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Abstract

We offer new evidence on the effects of school facilities spending on student and neighborhood

outcomes, linking data on new facility openings to administrative student and real estate records

in Los Angeles Unified School District (LAUSD). Since 1997, LAUSD has built and renovated

hundreds of schools as a part of the largest public school construction project in US history.

Using an event-study design that exploits variation in the timing of new school openings, we

find that spending 4 years in a new school increases test scores by 10% of a standard deviation

in math, and 5% in English-language arts. This in part reflects non-cognitive improvements:

Treated students attend four additional days per school year and teachers report greater effort.

Effects do not appear to be driven by changes in class size, teacher composition, or peer com-

position, but reduced overcrowding plays a role. House prices increase by 6% in neighborhoods

that receive new schools. Real estate capitalization is greater than program cost, implying a

willingness-to-pay in the range of 1.2 to 1.6 per dollar spent.
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1 Introduction

There has been a longstanding debate among educational policymakers and researchers over the

productivity of school spending, with little consensus as to whether and under what circumstances

increased expenditures improve student outcomes (e.g. Hanushek 2006). Much of the empirical

literature has focused on instructional inputs, with considerably less attention paid to the role

of capital expenditures. However, capital expenditures comprise an important component of US

public school spending: in the 2013-2014 school year roughly 8% of total expenditures went towards

direct capital outlays, and an additional 9% was spent on operation and maintenance of existing

facilities and equipment (McFarland et al., 2017). Despite the magnitude of this spending, one-

quarter of U.S. public schools are in fair or poor condition1 (Alexander and Lewis, 2014), and

estimates of the funding required to address substandard facilities conditions range in the hundreds

of billions nationally (Crampton et al., 2001; Arsen and Davis, 2006; Filardo, 2016)). Substandard

facilities are thought to be a particular problem in low-income districts, which have schools that

are more likely to be in fair or poor condition and/or rely on temporary rather than permanent

buildings (Alexander and Lewis, 2014), and on average spend 15% less on capital investments than

do high-income districts.

In this paper, we address three fundamental unanswered questions. First, do increases in school

capital expenditures improve student outcomes? Second, if they do, what are the mechanisms

through which capital expenditures improve outcomes? And third, how are these capital expendi-

tures valued in the real estate market and what are their welfare implications? We investigate these

questions in the context of the largest public school capital construction program in U.S. history.

From 2002 to 2017, Los Angeles Unified School District (LAUSD) constructed over 150 new schools

and renovated hundreds more. Using administrative student and property sale records, we provide

precise and comprehensive estimates of the causal impact of school facility expenditures on student

outcomes and neighborhood house prices. Finally, we use these estimates to evaluate the welfare

consequences of the construction program for LAUSD residents.

The empirical literature on capital expenditures offers little guidance with regard to these

questions. Several studies find no or imprecise effects of capital expenditures on student achievement

(see Cellini et al., 2010; Bowers and Urick, 2011; Goncalves, 2015; Martorell et al., 2016), while

others find some evidence of positive impacts on student achievement, often only in reading and

English-language arts (Welsh et al., 2012; Neilson and Zimmerman, 2014; Hong and Zimmer, 2016;

Conlin and Thompson, 2017; Hashim et al., 2018). Other studies have looked at longer-run impacts

1“Fair” condition means that the facility meets minimum needs, but requires frequent maintenance and has other
limitations. “Poor” means that the facility does not meet minimal requirements for normal school operation.
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of school construction programs in other countries that expand access to education (e.g. Duflo, 2001,

2004), measuring the effects of more general increases in human capital accumulation. Despite

inconclusive evidence in the literature and general skepticism among economists, resource-based

capital expenditure programs continue to be used by policymakers at the state and local level as

tools to improve schools and reduce achievement gaps.

We find robust evidence that attending newly constructed schools in LAUSD leads to large,

significant gains in cognitive and non-cognitive student outcomes. Relying on within-student vari-

ation in the timing of exposure to new facilities, we estimate that spending four years in a new

school facility leads to a 0.1 standard deviation increase in standardized math scores and a 0.05

standard deviation increase in English-language arts (ELA) scores. In addition, students who at-

tend newly constructed schools attend on average four additional days per academic year, and

score 0.06 standard deviations higher on teacher-reported measures of student effort. We provide

additional evidence of smaller indirect test score and attendance gains for students at existing fa-

cilities who experienced reductions in overcrowding induced by peer outflows to newly constructed

schools. These indirect effects allow us to decompose the relative contribution of overcrowding

reductions to the observed student gains at newly constructed schools. Examining the mechanisms

through which these effects are mediated, we conclude that the majority of the effects were due

to improved facility quality, while reduced overcrowding was also an important factor. We find no

evidence that student sorting, changes in teacher quality, principal quality, peer quality, or changes

in teacher-pupil ratios were positive contributing factors.

We find significant valuation of school quality improvements in the real estate market. Using

administrative records on property sales, we find that house prices increase by 6% in neighborhoods

that receive new school facilities. Effects accumulate in the first three years following construction,

with little evidence of anticipatory house price increases. House prices in nearby neighborhoods are

mostly unaffected, although we find some evidence of negative house price spillovers for properties

very close to, but outside new school catchment areas. We use a simple model to assess the house-

hold valuation of a redistributive public education capital expenditure program. From this model,

we derive an expression with a direct difference-in-differences analogue to assess the valuation of the

spending program using relative price changes between neighborhoods. Reduced-form estimates of

the change in relative house prices imply a household willingness to pay ratio in the range of 1.2 to

1.6 per dollar spent, providing evidence that the total real estate capitalization resulting from the

program exceeds the total program cost, and that educational capital had been under-provided.2

2The efficient choice of local public expenditures is typically defined by the “Samuelson condition” (Samuelson,
1954): spending levels will equate the marginal rate of transformation of the public good and the sum of the marginal
rates of substitution between numeraire consumption and the public good. Here, a WTP ratio greater (less) than one
suggests under-provision (over-provision) of local educational capital expenditures. It is worth noting, however, that
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Our study contributes new evidence to a few related literatures. First, we provide robust esti-

mates of both direct and indirect student-level effects from facility improvements using variation

induced by the largest school capital construction program in the United States. We estimate direct

effects on treated students, as well as indirect effects on students who are affected by cohort-peer

outflows from existing to new school facilities. Most prior studies examine effects of capital expen-

diture programs on district-level average outcomes, often finding mixed and imprecise estimates of

effects on student outcomes (Cellini et al., 2010; Martorell et al., 2016; Hong and Zimmer, 2016;

Conlin and Thompson, 2017; Goncalves, 2015). These studies do not measure effects on directly

treated students, and are generally underpowered to detect modest but meaningful effects. Most

school districts consist of at least several school campuses, and thus programs to construct new

schools or renovate existing ones often only affect a subset of students.3

There are two notable exceptions in the literature that examine direct effects on students ex-

posed to new school facilities. Hashim et al. (2018) focus on subset of new school openings in

LAUSD in 2010/2011,4 and find evidence of gradual positive effects on both math and ELA scores.

Neilson and Zimmerman (2014) examine a similar construction boom in New Haven, Connecti-

cut, and find evidence of positive effects on reading but not math scores several years after school

construction. In both cases, many fewer students and schools were impacted. We build on this

prior work by leveraging the scale of the entire LAUSD school construction program, allowing us

to carefully decompose effects and examine specific mechanisms. New school openings do not ex-

ist in a policy vacuum, and involve many other contemporaneous changes in peers, teachers, and

administration, all of which we are able to examine directly. In addition, we examine outcomes

of students who experience cohort-level peer outflows induced by new school openings, providing

new evidence of indirect spillover effects of new facilities through reduced overcrowding at nearby

existing schools.

Second, we contribute to the literature estimating the capitalization of school quality in the

real estate market. We provide some of the first large-sample evidence of localized house price

capitalization of dynamic changes in school quality. Much of the work in this literature has esti-

mated the capitalization of static differences in school quality, and thus does not provide direct

estimates of how changes in school quality are valued in the real estate market. Several papers,

educational inputs are not pure public goods; schooling is both excludable and subject to congestion. In Sections 3
and 8 we provide a more detailed discussion of program efficiency and welfare implications.

3See Figure A1 for a comparison of the estimated test score effects by per-pupil spending change for prior studies
of school capital expenditures.

4Specifically, they study the effects of the initial two cohorts of “strategic” new school openings, a subset of the
new schools constructed in LAUSD after 2010 as a part of the district’s Public School Choice Initiative. The operation
of these schools was more autonomous than traditional district schools, and involved other non-standard redesign
features.
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most notably Black (1999) and Bayer et al. (2007) exploit boundary discontinuities within narrowly

defined neighborhoods to estimate the market valuation of school quality. Other papers have used

variation across district boundaries (e.g. Barrow, 2002; Barrow and Rouse, 2004), within-district

boundary changes (e.g. Ries and Somerville, 2010; Collins and Kaplan, 2017), school “report-card”

grades (Figlio and Lucas, 2004), and public reporting of teacher value-added scores (Imberman and

Lovenheim, 2016). Static differences in house prices between school zones include parental prefer-

ences for school quality, peer quality, and racial composition; these estimates are less informative

for understanding the dynamic effects from policy changes.

A handful of recent papers provide estimates of real estate capitalization of changes in school

quality using variation induced by capital expenditure policies, generally finding positive effects

after several years (see Cellini et al., 2010; Goncalves, 2015; Conlin and Thompson, 2017; Neilson

and Zimmerman, 2014). We build upon these prior studies by more precisely examining the dy-

namics of these changes, over both time and space. Moreover, we study a (mostly) locally funded

program that was inherently redistributive: local property taxes were raised districtwide to fund

new schools in only one-third of neighborhoods. We directly relate our estimates of within-district

relative price changes within a simple spatial equilibrium model, allowing us to directly assess the

efficiency of program spending.

Finally, we contribute generally to the broad literature and debate over the efficacy and efficiency

of resource-based education policies. Economists have long been skeptical of the productivity of

such investments (e.g. Hanushek, 1997), although recent studies of state-level school finance reforms

have provided evidence that broad based expenditure programs can improve educational outcomes

(e.g. Jackson et al., 2016; Lafortune et al., Forthcoming; Candelaria and Shores, 2015; Hyman,

Forthcoming), labor market outcomes (Jackson et al., 2016), and intergenerational mobility (Biasi,

2017). Our study of the LAUSD school construction program provides additional evidence that:

(1) school expenditures – even those dedicated to capital costs – can improve student cognitive and

non-cognitive outcomes; (2) such programs can induce increases in aggregate real estate prices in

excess of program cost.

There are two important caveats to these conclusions. First, as our study focuses on the out-

comes of one large district, our results may not generalize to other districts or states. However,

many large, urban districts as well as smaller districts serving disadvantaged students face con-

sistently underfunded and worse quality facilities relative to more affluent districts (e.g. Filardo

et al., 2006). Our study is directly applicable to these contexts. Second, an important feature

of the LAUSD program was the reduction of overcrowding and the expansion of available school

facilities. We find some evidence of larger gains for students coming from previously overcrowded
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schools. Our estimates are therefore likely to represent upper bounds on possible effects in districts

with stable or declining enrollment seeking to replace, rather than expand the school capital stock.

Importantly, overcrowded school facilities are not unique to LAUSD; over 25% of California public

schools are designated as overcrowded (Rogers et al., 2009), and thus our results are relevant to

many school districts facing similar constraints.

The paper proceeds as follows. In Section 2 we detail the context for our study and discuss

specific details of the LAUSD program. In Section 3 we outline a simple theoretical framework to

motivate our analysis and interpretation of house price changes. In Section 4 we briefly describe each

of the data sources we use. Section 5 outlines the empirical specifications and quasi-experimental

setup we use to estimate program effects. In Section 6 we present the student-level results, and

discuss mechanisms and indirect effects. In Section 7 we present house price results, and examine

potential spatial spillover effects. Section 8 provides a discussion of results, and an assessment of

the benefits, costs, and welfare implications of the program. Finally, in Section 9, we conclude with

a brief summary of results, their implications, and their generalizability.

2 Context of Study

LAUSD is the second largest school district in the United States, serving 747,009 students at its

peak in the 2003-2004 school year. It enrolls roughly 10% of all public K-12 students in California.

Like nearly every large urban school district in the US, it is majority-minority, and serves students

who are much more disadvantaged than the typical US public school student. The district itself

encompasses 26 cities in total, including the City of Los Angeles, as well as other nearby “gateway”

cities and some unincorporated areas within Los Angeles County. Some of the more affluent areas

in LA County, including Beverly Hills and Santa Monica, operate separate school districts for their

residents. Relative to the rest of California, students in LAUSD are underachieving: in 2002 the

average student scored roughly 28% of a standard deviation below the state mean in English-

Language Arts (ELA) and roughly 21% of a standard deviation below the state average in math.5

As of the early 2000s, LAUSD’s capital stock had fallen well below current needs. As shown in

Figure 1, no new schools were opened between 1975 and 1996, and the average student attended

a school that was over 60 years old in 2000. Many were in extremely poor condition. In a 1999

review of the facilities practices of LAUSD and other California districts, the California “Little

Hoover Commission”, an independent oversight body, reprimanded the district for gross misman-

agement and noted in particular that LAUSD school facilities were “overcrowded, uninspiring and

5Scores from the CST ELA exam in grades 2-11, and the CST math exam in grades 2-7.
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unhealthy”, and that “Researchers have attempted to gauge the link between the quality of school

buildings and the quality of learning. In Los Angeles, however, this link is obvious. In some

classrooms, there are twice as many children as there are desks.” (Terzian, 1999) Classrooms were

often non-functional, with broken and missing equipment, and school facilities sometimes lacked

adequate restrooms.6 Inadequate climate control was additionally a major source of distraction;

classroom temperatures upwards of 90 degrees fahrenheit were not uncommon. One teacher noted

that “... we had roaches, ants, an air conditioner that barely worked, no sink [...] and barely any

storage for classroom materials.” (Fuller et al., 2009)

The schools were also severely overcrowded, as the district’s enrollment had increased roughly

10% since 1975 (Figure 1). Nearly 25,000 students were bused daily to faraway schools to relieve

capacity constraints, and roughly half of students attended schools that operated on Òmulti-trackÓ

calendars that staggered the school year to use the facility year-round and thereby accommodate

as many as 50% more students than could be served at any single time. Even with these measures,

many schools relied on lower-quality portable classrooms, and even converted gymnasiums, libraries,

and computer labs into classroom space. This also severely limited student access to extra-curricular

opportunities. Rapid depreciation of facility condition due to continued overuse compounded these

issues.

Between 1997 and 2007, voters in Los Angeles approved a series of bonds dedicating over $27

billion in local and state funding to the construction, expansion, and renovation of hundreds of

schools. This was the largest public infrastructure program in the U.S. since the interstate highway

system (Fuller et al., 2009). The first new school was completed in 2002, and over the next 15 years

nearly 150 new school facilities were constructed in LAUSD, totaling over $10 billion in capital

expenditures. Many more schools were renovated, modernized, or received additions that increased

school capacity. By 2012, over 75,000 students attended a newly constructed school (see Figure

A2), less than 1% of students remained on a multi-track calendar (see Figure A3), overcrowding

had been effectively eliminated, and there was no longer widespread busing of students to distant

schools.

After the first bond authorization in 1997, the district began by identifying overcrowded schools

and attendance areas. Designated search areas were defined for each of these locations, and con-

struction sites were selected from within these areas primarily based on site feasibility (e.g. size,

location, accessibility), cost of acquiring land, environmental concerns, and local community en-

gagement. By 2001, nearly all new school sites had been identified, although the process of acquiring

land, securing adequate funding, negotiating with local stakeholders, meeting environmental regu-

6For example, one high school of nearly 2000 students had only one functioning bathroom.
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lations, and designing and constructing schools resulted in a staggered delivery of new facilities over

the next decade. It is this plausibly random variation in the timing of openings, induced primarily

through idiosyncrasies in the construction process, which we exploit to estimate the effect of new

schools on student and neighborhood outcomes. We will provide a comprehensive discussion of our

empirical approach and identification assumptions in Section 5.

In this paper we focus on new school facilities completed between 2002 and 2012, for which

we have detailed project data matched to administrative student data. A database of capital

projects in LAUSD, including measures of project cost, size, completion timeline, and location, was

constructed from records listed publicly by the LAUSD Facilities Services Division (FSD). The data

cover all major projects and new school constructions with a preferred site designated between 1997

and 2011,7 and include over 500 capital projects totaling nearly $17 billion in planned or realized

spending. We restrict attention only to large new school construction projects, defined as those

that created over 100 new seats and/or cost at least $10 million.8

Summary statistics for the new school projects are presented in Table 1. In total, there were

143 new schools built as a part of 114 new school campuses. In some cases, a new school campus

comprised several new schools, either because the site was combined to house both elementary and

middle (or middle and high school students), or because magnet or alternative schools serving the

same grade levels were housed on the same campus. The median project cost $57 million and

created about 800 new student seats, with several projects costing in the hundreds of millions of

dollars.9 Projects typically took two years to construct, and were complete roughly 5 years after

the site had been designated by the district. In total, the projects we study in our data cost $9.17

billion (roughly $6,000 per household or $15,000 per pupil), the majority being funded from the

various local bonds that were passed in and after 1997.

Figure 2 shows the time series of educational spending in LAUSD relative to the other nearby

districts in LA County. Panel A shows per-pupil capital expenditures, while panel B shows per-pupil

instructional expenditures. Capital expenditures in LAUSD and in other LA County school districts

increased similarly during the 1990s, and prior to the passage of the first school construction bond

in 1997, capital expenditures were slightly lower in LAUSD (roughly $500 per pupil) than in the rest

of LA County (roughly $750 per pupil). The magnitude of the program is clearly seen in panel A:

7Projects not yet constructed by the end of 2011, but that were already in the planning phase, are included.
8We do not examine effects for the small number of projects for school campuses that already existed in the first

year of the student sample (e.g. major additions). In a few instances, students show up at a particular new school in
either the year before or after the listed completion year; we adjust the completion year to correspond to the student
administrative records in these cases.

