Generalized stability of monetary unions under regime switching in monetary and fiscal policies

Dennis Bonam¹ and Bart Hobijn²

 $$^{1}\mbox{De}$ Nederlandsche Bank $$^{2}\mbox{W.P.}$ Carey School of Business, Arizona State University

20th Central Bank Macroeconomic Modeling Workshop Banque de France, 16 November 2017

Macro stability: a joint monetary-fiscal effort

- Leeper (1991): to ensure a unique and stable equilibrium...
 - ...monetary policy must "actively" target inflation...
 - ...and fiscal policy must "passively" target debt

Macro stability: a joint monetary-fiscal effort

- Leeper (1991): to ensure a unique and stable equilibrium...
 - ...monetary policy must "actively" target inflation...
 - ...and fiscal policy must "passively" target debt
 - ▶ If fiscal policy active, monetary policy must be passive (Fiscal Theory of the Price Level, FTPL; Sims, 1994; Woodford, 1998)

Macro stability: a joint monetary-fiscal effort

- Leeper (1991): to ensure a unique and stable equilibrium...
 - ...monetary policy must "actively" target inflation...
 - ...and fiscal policy must "passively" target debt
 - ▶ If fiscal policy active, monetary policy must be passive (Fiscal Theory of the Price Level, FTPL; Sims, 1994; Woodford, 1998)
- Bergin (2000): Leeper/FTPL result applies to monetary union
 - ► Single CB ensures determinacy by targeting union-wide inflation
 - ► Fiscal authorities of *all* member states must ensure fiscal solvency
 - ▶ Failure to do so by *one* fiscal authority already leads to instability
 - Under FTPL, only one budget constraint determines price level

These stability requirements have some issues

- Policy-mix assumed to be time invariant
 - But, broad empirical support for changes in policy regimes
 (Favero and Monacelli, 2005; Davig and Leeper, 2006, 2011; Chen et al., 2015; Bianchi and Ilut, 2017)
 - Also, regime switching may expand feasible set of policies (Davig and Leeper, 2007; Ascari et al., 2017)
- If member states abandon debt target, monetary union unstable
 - ▶ But, under monetary union, no national control over monetary policy
 - Must rely on national fiscal policy to absorb country-specific shocks
 - ▶ May require shifts from debt stabilization towards macro stabilization

These stability requirements have some issues

- Policy-mix assumed to be time invariant
 - But, broad empirical support for changes in policy regimes
 (Favero and Monacelli, 2005; Davig and Leeper, 2006, 2011; Chen et al., 2015; Bianchi and Ilut, 2017)
 - Also, regime switching may expand feasible set of policies (Davig and Leeper, 2007; Ascari et al., 2017)
- If member states abandon debt target, monetary union <u>unstable</u>
 - ▶ But, under monetary union, no national control over monetary policy
 - ▶ Must rely on national fiscal policy to absorb country-specific shocks
 - ▶ May require shifts from debt stabilization towards macro stabilization

- Consider simple model for two-country monetary union
- Allow for regime switching in monetary and fiscal policies
- Focus particularly on temporary visits to 'unstable' regime
- How to allow for such visits, without threatening stability?

- Consider simple model for two-country monetary union
- Allow for regime switching in monetary and fiscal policies
- Focus particularly on temporary visits to 'unstable' regime
- How to allow for such visits, without threatening stability?

- Consider simple model for two-country monetary union
- Allow for regime switching in monetary and fiscal policies
- Focus particularly on temporary visits to 'unstable' regime
- How to allow for such visits, without threatening stability?

- Consider simple model for two-country monetary union
- Allow for regime switching in monetary and fiscal policies
- Focus particularly on temporary visits to 'unstable' regime
- How to allow for such visits, without threatening stability?

Temporary visits to 'unstable' regime possible

- Future austerity allows for occasional loosening of debt target
 - ▶ More (frequent) binge spending today requires more austerity tomorrow

Temporary visits to 'unstable' regime possible

- <u>Future austerity</u> allows for occasional loosening of debt target
 - More (frequent) binge spending today requires more austerity tomorrow
- Temporary visits also supported by debt devaluation
 - Requires monetary policy to temporarily abandon inflation target
 - Similar to results from Fiscal Theory of the Price Level
 - Dynamically, entail greater bouts of union-wide inflation

