0314
Simvastatin 1.4576a 0.0260 1.4793a 0.0204
Zetia -1.9566a 0.0576 -1.7430a 0.0380
Crestor 0.4068a 0.0792 0.3286a 0.0484
Vytorin -3.1202a 0.0819 -2.3009a 0.0507

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin 57.870a 15.4559 3.8734a 1.4292
Pravastatin -12.220 9.1205 -2.9075a 0.8995
Simvastatin -7.0912 7.8192 -2.0648a 0.7724
Zetia 210.89a 26.240 23.720a 2.3047
Crestor 47.454 31.5914 16.063a 3.2950
Vytorin 598.15a 52.853 51.074a 3.4685

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed

Number of Doctors 7,069
Number of Observations 1,519,835

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all cardiologists in the data. Estimates of this baseline model
appear in column 1. Column 3 provides estimates of a related model that further restricts the network proximity terms τij to
depend only on geography. Standard errors are shown to the right of each point estimate. The reference drug is Lipitor and
the risk aversion parameter α is from Crawford and Shum (2005).
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Table 4: Baseline Estimates by Specialty – Internal Medicine

Complete Network Geography Only
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.1407a 0.0187
Graduation Year Proximity 0.0607a 0.0030

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.4754a 0.0666 0.2362a 0.0151
County Population Density 0.9073a 0.1412 2.1766a 0.1062
Initial Prescription Volume 237.26a 14.065 44.258a 2.0618
Experience -1729.8a 129.37 -315.66a 23.710
Female -36.741c 20.660 -10.033b 4.1700
Constant 90.8077a 7.0067 7.8094a 1.2672

Distribution of Signal Values
Relative Mean by Drug, First Spell, βTd1 − βTd′1

Lovastatin -3.4379a 0.0465 -3.3739a 0.0262
Pravastatin -1.3600a 0.0311 -1.4139a 0.0176
Simvastatin -0.8653a 0.0279 -0.8883a 0.0159

Relative Mean by Drug, Final Spell, βTd6 − βTd′6
Lovastatin -1.2068a 0.0204 -1.2046a 0.0162
Pravastatin -0.4695a 0.0172 -0.4844a 0.0152
Simvastatin 1.7248a 0.0125 1.7281a 0.0101
Zetia -2.2788a 0.0312 -1.9769a 0.0206
Crestor -0.0601a 0.0397 -0.1174a 0.0244
Vytorin -3.3133a 0.0430 -2.3094a 0.0269

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin 43.060a 17.735 8.8551a 1.7601
Pravastatin -86.869a 12.286 -10.246a 1.2281
Simvastatin -58.332a 10.941 -6.3407a 1.1036
Zetia 683.28a 41.797 61.738a 3.3594
Crestor 24.473 45.371 20.508a 4.5619
Vytorin 1963.7a 87.216 145.37a 5.0373

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed

Number of Doctors 21,653
Number of Observations 4,655,395

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all internists in the data. Estimates of this baseline model
appear in column 1. Column 3 provides estimates of a related model that further restricts the network proximity terms τij to
depend only on geography. Standard errors are shown to the right of each point estimate. The reference drug is Lipitor and
the risk aversion parameter α is from Crawford and Shum (2005).
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Table 5: Baseline Estimates by Specialty – Family Practice

Complete Network Geography Only
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.0474a 0.0049
Graduation Year Proximity 0.0184a 0.0008

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.0854a 0.0202 0.0243a 0.0082
County Population Density 0.7110a 0.1615 1.5493a 0.1297
Initial Prescription Volume 83.761a 4.2689 36.408a 1.4121
Experience -395.12a 34.686 -103.02a 12.0102
Female -0.7985 5.4909 1.6414a 2.1411
Constant 21.8084a 1.8313 5.9075a 0.6250

Distribution of Signal Values
Relative Mean by Drug, First Spell, βTd1 − βTd′1

Lovastatin -3.5033a 0.0595 -3.3663a 0.0364
Pravastatin -1.0522a 0.0376 -1.1997a 0.0232
Simvastatin -0.3812a 0.0334 -0.5239a 0.0205

Relative Mean by Drug, Final Spell, βTd6 − βTd′6
Lovastatin -0.9009a 0.0214 -0.9009a 0.0174
Pravastatin -0.0876b 0.0186 -0.0876a 0.0169
Simvastatin 1.9999a 0.0131 1.9999a 0.0111
Zetia -1.6286a 0.0356 -1.6286a 0.0244
Crestor -0.0509 0.0430 -0.0509c 0.0278
Vytorin -1.9824a 0.0471 -1.9824a 0.0318

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin 25.685a 6.1975 5.8098a 1.3277
Pravastatin -59.1872a 4.3634 -15.9954a 0.8898
Simvastatin -69.5182a 4.1762 -19.8590a 0.8040
Zetia 155.2922a 13.3383 21.5680a 2.7473
Crestor -19.5912 16.2344 -5.0965 3.5122
Vytorin 720.4631a 26.4837 92.8266a 4.1204