9One controversial high school project, the Robert F. Kennedy Community Schools, cost nearly $600 million to
construct, becoming the most expensive public school ever built.
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expenditures rose rapidly in LAUSD during the construction boom, to a peak of nearly $4000 per

pupil in 2009. Capital expenditures increased much less dramatically in other LA County districts

until 2005, before declining to roughly the same level in 2012 as in 1990. Conversely, instructional

expenditures saw much smaller increases during the new construction boom from 2002-2012, and

the relative difference between LAUSD and other LA County schools was essentially unchanged

during this period. Overall, the sample period from 2002-2012 was marked by a large increase in

capital expenditures, without a meaningful increase in instructional educational expenditures in

absolute or relative terms.

Figure 3 shows the attendance zones for new and existing school facilities in 2012. As can be

seen in the figure, new schools at all levels were concentrated in East Los Angeles, where students

are predominantly Hispanic and schools were previously the most overcrowded and in need of

repair. Schools in East LA serve students who are socioeconomically disadvantaged; for example,

the median school in the areas most heavily affected by new school construction serves a student

population where fewer than one-fifth of students have a parent with any level of postsecondary

attainment.

New schools were filled quickly, typically reaching close to steady state enrollment within 2

years after construction. Students from nearby schools were reassigned based on redrawn school

assignment zones to the newly constructed schools. Switching students experienced drastic changes

in facility quality: they switched from schools that were on average 70 years old and had substan-

tial physical deficiencies.10 These student outflows also generated substantial changes in school

environments for those students who “stayed behind” at existing facilities. New school facilities

enabled the district to reduce overcrowding and eliminate multi-track calendar schedules at both

new and nearby existing schools. Our main analyses will focus on the students who switched to

new facilities, as induced by the change in school assignment in the year of construction completion.

Here, effects are estimated relative to a control group consisting of all other students in LAUSD,

most of whom were unaffected by peer outflows to new facilities. Later, in Section 6.5, we will

use an analogous identification strategy to examine changes in outcomes for the indirectly treated

students who stayed behind at existing schools.

3 Theoretical Framework

The LAUSD school construction program induced dramatic changes in the physical and educational

environment of district schools. By the end of 2012, roughly one-third of residential properties

10Among switching students, the average ratio of the cost of facility deficiencies to current replacement value of
prior schools was 0.4.
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within district boundaries were assigned to a school zone for a newly constructed school facility at

least one level (i.e. elementary, middle, or high school). Improved school facilities can affect students

in a number of ways. Reduced overcrowding and improvements in the physical school environment

can have direct effects on student learning through reduced distraction11 and improved health.

Better facilities may improve student motivation and effort, leading to indirect improvements in

student learning. Improved facilities may also improve teacher motivation and health, as well as help

to attract and retain higher quality teachers (e.g. Buckley et al., 2004; Uline and Tschannen-Moran,

2008). Beyond direct and indirect effects on student learning, educational capital investments

affect dimensions of the school environment that improve the amenity value of a school to both

students and parents. Insofar as parents value improvements in educational quality and the physical

amenities of a school campus, local real estate prices will respond to these changes. To fully

evaluate the many potential impacts induced by the construction program, we use local changes in

equilibrium housing prices to identify revealed preferences for educational spending changes.

The school construction program was funded primarily through local bond initiatives, which

increased property taxes throughout the district to fund new school constructions only in a subset

of district neighborhoods. Typical analysis of the valuation of local public goods relates changes

in real estate prices to changes in the provision and tax-price of public goods. When educational

spending increases are valued more than associated changes in taxes, real estate prices will rise, and

vice versa. Importantly, however, only a subset of households receive additional school spending (in

the form of capital spending on new school construction), meaning that the implied valuation will

necessarily be asymmetric: neighborhoods that pay increased taxes but do not receive new school

facilities should see prices fall, whereas prices will rise in neighborhoods in areas that receive new

facilities to the extent that the additional spending in valued greater than the loss in consumption

induced by the tax increase. We formalize this notion by examining the comparative statics of a

such a tax and expenditure change within a simple hedonic equilibrium model, borrowing heavily

from the models presented in Brueckner (1979), Barrow and Rouse (2004) and Cellini et al. (2010).

We begin by assuming there are N households, who derive utility from school amenities Aj , and

consumption c: Uj(Aj , c). Households can live in one of two neighborhoods: j ∈ {0, 1}. Households

in neighborhood 1 receive new school facility spending, while households in neighborhood 0 do not.

Denote the number of households in each neighborhood as Nj . New schools are funded by a tax τ on

households, and the local government faces the budget constraint R = τN . The local government

spends all of the revenues in neighborhood 1, and thus the per capita change in school funding

(denoted Rj) is:

11Student distraction due to externalities from disruptive peers has been proposed as a motivation for class size
effects (Lazear, 2001). Poor facility condition could cause similar disruptions that impede classroom learning.

9



R1(τ) =
N

N1
τ

R0(τ) = 0

To understand how the spending policy affects the level of school amenities, it is helpful to write

the school amenity value as a function of tax expenditures: Aj = A(Rj(τ)). Households receive

income y and face the budget constraint c = y− τ − pj where pj is the rental price of housing. We

can therefore write the household’s indirect utility function as V (Aj(Rj(τ)), y − τ − pj).

When neighborhood j provides higher utility than alternatives, willingness to pay for housing

there will be higher, prices will therefore be bid up. With homogeneous households, the equilibrium

market price of housing will equalize utility in all neighborhoods.12 A household’s willingness to

pay, or “bid”, for a given neighborhood is therefore implicitly defined by function Pj = P (τ).

Using the implicit function theorem, we can derive the change in neighborhood house prices, for a

marginal increase in τ :

∂Pj
∂τ

=

∂Vj
∂Aj

∂Vj
∂c

∂Aj
∂Rj

∂Rj
∂τ
− 1 (1)

Equation (1) shows that the change in prices for a tax increase is a function of the marginal

rate of substitution between the educational amenity and consumption, the marginal product of

educational amenities with respect to educational expenditures, and the concentration of total

tax receipts spent in a given neighborhood. In neighborhood 0, where R0 = 0, ∂R0
∂τ = 0. In

neighborhood 1, R1 = N
N1
τ , so ∂R1

∂τ = N
N1

. Therefore we have:

∂P0

∂τ
= −1

∂P1

∂τ
=

N

N1

 ∂Vj
∂Aj

∂Vj
∂c

∂Aj
∂Rj

− 1

12This is true in equilibrium because if a household would achieve higher utility elsewhere, it would move. More
generally, if we were to allow heterogeneity in preferences and/or income, the market price of a neighborhood would
be equal to the bid of the marginal consumer, and marginal households with the same preferences and income would
achieve identical utility.
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Intuitively, as households in neighborhood j = 0 receive no additional educational expenditures,

their marginal willingness to pay is exactly equal to the negative of the tax increase. For neighbor-

hoods that receive the additional spending, their willingness to pay is equal to the product of the

MRS and the marginal product of educational amenities with respect to expenditures, multiplied

by the per-capita increase in expenditures, minus 1. Taking the difference in the two price changes

yields:

(
∂P1

∂τ
− ∂P0

∂τ

)
=

N

N1

 ∂Vj
∂Aj

∂Vj
∂c

∂Aj
∂Rj

 (2)

Equation (2) shows that for a one unit increase in τ , relative prices will rise by the concentration

of spending multiplied by the marginal valuation of the additional educational expenditures. For

example, if households are evenly split between the two neighborhood types, relative prices will rise

by two times the marginal valuation of the additional expenditures for households. When spending

is at the efficient level, i.e. when the “Samuelson condition” holds, the aggregate marginal rates

of substitution over all households will equal the marginal rate of transformation, and relative

prices in neighborhoods that get public investments will rise by the concentration of spending

per tax dollar:
(
∂P1
∂τ −

∂P0
∂τ

)
= N

N1
. If prior spending levels were inefficiently low (i.e., if the

marginal rate of transformation of funding into amenity value was higher than the marginal rate

of substitution between amenities and consumption) and educational facilities had been under-

provided, (
∂Vj
∂Aj

/
∂Vj
∂c )

∂Aj

∂Rj
will be greater than one and prices will rise by greater than N

N1
, as marginal

households value the increase in expenditures more than the forgone consumption. Alternatively,

a relative price change of less than N
N1

implies that the additional spending is inefficiently high,

and that there had been over-provision of educational facilities.13 Equation (2) therefore motivates

an evaluation of the efficiency of the construction program using relative price changes between

neighborhoods that received new schools and those that did not. Difference-in-differences estimates

of price changes in response to school constructions will approximate (2) and provide a useful

benchmark for evaluation of the program, which we will return to in Section 8.

Changes in real estate prices are informative about the product of the MRS between educa-

tional amenities and consumption, and the marginal product of additional capital expenditures.

Examining the direct impacts of capital expenditures on student outcomes allows us to further

understand ∂Aj/∂Rj , the productivity of additional school resources. Assuming all of the amenity

13Over- or under-provision of educational facilities may result from allocative inefficiencies, where the district
provides an inefficient level of facilities, or from productive inefficiencies, where the district does not minimize costs.
In this paper we will abstract from this distinction when evaluating the overall efficiency of the expenditure program.
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value of new schools comes through test score improvements, estimates of the treatment effect of

attending new schools on test scores can be directly interpreted as a (non-marginal) approximation

of this marginal product. Under this assumption, a direct comparison of difference-in-differences

estimates of (2) and estimates of ∂Aj/∂Rj using student data allow us to recover plausible estimates

the MRS for improvements in school quality for marginal parents. However, as discussed earlier,

test scores likely only capture a portion of the amenity value associated with new school facilities;

any such estimates will therefore represent upper bounds on the parental valuation of test score

improvements.14

4 Data

4.1 Student data

To study the effects of increased capital expenditures on student outcomes, we use administrative

records from LAUSD from the 2002-2003 school year to the 2012-2013 school year. Every student

who attended LAUSD during this time period is included, and the data allow for longitudinal links

across years for students who remain in the district. These data provide one record per student-

year with information on student grades, test scores, demographics, attendance records, school

assignment, and teacher assignments.15 Demographics include gender, race, language spoken at

home, parental education, and eligibility for free or reduced price lunch. Students in grades 2-11

are administered the California Standards Test (CST) annually in math and English-language arts

(ELA). In each of grades 2-7, students take the same grade-level math exam; however, beginning

in grade 8 the particular test depends on the student’s particular math course enrollment. For the

CST ELA exam, exams do not depend on a student’s enrollment.16 To ensure comparability of

scores across students, we focus only on CST math scores for grades 2-7 and CST ELA scores for

grades 2-11. Test scores are normalized relative to the California-wide mean and standard deviation

reported in the California Standardized Testing and Reporting (STAR) documentation provided

by the California Department of Education.

Total annual attendance, measured in days, is recorded for each student.For elementary school

14Recent work using revealed preferences from school choice applications suggests no relationship between parental
school preferences and school productivity (measured by school test score value-added), once peer quality is taken
into account (Abdulkadiroğlu et al., 2017). This need not be inconsistent with our findings: to the extent that parents
value non-test score school improvements and/or new schools are a more salient signal of school treatment effects,
increased local education expenditures would generate positive relative price changes in equation (2).

15For some years and grade levels, data are included from both the fall and spring semesters; we collapse these
data to the annual level for comparability.

16Some students with limited English proficiency and/or individual education programs take alternative exams.
These students are excluded from all test score analyses.
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students, report card data contain teacher-reported measures of both achievement and effort in

different classroom subjects. These are reported on an ordinal scale from 1 to 4 for over one

dozen subjects. Scores pertaining to student effort are averaged within each student-year record

to construct a “effort” index. Scores pertaining to student achievement or proficiency are averaged

within each student-year record to construct a teacher-reported “marks” index. These indices are

then normalized to have mean zero and a standard deviation of one within each grade-year cell.

Data on teacher education, experience, age, and gender are available in all years, except 2009

and 2011. Teacher identifiers are also available for all years in the student data, and teachers can

be linked longitudinally using unique teacher IDs. However, teacher IDs are scrambled between the

secondary student and teacher demographic datasets, meaning that secondary school students are

less reliably linked to teacher demographic variables. In the student data, each elementary record

contains a single teacher identifier. Teacher-student links for secondary school are constructed using

student-level course data. Principal names are available for 85% of student-year observations,17 al-

lowing us to construct within-district measures of principal experience. Class size is constructed for

elementary school students by measuring the total number of students associated with a particular

teacher ID in a given year. For students in secondary school we do not compute class size as direct

classroom identifiers are unavailable.

Summary statistics for students are presented in Table 2. Column 1 shows the average demo-

graphic characteristics for all student-year observations in the sample. Column 2 reports means

for students who never attend a newly constructed school during the sample period (i.e. “never

treated”). Column 3 reports means for “always treated” students, that is, those whose first year in

the data sample is at a newly constructed school. In practice, these are almost always kindergarten

students, although this also includes students who show up in LAUSD for the first time in other

grades. Columns 4 and 5 show means for switchers and “stayers”, respectively. The former are

students who switch to a newly constructed school at some point during the sample period, while

the latter are defined as students at schools where more than 10% of grade-year cohort switches to

a newly constructed school in the following year.

Over 85% of students in LAUSD are black or hispanic, and most students speak a language

other than English at home with their parents. Students in LAUSD are also much more socioeco-

nomically disadvantaged than the typical California school district: over three-quarters of students

are eligible for free and reduced price lunch and do not have a parent who attended any level of

postsecondary education. Importantly, treated students who attend newly constructed schools are

17Principal names are listed at the school-year level for all but two years of our data. For these school-years with
missing principal names, we assign a school its principal from the prior year if the school has the same principal in
both the prior year and the following year.
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even more likely to be black or hispanic, low-income, and speak a language other than English

at home. Comparing students who switch to new schools against their peers who stay behind at

old schools, the same pattern of selection emerges: student switchers are slightly more likely to be

low income and score more than 10% of a standard deviation lower in both math and ELA than

those students who stay behind at old schools. This selection pattern was a deliberate feature of

the construction program: new school facilities were targeted toward neighborhoods with the most

overcrowded and depreciated schools, and these school zones were overwhelming located in the

most underprivileged areas of the district. Comparing the stayers and switchers shows that even

within disadvantaged neighborhoods, new schools were located in slightly worse areas and their

catchment areas encompassed slightly lower performing and slightly more disadvantaged students.

4.2 Real estate data

To analyze the effects of increased capital expenditures on the real estate market in Los Angeles,

we use administrative records from the Los Angeles County Assessor’s Office. Records contain

information for each property in Los Angeles county, and includes data on the three most recent

sales,18 as well information on property characteristics from the most recent assessment. Properties

are matched to the assigned school district, school attendance assignment (for elementary, middle,

and high school) in each year, city, and tax rate area (TRA). The TRA is defined as the specific

geographical area within a county wherein each parcel is subject to the same combination of taxing

entities; the tax rate is therefore uniform for all properties in a given TRA. We limit attention only

to the years 1995 to 2012. Our database of LAUSD school assignment zones is only comprehensive

up to 2012; moreover, our project database of post-2012 school constructions is also incomplete.

For this reason, we exclude the years 2013-2016 from the baseline real estate analyses, although

results are robust to including these later years.19

We focus only on sales of residential properties with non-missing sales prices. We limit attention

to single-family residences. We exclude large parcels with greater than 1 acre of usable area. We

then drop the less than 1% of properties with missing information on property characteristics.

Data on property characteristics is available only for the most recent assessment; we therefore drop

to-be rebuilt properties (i.e. those sales with a negative building age) to avoid biases arising from

incorrect valuation of property characteristics. This final restriction is non-trivial; roughly 2.8% of

sales are excluded. Finally, we exclude the top 1% and bottom 1% of property sales in each year

to avoid results being affected by outliers or non-market-rate transactions.20

18As of April 2017, when we retrieved the data.
19See Appendix Table A6, where we compare results using all years to pre-2013 years.
20See Appendix Table A7 for a comparison of estimates with relaxed sample restrictions.
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Table 3 summarizes these data. Column 1 reports means for all property sales in the sample

within LAUSD district boundaries. Column 2 restrict to only those properties that ever reside in a

new school attendance zone, while column 3 reports means for those properties that never receive

a newly constructed school facility during the sample period. The average single-family residence

in the district was $565,801 (in 2015$) during the sample period. Comparisons of columns 2 and

3 show that new school neighborhoods are generally negatively selected in terms of house prices:

houses in new school zones sold for over $200,000 less than those in areas that did not receive new

schools. Overall, after sample restrictions, the assessor dataset covers 505,835 property sales for

350,299 unique properties, roughly one-third of which are located in neighborhoods that received

new schools during the construction program.

5 Empirical Strategy

5.1 Student Outcomes

To estimate the effect of attending a newly constructed school on student outcomes we use a gener-

alized difference-in-differences strategy that relies on variation in the year a student begins at a new

facility. Importantly, we only observe the school a student attends and not her actual neighborhood

school assignment. Moreover, families may systematically sort between neighborhoods based on

differences in preferences for educational quality and/or school amenities. If residential sorting or

school assignment non-compliance are correlated with underlying student-level characteristics, es-

timates of the effect of attending a newly constructed school facility may suffer from selection bias.

To address this, we rely only on within-student changes in outcomes over time, controlling for a

student fixed-effect to eliminate any biases due to time-invariant differences between students who

matriculate at different schools. The key identification assumption is that the timing of student

switching to newly constructed school facilities is as good as random, after accounting for fixed

differences between students, grades, and years. This leads to a flexible event-study specification

that allows for differential effects of attending a new school for each year a student outcome is

observed:

yit = αi + γg(i,t) + δt +

K∑
k=K

βk1(t = t∗i + k) + εit (3)

for an outcome yit, for student i in year t and grade g(i, t). We include fixed effects for student
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(αi), grade (γg(i,t)), and year (δt). Here, the coefficient βk captures the effect of attending a newly

constructed facility k years after the first year a student attends, t∗i . k = 0 in a student’s first year

attending a school, and thus βk estimates the effect of k + 1 years of exposure to a new facility.

