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Abstract

I introduce a class of algorithms called Deferred Acceptance with Compensation Chains

(DACC). DACC algorithms generalize the DA algorithms of Gale and Shapley (1962) by

allowing both sides of the market to make offers. The main result is a characterization of

the set of stable matchings: a matching is stable if and only if it is the outcome of a DACC

algorithm. DACC algorithms are an attractive alternative for matching markets in which the

designer is concerned about fairness. The proof of convergence of DACC algorithms uses a

novel technique based on a construction of a potential function.
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1 Introduction

Deferred Acceptance (DA) algorithms play a central role in matching theory. In a

seminal paper, Gale and Shapley (1962) used a men-proposing DA algorithm to show

existence of a stable matching in the marriage problem. Stability has proven to be the

key to designing successful matching markets in practice and is one reason why DA

algorithms have gained so much prominence in market design.1

The Gale-Shapley algorithm produces the stable matching that is most preferred by

agents on the proposing side. The men-proposing and the women-proposing versions

achieve two extreme points of the set of stable outcomes. What happens when we

allow for an arbitrary sequence of proposers? Is the outcome stable? Can all stable

matchings be reached if we let both men and women propose? While these questions

seem quite fundamental, the literature does not seem to provide final answers.2

I attempt to fill this gap by exploring the connection between stability and a general

class of deferred acceptance algorithms (DACC). Just as in the Gale-Shapley DA,

agents make and tentatively accept offers in a myopic way, taking into account only

the currently available options. However, both sides of the market are allowed to make

offers in an arbitrary order.

The paper makes three distinct contributions. First, I show that there exists a

natural generalization of the Gale-Shapley algorithm, namely the class of DACC algo-

rithms, with the property that the outcome of each algorithm in the class is stable, and

every stable outcome can be reached by an algorithm from the class. Conceptually,

this result can be seen as establishing an equivalence between (properly generalized)

deferred acceptance procedures and stability. Second, on the practical side, I argue

that the DACC class can be an attractive matching algorithm for markets in which the

designer is concerned about fairness. Because DACC allows for an arbitrary sequence

of proposers, there exist DACC algorithms that treat the two sides of the market sym-

metrically. This “procedural fairness” is complementary to other notions of fairness,

such as the median matching which can be viewed as a “fairness of outcomes.” Impor-

tantly for applications, the DACC algorithm extends to many-to-one matching with

1 See Roth (2007). Extensions of the deferred acceptance algorithm are used in public high-school
choice in New York (Abdulkadiroǧlu, Pathak and Roth, 2005a) and Boston (Abdulkadiroǧlu, Pathak,
Roth and Sönmez, 2005b), allocating medical students to residencies (NRMP) as well as in other
medical labor markets surveyed by Roth (2007). A stable mechanism is advocated for cadet-branch
matching in the US army by Sönmez and Switzer (2013).

2 I review papers giving partial answers to the above questions in Section 5.



1 Introduction 3

contracts. Third, the methodological contribution of the paper is to provide a novel

proof technique of convergence. To generate all stable matchings, the DA procedure

can no longer feature a monotone offer process, so the standard argument for conver-

gence does not apply. I construct a potential function and show its monotonicity along

the paths of the algorithm. I conjecture that similar constructions can be useful in

analyzing convergence of other matching systems, especially in settings when there is

not enough structure in the offer process (such as decentralized markets).

A Deferred Acceptance with Compensation Chains (DACC) algorithm works roughly

as follows. Agents make offers one at a time according to a pre-specified (arbitrary)

order. Agents propose to the best available partner, and hold an offer if they prefer

the proposer to the current match. Partners become unavailable to agent i when they

reject or divorce i, and become available when they propose to i. Initially, all agents

on the other side of the market are available to any agent i. The algorithm stops when

everyone is matched to the best available partner.