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed

Number of Doctors 18,302
Number of Observations 3,934,930

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all family practice physicians in the data. Estimates of this
baseline model appear in column 1. Column 3 provides estimates of a related model that further restricts the network proximity
terms τij to depend only on geography. Standard errors are shown to the right of each point estimate. The reference drug is
Lipitor and the risk aversion parameter α is from Crawford and Shum (2005).
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Table 6: Baseline Estimates, All Specialties

δ < 1 δ = 1
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.0978a 0.0426 0.1835a 0.2899
Same Medical Specialty Indicator 0.0107a 0.0021 0.0273a 0.1054
Graduation Year Proximity 0.0244a 0.0072 0.0171a 0.0521

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.3559a 0.0360 0.3788a 0.0543
County Population Density 0.2654a 0.0740 0.2903a 0.0871
Initial Prescription Volume 50.547a 5.7961 51.887a 9.4723
Experience 28.166 45.005 20.709 51.943
Female -2.4207 7.3330 -2.1054 8.8955
Internal Medicine Indicator 38.047a 10.810 112.28a 32.999
Cardiology Indicator -41.457a 9.1189 -36.435a 11.152
Family Practice Indicator 24.012b 9.7928 65.638a 22.090
Constant -12.486a 2.0309 -13.9828a 2.3325

Distribution of Signal Values
Relative Mean by Drug, First Spell, βTd1 − βTd′1

Lovastatin -3.4459a 0.0962 -3.2655a -3.2655
Pravastatin -1.3426a 0.0621 -1.5550a -1.5550
Simvastatin -0.7239a 0.0576 -0.9762a -0.9762

Relative Mean by Drug, Final Spell, βTd6 − βTd′6
Lovastatin -1.1530a 0.0416 -0.9963a 0.0354
Pravastatin -0.3226a 0.0355 -0.1812a 0.0355
Simvastatin 1.7918a 0.0258 2.0130a 0.0228
Zetia -2.0715a 0.0644 -1.5405a 0.0338
Crestor -0.0458 0.0801 0.2968a 0.0343
Vytorin -3.0325a 0.0927 -1.4831a 0.0339

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin 13.193a 6.3092
Pravastatin -13.701a 4.2851
Simvastatin -16.567a 4.1220
Zetia 107.60a 15.593
Crestor 23.619 16.336
Vytorin 321.19a 34.886

Discount Factor, δ 0.9873 Fixed 1 Fixed
Risk Aversion Parameter, α 0.9900 Fixed

Number of Doctors 5,304
Number of Observations 1,140,360

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for a ten percent random sample of all physicians in the data.
Estimates of this baseline model appear in column 1. Column 3 provides estimates of a related model that further restricts
the discount factor δ = 1 implying no time discounting. Standard errors are shown to the right of each point estimate. The
reference drug is Lipitor and the risk aversion parameter α is from Crawford and Shum (2005).
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Table 7: Model Estimates with Restricted Network Specification – Distance Only

δ < 1 δ = 1
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.0759a 0.0062 0.0699a 0.0055
County Population Density 0.4035a 0.0481 0.4128a 0.0469
Initial Prescription Volume 13.281a 0.9393 12.139a 0.8552
Experience -12.483 10.289 -11.212 9.5379
Female 0.1436 1.8131 0.3724 1.6792
Internal Medicine Indicator 2.8213 2.4431 2.5150 2.2538
Cardiology Indicator -9.3386a 2.4251 -9.1982a 2.1704
Family Practice Indicator -0.1344 2.3825 -0.0643 2.2138
Constant -1.8305a 0.4721 -1.6941a 0.4212

Distribution of Signal Values
Relative Mean by Drug, First Spell, βTd1 − βTd′1

Lovastatin -3.4235a 0.0558 -3.2017a 0.0323
Pravastatin -1.3458a 0.0357 -1.4920a 0.0207
Simvastatin -0.7122a 0.0338 -0.9136a 0.0193

Relative Mean by Drug, Final Spell, βTd6 − βTd′6
Lovastatin -1.1688a 0.0348 -0.9936a 0.0357
Pravastatin -0.3233a 0.0323 -0.1686a 0.0358
Simvastatin 1.8026a 0.0219 2.0369a 0.0228
Zetia -1.7899a 0.0439 -1.5334a 0.0341
Crestor 0.0055 0.0514 0.3194a 0.0345
Vytorin -2.1117a 0.0575 -1.4847a 0.0342

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin 3.9703a 0.8279
Pravastatin -2.8304a 0.5595
Simvastatin -3.6635a 0.5284
Zetia 11.610a 1.6477
Crestor 3.4806 2.1602
Vytorin 30.340a 2.4694

Discount Factor, δ 0.9873 Fixed 1 Fixed
Risk Aversion Parameter, α 0.9900 Fixed

Number of Doctors 5,304
Number of Observations 1,140,360

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for a ten percent random sample of all physicians in the data.
Estimates of this baseline model, under the additional restriction that network proximity τij depends only on geography, appear
in column 1. Column 3 provides estimates of a related model that further restricts the discount factor δ = 1 implying no time
discounting. Standard errors are shown to the right of each point estimate. The reference drug is Lipitor and the risk aversion
parameter α is from Crawford and Shum (2005).
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Figure 4: Decomposition of Network Connectedness by Component, Cardiology

Notes: This figure provides the predicted value of mean network connected-
ness τ ij for each cardiologist i given the estimates in Table 3 and the data
(solid black line), as well as a decomposition of this curve into its three under-
lying components: geographic proximity (red solid circles), shared medical
school (blue outlined squares), and cohort proximity (green outlined circles).