Effects are measured relative to year k = −1, which is excluded in estimation. Endpoints are

binned at K = −3 and K = 3,21 which represent the average of student outcome yit three or more

years prior to attending a new school, or three or more years after first attending (i.e. after four or

more years of exposure to a new facility), respectively. Standard errors are two-way clustered by

both school and student, to account for any serial correlation within school and/or within student

outcomes over time. This design builds in placebo tests that identify violations of the identification

assumption that the timing of student switching is as good a random: for k < 0, nonzero coefficients

would be an indication of non-randomness in the timing of student switching.

Equation (3) estimates the effects of attending a new school separately by year. We can ap-

proximate the dynamics of these effects by estimating a more parametric version of (3) where we

allow for a new school to have an immediate effect, and for effects to phase in gradually over time.

Imposing linearity in the growth rate of student outcomes and defining t̃i ≡ t− t∗i , we can estimate

the following generalized difference-in-differences specification:

yit = αi + γg(i,t) + δt + β11(t̃i ≥ 0) + β21(t̃i ≥ 0) ∗ t̃i + β3t̃i + εit (4)

Here β1 captures the immediate effect of a new school facility in the first year a student attends,

t∗i . We include a linear trend in “event time”, t̃i, to control for any selection on trends into schools

opening in a particular year. β3 captures this selection, while β2 reflects effects of the new school

that accrue gradually over the time a student is exposed to a new school.22 As a student is

repeatedly exposed to improved facilities in each year she attends a new school, we would expect

effects to cumulate and increase over time with continued exposure: β2 > 0.

Estimates from equations (3) and (4) are presented in Section 6.1. Event-study estimates

from equation (3) indicate that the parametric specification in (4) does a good job of capturing

the dynamics of the effects on various student outcomes. Later, to more parsimoniously examine

heterogeneity, mechanisms, and robustness, we will focus on the estimates from equation (4), and on

even simpler versions that constrain β1 = β3 = 0. In our baseline estimation we use all student-year

observations in the relevant grades for a given outcome, with the sole exception of those students

21We choose K = 3 as few students attend a new school facility for more than 4 years in the data.
22We can directly interpret β2 as an impact on the gain score, often an outcome of interest in many studies of

educational interventions.

16



who attend multiple new facilities, who are excluded to avoid any confounds in the dynamics of

estimated treatment effects. Students who never attend new school facilities are included in the

regressions as controls,23 as are students who we observe at newly constructed schools in their first

year in the data (e.g. students who begin elementary at a newly constructed school, or transfer from

another school district). Inclusion of the latter group of students may induce bias if students on

different trajectories in outcome yit sort into LAUSD to attend school at a newly constructed facility.

Furthermore, students who “stay behind” at existing school facilities and see significant changes

in their school and peer environments are also included as controls. In Section 6.3 we compare

estimates where “stayers”, never treated, and always treated students are excluded; reassuringly,

results are very robust to the inclusion or exclusion of these students.

5.2 Real Estate Capitalization

As expected due to the design of the construction program detailed in Section 2, the location of the

new schools is negatively selected: areas that received new schools had lower house prices, lower

average incomes and educational attainment, and lower student test scores. However, conditional

on a neighborhood receiving a new school, the timing of new school constructions is plausibly

exogenous relative to any underlying neighborhood characteristics or trends. Thus, parallel to our

estimation of student effects, we estimate house price effects of the program in a dynamic setting

by examining changes in school quality induced by new constructions, relying on variation in the

exact timing of completion.

Specifically, we compare changes in house prices over time in neighborhoods that received new

schools, relying on variation in the exact year of school construction between these neighborhoods,

and controlling for neighborhood effects to account for any time invariant neighborhood charac-

teristics. Changes in prices reflect the present discounted value of current and future benefits of

new schools to households. Thus, we estimate the mean difference in house prices before and after

construction with following difference-in-differences specification:

ln(Pit) = αj(i) + δt + βNj(i),t +X ′itΓ + εit (5)

where Nj(i),t = 1[NewSchoolZonej(i),t = 1] is an indicator for a property sale occurring in a

new school attendance zone, after the date of the new school opening, for a given property i in

23Event-time indicators are set to zero for these students, who contribute only to the estimation of the year (δt)
and grade (γg(i,t)) effects in the regressions.
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neighborhood j(i) that is sold at time t. X ′it is a vector of property characteristics that includes the

number of bathrooms, the number of bedrooms, building square footage, square footage squared,

building age, age squared, effective age, effective age squared, usable lot area, usable lot area

squared, an indicator for the specific tax rate area, and an indicator for number of sales observed

in the data for specific parcel. αj(i) and δt are fixed effects for neighborhood and year, respectively.

We define neighborhoods as the elementary-middle-high school assignment triplet in the 2000-

2001 academic year, prior to the construction of any new facilities.24 In all house price specifications,

standard errors are clustered by neighborhood. Baseline specifications include only those parcels

that are ever assigned to the attendance zone of a newly constructed school. As long as the exact

timing of school construction within the set of receiving neighborhoods is uncorrelated with time-

varying neighborhood trends, estimation of equation (5) will yield an unbiased estimation of β.

In addition, we estimate specifications that also include “never-treated” properties as controls,

and specifications that control for year-by-high school zone fixed effects,25 to flexibly account for

differential trends in house prices between local areas.

If capitalization occurs prior to construction due to anticipatory effects,26 neighborhood house

prices may diverge prior to construction between those soon to receive new schools and those

receiving new schools in later years. Conversely, initial uncertainty by parents as to the quality of

a new school could lead to house price effects that gradually cumulate post-completion. Thus, we

also estimate more flexible event-study models, akin to equation (3), that estimate the difference

in house prices relative to the year prior to building occupancy:

ln(Pit) = αj(i) + δt +

K∑
k=K

βk1(t = t∗i + k) +X ′itΓ + εit (6)

In these non-parametric event study models, βk measures the effect of receiving a new school

in year t∗i k years after construction (or prior, where k < 0). Effects are measured relative to year

k = −1, which is excluded in estimation. We focus on a ten-year window, binning endpoints at

K = −6 and K = 3, which represent average house prices six or more years prior to construction

or three or more years after the year of construction, respectively.

In equations (5) and (6), identification of β assumes that trends in house prices are uncorrelated

with the exact timing of school construction, conditional on property-specific controls and controls

24See Figure A8 for a map of these neighborhoods.
25Here we use the high school zones from the 2004 school year, the year before the first new high school construction.
26Recall: new school locations were announced on average 5 years prior to school completion.
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for time-invariant differences between neighborhoods. This assumption could be potentially violated

if unobserved differences in the characteristics of those properties sold in a given year are correlated

with the timing of switching; for example, if houses with positive unobserved characteristics are

more likely to be sold within a given neighborhood post-construction than pre-construction. To

account for this potential source of bias, we can estimate equation (5) with property fixed effects,

controlling for time-invariant unobserved differences between individual properties:

ln(Pit) = αt + αi + βNj(i),t + εit (7)

In equation (7), estimation of β relies only on properties with repeat sales in the sample win-

dow. Repeat sales indices are commonly used in papers estimating dynamic capitalization in real

estate prices (e.g. Figlio and Lucas (2004)) to account for unobserved differences in property and

neighborhood characteristics. In practice, estimates of β are very similar in both equations (5) and

(7), implying that differences unobserved property characteristics are uncorrelated with timing of

construction and do not drive the estimated results. We find little evidence of differential house

price trends in the years prior to school construction. Moreover, effects accrue quickly, typically

within 2 or 3 years following construction. Therefore, we emphasize the simple linear differences-

in-differences estimate of β from equation (5).

6 Student Results

6.1 Student achievement

Table 4 reports estimates of equation (4) for math (columns 1-3) and ELA (columns 4-6) stan-

dardized test scores. Cumulative four-year test score effects estimates are reported in row 4. In

columns 1 and 4, a simple one-parameter specification is reported where only the change in the

slope of student growth is included (1(t̃i ≥ 0) ∗ t̃i). Here, the estimate on β2 is 0.029 (SE 0.007)

for math and 0.019 (SE 0.004) for ELA, implying that for each additional year a student attends a

newly constructed school facility her test score increases by 3% and 2% of a standard deviation in

math and ELA, respectively. The implied test score effect for a student who attends a new school

for four years is 0.086 (SE 0.021) for math and 0.058 (SE 0.011) for ELA. Columns 2 and 4 add in

indicators for attending a newly constructed school (1(t̃i ≥ 0)). Student achievement declines in

the first year of attending a new school, although these coefficients are small and insignificant for

both math and ELA test scores. Notably, the coefficient on the slope of student growth (β2) and
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the implied 4-year test score effect are essentially unchanged. Columns 3 and 6 add in a linear trend

in student event time. The coefficient on the linear trend is marginally significant for math, and

statistically significant for ELA. However, these coefficients are both minuscule: less than one-half

of one percent of a standard deviation per year in both math and ELA. More importantly, the

inclusion of the linear trend in the specification does little to affect the magnitude or statistical

significance of the coefficient on the change in trend, while the total implied 4-year effect declines

somewhat due to initial effects (β1) that are slightly more negative.

Figure 4 reports estimates of the event study coefficients, βk, from equation (3) for both math

and ELA test scores. Standard errors are two-way clustered by both school and student. Time

k = −1 is excluded; all effects are relative to the year before a student begins attending a new

school facility. Panel A reports estimated coefficients on standardized math scores. There is little

indication that students who switch to new schools have rising (or falling) scores relative to other

students prior to the switch. Then, in the first year at a new school, there is a small but significant

decrease of 3.8% of a standard deviation. This decline is short-lived, however: scores increase nearly

linearly with each successive year a student attends school in a newly constructed facility, relative

to other students who did not switch to a new school. After four or more years of attending a newly

constructed school, students score 10% (SE 2.6%) of a standard deviation higher. Estimates for

standardized ELA tests, reported in panel B, are quite similar. Students who attend a new facility

for 4 or more years score 5.2% (SE 1.4%) of a standard deviation higher in ELA. For both math

and ELA scores, the event-study figures indicate that the parametric specification in equation (4)

fits the data quite well: after an initial decline in the year a student transitions to a new facility,

test scores gradually increase, roughly linearly in years of exposure.

Both event study and linear difference-in-differences specifications show that student test score

gains accumulate gradually, after a slight decline in student performance in the year of the switch.

This pattern of gradual improvement is different from many other educational interventions con-

sidered in the literature, where effects tend to fade out over time. Improvements in school facility

quality are not a one-time intervention, however: students are continuously exposed to improved

facility conditions for every year in which they attend a given school. We would therefore expect

that achievement gains accumulate over time with additional years of exposure,27 even in the ab-

sence of initial disruption effects due to student-level switching costs28 or school-level inefficiencies

27The closest analogue is perhaps the STAR class size experiment, in which treated students were assigned to small
classes for up to four consecutive years. In STAR, the treatment effects grew after the first year, like here, but at a
slower rate. We see no sign here that the treatment effect is concentrated in the first year.

28Event study estimates for non-facility related student switches are reported in Figure A6. Estimates suggest that
“normal” switches are associated with disruption effects of similar magnitudes, which fade out over time. Importantly,
these switches are not associated with any short or long run student test score improvements. These findings are
consistent with results in Hanushek et al. (2004), who find evidence of short-run disruption effects with no-long run
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in the first few years post-construction.

6.2 Student non-cognitive effects

Table 5 reports analogous estimates for attendance (columns 1-3) and effort (columns 4-6). Unlike

test score outcomes, which measure a stock of accumulated knowledge, student effort is a flow, and

thus we would expect effects to occur immediately rather than accrue over time with continued

exposure. For this reason, in columns 1 and 4 we begin with one-parameter specifications where only

the coefficient for mean difference in the outcome post matriculation at a new facility (1(t̃i ≥ 0))

included. Columns 2 and 5 add a phase-in coefficient (1(t̃i ≥ 0) ∗ t̃i), and columns 3 and 6 include

a linear trend in student event-time. For student attendance, estimates in columns 1-3 imply

that most of the effect occurs immediately upon switching to a new school. In column 1, the

estimate of β1 is 3.97 (S.E. 0.55), meaning that student attendance increases by 4 days per year

at newly constructed schools. Adding the phase-in coefficient in column 2 picks up some of this

effect, reducing the coefficient on β1 slightly. Column 3 adds in a linear trend in event-time, which

does little to affect the estimates of β1 and β2. Estimates in columns 4-6 show a similar pattern

for teacher-reported student effort, which increases immediately upon a student’s switch to a new

school. In column 1, the point estimate is 0.061 (SE 0.017), implying a 6% of a standard deviation

increase in student effort at new schools. In columns 5 and 6 estimates of the pre- and post-trends

(β2 and β3) are both small and insignificant, and the inclusion of these coefficients has little impact

on estimates of β1.

Figure 5 reports event study estimates for student attendance and teacher-reported effort. Panel

A shows the change in annual days attended for students who switch to new schools. Upon switching

to a new school, students attend an additional three days per year. In the second year a student

attends a new school facility, this jumps to seven days. The effect tapers off somewhat in subsequent

years, although after four or more years of attending a new school facility, students attend on average

more than four additional days per academic year. Again, as with the student cognitive test score

effects, there is no indication of a prior trend in student attendance in the years prior to switching

to a new school facility; if anything, attendance appears to be declining slightly, although this trend

is minuscule and insignificant - a decline in annual attendance of less than one-third of a day per

year in the three years prior to switching.

Panel B shows the effect of switching to a new school facility on teacher-reported student effort

for elementary students. Upon matriculation into a new school facility, student effort increases

gains for students who switch schools within-district.
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by greater than 6% of standard deviation.29 As with attendance effects, the estimated increase in

effort occurs immediately upon switch with no indication of an increasing trend in effort in the years

prior to switching. This effect remains roughly constant with additional years of exposure, and is

statistically significant for the first three years a student attends a newly constructed facility. After

4 or more years of exposure to new elementary school facilities, the estimated effect on effort is

slightly smaller, around 5% of a standard deviation, and no longer statistically significant. Notably,

two years before attending a new facility, effort marks are roughly 3% of a standard deviation higher

than in the year prior to attending a new facility, which is significant at the 10% level. Of all baseline

event-study estimates, this is the only estimated pre-effect that is marginally significant, providing

additional justification for the identification assumption that the timing of student switching is as

good as random.

6.3 Robustness to sample treatment

Baseline estimates from one-parameter models for cognitive and non-cognitive outcomes in Tables

4 and 5 (columns 1 and 4) are reported in Table 6 for different sample definitions, varying the

set of students used as the control group for students switching to new schools. As test score

effects reflect the cumulative impact of multiple years of exposure to new schools, we compare one-

parameter estimates of the phase-in coefficients (β2) from models where we constrain β1 = β3 = 0.

Reassuringly, implied cumulative 4-year effects from parametric estimates in columns 1 and 4 of

Table 4 are indeed very similar to point estimates reported in Figure 4 for students who attended

new schools for four or more years. On the other hand, as we expect the flow of student effort and

attendance to increase immediately upon matriculation to a new school, we report one-parameter

estimates of the mean difference post-new school matriculation (β1) from models where we constrain

β2 = β3 = 0.

Column 1 repeats baseline estimates reported in Tables 4 and 5. Column 2 excludes students

who stay behind at existing schools when 10% or more of their cohort switches to a new school.

Estimated coefficients for ELA and days attended are only slightly larger, while estimates for math

and effort standardized scores are essentially identical.30 In column 3, we drop all students who

never attend new schools, using only “ever-treated” students. If students who switch to new schools

29Figure A5 also reports similar event-study estimates for teacher-reported student grades (in elementary school).
Effects are noisier and insignificant, but suggest improvements of similar magnitude in report card grades only after
the first year at a new school, which is qualitatively consistent with the observed patterns for test score effects.

30In Section 6.5 we specifically examine indirect effects on these students, finding evidence of small positive effects
on ELA scores and attendance. Since these students make up only a small fraction of the overall “never treated”
group in baseline regressions, we would therefore expect the magnitude of differences between columns 1 and 2 to be
very small in the presence of small indirect effects.
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are systematically different from those who do not, inclusion of never-treated students as controls

may induce bias (though our inclusion of student fixed effects would absorb differences in outcome

levels). However, this does not appear to be the case, as estimates are nearly identical for all

outcomes. Column 4 further excludes students who appear in the data sample in their first year

at a new school. Inclusion of these “always treated” students could be problematic if new school

constructions systematically induce students of different ability to enter LAUSD, perhaps from

private schools or from outside the district. As shown in column 4, estimated treatment effects

are, if anything, slightly larger when only switching students are included in the estimation sample,

implying effects are not generated by a resorting of students entering LAUSD to attend newly

constructed school facilities.

In column 5, we restrict the sample to include a balanced panel of students in event time. As

discussed in Section 4.1, ELA test scores are recorded for students in grades 2-11, and attendance

is measured for all grades. Math test scores are only included for grades 2-7, and effort marks

are only measured in elementary school (grades KG-5). Thus, for math and effort we include

students who have outcome data both one year before and one year after switching to a new school

facility. For ELA and attendance we need not be as restrictive, and use a balanced panel of students

with non-missing outcomes both 2 years before and after switching to a new facility. Estimated

treatment effects in column 5 are less precise, as expected given the reduction in sample size, but

point estimates are if anything slightly larger than those in columns 1-4. Results are robust to these

sample permutations, and we therefore conclude that baseline estimates including all students are

not biased by differential sample selection in event time.