When both men and women propose, it is possible that a woman rejects an offer

from a man but proposes to him later on. As a consequence, the man might “withdraw”

an offer he made to another woman, an event I call deception. This non-monotonicity

of the offer process may upset convergence and stability, but the compensation chains

that I introduce restore them. Compensation consists in allowing the deceived agent

to make an additional offer (out of turn).

Convergence is established by constructing a potential function. For any agent i,

count the number of slots between the current match and the best available partner

according to agent i’s preference ranking. The potential function is the sum of these

numbers across all agents. The algorithm stops when the potential function hits zero,

and the matching is stable in this case. I show that the function is decreasing (strictly

in some steps) after sufficiently many rounds. Intuitively, the potential function goes

down for agents whose offers are accepted or rejected. However, it may go up for

agents that are divorced. After sufficiently many rounds, every divorce is a deception

and hence triggers a compensation chain. When the chain stops, the potential function

falls below its original level so its monotonicity is preserved.

I define the DACC algorithm and study its properties in Section 3. DACC reduces

to the Gale-Shapley algorithm if only one side makes offers. It converges in finite time,

and the outcome is stable. Every stable matching can be achieved by choosing an

appropriate order over agents.
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In Section 4, I characterize the DACC algorithm as a special case of a procedure in

which non-monotone operators are applied recursively. In a general setting, I provide

a necessary and sufficient condition under which decentralized procedures (individual

agents taking actions sequentially) converge to a stable outcome of the aggregate sys-

tem. I discuss the connection to papers that characterize stable matchings as fixed

points. While those papers typically rely on monotone operators and Tarski’s fixed-

point theorem, convergence of DACC is similar in spirit to stability of the tâtonnement

process for prices in competitive equilibrium.

Because DACC allows for an arbitrary order over proposers, it is fairly flexible.

Section 5 argues that some well-known algorithms can be interpreted as special cases

of the DACC algorithm with a particular order in which agents apply. I also discuss

additional properties of DACC and compare it to other algorithms from the matching

literature.

Section 6 explains why DACC needs to be sufficiently complicated to have the

desirable properties mentioned above. Simpler generalizations of the Gale-Shapley

algorithm without compensation chains are introduced, and I discuss why they fail to

achieve all of the properties of DACC.

The flexibility of DACC is explored further in Online Appendices C and D. In Ap-

pendix C, I show that DACC can be used without any modifications in the roommates

problem. Any stable matching can be an outcome of DACC, and under a standard

sufficient condition for existence of a stable matching, DACC converges to a stable

outcome. In Appendix D, I extend DACC to many-to-one matching with contracts. If

contracts are substitutes in the sense of Hatfield and Milgrom (2005), DACC is guaran-

teed to converge to a stable outcome. The construction and proof provide new insights

about the role of the substitutes condition. Rather than guaranteeing monotonicity of

an aggregate operator, substitutability of preferences allows for a decentralized proce-

dure in which one contract at a time is proposed.3

3 This observation is related to Gul and Stacchetti (1999) who provide a connection between sub-
stitutability and a single-improvement property for Walrasian equilibrium with indivisible objects.
Under a stronger assumption (satisfied by responsive preferences in many-to-one matching), I show
that all stable allocations can be achieved by DACC.
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2 Preliminaries

There is a finite set of men M and a finite set of women W . N is the set of all agents,

and for i ∈ N , I let Ni denote W if i ∈ M , and M if i ∈ W . Each agent i ∈ N

is endowed with a preference relation �i on Ni ∪ {∅}, where ∅ represents the outside

option of being unmatched. For ease of exposition, I assume that preferences are strict.

A matching µ is a set of unordered pairs {i, j} such that if i ∈ N , then j ∈ Ni ∪ {∅}
and each agent i ∈ N appears in exactly one pair. With slight abuse of notation, I

write µ(i) = j when {i, j} ∈ µ. I will say that agent i is matched when µ(i) ∈ Ni, and

that i is unmatched if µ(i) = ∅.
Agent j ∈ Ni is acceptable to i if j �i ∅. A matching µ is stable if all agents are

matched to acceptable partners or remain unmatched, and j �i µ(i) implies µ(j) �j i,
for all i ∈ N, j ∈ Ni.