Figure 5: Decomposition of Initial Beliefs Precision, Cardiology

Notes: This figure provides the predicted value of initial beliefs precision
Si0 for each cardiologist i given the estimates in Table 3 and the data (solid
black line), as well as a decomposition of this curve into its four continuous
components: decision volume (red solid circles), years of experience (green
outlined circles), local household income (blue outlined squares), and local
population density (dotted magenta line).

38



Figure 6: Decomposition of Network Connectedness by Component, Internal Medicine

Notes: This figure provides the predicted value of mean network connected-
ness τ ij for each internist i given the estimates in Table 4 and the data (solid
black line), as well as a decomposition of this curve into its three underlying
components: geographic proximity (red solid circles), shared medical school
(blue outlined squares), and cohort proximity (green outlined circles).

Figure 7: Decomposition of Initial Beliefs Precision, Internal Medicine

Notes: This figure provides the predicted value of initial beliefs precision
Si0 for each internist i given the estimates in Table 4 and the data (solid
black line), as well as a decomposition of this curve into its four continuous
components: decision volume (red solid circles), years of experience (green
outlined circles), local household income (blue outlined squares), and local
population density (dotted magenta line).
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Figure 8: Decomposition of Network Connectedness by Component, Family Practice

Notes: This figure provides the predicted value of mean network connected-
ness τ ij for each family practice physician i given the estimates in Table 5
and the data (solid black line), as well as a decomposition of this curve into
its three underlying components: geographic proximity (red solid circles),
shared medical school (blue outlined squares), and cohort proximity (green
outlined circles).

Figure 9: Decomposition of Initial Beliefs Precision, Family Practice

Notes: This figure provides the predicted value of initial beliefs precision
Si0 for each family practice physician i given the estimates in Table 5 and
the data (solid black line), as well as a decomposition of this curve into
its four continuous components: decision volume (red solid circles), years
of experience (green outlined circles), local household income (blue outlined
squares), and local population density (dotted magenta line).
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Figure 10: Decomposition of Network Connectedness by Component, All Specialties

Notes: This figure provides the predicted value of mean network connected-
ness τ ij for each physician i in a ten percent random sample of all physicians,
based on the estimates in Table 6 and the data (solid black line). The four
separate components of this curve are also shown, including geographic prox-
imity (red solid circles), shared medical school (blue outlined squares), cohort
proximity (green outlined circles), and shared specialty (dotted black line).

Figure 11: Decomposition of Initial Beliefs Precision

Notes: This figure provides the predicted value of initial beliefs precision Si0
for each physician i in a ten percent random sample of all physicians, based
on the estimates in Table 6 and the data (solid black line). The four separate
components of this curve are also shown, including geographic proximity (red
solid circles), shared medical school (blue outlined squares), cohort proximity
(green outlined circles), and shared specialty (dotted black line).
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Figure 12: Mean Euclidean Distance to the Truth, Final Spell
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Notes: This figure plots the average (across doctors i) Euclidean distance between a) the vector
of relative prescription shares lnπT

idtk− lnπT
id′tk for doctor i that, as defined in (12), would be

implied by doctor i choosing products d according to the true, unconditional product qualities
βT
dk, and b) the actual relative prescription shares lnπidt− lnπid′t of doctor i for each quarter
t in the final spell.
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Figure 13: Mean Euclidean Distance to the Truth, All Spells

0
5

10
15

20
25

Pr
es

cr
ib

in
g 

Di
st

an
ce

 to
 T

ru
th

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year

Notes: This figure plots the average (across doctors i) Euclidean distance between
a) the vector of relative prescription shares lnπT

idtk − lnπT
id′tk for doctor i that, as

defined in (12), would be implied by doctor i choosing products d according to the
true, unconditional product qualities βT

dk, and b) the actual relative prescription
shares lnπidt − lnπid′t of doctor i for each quarter t during the sample period (all
spells). Vertical lines demarcate the six spells.