6.4 Mechanisms

The pattern of estimated student effects provides consistent evidence that cognitive and non-

cognitive student outcomes improved at new school facilities. Are these improvements due to

the increased facility quality itself, or due to other changes in the school environment associated

with new school constructions? A thorough understanding of the mechanisms underlying student

gains is important if the LAUSD construction program is to inform school capital expenditure

decisions in other districts and institutional contexts. In this section we detail several facility and

non-facility related changes associated with new school facilities (Figure 6 and Table A1). We

examine heterogeneity in the results by prior school conditions to test whether these changes are

systematically related to the observed student gains (Table 7).31

31Note: results in Table 7 are estimated using only switching students; baseline estimates correspond to those
presented in column 3 of Table 6
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We find little evidence that changes in class size, peer quality, or teacher quality at newly

constructed schools can explain student improvements. In fact, we find that moving to a new school

is associated with slightly larger class sizes and slightly lower teacher and peer quality. We do find

that switching to a new school is associated with large reductions in overcrowding and increases

in total instructional days. We find suggestive evidence that student gains are larger for students

who switched from schools that were on multi-track calendars, for students who switched from

more overcrowded schools, and for students who came from schools with a high share of portable

classroom buildings. We find inconclusive evidence that students gains are larger for those coming

from older or more deteriorated facilities, although the magnitude of these prior differences is small

relative to the total change in facility quality for switching students.

6.4.1 Peer Composition

If students who switch to newly constructed school facilities are exposed to higher quality peers,

changes in peer quality could explain some of the observed effects. As discussed earlier and shown in

Table 2, students who attend newly constructed schools are more disadvantaged relative to students

in the rest of LAUSD. However, new schools could offer better peer groups than do other schools

in nearby neighborhoods. This could occur if new school boundaries were drawn within receiving

neighborhoods in a such a way as to increase the concentration of more advantaged students at new

school facilities. In addition, insofar as parents have some discretion to override school residential

assignment, one might expect that higher-SES parents from outside redrawn boundaries would

be more likely to petition to enroll their children in at schools with new and improved facilities.

However, empirically, this does not appear to be the case. Panel A of Figure 6 shows event study

estimates of peer quality, measured as the school (leave-out) mean predicted test score.32 Average

peer predicted scores fall significantly upon switching to a new school, and after 4 years at a

new school average peer predicted scores are (insignificantly) below their level prior to switching.

Columns 5 and 6 of Table A1 report estimates of the average peer differences associated with

switching to a new school. Column 5 shows the change in school proportion black and hispanic,

while column 6 reports the mean difference in peer predicted scores. Estimates show that students

who switch to new facilities attend more segregated schools, with a 2.7 percentage point higher

share of black and/or hispanic students. Consistent with Figure 6 panel A, peer predicted scores

are on average 2.4% of a standard deviation lower.

32Predicted scores are generated at the student-year level from a regression of contemporaneous ELA test scores
on a vector of demographic characteristics. Leave-out mean school-year predicted scores are then computed for each
student-year observation.
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6.4.2 Class size

Panel B of Figure 6 reports event study estimates for elementary school students where class size

is the dependent variable. At new schools, class sizes were actually somewhat larger: class sizes

increased by less than one-half of a student per teacher.33 Column 4 of Table A1 reports analogous

difference-in-differences estimates of the change in class size at new schools. On average, teachers at

new schools taught classes with 0.31 more students per teacher. The magnitude of this difference,

however, is quite small; roughly speaking, the district was approximately able to maintain similar

pupil-teacher ratios at new school facilities by transferring teachers to new facilities in roughly

equal proportion to students.

6.4.3 Multi-track calendar

One of the stated goals of the LAUSD school construction program was to eliminate the use of

multi-track academic calendars that required schools to continuously operate year-round. Schools

on multi-track calendars operate year-round and divide the students and staff into separate tracks,

which are staggered throughout the school year in an effort to increase overall facility capacity.

Moreover, in LAUSD, students at multi-track schools often had fewer instructional days per aca-

demic year.34

Before the construction program, half of LAUSD students attended multi-track schools. By

reducing overcrowding in neighborhood schools, district officials were able to begin new schools

on traditional two-semester calendars, as well as convert existing schools from multi-track back to

traditional calendars. Column 1, panel A of Table A1 and panel C of Figure 6 report difference-in-

differences and event study estimates of the likelihood of being exposed to a multi-track calendar.

Switching to a new school was accompanied by a 27 percentage point reduction in the likelihood

that a student was exposed to a multi-track calendar. This conversion also meant that many

students in new schools experienced additional instructional days: as reported in panel D of Figure

6 (and column 2 of Table A1) students switching to a new school had on average nearly 2 additional

instructional days per year, relative to the prior year at an existing school. Taking the baseline

estimate of 4 additional days attended per year from Table 5, this implies that almost half of the

observed attendance effect is mechanically due to a change in school calendar.

Student gains at new schools may be driven by increased instructional days and the conversion

33In fact, due to budget cuts in California during the Great Recession, LAUSD laid off roughly 25% of teachers
between the 2008 and 2010 school years, increasing class sizes across the district, particularly in grades K-3.

34Many of the year-round district schools operated on a multi-track calendar known as “Concept 6”, which increased
school capacity by up to 50% but at the cost of 17 instructional days (out of 180). The loss in instructional days was
made up by increased instructional time per day.
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back to traditional two-semester calendars. To examine this, we estimate separate treatment effects

by prior school calendar schedule (multi- or single-track) for each main outcome variable. Rows 2

and 3 (panel 2) of Table 7 report estimated effects for students who switched from a school on a

multi-track calendar or a single-track calendar, respectively. Results show that student test scores

and effort effects are larger for students who switched from multi-tracked schools, yet none of these

differences are statistically significant. For attendance, gains are larger for those students who

came from multi-track schools, and the difference in highly significant (p < 0.01). As previously

mentioned, this is driven largely by mechanical changes in the total number of instructional days.35

However, the overall attendance effect is not entirely due to the calendar change: even those

students who switched from single-track schools and saw no increase in total instructional days

attended 2.7 additional days of school per year after switching to a newly constructed school. It

is worth noting that students switching from schools on multi-track calendars also faced greater

overcrowding and worse facility conditions on average than those coming from single track schools;

these differences are therefore likely to represent an upper bound on the effect of converting from

a year-round multi-track calendar school back to a traditional two-semester calendar.

6.4.4 Overcrowding

Students who switched to new schools also experienced reduced overcrowding, which was another

primary motivation of the district construction program. Panels 3 and 4 of Table 7 present het-

erogeneity in estimated effects by two measures of overcrowding, where treatment effects are split

by whether a student is above or below the median among treated students on either measure in

the year prior to switching to a new school facility. The first measure, the number of students per

square foot of classroom space, gives a direct measure of the physical classroom capacity of a school.

The second, the share of permanent classrooms, measures the extent to which portable classrooms

are used to accommodate a school’s student population. Portable facilities are also often of much

worse quality, and have less functionality than traditional classroom space. The share of classrooms

in permanent vs portable structures therefore relates both to the level of overcrowding of a school,

and the underlying facility quality.

Results split by prior SQFT per pupil indicate mixed and generally insignificant differences:

gains are larger for ELA and attendance when coming from more crowded prior schools (i.e. a

low SQFT per pupil), but smaller for math and effort scores. Only the difference in attendance

is statistically significant; gains are large and significant for students coming from either above

35For students switching from multi- to single-track calendar schools, the average gain in total attended days was
approximately 4 days per year.
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or below median overcrowded schools for all but ELA scores. Estimates split by the share of

permanent classrooms show a more consistent pattern: effects for students coming from schools

with a low share of permanent classroom structures are larger for all outcome measures, and the

differences in ELA and effort scores are statistically significant. In fact, estimates for math, ELA,

and effort scores are statistically insignificant for students who came from schools with relatively

more permanent classroom space. This pattern of results suggests that reductions in overcrowding

are important but alone do not fully explain observed test score gains: there are few systematic

differences by prior SQFT per pupil, while differences by the prior share of permanent classrooms

additionally reflect fundamental improvements in facility quality beyond overcrowding.

6.4.5 Facility Condition

New school constructions induced drastic changes in the facility quality for students who switched.

Students who switched to new schools came from a school that was, on average, 70 years old (panel

A, Table A1) and had substantial deficiencies. Results split by the share of permanent classrooms

provided indirect evidence that observed student gains were larger for students switching from

schools that were of poor quality. In panels 5 and 6 of Table 7 we examine heterogeneity in

treatment effects by the age and physical condition (measured by FCI36) of a student’s prior

school. Results indicate that all student effects are larger for students switching from older schools,

although these differences are insignificant. Student test score and effort effects are very similar

between students switching from schools in above or below median condition, and the differences

are insignificant. Only for student attendance is the difference significant; students switching from

schools in relatively better condition (low FCI) actually saw larger attendance gains.

With the exception of estimates by the share of permanent classrooms, results presented in Table

7 provide inconclusive evidence of heterogeneity in student effects by prior facility quality. This

does not necessarily imply that facility quality improvements themselves were not important: the

variation in facility improvements within treated students is small relative to the change experienced

for any student switching to a new school. Moreover, these variables are imperfect proxies for “true”

facility quality, which we cannot directly quantify.

Overall, estimates in Table 7 suggest reductions in overcrowding and multi-track calendars may

explain up to half of observed student effects. Later, in Section 6.5 we will examine students who

stayed behind at existing school facilities and experienced significant peer outflows. These students

experience very similar reductions in overcrowding and multi-track calendars, yet for these students

36Recall: the FCI is the ratio of deficiencies to current replacement value. An FCI close to zero indicates a facility
is in good physical condition, whereas an FCI of greater than one indicates that a facility has deteriorated to the
point where the total cost of deficiencies is greater than the total replacement cost of the facility.
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we find much smaller effects, and only for ELA and attendance. Thus, taken together with results

presented here, we argue that at least half of the observed test score effects for switching students

are therefore attributable to the direct improvement in the physical school environment.

6.4.6 Teacher quality

Student gains at new schools could in part be due to systematic differences in teacher quality. New

school facilities provide improved working environments for teachers, and these amenities could

attract better quality teachers to these schools from either within or outside the district.37 Due

to budget cuts following the Great Recession, the district effectively stopped hiring new teachers:

prior to 2009, roughly 10% of the teachers in LAUSD in any given year were new entrants, while

afterwards this decreased to 4% or less. Even for those new facilities that opened before this

reduction in teacher hiring, the teaching staff was composed of greater than 80% existing teachers

who switched from elsewhere in the district. Following the reduction in teacher hiring, schools

opening in 2009 or later this proportion increased to over 90%. Thus, any differences in the quality

of new teachers is unlikely to explain a large share of the observed effects. However, new facilities

may have attracted relatively better teachers from within the district. Improved non-wage amenities

at new school facilities could have led to sorting of higher quality teachers into new schools. On

the other hand, priority for intra-district teacher transfers within LAUSD was allocated using a

tenure-based point system, which may not be systematically correlated with underlying teacher

quality (broadly defined).

Systematic teacher resorting would imply that student gains at new schools came at the expense

of students at existing schools; any within-district resorting of existing teachers would be zero-sum

in aggregate. To empirically assess whether differential sorting of higher quality teachers into

new school facilities explains any of the observed student gains, we compare differences in teacher

observables and test score value-added in Table 8. Panel A reports differences in teacher observables

at new schools. Students who switch to new school facilities have teachers who are, on average,

less experienced, younger, and slightly more likely to have a masters degree. Students at new

school facilities are also 5.4 percentage points more likely to have a new teacher in either math

or ELA. Observable teacher characteristics, however, are generally not highly correlated with test-

score based measures of quality. Thus, in panel B, we examine differences in test score value-added

for teachers at new schools.38

37Complementarities between facility quality and teacher effort and/or performance could also result in improved
teacher productivity at new schools. Unfortunately, we cannot directly assess this using our data, as any such
improvements could not be separately distinguished from general school- or student-level improvements.

38See Appendix B for an explanation of how teacher value-added scores are calculated at the teacher-year level.
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Standard value-added models can confound school and teacher effects. For example, new school

facilities could generate improvements in student attentiveness and/or teacher productivity, both

of which would result in gains in estimated teacher valued-added. However, student gains resulting

from school improvements would reflect improvements resulting from the new facility itself, and

not from variation in underlying (prior) teacher quality. Thus, to directly assess whether teacher

resorting explains any of the student gains, we focus specifically on switching teachers, for whom we

have an estimate of value-added based on student test score observations from their prior, existing

school facilities.

For these switching teachers, we compute the student-weighted average of prior value-added

scores, using only data from years a teacher taught at an existing school facility. Specifically, we

define VAprior
j ≡

∑ njt

nj
VAjt, where VAjt is the estimated value-added for teacher j in year t, njt is

the number of student observations for contributing to teacherj’s value-added score in year t, and

nj is the total number of students taught by teacher j (prior to switching to a newly constructed

facility). For each student-year observation, we assign the mean prior value-added score, averaged

over all teachers in a given school-year.39 Columns 1 and 2 of panel B report difference-in-differences

estimates of the change in mean prior value-added for students attending newly constructed school

facilities. Results indicate that students who switched to new schools experienced teachers with

lower test-score value-added scores than prior to switching. The point estimates are for both math

and ELA are small, although the estimate is more negative and statistically significant for ELA.

We find little evidence of positive restoring of existing teachers into new schools, but it could

still be the case that the new teachers hired into new schools were of differential quality. We cannot

directly compare contemporaneous value-added scores of new teachers at new and existing schools,

as this would confound student gains due to school-level facility improvements with improvements

in new teacher quality. However, under the assumption that new facilities affect novice and ex-

perienced teachers identically, we can assess the quality of new teachers by testing whether the

school-level gap in value-added scores between new and existing teachers is larger or smaller at

new facilities. We can decompose the estimated teacher effect to include the true teacher effect, a

new-school specific shock, and an unobserved error term:40

VAjst = µjt + θst + ηjst

39Results are nearly identical if we instead assign a student the prior value-added score of her specific teacher in a
given year.

40In Appendix B teacher-year value-added is defined as the average residual from a regression of student test
scores on polynomials in lagged test scores, demographic variables, and school variables: VAjt ≡ νj(i,t)t where
νit = yi,t − αt,g(i,t) −X ′itβ.
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Insofar as the effect of a new school in a given year, θst, is constant for all teachers, we can use the

gap between experienced and novice teachers at new schools to difference out the any differential

new school effects at the school by year level:

VA
GAP
st ≡ VA

New
st −VA

Old
st

= µNewjt − µOldjt + η̃st

We therefore assign each student the difference between the school-year average value-added of new

teachers and existing teachers. A positive school-level gap between new and existing teachers would

indicate that the new teachers at a school have higher value-added than the existing teachers, and

vice-versa. Thus, holding existing teacher quality constant, if new teachers hired into new facilities

are of higher quality, we would expect a positive coefficient on the gap.

Columns 3 and 4 report these estimates, where the dependent variable is the school-year mean

gap in value-added between novice and experienced teachers, VA
GAP
st . The point estimate for

math is small, negative, and insignificant. For ELA, the point estimate is positive and of larger

magnitude, but insignificant. Given that we find evidence of negative sorting of existing teachers

on value-added (µOldjt ≤ 0 in columns 1-2), the difference in point estimates between columns 1 and

3 and columns 2 and 4 would need to be positive to support an interpretation that newly hired

teachers were of higher quality at new facilities. As the estimated coefficients in columns 3 and 4

are small and noisily estimated we do not report a formal test of these differences. Results from

Table 8 panel B therefore provide little evidence that newly hired teachers were of higher quality

at new schools.

Overall, the evidence presented in Table 8 reveals that systematic differences in teacher quality

cannot account for observed student test score gains. As the overwhelming majority of students

at new schools were taught by existing teachers, point estimates from columns 1 and 2 of panel B

imply that student test score gains at new schools would have been roughly 15% larger in math

and 50% larger in ELA had teacher quality remained constant. The upper bound of the 95%

confidence interval for the math effect can rule out positive teacher sorting explaining more than

30% of the total effect from column 1 of Table 4. In the longer-run, it is still possible that higher-

quality facilities could attract and retain better teachers, although further research is necessary to

determine if this channel to improve teacher quality is empirically relevant.
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6.4.7 Principal quality

Improvements at new schools could be attributable to principal sorting and differential principal

quality between new and existing schools. Principals and school administration are important

inputs in education production, and recent work has shown that improved managerial skills among

principals can have positive effects on student achievement (Fryer, 2017). While we lack direct

measures of principal quality, we examine principal experience as a proxy. Using data on principal

names, we construct measures of within-district principal experience to test whether new schools

were more likely to have more experienced principals. On average, however, the opposite is true:

new schools employ principals who have roughly 0.5 years less experience in any given year. 65%

of new schools begin with a new principal that has no prior within-district experience; similarly,

of existing schools that switch principals during our sample, 64% hire a principal with no prior

experience. To more directly examine the change in exposure to principal experience for treated

students, we provide within-student difference-in-differences estimates in Table A3. Students who

switch to a new school are exposed to principals that are 14 pp (SE 2.1) more likely to be new as

a principal in LAUSD, and have 0.83 years (SE 0.146) less experience as a principal in the district.

While these are not direct measures of principal quality, we view this as compelling evidence that

principal quality does not mediate the positive effects we find, and that if anything, principal quality

may have been lower at the newly constructed schools.

6.5 Effects on staying students

Students who switched to new school facilities were not the only students to experience significant

school-level changes: student switches to new facilities induced cohort-level outflows from existing

facilities. Those students who stayed behind experienced reductions in overcrowding, conversion

from year-round multi-track calendars back to traditional two-semester calendars, and changes in

peer composition, but not improvements in facility quality. Thus, examining the effects of new

facility openings on the outcomes of students who stayed behind at existing facilities can shed

light on the relative importance of crowding vs direct facility quality effects in producing the

aforementioned estimated impacts on students at new schools.

We define “stayers” to be students for whom 10% or more of their school-grade cohort switched

to a newly constructed school facility.41 We then define event-time analogously for these students:

year “0” is the year in which a school cohort experienced a large outflow induced by a nearby new

school construction. We estimate effects for these students using the same event study methodology

41Appendix Figure A7 reports analogous event study estimates using a 20% threshold. This reduces the sample
considerably, but results are robust to alternative thresholds.
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for the main student effects presented in equations (3) and (4); because these cohort outflows were

induced by new facilities, estimates rely on the same variation in the timing of construction between

different students.

Panel B of Table A1 presents estimates of the changes staying students experienced after they

experienced a cohort outflow, analogous to estimates for switching students presented in panel A.