Temporary visits to 'unstable' regime possible

- <u>Future austerity</u> allows for occasional loosening of debt target
 - More (frequent) binge spending today requires more austerity tomorrow
- Temporary visits also supported by debt devaluation
 - Requires monetary policy to temporarily abandon inflation target
 - ► Similar to results from Fiscal Theory of the Price Level
 - Dynamically, entail greater bouts of union-wide inflation
- Bailouts by partner states also support such visits
 - Necessarily entail transfer of wealth across member states

The model

Overview of the model

- Two-country monetary union
- Endowment economy
- Supranational central bank (inflation target)
- Each country:
 - Fiscal authority (debt target)
 - Households (maximize utility)
- Regime switching in monetary and fiscal policy

Characterizing monetary policy

Monetary policy rule:

$$\frac{R_t}{R} = \left(\frac{\pi_t}{\pi}\right)^{\phi_{\pi,s_t}} \tag{1}$$

with R_t gross nominal interest rate, π_t union-wide gross inflation

Characterizing monetary policy

• Monetary policy rule:

$$\frac{R_t}{R} = \left(\frac{\pi_t}{\pi}\right)^{\phi_{\pi,s_t}} \tag{1}$$

with R_t gross nominal interest rate, π_t union-wide gross inflation

- Active monetary policy: $\phi_{\pi,s_t} > 1$
- Passive monetary policy: $\phi_{\pi,s_t} \leq 1$

Characterizing monetary policy

• Monetary policy rule:

$$\frac{R_t}{R} = \left(\frac{\pi_t}{\pi}\right)^{\phi_{\pi,s_t}} \tag{1}$$

with R_t gross nominal interest rate, π_t union-wide gross inflation

- Active monetary policy: $\phi_{\pi,s_t} > 1$
- Passive monetary policy: $\phi_{\pi,s_t} \leq 1$
- ullet Policy parameters may vary across regimes, indexed by s_t

Characterizing fiscal policy

• Fiscal policy rule in country $i \in \{1, 2\}$:

$$\tau_{i,t} = \phi_{b_i,s_t} \left(b_{i,t-1} - b_i \right) + z_{\tau_i,t} \tag{2}$$

with $au_{i,t}$ lump-sum taxes, $b_{i,t}$ real debt, $z_{ au_i,t}$ fiscal policy shock

Characterizing fiscal policy

• Fiscal policy rule in country $i \in \{1, 2\}$:

$$\tau_{i,t} = \phi_{b_i,s_t} (b_{i,t-1} - b_i) + z_{\tau_i,t}$$
 (2)

with $\tau_{i,t}$ lump-sum taxes, $b_{i,t}$ real debt, $z_{\tau_i,t}$ fiscal policy shock

- Passive fiscal policy: $\phi_{b_i,s_t} > r$, with r real interest rate
- Active fiscal policy: $\phi_{b_i,s_t} \leq r$

Characterizing fiscal policy

• Fiscal policy rule in country $i \in \{1, 2\}$:

$$\tau_{i,t} = \phi_{b_i,s_t} (b_{i,t-1} - b_i) + z_{\tau_i,t}$$
 (2)

with $\tau_{i,t}$ lump-sum taxes, $b_{i,t}$ real debt, $z_{\tau_i,t}$ fiscal policy shock

- Passive fiscal policy: $\phi_{b_i,s_t} > r$, with r real interest rate
- Active fiscal policy: $\phi_{b_i,s_t} \leq r$
- Fiscal policy in country 2 always passive $(\phi_{b_2,s_t} > r, \, \forall s_t)$

Government budget constraints and bailouts

• Evolution of government debt in country 1:

$$b_{1,t} = (1 - \gamma_{s_t}) \frac{R_{t-1}}{\pi_t} b_{1,t-1} - (\tau_{1,t} - g_{1,t})$$
(3)

with $g_{1,t}$ real government consumption

Government budget constraints and bailouts

• Evolution of government debt in country 1:

$$b_{1,t} = (1 - \gamma_{s_t}) \frac{R_{t-1}}{\pi_t} b_{1,t-1} - (\tau_{1,t} - g_{1,t})$$
 (3)

with $g_{1,t}$ real government consumption

• State-dependent bailout fraction, γ_{s_t} , determined by

$$\gamma_{s_t} = \left(\frac{b_{1,t-1}}{b_1}\right)^{\phi_{\gamma,s_t}} - 1 \tag{4}$$

with ϕ_{γ,s_t} bailout elasticity

Government budget constraints and bailouts

• Evolution of government debt in country 1:

$$b_{1,t} = (1 - \gamma_{s_t}) \frac{R_{t-1}}{\pi_t} b_{1,t-1} - (\tau_{1,t} - g_{1,t})$$
(3)

with $g_{1,t}$ real government consumption

• State-dependent bailout fraction, γ_{s_t} , determined by

$$\gamma_{s_t} = \left(\frac{b_{1,t-1}}{b_1}\right)^{\phi_{\gamma,s_t}} - 1 \tag{4}$$

with ϕ_{γ,s_t} bailout elasticity

• Evolution of government debt in country 2:

$$b_{2,t} = \frac{R_{t-1}}{\pi_t} b_{2,t-1} - \left(\tau_{2,t} - g_{2,t} - \gamma_{s_t} \frac{R_{t-1}}{\pi_t} B_{1,t-1} \right)$$
 (5)

Households

ullet Infinitely-lived households choose consumption, $c_{i,t}$, to maximize

$$E_t \sum_{t=0}^{\infty} \beta^t \log c_{i,t} \tag{6}$$

with $\beta \in (0,1)$ discount factor, subject to

$$c_{i,t} + b_{i,t} + \tau_{i,t} = \frac{R_{t-1}}{\pi_t} b_{i,t-1} + y_i$$
 (7)

with yi constant endowment

• Consumption Euler equation:

$$\frac{1}{c_{i,t}} = \beta R_t E_t \left[\frac{1}{\pi_{t+1}} \frac{1}{c_{i,t+1}} \right] \tag{8}$$

Resource constraint

- For simplicity, assume $g_{i,t} = g_i$ for all t
- Perfect substitutability and tradability of y_i then implies

$$c_{1,t} + c_{2,t} + g_1 + g_2 = y_1 + y_2 (9)$$

 Aggregate consumption constant: increase in consumption in one country comes at cost of lower consumption in other country Policy regimes and regime switches

- Unstable:
 - Active monetary policy $(\phi_{\pi,U} > 1)$, active fiscal policy $(\phi_{b_1,U} \leq r)$
- Ricardian
 - Active monetary policy $(\phi_{\pi,R} > 1)$, passive fiscal policy $(\phi_{b_1,R} > r)$
- Fiscal Theory of the Price Level:
 - ▶ Passive monetary policy $(\phi_{\pi,F} \leq 1)$, active fiscal policy $(\phi_{b_1,F} \leq r)$
- Bailout
 - Active monetary policy $(\phi_{\pi,B} > 1)$, active fiscal policy $(\phi_{b_1,B} \le r)$, positive bailouts $(\phi_{\gamma,B} > 0)$

- Unstable:
 - ▶ Active monetary policy $(\phi_{\pi,U} > 1)$, active fiscal policy $(\phi_{b_1,U} \le r)$
- Ricardian:
 - Active monetary policy $(\phi_{\pi,R} > 1)$, passive fiscal policy $(\phi_{b_1,R} > r)$
- Fiscal Theory of the Price Level:
 - ▶ Passive monetary policy $(\phi_{\pi,F} \leq 1)$, active fiscal policy $(\phi_{b_1,F} \leq r)$
- Bailout:
 - Active monetary policy $(\phi_{\pi,B} > 1)$, active fiscal policy $(\phi_{b_1,B} \le r)$, positive bailouts $(\phi_{\gamma,B} > 0)$

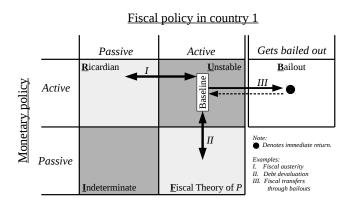
- Unstable:
 - Active monetary policy $(\phi_{\pi,U} > 1)$, active fiscal policy $(\phi_{b_1,U} \le r)$
- Ricardian
 - Active monetary policy $(\phi_{\pi,R} > 1)$, passive fiscal policy $(\phi_{b_1,R} > r)$
- Fiscal Theory of the Price Level:
 - ▶ Passive monetary policy $(\phi_{\pi,F} \leq 1)$, active fiscal policy $(\phi_{b_1,F} \leq r)$
- Bailout
 - Active monetary policy $(\phi_{\pi,B} > 1)$, active fiscal policy $(\phi_{b_1,B} \le r)$, positive bailouts $(\phi_{\gamma,B} > 0)$