Figure 14: Mean Euclidean Distance to the Truth, Initially-Available Products Only, Final Spell
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Notes: This figure plots the average (across doctors i) Euclidean distance between a) the vector
of relative prescription shares lnπT

idtk − lnπT
id′tk for doctor i that, as defined in (12), would be

implied by doctor i choosing products d according to the true, unconditional product qualities βT
dk,

and b) the actual relative prescription shares lnπidt − lnπid′t of doctor i for each quarter t in the
final spell. To distinguish the convergence mechanism from mechanical changes in the scale of the
Euclidean distance measure resulting from product entry, only the four initially-available products
are included.
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Table 8: Advertising and Price Effects

Cardiology Internal Medicine
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.1929a 0.0417 0.1520a 0.0205
Graduation Year Proximity 0.0625a 0.0059 0.0636a 0.0033

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.2065a 0.0492 0.4252a 0.0651
County Population Density 0.7178a 0.1436 0.9205a 0.1445
Initial Prescription Volume 46.241a 6.3777 223.97a 14.032
Experience -820.08a 101.66 -1651.1a 129.63
Female -33.279 24.567 -49.008b 20.503
Constant 40.414a 5.3486 87.184a 7.0150

Product Choice Equation
Advertising, γ -0.0001b 0.0001 -0.0002a 0.0001
Drug Price, ξ -0.0119 0.0168 0.0002 0.0098

Distribution of Signal Values
Relative Mean by Drug, First Spell, βTd1 − βTd′1

Lovastatin -3.7880a 0.0835 -3.4649a 0.0485
Pravastatin -1.4140a 0.0523 -1.3133a 0.0321
Simvastatin -0.6364a 0.0443 -0.8448a 0.0289

Relative Mean by Drug, Final Spell, βTd6 − βTd′6
Lovastatin -1.9703a 0.0498 -1.2262a 0.0213
Pravastatin -0.7639a 0.0373 -0.4735a 0.0180
Simvastatin 1.4579a 0.0266 1.7018a 0.0132
Zetia -1.9744a 0.0584 -2.2696a 0.0326
Crestor 0.4114a 0.0801 -0.0340 0.0412
Vytorin -3.1198a 0.0832 -3.2648a 0.0445

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin -50.604a 14.774 -48.748a 17.697
Pravastatin 13.323a 8.8403 87.578a 12.241
Simvastatin 8.2084 7.5706 55.853a 10.853
Zetia -209.96a 25.675 -646.85a 42.083
Crestor -43.669 30.444 -12.177 45.030
Vytorin -573.26a 51.121 -1851.2a 88.036

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed

Number of Doctors 7,069 21,653
Number of Observations 1,519,835 4,655,395

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (16) under the restriction (10) for all cardiologists (column 1) and internists (column 3). Standard
errors are shown to the right of each point estimate. The reference drug is Lipitor and the risk aversion parameter α is from
Crawford and Shum (2005).
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Table 9: Advertising and Price Effects

Family Practice All Specialties
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.0519a 0.0056 0.1305a 0.0306
Graduation Year Proximity 0.0195a 0.0009 0.0310a 0.0036
Same Medical Specialty Indicator 0.0088a 0.0011

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.0764a 0.0202 0.0816a 0.0234
County Population Density 0.6002a 0.1536 0.0969c 0.0516
Initial Prescription Volume 80.662a 4.3291 38.100a 4.5493
Experience -382.37a 35.485 -187.01a 38.418
Female -0.4409 5.6620 -4.2342 7.3666
Constant 21.381a 1.8725 8.9733a 2.0912

Product Choice Equation
Advertising, γ -0.0002b 0.0001 -0.0002a 0.0001
Drug Price, ξ -0.0377 0.0116 0.0005a 0.0208

Distribution of Signal Values
Relative Mean by Drug, First Spell, βTd1 − βTd′1

Lovastatin -3.4996a 0.0623 -3.7049a 0.1114
Pravastatin -1.0091a 0.0392 -1.2908a 0.0725
Simvastatin -0.3666a 0.0347 -0.7011a 0.0666

Relative Mean by Drug, Final Spell, βTd6 − βTd′6
Lovastatin -0.9439a 0.0225 -1.2932a 0.0465
Pravastatin -0.0554a 0.0195 -0.3616a 0.0386
Simvastatin 1.9943a 0.0139 1.7541a 0.0288
Zetia -1.8776a 0.0369 -2.1133a 0.0695
Crestor 0.0065 0.0445 -0.0550 0.0895
Vytorin -3.1359a 0.0484 -3.2065a 0.0972

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin -22.044a 6.2660 -24.635a 7.4587
Pravastatin 58.936a 4.4545 18.294a 4.8564
Simvastatin 66.377a 4.2185 15.971a 4.5281
Zetia -149.83a 13.381 -107.62a 15.189
Crestor 25.269 16.271 -13.823 17.851
Vytorin -682.81a 26.631 -347.92a 32.226

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed

Number of Doctors 18,302 5,304
Number of Observations 3,934,930 1,140,360

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (16) under the restriction (10) for all family practice physicians (column 1) and a ten percent
random sample of all physicians (column 3). Standard errors are shown to the right of each point estimate. The reference drug
is Lipitor and the risk aversion parameter α is from Crawford and Shum (2005).
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Table 10: Advertising and Price Effects with Fixed Product Qualities