Students who switched to new schools are excluded from estimation; estimates are relative to a

control group of students in the same grade and year who have yet to experience a cohort outflow

shock, and never-treated students who experienced no significant peer outflow. Results indicate

that stayers experienced a significant decline in multi-track calendar usage and a significant increase

in the total number of instructional days per year. Both staying and switching students experienced

a roughly equivalent decline in multi-track calendars, while staying students actually experienced a

slightly larger increase in the total number of instructional days than switching students (2.3 days

vs 1.7 days). Class sizes decreased slightly for students who stay behind, by about one-third of a

student per teacher. Though significant, the magnitude of the effect is negligible.42 Columns 5 and

6 report changes in the average peer group. Consistent with the fact that switching students were

slightly more disadvantaged and lower-scoring than staying students, stayers see reductions in peer

minority shares and increases in predicted scores of peers due to cohort outflows to new facilities.

Taken together, these results suggest that small indirect effects would be likely, even in the absence

of facility improvements, due to the reductions in overcrowding, increase in instructional days,

improved peer quality, and slightly decreased class size.

Figure 7 shows event-study estimates of cognitive and non-cognitive outcomes for stayers. Stay-

ers see small increases in math (panel A) and ELA (panel B) test scores, although the math effects

show some indication of a pre-trend prior to the year of the cohort outflow to a new facility. The

increase in days attended (panel C) is immediate and significant - students attend roughly 4 more

days relative to the year prior to the cohort outflow. As was the case for switching students, much

of this increase derives from the reduced use of multi-track schedules in stayers’ schools. Panel D

shows estimates for standardized effort scores, for which the point estimates are all very close to

zero and insignificant.

Parametric versions of the estimates corresponding to equation (4) are reported in Table 10.

For each outcome, both one- and three-parameter estimates are shown. Columns 1 and 2 report

estimates for math test scores. Estimates in column 1 show no change in test score growth in the

years following the cohort outflow, while estimates in column 2 show that once pre-existing trends

are included, there is a small effect immediate effect that fades out within the following year. For

42Note that the effect is similar in (absolute) magnitude to the increased class size documented for switching
students in panel A.
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ELA (columns 3 and 4), the pattern is different, and the parametric estimates more closely align

with the event study estimates. Column 3 shows an 0.01 standard deviation increase in ELA test

score growth in the years following the cohort outflow. However, once the post indicator and trend

variable are included in column 4, all of the effect loads onto the post coefficient, with no ensuing

growth or fade-out of effects. This pattern of cognitive effects differs from that of students attending

new schools: effects accrue immediately, and either fade out (math), or remain constant (ELA).

Columns 5 and 6 report estimates for days attended. Stayers see a roughly 3.5 day increase in days

attended, which is robust to the inclusion of trend variables. Comparing these estimates to the

estimated 2.3 day increase in total instructional days from column 2 of Table A1 Panel B implies

that roughly two-thirds of the attendance effect is mechanically driven by increased number of days.

Columns 7 and 8 show no effects on teacher-reported effort.

Taken together, these results are suggestive of positive indirect effects induced by peer outflows

to new school facilities, but only for ELA test scores43 and total days attended.44 Attendance

effects are mostly driven by an increase in the total number of instructional days, and the residual

non-mechanical effect is roughly half the size as for switching students (1.3 vs 2.3 additional days).

These indirect effects are likely driven by reductions in overcrowding, improved peer quality, and

the switch from multi-track calendars to traditional schedules.

The small magnitude of effects relative to baseline effects on switching students implies that

reductions in multi-track calendars and overcrowding alone cannot explain the bulk of baseline

effects, as these changes were similar for students who stayed behind at existing schools. Moreover,

other notable changes in the school environment (peers, class sizes, and teachers) all went against

finding positive test score effects. This supports the conclusion that direct facility quality effects –

e.g. Increased concentration due to reduced distractions from inadequate heating, cooling, or other

aspects of the physical environment – account for a substantial portion of the new school effect

seen earlier.

7 Real estate capitalization

Next, we turn to the analysis of the impact of new school openings on local housing prices. In Table

10 we present difference-in-differences estimates corresponding to equations (5) and (7), while in

43McMullen and Rouse (2012) also find that reading, but not math test scores are adversely affected by school
facility overcrowding and congestion.

44Note that this is consistent with the evidence reported in Table 6, which showed only small increases in the ELA
and attendance estimates when the stayers were excluded from the control group (column (2)). Given that stayers
represent a small fraction of the control group, we would expect that the inclusion of stayers in baseline regressions
only produces a small downward bias in the presence of small positive indirect effects.
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Figure 8 we report event study estimates corresponding to equation (6). Panel A of Table 10 reports

estimates of the effect of new school constructions on house prices. Columns 1-5 report estimates

using fixed effects for school zone and property-specific control variables, which corresponds to the

specification in equation (5). Columns 6 and 7 report estimates of equation (7) using property fixed

effects.

Column 1 reports estimates using all properties in LAUSD and basic year and neighborhood

effects. The point estimate is negative and insignificant, which indicates that neighborhoods in

areas that did not receive new schools saw, if anything, larger increases in house prices during the

sample period. However, using uniform year effects for all of LAUSD may confound the effects of

differential price trends and shocks in different areas of the city and surrounding areas. Recall that

the new schools are concentrated in East LA, where baseline prices were low and poverty rates high

relative to the rest of the district. For example, if house prices in more affluent areas were already

growing at a higher rate than those in less affluent areas (where the new schools were mainly built),

difference-in-differences estimates of the effects of new schools could be biased downwards. Rather

than impose parametric trends for each neighborhood, in column 2 we substitute year effects for

year-by-high school zone45 effects to more flexibly account for any differential local house price

trends or changes. The point estimate flips sign and is statistically significant, implying that house

prices rise 6.0% (SE 1.8%) post construction in neighborhoods that receive new schools, relative to

nearby property sales in the same year within the same initial high school attendance area.

Properties that are very far from new school zones are included as “never-treated” controls in

columns 1 and 2, and even with the inclusion of year-by high school zone effects we may still be

worried about bias from the inclusion of these properties. To account for this, in column 3 we drop

“never-treated” properties further than one kilometer from a new school zone, and in column 4 we

further restrict the sample to only those properties that ever receive a new school.46 Results in

columns 2 and 3 are nearly identical, and the estimated coefficient drops slightly to 4.4% (SE 1.1%)

in column 4. Column 5 substitutes year effects for the year-by-high school zone effects introduced

in column 2 – now unnecessary as we have limited the control group to properties near the new

schools – and the point estimate increases slightly to 5.5% (SE 1.5%).

To address additional concerns that within-neighborhood difference-in-differences results may

be biased by fixed unobserved property-level differences, we rely on repeat sales and estimate effects

within-property, using property fixed effects to account for any such differences. Columns 6 and 7

45Recall, here we define school zones using pre construction boundaries from 2000, to eliminate concerns over en-
dogenous new school attendance boundary formation. Reassuringly, this distinction makes no quantitative difference,
as results are nearly identical when post construction boundaries are used instead (Table A6 panel B).

46By restricting to these properties, identification is coming solely off variation in the timing of when a specific
neighborhood receives a new school facility.

34



report estimates analogous to columns 4 and 5 using property fixed effects; property controls and

neighborhood fixed effects are excluded. Here, variation comes only from properties sold multiple

times during the sample window, resulting in a sample size reduction of nearly half. In column 6,

estimation includes year-by-high school zone effects, while column 7 shows estimates where only

year-specific effects are included. Estimated effects are very similar to analogous neighborhood

fixed effects estimates in columns 4 and 5. Overall, estimates imply that house prices increase by

roughly 4-6% post-construction in new school attendance areas.

Difference-in-differences coefficients correspond only to the mean difference in house prices pre

vs post construction. Pre-existing differential trends between neighborhoods in the same initial

high school zone could still induce bias, even with the inclusion of flexible year-by-high school zone

effects. More importantly, difference-in-differences estimates obscure the dynamics of effects, which

could result in downward bias if capitalization occurs gradually, and/or in anticipation of con-

struction. New school locations were announced on average 5 years before completion: real estate

capitalization may occur in advance of school completion insofar as parents and other homebuyers

are forward-looking and are able to anticipate whether a given property falls within the school

assignment zone for the new school. On the other hand, initial uncertainty by parents in the actual

improvements generated by a new school may lead to more gradual capitalization post-construction,

as the quality of the new school is revealed.

To account for flexibly for any dynamics in the timing of capitalization effects, in Figure 8

we report event study estimates of the effects of new school constructions, corresponding to the

specification in equation (6). In panel A, estimation includes only those properties ever within any

new school zone and year-by-high school fixed effects, corresponding to the specification in column

4 of panel A of Table 10. In panel B, we include all never-treated properties in LAUSD as controls,

corresponding to column 2. Effects are estimated relative to the year before school occupancy, which

is omitted from the regression. Results in both panels of Figure 8 show little sign of pre-existing

trends or dynamic anticipatory effects pre-construction: all estimated pre-construction effects are

practically zero. Capitalization occurs somewhat gradually upon completion, with nearly all of

the effect coming in the first two years after school completion, before stabilizing after three or

more years. Three or more years after the new school construction, house prices in the new school

attendance areas were 7% higher, slightly larger than the point estimates presented in Table 10.

As discussed in Section 6.5, schools that experienced large student outflows to new schools saw

significant reductions in overcrowding and multi-track calendar utilization, and small but signifi-

cant increases in the share of more advantaged students. Students at these schools also experienced

gains in ELA scores and attendance. To what extent were these gains at existing “sending” schools
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capitalized into local house prices? In panel B of Table 10 we report difference-in-differences esti-

mates where treatment is similarly defined for existing “sending” schools that experienced student

outflows to newly constructed facilities.47 Specifications in columns 1 and 2 correspond to those in

columns 1 and 2 of panel A; specifications in columns 3-6 correspond to those in columns 4-7 in

panel A. Overall, results provide little indication that house prices increased in the sending school

neighborhoods. In column 1 the coefficient is positive and significant, but this result is not robust

to the inclusion of year-by-high school zone effects in column 2, nor the exclusion of never-treated

properties in columns 3-6. These results suggest that (a) parental valuation of new schools is driven

by non-test score/amenity improvements at new schools, independent of the school calendar or level

of overcrowding, and/or (b) improvements in school quality due to reductions in overcrowding and

multi-track calendar utilization are less salient to prospective homebuyers, who may instead rely

on school facility condition as a signal for underlying school quality.

7.1 By neighborhood price

While new school quality was similar across treated neighborhoods,48 the tax price of the new

facilities faced by district residents was greater in areas with higher property values.49 Later, in

Section 8, we use the estimated house price effect for a welfare calculation, applying the coefficient

to the mean home value in LAUSD. But insofar as home prices capitalize local investment, one

might expect larger percentage effects on prices in low-price neighborhoods than in high-price

neighborhoods. If so, applying the average percentage treatment effect to the average house price

could overstate the aggregate impact. Empirically this does not appear to be the case. In Figure 9

we report heterogeneity in estimated treatment effects by neighborhood prior mean house prices.

We define neighborhood prior mean house prices as the average house price in a neighborhood

over all pre-treatment years in the sample, 1995-2001. Estimates of β from equation (5) are shown

interacted with $100,000 bins of neighborhood prior mean house prices.50 With the exception of the

$500,000 -$600,000 bin, all effects are similar and statistically significant, providing little evidence

of smaller estimated treatment effects in areas with higher property values.

47“Sending” schools are defined as schools that have a non-trivial share (greater than 10%) of student enrollment
that experienced a substantial cohort outflow to a newly constructed school. The treatment year for sending schools
is analogously defined as the treatment year for stayers; i.e. the year in which the peer outflow occurred.

48In conversations with district officials, it was stated that much of the variation in project cost was due to site-
specific acquisition expenses, and not systematic differences in new facility quality.

49Unlike in the model presented in Section 3, which assumed a constant lump sum tax for all households, property
owners in higher-priced areas contributed a greater dollar amount towards district bond revenues.

50Note: the $100K bin includes a small number of properties in neighborhoods with mean house prices below $100K;
the $600K bin includes properties in all neighborhoods with mean house prices greater than $600K in 1995-2001.
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7.2 Local boundary and spillover effects

Increased demand for neighborhoods receiving new schools could have differential effects on house

prices near the boundaries of new school neighborhoods. School assignment boundaries do not

stay constant in perpetuity, and due to uncertainty over future boundary locations, capitalization

effects may be smaller near the boundaries within new school zones. In addition, if home buyers

substitute housing in existing school zones for housing purchases in new school zones, prices could

decline in other LAUSD neighborhoods. On the other hand, new school constructions and changing

neighborhood composition could lead to spillovers that increase house prices both within and near

new school zones. Prices in nearby neighborhoods that did not receive new schools could increase

due to positive externalities from neighborhood upgrading (e.g. Hornbeck and Keniston (2017)).

Moreover, new schools could act as a direct amenity that generates positive benefits (e.g. increased

park/playground space) both within and outside the actual attendance areas. Estimates in Figure

10 and Table 11 assess the extent to which the effect of new school constructions varies by distance to

the attendance boundary, and whether new schools generate spillover effects beyond the attendance

zone.

Table 11 reports estimates of treatment effects by distance to the school attendance boundary.

Column 1 repeats baseline estimates from column 2 of Table 10 panel A. In column 2, we add a

coefficient for distance from the boundary (in kilometers) and distance to the boundary interacted

the treatment dummy. Both added coefficients are small and insignificant, and do little to affect the

point estimate on the treatment indicator in the first row. Column 3 adds an indicator for being

within 2 kilometers of a new school zone, after completion. For these properties, we assign the

treatment date of the nearest new school construction. Effects are estimated relative to properties

greater than 2 kilometers from any new school boundary. The estimated effect on properties just

outside the new school’s attendance zone is -1.3% (SE 1.0%) and insignificant. These estimates

provide little evidence of substitution patterns that indicate decreased demand for housing in

existing school attendance zones within 2 kilometers of a new school zone, nor that new school

zones generate positive spillovers in nearby neighborhoods, as would be expected if new schools

induced general neighborhood amenity upgrading. Column 4 adds in controls for distance and the

interactions with the treatment indicators. Here the treatment dummy for being outside the zone

is highly negative and significant, while the interaction with distance is positive and significant,

implying a large negative effect on house prices immediately after crossing a new school attendance

boundary that fades out within 1 kilometer outside the boundary.

Figure 10 provides a non-linear visualization of the pattern reported in column 4. Each point

represents a difference-in-differences treatment effect estimate interacted with distance to the new
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school attendance zone boundary, in 400 meter bins. Properties with positive distance are located

within new school boundaries, while those with negative distance are in school zones where the

residential assignment is to an existing school. Results indicate that within the new school zones,

capitalization is roughly constant at approximately 5% for all distance bins. We find no evidence

of smaller effects closer to the boundary. Properties within 400 meters but outside of the boundary

actually see statistically significant declines in house prices of 4.9% (SE 1.7%) post-construction,

providing suggestive evidence of negative spillovers for properties that are “unlucky” enough to

fall just outside the new school zone. These negative spillover effects quickly diminish however;

point estimates for distances greater than 1.2 km are positive, though insignificant, consistent with

the findings from Table 11. This pattern is consistent with cross-neighborhood substitution within

very narrowly defined markets, wherein demand for properties located marginally outside the new

school zones decreases for prospective homebuyers searching within the vicinity a new school.

8 Welfare Analysis

Thus far we have shown that new school constructions in LAUSD generated large student cognitive

and non-cognitive gains. These improvements in school quality - physical and educational - were

capitalized into the real estate market, as properties in new school attendance areas saw large and

significant increases in prices post construction. In this section we use our estimated price effects

to compute the implied willingness-to-pay for residents who received new schools. As outlined in

Section 3, the magnitude of difference-in-differences estimates of the relative price change induced

by new school constructions provides a benchmark to assess the economic efficiency of the spending

program. One-third of households in LAUSD reside in a new school attendance zone. Thus, if the

estimated relative price change is less than the per household cost of the program, multiplied by

three, then we can infer that homebuyers value the new schools less than the cost of building them,

and therefore that using taxpayer money to build new schools reduced welfare. Conversely, if the

estimated price change exceeds this we can infer that the additional expenditures were valued in

excess of the total program cost by homebuyers.

This computation relies on strong assumptions. Most notably, we assume that the observed

price change affects all household units in LAUSD, although we only estimate on the subsample of

single-unit properties that sold during the sample window. According to the 2005-2009 American

Community Survey (ACS), there are 1.52 million non-vacant housing units in LAUSD. The total

cost of the program was $9.17 billion, meaning that the average cost to a housing unit of the program

is approximately $6,045 in present value. During the treatment period from 2002-2012, the average
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sale price (within-sample) of properties in zones that received new schools was $494,650. Using

the estimates in Table 10 panel A, this implies a price change in the range of $21,765 to $29,679,

where the preferred estimates from column 2 using all properties in LAUSD are the upper bound

of that range. Comparing this to the program cost per housing unit in a new school attendance

zone, 3 ∗ $6, 045 = $18, 135, implies a willingness-to-pay ratio in the range of 1.2 to 1.64.51 Put

differently, each additional dollar of capital expenditures by the district generated 1.2 to 1.64

additional dollars in the real estate market. These results suggest that the value to families of

the school capital expenditure program was greater than the program cost, implying the program

raised welfare.

The real estate valuation of the program incorporates the market valuation of all potential

benefits generated by the new school program, beyond simply the effects related to increased

academic performance of students. However, many studies of educational interventions rely on

extrapolations of test score effects to assess a program’s efficiency. Using the estimates presented

in Chetty et al. (2011), we can project forward the gain in future earnings from the observed test

score gains. Chetty et al. use experimental variation in classroom quality to estimate that a 0.1

standard deviation increase in test scores52 leads to a 1.3% increase in earnings at age 27. To

extrapolate our estimates forward, we first compute the present discounted value of future earnings

for future cohorts:

PDVcohort = Nc

56∑
t=16

Et
(1 + δ)t

where Et = earnings gain at each age, which we compute under the assumption of a constant

percentage gain of 1.3% per 0.1 SD increase in test scores, using age-earnings profiles from the

March CPS.53 The average elementary school student is 11 years old, therefore we discount forward

16 years to age 27, and count benefits until retirement at age 67. From our data, roughly 16% of

students entering elementary school, 13% of students entering middle school, and 25% of students

entering high school in LAUSD were in a newly constructed school facility. Plugging this in and

using the estimated effects on math test scores, assuming a 3% discount rate, yields a present

discounted value of future earnings per cohort of $150 million. From our facilities data, we estimate

51Using instead the average price over all properties in the treatment period, as suggested by the model in Section
3, would increase this WTP ratio by roughly 33%, to a range of 1.62 to 2.21.