- Unstable:
 - Active monetary policy $(\phi_{\pi,U} > 1)$, active fiscal policy $(\phi_{b_1,U} \le r)$
- 2 Ricardian
 - Active monetary policy $(\phi_{\pi,R} > 1)$, passive fiscal policy $(\phi_{b_1,R} > r)$
- Fiscal Theory of the Price Level:
 - ▶ Passive monetary policy $(\phi_{\pi,F} \leq 1)$, active fiscal policy $(\phi_{b_1,F} \leq r)$
- Bailout:
 - Active monetary policy $(\phi_{\pi,B} > 1)$, active fiscal policy $(\phi_{b_1,B} \le r)$, positive bailouts $(\phi_{\gamma,B} > 0)$

- Unstable ***our baseline***:
 - Active monetary policy $(\phi_{\pi,U} > 1)$, active fiscal policy $(\phi_{b_1,U} \le r)$
- Ricardian:
 - Active monetary policy $(\phi_{\pi,R} > 1)$, passive fiscal policy $(\phi_{b_1,R} > r)$
- Fiscal Theory of the Price Level:
 - ▶ Passive monetary policy $(\phi_{\pi,F} \leq 1)$, active fiscal policy $(\phi_{b_1,F} \leq r)$
- Bailout:
 - Active monetary policy $(\phi_{\pi,B} > 1)$, active fiscal policy $(\phi_{b_1,B} \le r)$, positive bailouts $(\phi_{\gamma,B} > 0)$
- ullet Switching occurs only between $\underline{f U}$ and one other regime

Regime transitions

- ullet Switching occurs only between ${f U}$ and one other regime
- Transition matrix given by


$$P = \begin{bmatrix} p_{UU} & p_{Us_t} \\ p_{s_{t-1}U} & p_{s_{t-1}s_t} \end{bmatrix}, \quad s_t \in \{R, F, B\}$$

with
$$p_{UU} + p_{Us_t} = p_{s_{t-1}U} + p_{s_{t-1}s_t} = 1$$

ullet We consider various fractions of time spent at $\underline{f U}$, denoted by

$$f_U = \frac{1}{1 + \frac{p_{Us_t}}{p_{s_{t-1}U}}}$$

Three illustrative examples

Results

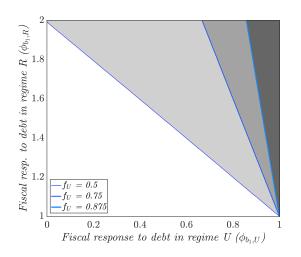
Strategy

- ullet Keep $\underline{f U}$ nstable regime as our baseline, for different $\phi_{b_1,U} \in [0,r]$
- Consider various fractions of time spent at $\underline{\mathbf{U}}$, f_U
- What policies in other regimes $(\underline{R}, \underline{F}, \underline{B})$ can support visits to \underline{U} ?

Strategy

- ullet Keep ${f \underline{U}}$ nstable regime as our baseline, for different $\phi_{b_1,U} \in [0,r]$
- ullet Consider various fractions of time spent at ${f U}$, f_U
- What policies in other regimes $(\underline{R}, \underline{F}, \underline{B})$ can support visits to \underline{U} ?

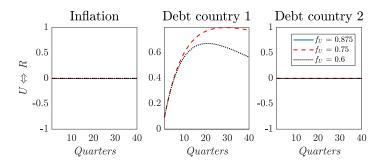
Strategy


- ullet Keep ${f \underline{U}}$ nstable regime as our baseline, for different $\phi_{b_1,U} \in [0,r]$
- Consider various fractions of time spent at $\underline{\mathbf{U}}$, f_U
- What policies in other regimes $(\underline{R}, \underline{F}, \underline{B})$ can support visits to \underline{U} ?

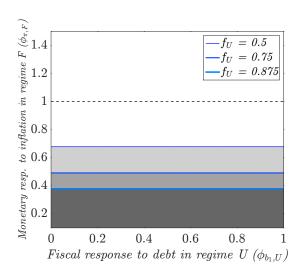
Strategy

- ullet Keep ${f \underline{U}}$ nstable regime as our baseline, for different $\phi_{b_1,U} \in [0,r]$
- Consider various fractions of time spent at $\underline{\mathbf{U}}$, f_U
- What policies in other regimes $(\underline{R}, \underline{F}, \underline{B})$ can support visits to \underline{U} ?