Cardiology Internal Medicine
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.2109a 0.0144 0.2983a 0.0112
Graduation Year Proximity 0.0614a 0.0020 0.0876a 0.0019

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.1504a 0.0495 0.4196a 0.0949
County Population Density 0.4894a 0.1305 0.3465b 0.1667
Initial Prescription Volume 53.367a 5.9840 340.12a 16.778
Experience -650.64a 81.109 -2592.7a 157.10
Female -50.878b 24.442 -61.782b 29.676
Constant 37.633a 4.3477 148.74a 8.8604

Product Choice Equation
Advertising, γ 0.0002a 0.0001 0.0001a 0.0000
Drug Price, ξ -0.1596a 0.0165 -0.1690a 0.0097

Relative Mean by Drug, βTd − βTd′
Lovastatin -1.5501a 0.0478 -0.4948a 0.0207
Pravastatin -1.4244a 0.0342 -1.1252a 0.0174
Simvastatin 0.4932a 0.0274 1.0213a 0.0141
Zetia -3.2765a 0.0584 -3.3073a 0.0310
Crestor -0.1601b 0.0760 -0.6983a 0.0379
Vytorin -5.0508a 0.0841 -4.9381a 0.0435

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin 232.73a 11.8830 1083.4a 24.361
Pravastatin 26.745a 6.7570 287.19a 12.326
Simvastatin 184.54a 7.6471 963.53a 19.766
Zetia -866.32a 28.4163 -2575.0a 55.887
Crestor -259.56a 26.8515 -1024.2a 51.585
Vytorin -1776.3a 53.8500 -6031.4a 118.602

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed

Number of Doctors 7,069 21,653
Number of Observations 1,519,835 4,655,395

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (16) under the restriction (10) for all cardiologists (column 1) and internists (column 3). Standard
errors are shown to the right of each point estimate. The reference drug is Lipitor and the risk aversion parameter α is from
Crawford and Shum (2005).
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Table 11: Advertising and Price Effects with Fixed Product Qualities

Family Practice All Specialties
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.0588a 0.0026 0.1916a 0.0156
Graduation Year Proximity 0.0247a 0.0005 0.0503a 0.0023
Same Medical Specialty Indicator 0.0116a 0.0006

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.1788a 0.0284 0.1460a 0.0369
County Population Density 0.4480b 0.1726 0.0328 0.0647
Initial Prescription Volume 89.126 4.8958 55.315 5.8358
Experience -420.96a 40.587 -264.98a 54.090
Female -2.7455 7.7817 -8.1169 11.367
Constant 24.646a 2.2725 29.042a 3.7456

Product Choice Equation
Advertising, γ 0.0002b 0.0001 0.0000 0.0001
Drug Price, ξ -0.2416a 0.0115 -0.1670a 0.0206

Relative Mean by Drug, βTd − βTd′
Lovastatin -0.0646a 0.0206 -0.3441a 0.0438
Pravastatin -0.7493a 0.0185 -0.9883a 0.0374
Simvastatin 1.3596a 0.0145 1.2217a 0.0297
Zetia -2.7842a 0.0318 -3.3442a 0.0647
Crestor -0.9123a 0.0376 -0.9130a 0.0798
Vytorin -4.9029a 0.0440 -5.2804a 0.0924

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin 312.19a 5.8829 222.14a 9.7413
Pravastatin 124.71a 3.5107 68.684a 5.0493
Simvastatin 289.16a 4.7651 199.03a 8.0205
Zetia -549.16a 12.067 -503.96a 21.8208
Crestor -371.79a 14.377 -256.66a 21.1777
Vytorin -1766.1a 28.474 -1250.6a 48.2705

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed

Number of Doctors 18,302 5,304
Number of Observations 3,934,930 1,140,360

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (16) under the restriction (10) for all family practice physicians (column 1) and a ten percent
random sample of all physicians (column 3). Standard errors are shown to the right of each point estimate. The reference drug
is Lipitor and the risk aversion parameter α is from Crawford and Shum (2005).

47



Table 12: Baseline Estimates by U.S. Region

Region 1 - New England Region 2 - East
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.0670a 0.0237 0.0136a 0.0028
Same Medical Specialty Indicator 0.0215a 0.0019 0.0054a 0.0002
Graduation Year Proximity 0.0803a 0.0065 0.0179a 0.0008

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.3792a 0.0802 0.0000 0.0438
County Population Density 0.8071a 0.1170 4.6238a 0.5135
Initial Prescription Volume 259.36a 20.572 114.22a 6.2029
Experience -1422.8a 188.39 -788.47a 67.498
Female -69.370b 32.987 -23.628c 12.507
Internal Medicine Indicator 290.69a 45.769a 97.299 17.281
Cardiology Indicator 57.083 48.760 -0.0596 20.1431
Family Practice Indicator 157.80a 43.148 32.435b 16.3352
Constant 70.064a 9.7256 52.135a 3.6631