52Notably, this is for kindergarten scores. However, non-experimental estimates in the same paper show that the
correlation between test scores and earnings grows with age, suggesting that these effects may underestimate the
effects of improvements in later grades.

53We compute the age-earnings profiles using data from 2012-2016, and use the average earnings, including those
with zero earnings. This follows the procedure in Chetty et al. (2011), but may overstate impacts if earnings of
LAUSD students are below average over the life cycle.
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that a brand new facility would take roughly 35 years to depreciate to the mean condition of existing

facilities in LAUSD. Assuming the effects are constant for this 35 year horizon and discounting the

earnings of future cohorts implies a gain in future earnings of $3.8 billion in present discounted

value. The total program cost was $9.17 billion, implying that the gain in future earnings from test

score improvements covers roughly 40% of the total program cost.54

Real estate capitalization greatly exceeds the estimated increases in future earnings from test

score improvements, providing strong evidence that parental valuation of educational expenditures

exceeds benefits captured by test scores alone.55 New schools also generated improvements in

student non-cognitive outcomes, improvements in school safety and health, and allowed for increased

access to extra-curricular opportunities, among many other benefits. While test score improvements

provide a useful benchmark for interpreting the efficiency of educational interventions, they are

likely to severely understate the true benefits of capital infrastructure investments.

9 Conclusion

In this paper we provide robust and comprehensive estimates of the effects of educational capital

investments on student outcomes and neighborhood house prices. To date, the literature on the

effects of school capital investments has been mixed and inconclusive; many prior studies are

underpowered to detect modest effects, often relying on district-level average outcomes to study

the impacts of capital expenditure programs that impact only a subset of students (Figure A1).

Studying the largest school construction program in US history, we provide robust new evidence

that school facility investments lead to modest, gradual improvements in student test scores, large

immediate improvements in student attendance, and significant improvements in student effort.

New facilities also generated indirect improvements for students elsewhere in the district who did

not attend new facilities, but nonetheless saw improvements in their school environments due to

peer outflows to new facilities. Reductions in overcrowding and the elimination of “multi-track”

academic calendars only account for some of the observed gains, implying that capital improvements

themselves were responsible for student gains beyond reductions in congestion.

New school constructions induced large increases in neighborhood house prices upon completion,

implying significant parental valuation of improvements in school quality, generally defined. House

prices increased substantially in areas that received new schools, although we find no evidence of

54Here we are not counting any indirect improvements for students who stayed behind at existing schools. Including
these would slightly increase aggregate future earnings gains, but would not change the qualitative conclusion that
future earnings gains from test score improvements do not cover total program costs.

55Appendix Figure A10 plots school-level test score treatment effects against school-level house price effects, showing
little systematic relationship between the two in both math and ELA.
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similar price increases in existing school zones that sent students to new schools and experienced

corresponding reductions in overcrowding. Overall, house price estimates imply that the total

real estate capitalization exceeded program cost, and suggest an implied willingness-to-pay on

behalf of district residents of 1.2 to 1.6 for one dollar of per-household school capital investment.

Willingness-to-pay estimates provide evidence that prior capital spending had been inefficiently

low in the distinct, and that the targeted program to improve facilities for the most disadvantaged

students in the district generated aggregate welfare increases in the district. These findings are

especially relevant for large, urban districts and other districts serving low-income students with

a history of facilities underinvestment, and imply that policies to improve school capital can be

productive and efficient uses of public funding.

These substantial positive impacts of new school facilities on achievement and house prices raise

the question what aspects of school facilities generate these benefits. There are two theories that

may be able to account for them. According to the Broken Windows theory (Zimbardo, 1969,

named and popularized by Wilson and Kelling, 1982), neglect in public spaces signals the absence

of binding social norms and opens the door to disorderly and destructive behavior. Branham (2004)

argues that this theory holds especially true in a school infrastructure context: students perceive

school as a place where effort goes unrewarded when the learning environment is dilapidated. In

contrast, school facility effects may have nothing to do with social norms but may run primarily

through physiological effects such as the temperature of the learning environment (Goodman et

al., 2018). The extent to which each of these two theories can explain the effects may also explain

why we the impact on achievement and house prices is only weakly correlated (see Figure A10).

With more precise data on changes in facility conditions in the course of a facility program, future

research may be able to distinguish between these two theories and provide guidance on which

facility components have the highest return in terms of learning and real estate capitalization.
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Figures

Figure 1: School construction and enrollment, LAUSD 1940-2012
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Notes: Solid blue line depicts student enrollment by year (left axis) and dashed green line depicts the number

of new school facilities opened in a given year (right axis). Shaded area from 2002-2012 shows the treatment period

covered in the main analysis. The number of new school openings only includes facilities still open in 2008, and is

computed as the minimum age over all buildings that comprise a given school. Historical student enrollment data

were obtained from the California Department of Education.
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Figure 2: Spending per pupil, LAUSD vs LA County
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Notes: Panel A shows per-pupil capital expenditures and panel B shows per-pupil instructional expenditures.

Expenditures are expressed in real 2013 dollars. In both panels, the expenditures for LAUSD (solid blue line) and the

student-weighted average of all other LA County public school districts (dashed green line) are shown. The shaded area

from 2002-2012 shows the treatment period covered in the main analysis. Expenditure data were from the National

Center for Education Statistics (NCES) annual census of school districts and from the Census of Governments.
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Figure 3: LAUSD school attendance zones, 2012

(a) Elementary (b) Middle

(c) High

Notes: Figure displays school attendance boundaries for elementary schools (panel A), middle schools (panel B),

and high schools (panel C) in LAUSD in 2012. Shaded areas in red denote attendance zones that correspond to

schools newly constructed during the sample period from 2002-2012.
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Figure 4: Test score effects
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Notes: Figures shows estimated coefficients from event study regressions following equation (3). Dependent variables
are standardized math test scores for students in grades 2-7 (panel A) and standardized english-language arts test
scores for students in grades 2-11 (panel B). Test scores are standardized relative to the statewide mean and standard
deviation for each year-grade-subject exam. The shaded areas denote 95% confidence intervals for the estimated
coefficients. Specifications include fixed effects for student, year, and grade. Standard errors are two-way clustered
by school and student.
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Figure 5: Non-cognitive effects
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(b) Teacher-reported student effort

Notes: Figures show estimated coefficients from event study regressions following equation (3). Dependent variables
are annual days attended (panel A) and standardized teacher-reported effort scores for students in grades K-5 (panel
B). The shaded areas denote 95% confidence intervals for the estimated coefficients. Specifications include fixed
effects for student, year, and grade. Standard errors are two-way clustered by school and student.
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Figure 6: School effects
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(a) Peers: predicted score
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Notes: Figures show estimated coefficients from event study regressions following equation (3). Dependent variables
are leave-out school mean predicted test scores (panel A), class size for students in grades K-5 (panel B), multi-track
calendar status (panel C), and total instructional days for a given school-year (panel D). The shaded areas denote
95% confidence intervals for the estimated coefficients. Specifications include fixed effects for student, year, and
grade. Standard errors are two-way clustered by school and student.
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Figure 7: Student effects: Stayers
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(a) Test scores: Math
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(b) Test scores: ELA
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(d) Teacher-reported student effort

Notes: Figures show estimated coefficients from event study regressions following equation (3) for students that

had 10% or more of their school-grade cohort exit to a newly constructed school. Event time is centered relative

to the year of the peer outflow. Dependent variables are standardized math test scores for students in grades 2-7

(panel A), standardized english-language arts test scores for students in grades 2-11 (panel B), annual days attended

(panel C), and standardized teacher-reported effort scores for students in grades K-5 (panel D). The shaded areas

denote 95% confidence intervals for the estimated coefficients. Specifications include fixed effects for student, year,

and grade. Standard errors are two-way clustered by school and student.
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Figure 8: House price effects
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(a) House prices: Only treated
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(b) House prices: All LAUSD

Notes: Figures show estimated coefficients from event-study regressions following equation (6). Dependent variable
in both panels is the ln(sale price). In panel A, only properties that are ever in a new school attendance zone are
included in the estimation, corresponding to baseline estimates presented in column 4 of Table 10. In panel B, all
properties in LAUSD in the data sample are included in estimation, corresponding to baseline estimates presented
in column 2 of Table 10. Specifications include property-specific controls, year-by-high school zone fixed effects,
neighborhood fixed effects, and month fixed effects. Standard errors are clustered by neighborhood.
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Figure 9: Heterogeneity: By neighborhood mean prior house prices
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Notes: Figure shows estimated coefficients from a difference-in-differences regression based on equation (5),

where the treatment indicator is interacted with indicators for $100,000 bins of prior neighborhood average prices.

Bin 1 also includes average neighborhood house prices less than $100K, while bin 6 includes all neighborhoods with

average house prices above $600K; all other bins only include a $100K range. Prior neighborhood average house

prices are calculated using data from pre-construction property sales from 1995-2001. All properties in LAUSD in

the data sample are included in estimation, corresponding to baseline estimates presented in column 2 of Table 10.

All specifications include property-specific controls, year-by-high school zone fixed effects, neighborhood fixed effects,

and month fixed effects. Standard errors are clustered by neighborhood.
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Figure 10: Spillovers: Effects by distance to school attendance boundary
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Notes: Figure shows estimated coefficients from a difference-in-differences regression based on equation (5), where

the treatment indicator is interacted with indicators for 400 meter bins of distance to the new school attendance zone

in 2012. Properties with positive (negative) distance are inside (outside) the new school attendance zones. Properties

outside the attendance zone and within 2 km of a new school attendance zone are assigned the construction date

corresponding to the nearest new school attendance zone boundary. Each point reports the estimated coefficient

for the treatment indicator interacted with the corresponding distance bin. Points are located at the midpoint of

each distance bin (i.e. the estimate at 200m corresponds to the 0-400m distance bin). All properties in LAUSD in

the data sample are included in estimation, corresponding to baseline estimates presented in column 2 of Table 10.

Specifications include property-specific controls, year-by-high school zone fixed effects, neighborhood fixed effects,

and month fixed effects. Standard errors are clustered by neighborhood.
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Tables

Table 1: Summary statistics, new school projects

Mean Median Min Max

Total cost (million USD) 81.9 56.5 11.1 578.7

New student seats 1,050 800 162 3,440

New classrooms 40.3 32 6 130

Building SQFT 100,585 70,115 12,507 391,840

Completion year 2008 2008 2002 2012

Site designation to completion (yrs) 5.18 5 2 9

Construction to completion (yrs) 2.11 2 1 5

New School Codes 1.25 1 1 5

Total New School Campuses 114
Total New School Codes 143

Notes: Table reports summary statistics for new school project data, at the project level.
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Table 2: Summary statistics, LAUSD student data

All LAUSD Never Treated Always Treated Switchers Stayers

Free/reduced-price lunch 0.82 0.80 0.93 0.95 0.91

Hispanic 0.73 0.71 0.85 0.89 0.83

Black 0.11 0.11 0.05 0.05 0.07

White 0.09 0.10 0.03 0.02 0.05

Asian 0.04 0.04 0.04 0.02 0.03

Parent: any college 0.26 0.27 0.23 0.16 0.21

English spoken at home 0.32 0.34 0.27 0.17 0.21

Predicted test score -0.26 -0.24 -0.29 -0.40 -0.34

Math score (t = −1) -0.35 -0.19

ELA score (t = −1) -0.52 -0.37

Days attended (t = −1) 156.73 155.37

N student-years 7,284,175 6,471,912 108,611 703,652 1,307,071

Notes: Table reports summary statistics for LAUSD student data, at the student-year level.
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Table 3: Summary statistics, LA County assessor data

All LAUSD New School Zones Existing School Zones

Sale price (2015$) 565,801 416,509 636,010

Building SQFT 1,664 1,539 1,722

Number of bedrooms 2.9 2.9 2.8

Number of bathrooms 2.2 2.1 2.3

Building age 44 45 44

Effective age 39 40 39

Useable lot SQFT 5,238 5,704 5,018

N property sales 505,835 161,795 344,040
N properties 350,299 115,247 235,052

Notes: Table reports summary statistics for LA County Assessor data, at the property sale level.
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Table 4: Student effects, cognitive

Math Score ELA Score

(1) (2) (3) (4) (5) (6)

New School * Trend 0.029∗∗∗ 0.034∗∗∗ 0.031∗∗∗ 0.019∗∗∗ 0.020∗∗∗ 0.017∗∗∗

(0.007) (0.008) (0.008) (0.004) (0.004) (0.004)

New School -0.021 -0.028 -0.003 -0.014
(0.017) (0.017) (0.008) (0.009)

Trend 0.004∗ 0.004∗∗∗

(0.002) (0.002)

Cumul. 4yr Effect 0.086∗∗∗ 0.080∗∗∗ 0.064∗∗∗ 0.058∗∗∗ 0.058∗∗∗ 0.037∗∗∗

(0.021) (0.022) (0.024) (0.011) (0.011) (0.012)
Grade FEs X X X X X X
Year FEs X X X X X X
Stu FEs X X X X X X
N student-years 2,935,156 2,935,156 2,935,156 4,716,377 4,716,377 4,716,377
N students 735,811 735,811 735,811 971,568 971,568 971,568
N treated students 87,132 87,132 87,132 99,685 99,685 99,685
N treated schools 78 78 78 126 126 126
R2 0.82 0.82 0.82 0.84 0.84 0.84

Notes: Table reports estimates of parametric event study models corresponding to equation (4). Columns 1 and

4 include only the coefficient for the change in growth (β2); β1 and β3 are constrained to be zero. Columns 2 and 5

include coefficients for both the immediate effect (β1) and the change in growth (β2); β3 is constrained to be zero.

Columns 3 and 6 include all coefficients, corresponding exactly to the specification in equation (4). Row 4 reports

the implied cumulative test score effect after four years, equal to 3β2 in columns 1 and 4, and β1 + 3β2 in columns

2-3 and 5-6. Dependent variable is the standardized math test score (grades 2-7) in columns 1-3. In columns 4-6 the

dependent variable is the standardized ELA test score (grades 2-11). Specifications include fixed effects for student,

year, and grade. Standard errors are two-way clustered by school and student.
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Table 5: Student effects, non-cognitive

Days Attended Effort Score

(1) (2) (3) (4) (5) (6)

New School 3.973∗∗∗ 3.398∗∗∗ 3.314∗∗∗ 0.061∗∗∗ 0.063∗∗∗ 0.056∗∗∗

(0.551) (0.599) (0.633) (0.017) (0.017) (0.018)

New School * Trend 0.777∗∗∗ 0.745∗∗∗ -0.002 -0.008
(0.196) (0.204) (0.012) (0.013)

Trend 0.036 0.006
(0.085) (0.004)

Grade FEs X X X X X X
Year FEs X X X X X X
Stu FEs X X X X X X
N student-years 5,350,867 5,350,867 5,350,867 1,924,572 1,924,572 1,924,572
N students 1,121,933 1,121,933 1,121,933 552,855 552,855 552,855
N treated students 116,947 116,947 116,947 71,636 71,636 71,636
N treated schools 143 143 143 75 75 75
R2 0.51 0.51 0.51 0.63 0.63 0.63

Notes: Table reports estimates of parametric event study models corresponding to equation (4). Columns 1 and

4 include only the coefficient for the immediate new school effect (β1); β2 and β3 are constrained to be zero. Columns

2 and 5 include coefficients for both the immediate effect (β1) and the change in growth (β2); β3 is constrained to be

zero. Columns 3 and 6 include all coefficients, corresponding exactly to the specification in equation (4). Dependent

variable is the annual days attended in columns 1-3. In columns 4-6 the dependent variable is the standardized

average teacher-reported effort score (grades K-5). Specifications include fixed effects for student, year, and grade.

Standard errors are two-way clustered by school and student.
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Table 6: Student effects, robustness

Baseline No Stayers Only Treated Only Switchers Balanced

ELA Score

New School * Trend 0.019∗∗∗ 0.022∗∗∗ 0.018∗∗∗ 0.016∗∗∗ 0.027∗

(0.004) (0.004) (0.005) (0.005) (0.014)

Math Score

New School * Trend 0.029∗∗∗ 0.029∗∗∗ 0.034∗∗∗ 0.035∗∗∗ 0.059∗

(0.007) (0.007) (0.011) (0.012) (0.033)

Days Attended

New School 3.97∗∗∗ 4.33∗∗∗ 4.02∗∗∗ 4.43∗∗∗ 8.54∗∗∗

(0.55) (0.57) (0.78) (0.79) (1.65)

Effort Score

New School 0.061∗∗∗ 0.061∗∗∗ 0.077∗∗∗ 0.089∗∗∗ 0.045
(0.017) (0.017) (0.024) (0.027) (0.060)

Notes: Table reports estimates of parametric event study models corresponding one-parameter versions of equa-

tion (4). Panels A and B include only the coefficient for the change in growth (β2); β1 and β3 are constrained to be

zero. Panels C and D include only the coefficient for the immediate new school effect (β1); β2 and β3 are constrained

to be zero. Dependent variables are standardized english-language arts test scores (panel A), standardized math test

scores (panel B), annual days attended (panel C), and standardized average teacher-reported effort scores (panel D).

Estimates in column 1 repeat baseline one-parameter estimates from columns 1 and 4 of Tables 4 and 5. Column 2

excludes “staying” students that had 10% or more of their school-grade cohort exit to a newly constructed school.