▶ See benchmark calibration

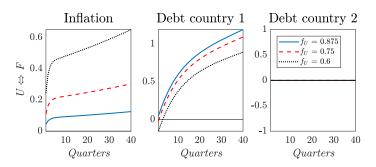

Example 1: regime-switching fiscal policy

 $\it Note$: white = no stable equilibrium; gray: stable equilibrium.

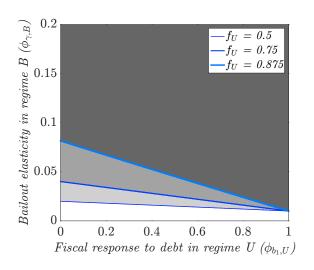

Ricardian Equivalence holds

Responses to tax cut in country 1

Notes: Shock occurs in regime $\underline{\mathbf{U}}$; switching between regimes $\underline{\mathbf{U}}$ and $\underline{\mathbf{R}}$; IRFs show log-deviations from steady state.

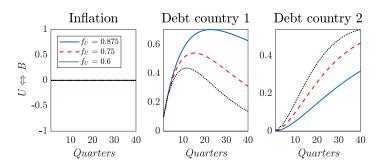

Example 2: regime-switching monetary policy

Note: white = no stable equilibrium; gray: stable equilibrium.


Debt devaluation in country 1

Responses to tax cut in country 1

Notes: Shock occurs in regime $\underline{\mathbf{U}}$; switching between regimes $\underline{\mathbf{U}}$ and $\underline{\mathbf{F}}$; IRFs show log-deviations from steady state.


Example 3: regime-switching fiscal bailouts

Note: white = no stable equilibrium; gray: stable equilibrium.

Fiscal transfers to country 1

Responses to tax cut in country 1

Notes: Shock occurs in regime $\underline{\mathbf{U}}$; switching between regimes $\underline{\mathbf{U}}$ and $\underline{\mathbf{B}}$; IRFs show log-deviations from steady state.

- Monetary unions with active monetary and fiscal policies can be stable
- Two fiscal relieve valves: pay off debt of country 1 by...
 - ...taxpayers in country 1 through fiscal austerity
 - ...taxpayers in other member states through fiscal bailout
- Monetary relieve valve:
 - Required monetary passiveness independent of fiscal activeness
 - Only regime transition probability matters
- ullet Results allow for dynamic analysis when shocks occur in ${f U}$
 - Dynamic responses of economy sensitive to expected future regimes

- Monetary unions with active monetary and fiscal policies can be stable
- Two fiscal relieve valves: pay off debt of country 1 by...
 - ...taxpayers in country 1 through fiscal austerity
 - ...taxpayers in other member states through fiscal bailout
- Monetary relieve valve:
 - Required monetary passiveness independent of fiscal activeness
 - Only regime transition probability matters
- ullet Results allow for dynamic analysis when shocks occur in ${f U}$
 - Dynamic responses of economy sensitive to expected future regimes

- Monetary unions with active monetary and fiscal policies can be stable
- Two fiscal relieve valves: pay off debt of country 1 by...
 - ...taxpayers in country 1 through fiscal austerity
 - ...taxpayers in other member states through fiscal bailout
- Monetary relieve valve:
 - Required monetary passiveness independent of fiscal activeness
 - Only regime transition probability matters
- Results allow for dynamic analysis when shocks occur in <u>U</u>
 - Dynamic responses of economy sensitive to expected future regimes

- Monetary unions with active monetary and fiscal policies can be stable
- Two fiscal relieve valves: pay off debt of country 1 by...
 - ...taxpayers in country 1 through fiscal austerity
 - ...taxpayers in other member states through fiscal bailout
- Monetary relieve valve:
 - Required monetary passiveness independent of fiscal activeness
 - Only regime transition probability matters
- Results allow for dynamic analysis when shocks occur in <u>U</u>
 - Dynamic responses of economy sensitive to expected future regimes

Reference slides

Benchmark calibration

	Description	Value	Interpretation
β	Discount factor	0.99	4 percent annual real interest rate
ρ_{τ}	Tax-smoothing parameter	0.9	High persistence of tax shocks
b _i	Steady-state debt ratio	2.4	60 percent annualized debt ratio
Уi	Output levels	0.5	Monetary union of "equals"
gi	Steady-state public spending ratio	0.2	Long-run OECD average
ϕ_{π,s_t}	Monetary policy stance $(s_t eq F)$	1.5	Ensures active monetary policy
ϕ_{b_2}	Fiscal policy stance country 2	0.02	Ensures passive fiscal policy