Distribution of Signal Values
Relative Mean by Drug, First Spell, βTd1 − βTd′1

Lovastatin -3.4932a 0.0667 -3.6234a 0.0708
Pravastatin -1.5828a 0.0447 -1.2632a 0.0458
Simvastatin -0.7060a 0.0386 -0.1296a 0.0382

Relative Mean by Drug, Final Spell, βTd6 − βTd′6
Lovastatin -1.7735a 0.0331 -1.1697a 0.0274
Pravastatin -0.8954a 0.0263 0.0386a 0.0212
Simvastatin 1.7515a 0.0185 1.9473a 0.0156
Zetia -2.4872a 0.0453 -2.4907a 0.0450
Crestor 0.1936a 0.0595 0.2850a 0.0555
Vytorin -3.3799a 0.0688 -4.4467a 0.0611

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin 39.642a 26.431 83.740a 16.8502
Pravastatin -60.388a 17.717 -70.588c 11.0803
Simvastatin -157.50a 17.672 -151.74a 9.7644
Zetia 785.90a 61.5746 771.23a 34.6409
Crestor -132.93a 65.673 -89.390a 41.0030
Vytorin 1662.7a 113.74 2205.3a 59.528

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed

Number of Doctors 10,595 19,615
Number of Observations 2,277,925 4,217,225

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all physicians located in the U.S. Northeast (columns 1 and
2, zipcodes begin with 0 or 1) or the U.S. East (columns 3 and 4, zipcodes begin with 3 or 4). Standard errors are shown to
the right of each point estimate. The reference drug is Lipitor and the risk aversion parameter α is from Crawford and Shum
(2005).
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Table 13: Baseline Estimates by U.S. Region

Region 3 - Central Region 4 - West
Estimate Standard Error Estimate Standard Error

(1) (2) (3) (4)

Bilateral Proximity, τij = τ(bτ ,Y ij)
Geographic Proximity 1 Fixed 1 Fixed
Same Medical School Indicator 0.2806a 0.0484 0.8460a 0.2660
Same Medical Specialty Indicator 0.0791a 0.0079 0.2822a 0.0321
Graduation Year Proximity 0.3041a 0.0289 0.9734a 0.1060

Initial Precision, Si0 = S(bS ,Xi0)
County Mean Household Income 0.0406 0.3249 -0.3211 0.6149
County Population Density 22.558a 2.8202 16.903a 4.7964
Initial Prescription Volume 689.35a 71.837 1899.6a 216.96
Experience -4076.8a 529.11 -6000.4a 1002.9
Female -96.447 89.162 -286.20 178.79
Internal Medicine Indicator 777.14a 132.24 1759.2a 290.10
Cardiology Indicator -80.964 122.70 210.56 257.07
Family Practice Indicator 586.44a 115.22 1047.3a 239.48
Constant 244.51a 31.0297 433.68a 65.4862

Distribution of Signal Values
Relative Mean by Drug, First Spell, βTd1 − βTd′1

Lovastatin -3.3633a 0.0667 -3.2939a 0.0670
Pravastatin -1.5124a 0.0454 -1.0155a 0.0443
Simvastatin -0.7300a 0.0372 -1.1991a 0.0428

Relative Mean by Drug, Final Spell, βTd6 − βTd′6
Lovastatin -1.2066a 0.0278 -0.6905a 0.0244
Pravastatin -0.3028a 0.0244 -0.7918a 0.0238
Simvastatin 1.7172a 0.0167 1.7903a 0.0179
Zetia -1.8615a 0.0396 -2.0765a 0.0410
Crestor -0.0058 0.0471 -0.4066a 0.0521
Vytorin -2.7809a 0.0552 -2.6047a 0.0574

Relative Variance by Drug, σ2
d − σ2

d′

Lovastatin 142.29c 83.721 -218.97 154.08
Pravastatin -196.49a 58.485 -857.68a 134.26
Simvastatin -340.11a 54.268 -356.23a 105.25
Zetia 1769.0a 202.40 2903.4a 419.30
Crestor 142.09 183.90 620.50 425.20
Vytorin 5833.5a 512.50 10332a 1127.5

Discount Factor, δ 0.9873 Fixed 0.9873 Fixed
Risk Aversion Parameter, α 0.9900 Fixed 0.9900 Fixed

Number of Doctors 12,815 10,015
Number of Observations 2,755,225 2,153,225

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance. This table provides nonlinear least-
squares estimates of equation (11) under the restriction (10) for all physicians located in the U.S. Central States (columns 1
and 2, zipcodes begin with 5, 6, or 7) or the U.S. West (columns 3 and 4, zipcodes begin with 8 or 9). Standard errors are
shown to the right of each point estimate. The reference drug is Lipitor and the risk aversion parameter α is from Crawford
and Shum (2005).
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Figure 15: Mean Euclidean Distance to the Truth, Initially-Available Products Only, All Spells
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Notes: This figure plots the average (across doctors i) Euclidean distance between a) the vector
of relative prescription shares lnπT

idtk − lnπT
id′tk for doctor i that, as defined in (12), would be

implied by doctor i choosing products d according to the true, unconditional product qualities βT
dk,

and b) the actual relative prescription shares lnπidt − lnπid′t of doctor i for each quarter t in the
final spell. To distinguish the convergence mechanism from mechanical changes in the scale of the
Euclidean distance measure resulting from product entry, only the four initially-available products
are included. Vertical lines demarcate the six spells.