Column 3 excludes never-treated students. Column 4 restricts estimation only to those students observed at an

existing school prior to attending a school at a new facility. Column 5 restricts to a balanced sample with 5 years of

data in panels A and C, or 3 years of data in panels B and D. Specifications include fixed effects for student, year,

and grade. Standard errors are two-way clustered by school and student.
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Table 7: Student effects heterogeneity, mechanisms

Math ELA Attendance Effort

Pooled (switchers only) 0.035∗∗∗ 0.016∗∗∗ 4.432∗∗∗ 0.089∗∗∗

(0.012) (0.005) (0.789) (0.027)

By multi-track :

Multi track 0.039∗∗∗ 0.017∗∗∗ 8.214∗∗∗ 0.097∗∗∗

(0.014) (0.006) (0.788) (0.029)
Single track 0.019 0.011∗ 2.741∗∗∗ 0.042

(0.013) (0.006) (0.728) (0.031)

p-value 0.15 0.37 0.00 0.11

By prior SQFT pp:

Low prior SQFT pp 0.031∗∗ 0.017∗∗∗ 6.254∗∗∗ 0.071∗∗∗

(0.013) (0.006) (0.744) (0.027)
High prior SQFT pp 0.037∗∗ 0.007 4.668∗∗∗ 0.098∗∗∗

(0.017) (0.006) (0.797) (0.033)

p-value 0.66 0.15 0.03 0.43

By share permanent classrooms:

Low share permanent 0.038∗∗∗ 0.019∗∗∗ 6.133∗∗∗ 0.092∗∗∗

(0.013) (0.005) (0.666) (0.024)
High share permanent 0.020 0.003 4.955∗∗∗ -0.013

(0.018) (0.007) (0.903) (0.044)

p-value 0.29 0.02 0.14 0.01

By prior building age:

Below median age 0.026∗∗ 0.013∗∗ 5.625∗∗∗ 0.075∗∗

(0.013) (0.005) (0.647) (0.032)
Above median age 0.045∗∗∗ 0.017∗∗ 6.095∗∗∗ 0.092∗∗∗

(0.017) (0.007) (0.863) (0.035)

p-value 0.23 0.53 0.52 0.68

By prior building FCI :

Low FCI 0.030∗ 0.016∗∗∗ 6.806∗∗∗ 0.125∗∗

(0.018) (0.006) (0.922) (0.052)
High FCI 0.035∗∗ 0.013∗∗ 4.910∗∗∗ 0.068∗∗

(0.014) (0.006) (0.632) (0.027)

p-value 0.78 0.79 0.02 0.29

Notes: Table reports estimates of one parameter event study models. Dependent variables are ELA scores

(column 1), math scores (column 2), annual days attended (column 3), and standardized teacher-reported effort

scores (column 4). Panel A repeats one-parameter estimates from column 4 of Table 6. Panel B reports estimates of

coefficients interacted with prior school multi-track status. Remaining panels show coefficients on the interactions for

being below or above the median in terms of prior school SQFT per pupil (panel C), prior school share permanent

classrooms (panel D), prior school age (panel E), and prior school FCI (panel F). Specifications include fixed effects

for student, year, and grade. Standard errors are two-way clustered by school and student.
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Table 8: Teacher changes at new schools

(a) Demographics

(1) (2) (3) (4)
Age Experience MA+ Pr(New)

New School -3.289∗∗∗ -2.659∗∗∗ 0.042∗∗∗ 0.054∗∗∗

(0.336) (0.227) (0.012) (0.005)

Grade FEs X X X X
Year FEs X X X X
Stu FEs X X X X
N student-years 3,935,106 3,927,063 3,931,757 5,902,165
N students 926,501 925,300 926,203 1,140,815
N treated students 108,323 108,124 108,252 121,887
N treated schools 137 137 137 143
R2 0.32 0.36 0.28 0.29

(b) Value-added

VA: Average (pre-switch) VA: Novice/Experienced gap

(1) (2) (3) (4)
Math ELA Math ELA

New School -0.005 -0.010∗∗ -0.003 0.015
(0.007) (0.004) (0.012) (0.012)

Grade FEs X X X X
Year FEs X X X X
Stu FEs X X X X
N student-years 2,443,716 4,265,444 1,267,199 2,347,897
N students 689,206 955,346 432,813 672,731
N treated students 82,315 94,956 60,155 75,073
N treated schools 69 119 54 83
R2 0.61 0.56 0.38 0.33

Notes: Table reports estimates of difference-in-differences models corresponding one-parameter versions of equa-

tion (4), where only the coefficient for the immediate new school effect (β1) is included; β2 and β3 are constrained to

be zero. In panel A, dependent variables are teacher age (column 1), teacher years experience (column 2), an indicator

for having a masters degree or higher (column 3), and an indicator for having a new teacher in either math or ELA

(column 4). Panel B reports estimates where dependent variables are school-year averages of teacher value-added:

in columns 1 and 2 dependent variables are average value-added scores based on prior-year observations at existing

school facilities in math and ELA, respectively. In columns 3 and 4 dependent variables are the school year gap

in mean value-added between novice and experienced teachers in math and ELA, respectively. See Appendix B for

further detail on computation of value-added measures. All specifications include fixed effects for student, year, and

grade. Standard errors are two-way clustered by school and student.
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Table 9: Student effects, “staying” students

Math Score ELA Score Days Attended Effort Score

(1) (2) (3) (4) (5) (6) (7) (8)

Post * Trend: Stayers -0.001 -0.013∗∗ 0.009∗∗∗ -0.001 0.212 -0.013
(0.006) (0.006) (0.003) (0.003) (0.183) (0.012)

Post: Stayers 0.014 0.014∗∗ 3.653∗∗∗ 3.049∗∗∗ 0.007 -0.018
(0.012) (0.007) (0.494) (0.652) (0.021) (0.021)

Trend: Stayers 0.010∗∗∗ 0.006∗∗∗ 0.125 0.015∗∗∗

(0.003) (0.002) (0.107) (0.004)

Grade FEs X X X X X X X X
Year FEs X X X X X X X X
Stu FEs X X X X X X X X
N student-years 2,562,332 2,562,332 4,161,767 4,161,767 4,729,758 4,729,758 1,650,087 1,650,087
N students 654,687 654,687 883,676 883,676 1,019,337 1,019,337 480,544 480,544
N treated students 144,220 144,220 164,644 164,644 171,870 171,870 109,717 109,717
N treated cohort 22,753 22,753 28,795 28,795 34,530 34,530 19,221 19,221
R2 0.82 0.82 0.84 0.84 0.52 0.52 0.63 0.63

Notes: Table reports estimates of parametric event study models corresponding to equation (4), for students that

had 10% or more of their school-grade cohort exit to a newly constructed school. Event time is centered relative to

the year of the peer outflow. Columns 1 and 2 include only the coefficient for the change in growth (β2); β1 and β3

are constrained to be zero. Columns 5 and 7 include coefficients only the coefficient for the immediate effect (β1);

(β2) and β3 are constrained to be zero. Columns 2, 4, 6, and 8 include all coefficients, corresponding exactly to the

specification in equation (4). Dependent variable is the standardized math test score (grades 2-7) in columns 1-2, the

standardized ELA test score (grades 2-11) in columns 3-4, annual days attended in columns 5-6, and the standardized

average teacher-reported effort score in columns 7-8. All specifications include fixed effects for student, year, and

grade. Standard errors are two-way clustered by school and student.
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Table 10: House price effects

(a) New school zones

Neighborhood Fixed Effects Repeat Sales

(1) (2) (3) (4) (5) (6) (7)

New School -0.011 0.060∗∗∗ 0.059∗∗∗ 0.044∗∗∗ 0.055∗∗∗ 0.045∗∗∗ 0.059∗∗∗

(0.014) (0.018) (0.016) (0.011) (0.015) (0.013) (0.016)

Yr FEs X X X
Yr-HSZ FEs X X X X
Month FEs X X X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
Prop FEs X X
New Sch Zones X X X X X X X
w/in 1km X
All LAUSD X X
Number of sales 505,781 505,781 255,481 161,775 161,782 87,523 87,551
R2 .81 .82 .79 .78 .75 .91 .9

(b) “Stayers” school zones

Neighborhood Fixed Effects Repeat Sales

(1) (2) (3) (4) (5) (6)

Post: School 0.042∗∗∗ -0.008 0.023 -0.009 -0.010 -0.014
(0.012) (0.017) (0.018) (0.019) (0.031) (0.025)

Yr FEs X X X
Yr-HSZ FEs X X X
Month FEs X X X X X X
Sch Zone FEs X X X X
Prop Controls X X X X
Prop FEs X X
All LAUSD X X
Number of sales 343,997 343,997 180,504 180,504 107,458 107,458
R2 .82 .83 .82 .81 .93 .93

Notes: Tables report estimates from difference-in-differences regressions following equations (5) and (7). Depen-

dent variable is the ln(sale price). In panel A the coefficient of interest is an indicator for being in a new school zone,

whereas in panel B it is an indicator for being in an existing school zone that was affected by student outflows to a

new school. In panel A, columns 1-5 include neighborhood fixed effects and property specific controls; columns 6-7

include property fixed effects. Columns 1, 5, and 7 report estimates using year effects; remaining columns include

year-by-high school zone fixed effects. Columns 1-2 include all properties in LAUSD. Column 3 restricts the sample to

only properties within a new school zone or within a 1km of a new school zone. Columns 4-7 include only properties

within a new school zone by 2012: “never-treated” properties are excluded. In panel B, properties in new school

zones are excluded from estimation; columns 1-4 report estimates corresponding to equation (5), with neighborhood

fixed effects and property specific controls. Columns 5-6 show estimates with property fixed effects. Columns 1, 4,

and 6 of panel B include year effects, while remaining columns include year-by-high school zone effects. Columns

1-2 include all properties in LAUSD, while columns 3-6 restrict the sample to only those properties in school zones

affected by student outflows. All specifications include month effects. Standard errors are clustered by neighborhood.
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Table 11: House price effects, by distance to school assignment zone boundary

(1) (2) (3) (4)

New School: inside zone 0.060∗∗∗ 0.061∗∗∗ 0.054∗∗∗ 0.051∗∗∗

(0.018) (0.018) (0.017) (0.018)

Distance to boundary 0.019 0.017
(0.014) (0.013)

Inside zone * dist to boundary -0.005 -0.004
(0.010) (0.010)

New School: outside w/in 2km -0.013 -0.046∗∗∗

(0.010) (0.017)

Outside w/in 2km * dist to boundary 0.035∗∗

(0.014)

Yr-HSZ FEs X X X X
Month FEs X X X X
Sch Zone FEs X X X X
Prop Controls X X X X
New Sch Zones X X X X
All LAUSD X X X X
Number of sales 505,781 505,781 505,781 505,781
R2 .82 .82 .82 .82

Notes: Table reports estimated coefficients from difference-in-differences regressions based off of equation (5).

Dependent variable is the ln(sale price). Column 1 repeats baseline estimates reported in column 2 of Table 10.

Column 2 adds coefficients for property-level distance to the school assignment boundary and the interaction between

distance to the boundary and the new school zone treatment variable. Column 3 includes an additional treatment

variable for properties outside but within 2km of the new school attendance zone, where the completion date assigned

to these properties corresponds to that of the nearest new school attendance zone. Column 4 combines columns 2 and

3, and adds an interaction with distance to the boundary for properties outside but within 2km of the new school zone.

All properties in LAUSD in the data sample are included in estimation. All specifications include property-specific

controls, year-by-high school zone fixed effects, neighborhood fixed effects, and month fixed effects. Standard errors

are clustered by neighborhood.
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Appendix A: Appendix Figures and Tables

Appendix Figures:

Figure A1: Student effects comparison from capital expenditure literature
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Notes: Figure plots estimated coefficients from related papers in economics evaluating the effects of school capital

expenditures (y axis) against per-pupil expenditures in each study (x axis). Blue diamond shaped markers denote

math test score estimates whereas red circular markers denote English / Language Arts test score estimates (both in

standard deviation units). Solid markers denote estimates on directly treated students from Neilson and Zimmerman

(2015) and Lafortune and Schönholzer (2017), 4 years after school construction or student occupancy, respectively.

For these studies, construction cost is calculated per treated pupil. Hollow markers denote estimates from studies

examining district average test scores after passage of a capital construction bond, where construction cost per pupil

is the average over all students in the district. For these studies, estimates 6 years after bond passage are reported.
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Figure A2: Students at newly constructed schools
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Notes: Figure shows time series of total new seats (from new construction project database) and the number of
students attending newly constructed school facilities (from the student microdata).

Figure A3: School age and multi-track calendars in LAUSD
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Notes: Figure reports proportion of students attending a school on a multi-track calendar, by year.
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Figure A4: Grade of switch to new school facilities
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Notes: Figure shows grade of switch for students switching to new facilities. Y-axis reports number of students.

Figure A5: Event study estimates, teacher-reported marks
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Notes: Figure shows estimated coefficients from event study regressions following equation (3). Dependent variable
is the standardized teacher-reported marks (averaged over all subjects) for students in grades K-5. The shaded areas
denote 95% confidence intervals for the estimated coefficients. Specifications include fixed effects for student, year,
and grade. Standard errors are two-way clustered by school and student.
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Figure A6: Student switching, non-new facility related
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(a) Math
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(b) ELA

Notes: Figures show estimated coefficients from event study regressions following equation (3), for students who
switch schools for reasons unrelated to new school facilities. Dependent variables are standardized math test scores
for students in grades 2-7 (panel A) and standardized english-language arts test scores for students in grades 2-11
(panel B). Test scores are standardized relative to the statewide mean and standard deviation for each year-grade-
subject exam. The shaded areas denote 95% confidence intervals for the estimated coefficients. Specifications include
fixed effects for student, year, and grade. Standard errors are two-way clustered by school and student.
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Figure A7: Student effects: Stayers, 20% cohort exit threshold
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(a) Test scores: Math
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(b) Test scores: ELA
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(c) Attended days
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(d) Teacher-reported student effort

Notes: Figures show estimated coefficients from event study regressions following equation (3), for students that had
20% or more of their school-grade cohort exit to a newly constructed school. Figures are analogous to Figure ??,
with the threshold for “stayers” raised from 10% to 20% of a student’s cohort. Event time is centered relative to the
year of the peer outflow. Dependent variables are standardized math test scores for students in grades 2-7 (panel A),
standardized english-language arts test scores for students in grades 2-11 (panel B), annual days attended (panel C),
and standardized teacher-reported effort scores for students in grades K-5 (panel D). The shaded areas denote 95%
confidence intervals for the estimated coefficients. Specifications include fixed effects for student, year, and grade.
Standard errors are two-way clustered by school and student.
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Figure A8: Neighborhood boundaries in LAUSD, based on 2000 school zones

Notes: Figure shows school assignment zone triplets in LAUSD using 2000 assignment boundaries, which are used to
define neighborhoods in the estimation of real estate effects. Solid lines denote neighborhood boundaries. Each gray
dot represents one property from the LA County Assessor data.
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Figure A9: Spillovers: Effects by distance to new school
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Notes: Figure shows estimated coefficients from a difference-in-differences regression based on equation (5), where
the treatment indicator is interacted with indicators for 400 meter bins of distance to the new school in 2012. Each
point reports the estimated coefficient for the treatment indicator interacted with the corresponding distance bin.
Points are located at the midpoint of each distance bin (i.e. the estimate at 200m corresponds to the 0-400m distance
bin). All properties in LAUSD in the data sample are included in estimation, corresponding to baseline estimates
presented in column 2 of Table 10. Specifications include property-specific controls, year-by-high school zone fixed
effects, neighborhood fixed effects, and month fixed effects. Standard errors are clustered by neighborhood.
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Figure A10: Correlation between house price and test score effects
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(a) Math
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(b) ELA

Notes: Figures show scatterplots of estimated school-level test score gains in math (panel A) and ELA (panel B)
against estimated house price effects in the corresponding school attendance zone. The solid line in each figure
displays the bivariate regression line. Points and regression lines are weighted by the product of the inverse sampling
variances of the estimated test score gain and the estimated house price change for a given school. The size of each
point is proportional to the weight. In panel A the point estimate on the regression line is 0.28 (SE 0.29) and in
panel B the point estimate is -0.22 (SE 0.30).
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Appendix Tables

Table A1: School-level changes

(a) Switching students

Calendar School Peers

(1) (2) (3) (4) (5) (6)
Multi-track Max days Age Stu/tch Peers: Bl/Hisp Peers: predicted

New School -0.267∗∗∗ 1.762∗∗∗ -71.086∗∗∗ 0.312∗∗∗ 0.027∗∗∗ -0.024∗∗∗

(0.029) (0.262) (1.132) (0.084) (0.004) (0.006)

Grade FEs X X X X X X
Year FEs X X X X X X
Stu FEs X X X X X X
N student-years 6,601,535 5,898,902 6,519,509 3,155,009 6,594,053 4,601,340
N students 1,224,566 1,186,057 1,217,043 779,669 1,222,196 939,620
N treated students 122,172 120,164 122,112 96,526 122,043 97,856
N treated schools 143 140 143 79 143 126
R2 0.68 0.51 0.79 0.75 0.88 0.85

(b) Staying students

Calendar School Peers

(1) (2) (3) (4) (5) (6)
Multiple Max days Age Stu/tch Peers: Bl/Hisp Peers: predicted

Post: Stayers -0.249∗∗∗ 2.305∗∗∗ 1.572 -0.278∗∗ -0.016∗∗∗ 0.022∗∗∗

(0.027) (0.304) (1.074) (0.123) (0.003) (0.004)

Grade FEs X X X X X X
Year FEs X X X X X X
Stu FEs X X X X X X
N student-years 5,837,507 5,214,065 5,759,302 2,737,469 5,830,319 4,053,776
N students 1,119,399 1,081,590 1,111,323 686,610 1,117,171 853,479
N treated students 178,022 176,086 177,607 132,170 177,847 161,177
N treated schools 801 791 752 500 802 787
R2 0.70 0.53 0.68 0.75 0.88 0.85

Notes: Table reports estimates of difference-in-differences models corresponding one-parameter versions of equa-

tion (4), where only the coefficient for the immediate new school effect (β1) is included; β2 and β3 are constrained

to be zero. Dependent variables are multi-track status in a given school-year (column 1), total instructional days in

a given school-year (column 2), school age (column 3), class size (i.e. pupils per teacher) for students in grades K-5