Figure 16: Simulated Mean Euclidean Distance to the Truth, Final Spell
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Notes: This figure plots the average (across doctors i) Euclidean distance between
a) the vector of relative prescription shares lnπT

idtk − lnπT
id′tk for doctor i that, as

defined in (12), would be implied by doctor i choosing products d according to the
true, unconditional product qualities βT

dk, and b) the simulated relative prescription
shares lnπidt − lnπid′t of doctor i for each quarter t in the final spell.
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Figure 17: Simulated Mean Euclidean Distance to the Truth, Strengthen Weak Ties
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Counterfactual Increase in Bilateral Proximity for Lowest Values
Baseline Model

Notes: This figure plots the convergence path in Figure 16 along with the analogous
curve (in green) that would result under a counterfactual network in which all first-
quartile τij values are replaced with the 25th-percentile value.

Figure 18: Simulated Mean Euclidean Distance to the Truth, Weaken Strong Ties
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Counterfactual Decrease in Bilateral Proximity for Highest Values
Baseline Model

Notes: This figure plots the convergence path in Figure 16 along with the analogous
curve (in green) that would result under a counterfactual network in which all top-
quartile τij values are replaced with the 75th-percentile value.
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Figure 19: Simulated Mean Euclidean Distance to the Truth, Increase Precision for Low-Si0
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Counterfactual Increase in Initial Precision for Lowest Values
Baseline Model

Notes: This figure plots the convergence path in Figure 16 along with the analogous
curve (in green) that would result under a counterfactual distribution of initial preci-
sion levels in which all first-quartile Si0 values are replaced with the 25th-percentile
value.

Figure 20: Simulated Mean Euclidean Distance to the Truth, Decrease Precision for High-Si0
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Counterfactual Decrease in Initial Precision for Highest Values
Baseline Model

Notes: This figure plots the convergence path in Figure 16 along with the analogous
curve (in green) that would result under a counterfactual distribution of initial pre-
cision levels in which all top-quartile Si0 values are replaced with the 75th-percentile
value.
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Table 14: Convergence, Network Position, and Initial Beliefs Precision

Dependent Variable: λi (1) (2) (3)

Network Connectedness τ i -7.95∗∗∗ -13.0∗∗∗ -18.1∗∗∗

(0.75) (4.3) (4.6)
Beliefs’ Precision Si0 0.041∗∗∗

(.013)

Zipcode FE N Y Y

R2 0.0435 0.6872 0.6923
Number of Observations 2,477 2,477 2,477

Notes: a denotes 1% significance, b denotes 5% significance, c denotes 10% significance.
This table provides least-squares estimates of (18). Standard errors are shown below
each point estimate.
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Appendix (For Online Publication)

A.1 Expected Utility

This section includes a detailed derivation of (1). In particular, plugging in the definition of
Uidt(εdt(νi), β) and rearranging terms, we can show the result as follows,

Uidt(εdt(νi), βidt, σidt) ≡ Eβ[Uidt(εdt(νi), β)|βidt, σidt]

=

∫
Uidt(εdt(νi), β)dGidt

=

∫
− exp(−α(β + εdt(νi)))dGidt

= − exp(−αεdt(νi))
∫

exp(−αβ)dGidt

= − exp(−αεdt(νi)) exp(−αβidt +
1

2
α2σ2

idt)

= − exp

(
−αβidt +

α2σ2
idt

2
− αεdt(νi)

)
,

where the last step uses the fact that for Y ∼ N(µ, σ2), E[exp(aY )] = exp(aµ+ 1
2a

2σ2).

A.2 Choice Probabilities

This section provides a detailed proof for Result 1. First, apply the following monotone transfor-
mation h(·) of Uidt(εdt(νi), βidt, σidt) to the last line above, where

h(z) = − log(−z)/α.

Notice that,

h(Uidt(εdt(νi), βidt, σidt)) = h

(
− exp

(
−αβidt +

α2σ2
idt

2
− αεdt(νi)

))
= α−1 log

([
exp(−αεdt(νi)) exp

(
−αβidt +

α2σ2
idt

2

)]−1
)

= α−1 log

(
exp(αεdt(νi)) exp

(
αβidt −

α2σ2
idt

2

))
= α−1

(
αεdt(νi) + αβidt −

α2σ2
idt

2

)
= βidt −

ασ2
idt

2
+ εdt(νi).