(column 4), school leave-out mean proportion black and/or hispanic (column 5), and school leave-out mean predicted

test scores (column 6). Panel A reports estimates for students attending new school facilities. Panel B reports anal-

ogous estimates for staying students: here β1 is an indicator for having experienced a 10% or greater school-grade

cohort exit to a newly constructed school. Specifications include fixed effects for student, year, and grade. Standard

errors are two-way clustered by school and student.
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Table A2: Teacher changes at existing schools

(a) Demographics

(1) (2) (3) (4)
Age Experience MA+ Pr(New)

Post: Stayers 1.117∗∗∗ 0.768∗∗∗ 0.007 -0.000
(0.248) (0.182) (0.010) (0.004)

Grade FEs X X X X
Year FEs X X X X
Stu FEs X X X X
N student-years 3,935,106 3,927,063 3,931,757 5,902,165
N students 926,501 925,300 926,203 1,140,815
N treated students 156,306 156,183 156,282 176,213
N treated schools 797 797 797 802
R2 0.32 0.35 0.28 0.29

(b) Value-added

VAM: Average (pre-switch) VAM: Experienced/Novice gap

(1) (2) (3) (4)
Math ELA Math ELA

Post: Stayers -0.009 0.002 -0.007 0.016
(0.007) (0.003) (0.022) (0.014)

Grade FEs X X X X
Year FEs X X X X
Stu FEs X X X X
N student-years 2,175,273 3,722,137 1,267,199 2,347,897
N students 640,572 887,238 432,813 672,731
N treated students 132,846 156,769 104,810 134,051
N treated schools 609 785 585 731
R2 0.33 0.35 0.38 0.33

Notes: Table reports estimates of difference-in-differences models corresponding one-parameter versions of equa-

tion (4), for students that had 10% or more of their school-grade cohort exit to a newly constructed school. Only

the coefficient for having experienced a 10% or greater school-grade cohort exit is included (β1); β2 and β3 are con-

strained to be zero. In panel A, dependent variables are teacher age (column 1), teacher years experience (column

2), an indicator for having a masters degree or higher (column 3), and an indicator for having a new teacher in either

math or ELA (column 4). Panel B reports estimates where dependent variables are school-year averages of teacher

value-added: in columns 1 and 2 dependent variables are average value-added scores based on prior-year observations

at existing school facilities in math and ELA, respectively. In columns 3 and 4 dependent variables are the school

year gap in mean value-added between novice and experienced teachers in math and ELA, respectively. See Appendix

B for further detail on computation of teacher value-added. All specifications include fixed effects for student, year,

and grade. Standard errors are two-way clustered by school and student.
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Table A3: Principal experience

(1) (2) (3) (4)
Exper (Dist) Exper (Sch) New (Dist) New (Sch)

New School -0.830∗∗∗ -1.064∗∗∗ 0.135∗∗∗ 0.191∗∗∗

(0.146) (0.103) (0.021) (0.021)

Grade FEs X X X X
Year FEs X X X X
Stu FEs X X X X
N student-years 5,655,314 5,655,314 5,655,314 5,655,314
N students 1,116,451 1,116,451 1,116,451 1,116,451
N treated students 128,248 128,248 128,248 128,248
N treated schools 135 135 135 135
R2 0.61 0.51 0.50 0.42

Notes: Table reports estimates of difference-in-differences models corresponding one-parameter versions of equa-

tion (4), where only the coefficient for the immediate new school effect (β1) is included; β2 and β3 are constrained to

be zero. Dependent variables are within-district principal experience (column 1), within-school principal experience

(column 2), an indicator for having a new principal (new to the district) in a given year (column 3), and an indicator

for having a new principal (new to the school) in a given year (column 4). Specifications include fixed effects for

student, year, and grade. Standard errors are two-way clustered by school and student.
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Table A4: Student effects, heterogeneity

Math ELA Attendance Effort

Pooled 0.029∗∗∗ 0.019∗∗∗ 3.973∗∗∗ 0.061∗∗∗

(0.007) (0.004) (0.551) (0.017)

By Sex :

Female 0.036∗∗∗ 0.025∗∗∗ 3.823∗∗∗ 0.073∗∗∗

(0.007) (0.004) (0.547) (0.018)
Male 0.022∗∗∗ 0.014∗∗∗ 4.131∗∗∗ 0.053∗∗∗

(0.007) (0.004) (0.567) (0.019)

p-value 0.00 0.00 0.04 0.19

By parental education:

No college 0.029∗∗∗ 0.021∗∗∗ 4.284∗∗∗ 0.050∗∗∗

(0.007) (0.004) (0.598) (0.017)
Any college 0.026∗∗∗ 0.014∗∗∗ 3.278∗∗∗ 0.107∗∗∗

(0.010) (0.004) (0.494) (0.023)

p-value 0.69 0.03 0.00 0.00

By school level :

Elementary 0.028∗∗∗ 0.017∗∗∗ 1.608∗∗∗ 0.061∗∗∗

(0.007) (0.004) (0.333) (0.017)
Middle 0.038 -0.002 3.368∗∗∗

(0.026) (0.007) (0.526)
High 0.030∗∗∗ 5.464∗∗∗

(0.007) (1.055)

p-value 0.72 0.00 0.00

By grade of switch:

Reg (KG,G6,G9) 0.019∗∗ 0.018∗∗∗ 5.305∗∗∗ 0.040
(0.009) (0.004) (0.643) (0.025)

Irregular 0.038∗∗∗ 0.022∗∗∗ 1.976∗∗∗ 0.071∗∗∗

(0.009) (0.005) (0.532) (0.020)

p-value 0.08 0.49 0.00 0.31

Notes: Table reports estimates of parametric event study models corresponding one-parameter versions of equa-

tion (4). Columns 1 and 2 include only the coefficient for the change in growth (β2); β1 and β3 are constrained

to be zero. Columns 3 and 4 include only the coefficient for the immediate new school effect (β1); β2 and β3 are

constrained to be zero. Dependent variables are standardized english-language arts test scores (column 1), stan-

dardized math test scores (column 2), annual days attended (column 3), and standardized average teacher-reported

effort scores (column 4). Panel A repeats baseline one-parameter estimates from columns 1 and 4 of Tables 4 and

5. The remaining panels report estimates of coefficients interacted with student gender (panel A), parental educa-

tion (panel B), school level (panel C), and whether a student switched in a typical (KG, G6, G9) or atypical grade

(panel D). P-values for the test of equality of the coefficient(s) are reported in the third row of each panel. Specifi-

cations include fixed effects for student, year, and grade. Standard errors are two-way clustered by school and student.
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Table A5: House price effects, by school level

(1) (2) (3) (4) (5)

New Elementary 0.051∗∗∗ 0.026∗

(0.015) (0.014)

New Middle 0.031 0.003
(0.023) (0.016)

New High 0.071∗∗ 0.065∗∗

(0.030) (0.029)

Only New Elementary 0.065∗∗∗

(0.021)

Only New Middle 0.008
(0.018)

Only New High 0.072∗∗

(0.034)

p, Elem effects =0 .00063 .064 .0027
p, Mid effects =0 .18 .87 .66
p, HS effects =0 .019 .027 .034
p, All effects =0 .04 .0036
p, All effects equal .17 .024
Yr-HSZ FEs X X X X X
Month FEs X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
All LAUSD X X X X X
Number of sales 381,407 374,915 480,967 505,781 471,528
R2 .83 .83 .82 .82 .83

Notes: Table reports estimated coefficients from difference-in-differences regressions by school level, based off

of equation (5). Columns 1, 2, and 3 report estimates of the effects of new elementary, new middle, and new high

schools, respectively. Properties in new school zones for schools at the other two levels are excluded from the control

group in estimation in columns 1-3 (i.e. column 1 excludes properties that received new middle and/or new high

school zones but not elementary schools from the control group). Column 4 includes coefficients for all three school

levels. Column 5 restricts estimation to include only those properties in the attendance area of a single new school

level. P-values for the tests that the effect at each level equals zero are included, as are p-values for the omnibus

hypothesis tests that effects for all levels are equal to zero and that effects for all levels are equal. All specifications

include property-specific controls, year-by-high school zone fixed effects, neighborhood fixed effects, and month fixed

effects. Standard errors are clustered by neighborhood.
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Table A6: House price effects, using post-2012 data or post-construction neighborhood definitions

(a) Including post-2012 data

Neighborhood Fixed Effects Repeat Sales

(1) (2) (3) (4) (5) (6) (7)

New School -0.021∗ 0.053∗∗∗ 0.049∗∗∗ 0.034∗∗∗ 0.049∗∗∗ 0.043∗∗∗ 0.046∗∗∗

(0.013) (0.015) (0.013) (0.011) (0.013) (0.012) (0.014)

Yr FEs X X X
Yr-HSZ FEs X X X X
Month FEs X X X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
Prop FEs X X
New Sch Zones X X X X X X X
w/in 1km X
All LAUSD X X
Number of sales 593,414 593,414 298,507 188,222 188,229 114,519 114,542
R2 .81 .82 .79 .77 .74 .91 .9

(b) Neighborhoods based on 2012 boundaries

Neighborhood Fixed Effects Repeat Sales

(1) (2) (3) (4) (5) (6) (7)

New School -0.010 0.068∗∗∗ 0.067∗∗∗ 0.046∗∗∗ 0.055∗∗∗ 0.045∗∗∗ 0.059∗∗∗

(0.014) (0.019) (0.017) (0.013) (0.016) (0.014) (0.017)

Yr FEs X X X
Yr-HSZ FEs X X X X
Month FEs X X X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
Prop FEs X X
New Sch Zones X X X X X X X
w/in 1km X
All LAUSD X X
Number of sales 505,795 505,779 255,481 161,773 161,779 87,523 87,551
R2 .81 .82 .8 .78 .75 .91 .9

Notes: Table reports estimates from difference-in-differences regressions following equations (5) and (7). Panel

A includes additional data from 2013-2015, while panel B uses neighborhood effects based on 2012 school assignment

zones in lieu of 2000 school zones. Dependent variable is the ln(sale price). Columns 1-5 report estimates from

equation (5), including neighborhood effects and property specific controls. Columns 6 and 7 report estimates from

equation (7), including property fixed effects. Columns 1, 5, and 7 report estimates using year effects; the remaining

columns include year-by-high school zone effects. In columns 1 and 2, all properties in LAUSD in the data sample

are included. Column 3 restricts the sample to include only properties within a new school zone or within a 1km of a

new school zone (by 2012). Columns 4-7 include only properties within a new school zone by 2012; “never-treated”

properties are excluded. All specifications include month effects. Standard errors are clustered by neighborhood.
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Table A7: House price effects, robustness to sample restrictions

Relaxing sample restrictions for:

(1) (2) (3) (4) (5)
Baseline Price outliers Renovated/torn-down Large/multi-unit Non-residential

New School 0.060∗∗∗ 0.088∗∗∗ 0.056∗∗∗ 0.058∗∗∗ 0.048∗∗∗

(0.018) (0.028) (0.020) (0.018) (0.014)

Yr FEs
Yr-HSZ FEs X X X X X
Month FEs X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
Baseline sample X X X X X
Price outliers X
Renovated X
Large/multi-unit X X
Non-residential X
Number of sales 505,780 512,577 525,469 513,039 625,632
R2 .82 .75 .75 .8 .72

Notes: Table reports estimated coefficients from difference-in-differences regressions corresponding to estimates

of equation (5). Dependent variable is the ln(sale price). Column 1 repeats baseline estimates presented in Table 10

panel A column 2. Column 2 makes no restriction on sale price, including the top and bottom 1% of sales based on

price. Column 3 relaxes the restriction on renovated and/or torn-down properties, including these properties with

an additional indicator variable for having been renovated and/or torn-down in the controls. Column 4 includes

large properties, with greater than one acre of space. Column 5 includes non-residential properties. All specifications

include neighborhood fixed effects, property specific controls, and month fixed effects. Standard errors are clustered

by neighborhood.
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Appendix B: Computing teacher value-added

To estimate teacher value-added scores, we use a subsample of students for which the following

criteria are met: (1) Student-year observations have non-missing test scores and are currently in

grades 3-7 in math, and 3-11 in ELA; value-added scores are not computed for grade 2 teachers so

as to have at least one prior score for a student; (2) Student-year observations have non-missing

teacher assignment;56 (3) Student-year observations are in classrooms with at least 7 students.

Consider the following data-generating process for test scores, closely following Kane and Staiger

(2008) and Chetty et al. (2014):

yi,t = αt,g(i,t) +X ′itβ + νit (8)

νit = µj(i,t),t + εit (9)

where yi,t is student i’s test score in a given subject in year t, g(i, t) denotes a student’s grade in a

given year, j(i, t) denotes a student’s teacher in a given year, and X ′it is a vector of controls. Here,

µj(i,t),t is a teacher’s effect on student test scores in year t and εj(i,t),t captures unobserved error in

test scores unrelated to teacher quality.

To compute value-added for a given teacher-year, we estimate equation (8), and then compute

the average residual within each teacher-year cell: VAjt ≡ νjt. Unlike many prior studies, we do

not use an Empirical Bayes or similar procedure to “shrink” these noisy estimates of value-added,

as we will only use these measures as dependent variables and are therefore less concerned about

measurement error (and potentially more concerned about biased estimates).57

In estimation, X ′it includes third-degree polynomials in lagged student test scores (for both

subjects), demographics (race, gender, parental education, free/reduced-price lunch status, limited

English status), class size (only available for elementary students), and school-level variables (school

leave-out means of the share black/hispanic, share with any parental postsecondary education,

share who speak English at home, and the share eligible for free or reduced-price lunch). We do

not include school fixed effects in estimation, meaning estimated teacher effects are relative to all

other teachers within LAUSD.

56Nearly every student in K-5 has a non-missing assignment; teacher IDs in later grades were assigned to a student-
subject pair based on the teacher associated with a student’s math and/or ELA class

57See Jacob and Rothstein (2016) for a more detailed discussion of potential problems using estimated posterior
means of student test scores as dependent variables in regression models.
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Appendix C: Treatment effect heterogeneity

Student effects: Heterogeneity

Heterogeneity in estimated student effects is presented in Table A4. Row 1 reports pooled estimates

using the entire sample, which correspond to baseline estimates presented in column 1 of Table 4.

In the remaining rows, the one-parameter treatment effect coefficients are interacted with student

demographic and other characteristics.58 Estimated cognitive effects are nearly twice as large for

girls than boys, and the differences are statistically significant (p < 0.01) for both math and ELA.

Effects on student effort are also larger for girls, although the magnitude of the difference is smaller

and not significant. The pattern is the opposite for attendance, as effects on the number of days

attended are larger for boys than girls, although the magnitude of the difference is small. These

differences suggest that substandard classroom facilities may inhibit girls’ learning more than boys,

although the mechanisms underlying this difference are unclear.

When results are split by level of parental education, a mixed picture emerges. Estimated

effects on math scores, ELA scores, and attendance are larger for students with parents who did

not attend any level of postsecondary education, although the difference in math scores is small

and insignificant. For student effort, estimated effects are over twice as large for students with

parents who have any level of postsecondary education than for those whose parents have a high

school education or less. Overall, the results provide little evidence that improvements in school

facilities systematically benefit students from lower socio-economic backgrounds.59 Recall however,

as shown in Table 2, that there is little variation in socio-economic status in LAUSD: nearly 90%

of treated students are eligible for free or reduced-price lunch and less than one-fifth have parents

with any level of post-secondary education.

Table A4 also shows estimates split by school level. Cognitive effects are insignificant for

students who attend new middle schools, although for math, the difference between elementary and

middle school effects is insignificant. For ELA, effects are large and significant in both elementary

and high school, and are essentially zero for students who switch to a new middle school. For

attendance, a clear pattern emerges: effects increase monotonically with school level, and are the

largest for students in new high schools. Insofar as student motivation is impacted by new facilities

and drives changes in student attendance, we would expect effects to grow with grade level as older

students have greater autonomy over attendance decisions than younger students, whose daily

58Note that this constrains grade and year effects to be equivalent for each group, as opposed to running separate
regressions or also interacting fixed effects with demographic indicators.

59Analogous breakdowns by race and free lunch status (not reported) show only small and insignificant differences.
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attendance is more directly dictated by parental influence.

Finally, estimated effects are also split by whether a student switches schools during a “regular”

grade transition (KG, G6, G9) or switches to a new school in another grade. “Irregular” grade

transitions in off-grades occurred immediately following school construction, when students were

transferred between schools to fill enrollment at the new school. Overall, effects are similar for both

types of switching students, with only a large and significant difference in estimated attendance

gains. Estimated effects on cognitive outcomes and student effort are somewhat larger for initial

switchers who switch during an irregular grade transition, although only the difference in math

scores is statistically significant at the 10% level. For student attendance, effects are significantly

larger (5.2 days vs 1.9 days) for regular grade switchers. Students switching at a typical grade

transition are mostly switching in grades 6 and 9, which explains most of the difference in days

attended, as attendance gains are larger for middle and high school students than elementary school

switchers.60

Real estate effects: By school level

Estimates reported in Table 10 and Figure 8 include properties that received multiple new schools.

The average treated property in the sample was in the school attendance area of 1.1 new school

constructions, implying the the effect of receiving a single school (elementary, middle or high)

would be 9% lower than the baseline estimates, roughly a 5.5% increase in house prices per new

school construction using baseline estimates from column 2. In Table A5 we report house price

effects separately by school level. Results indicate that effects are largest for new elementary

and high schools, although we cannot statistically reject differences in estimated coefficients in

all specifications. Qualitatively, results are consistent with student effect heterogeneity reported

in Table A4, which provided evidence that test score effects were larger and more significant for

newly constructed elementary and high school than for new middle schools. As middle schools

represent the shortest duration of student attendance (3 years, vs 4 for high school and up to 6 for

elementary), it is unsurprising that the effects may be smaller.

60See Figure A4 for the distribution of student switching grades to new schools.
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