Given the assumption above that εdt(νi) follows a Gumbel distribution, the decision rule

d̂∗(βit,σit) = argmax
d∈D

{
βidt −

ασ2
idt

2
+ εdt(νi)

}
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corresponds to the standard multinomial choice problem, for which is it well known (e.g. Train
2009, chapter 3) that agent i chooses product d for client νi with probability

πidt(βit,σit) ≡ Pr

{
βidt −

ασ2
idt

2
+ εdt(νi) > βid′t −

ασ2
id′t

2
+ εd′t(νi), ∀d′ 6= d

}
=

exp(βidt − ασ2
idt/2)∑

d′∈D exp(βid′t − ασ2
id′t/2)

,

where the last line is (3).

A.3 Expected Period Payoff

This section provides a detailed proof for Result 1. For simplicity, consider first the case in which
i serves a unit-measure continuum of clients Rit = 1 at t. Then,

Wit(βit,σit) = Eε[Uit(εt(νi),βit,σit)]

= Eε[max
d∈D
{Uidt(εdt(νi), βidt, σidt)}]

= Eε

[
max
d∈D

{
− exp

(
−αβidt +

α2σ2
idt

2
− αεdt(νi)

)}]
= Eε

[
− exp

(
−max

d∈D

{(
αβidt −

α2σ2
idt

2
+ αεdt(νi)

)})]
,

where the last line relies on the strict monotonicity of the function h(x) = − exp(−x). Defining
the following random variable,

git = max
d∈D

{
αβidt −

α2σ2
idt

2
+ αεdt(νi)

}
notice that the distribution of git may be characterized as follows,

Git(x) ≡ Pr[git ≤ x]

= Pr

[
max
d∈D

{
αβidt −

α2σ2
idt

2
+ αεdt(νi)

}
≤ x

]
=
∏
d∈D

F

(
x

α
− βidt +

ασ2
idt

2

)

=
∏
d∈D

exp

(
− exp

(
− x
α + βidt −

ασ2
idt
2

θ

))

= exp

(
− exp

(
− x

αθ

)
×
∑
d∈D

exp

(
1

θ

(
βidt −

ασ2
idt

2

)))

= exp

(
− exp

(
−x+Hit

αθ

))
,

where Hit ≡ θα ln
∑

d∈D exp
(

1
θ

(
βidt −

ασ2
idt
2

))
. Thus, Git is a Gumbel distribution with shape

parameter θα and location parameter Hit, implying

Wit(βit,σit) = Eε[− exp(−git)]
= −E[exp(−git)]
= −E[exp(zgit)|z=−1]

= −Γ(1 + θα)× exp(−Hit),
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where the last line uses the moment generating function of the Gumbel distribution. Adding the
definition of Hit, we thus arrive at

Wit(βit,σit) = −Γ(1 + θα)×

(∑
d∈D

exp

(
1

θ

(
βidt −

ασ2
idt

2

)))−θα
.

Noting that the above expected period payoff result relies on the assumption that i serves a contin-
uum of clients, rather than the actual volume of clients served, a doctor serving a measure Rit > 1
of clients obtains a level of expected utility proportional to that above,

Wit(βit,σit) = −Rit × Γ(1 + θα)×

(∑
d∈D

exp

(
1

θ

(
βidt −

ασ2
idt

2

)))−θα
,

which follows due to the ex ante homogeneity of clients in the model.
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notice that the distribution of git may be characterized as follows,

Git(x) ≡ Pr[git ≤ x]

= Pr

[
max
d∈D

{
αβidt −

α2σ2
idt

2
+ αεdt(νi)

}
≤ x

]
=
∏
d∈D

F

(
x

α
− βidt +

ασ2
idt

2

)

=
∏
d∈D

exp

(
− exp

(
− x
α + βidt −

ασ2
idt
2

θ

))

= exp

(
− exp

(
− x

αθ

)
×
∑
d∈D

exp

(
1

θ

(
βidt −

ασ2
idt

2

)))

= exp

(
− exp

(
−x+Hit

αθ

))
,

where Hit ≡ θα ln
∑

d∈D exp
(

1
θ

(
βidt −

ασ2
idt
2

))
. Thus, Git is a Gumbel distribution with shape

parameter θα and location parameter Hit, implying

Wit(βit,σit) = Eε[− exp(−git)]

= −E[exp(−git)]

= −E[exp(zgit)|z=−1]

= −Γ(1 + θα)× exp(−Hit),

where the last line uses the moment generating function of the Gumbel distribution. Adding the

definition of Hit, we thus arrive at

Wit(βit,σit) = −Γ(1 + θα)×

(∑
d∈D

exp

(
1

θ

(
βidt −

ασ2
idt

2

)))−θα
.

Noting that the above expected period payoff result relies on the assumption that i serves a contin-

uum of clients, rather than the actual volume of clients served, a doctor serving a measure Rit > 1

of clients obtains a level of expected utility proportional to that above,

Wit(βit,σit) = −Rit × Γ(1 + θα)×

(∑
d∈D

exp

(
1

θ

(
βidt −

ασ2
idt

2

)))−θα
,

which follows due to the ex ante homogeneity of clients in the model.
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