A budget set Bi for agent i is any subset of Ni and the outside option ∅ (which

is always available to agents). The budget system B = {Bi}i∈N is said to support a

matching µ if, for every agent i, µ(i) = argmax {Bi; �i}.4 The connection between a

budget system and stability is captured by the following observation.

Observation 1. Suppose that the budget system B = {Bi}i∈N supports a matching µ.

If

{j ∈ Ni : i �j µ(j)} ⊂ Bi (2.1)

holds for all i ∈M or for all i ∈ W , then µ is stable.

Condition (2.1) says that the budget set of agent i contains all agents who weakly

prefer i to their µ−partner.

I conclude this section with two remarks about the Gale-Shapley algorithm which

I will sometimes refer to as One-Sided Deferred Acceptance (1DA). First, the order in

which men propose in 1DA does not play any role. Instead of simultaneous proposals,

men could apply one-by-one, and women could make (tentative) acceptance decisions

by evaluating the proposer against their current match.5 Second, 1DA can be described

in the language of budget sets.6 In the men-proposing version, each men starts with

a budget set consisting of all women, and each woman starts with an empty budget

4 Here, argmax {A; �} is defined as the the most preferred option from the set A with respect to
the order �.

5 See McVitie and Wilson (1971) for an algorithm based on this observation.
6 This fact is well known, and has been exploited for example in Hatfield and Milgrom (2005).
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set. In every round, each man applies to the most preferred woman in his budget set.

Applicants to a woman are added to her budget set and she chooses the most-preferred

partner from her budget. If a man is rejected by a woman, she is discarded from that

man’s budget set. The final matching is stable because equation (2.1) holds for all

women.

3 Deferred Acceptance with Compensation Chains (DACC)

DACC generalizes 1DA by allowing both men and women to make offers in some pre-

specified order. Formally, fix a sequence Φ : N→ N such that each value in N is taken

infinitely many times. Whenever I refer to a sequence Φ in this paper, I assume that Φ

has this property. DACC(Φ) is defined in frame Algorithm 1. An informal description

is given below. I will often omit the argument Φ and refer to “the DACC algorithm”

assuming implicitly that Φ has been fixed.

Every agent starts with a full budget set Bi = Ni, and the initial matching µ is

empty. The budget system {Bi}i∈N and the matching µ are adjusted during the course

of the algorithm. I say that “i is divorced by j” (or “j divorces i”) when i and j were

matched and then j broke the match with i in order to be matched to a more preferred

partner (i became unmatched).

Proposals and Acceptance. In round k, agent i = Φ(k) makes an offer to the

most preferred person j in his or her budget set.7 Agent j (tentatively) accepts if i

is preferred to j’s current match (or to the outside option if j is unmatched). In that

case, we adjust µ by matching i and j, and divorcing their previous partners (if they

had any). Otherwise, j rejects i and the matching µ is unchanged.

Budget Sets. Whenever i proposes to j, we add i to j’s budget set Bj. Whenever i

is rejected or divorced by j, we remove j from i’s budget set Bi.

Compensation Chains (CCs). I say that i deceived j if i divorced j to whom i has

proposed before. Whenever some i deceives j, we compensate agent j. That is, j is

allowed to make an offer in the current round irrespective of the order Φ. If j is accepted

by k who by doing so deceives µ(k) (k’s current match), then µ(k) is compensated, i.e.

allowed to propose next. This chain of compensations ends when the last person in the

chain exhausts his or her budget set, or is accepted by agent l who does not deceive

µ(l) (for example when µ(l) = ∅). Then, the algorithm proceeds to the next round,

7 If i is already matched to j, or if there are no acceptable partners in i’s budget set, we skip the
round.
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and the proposer is determined by Φ. Formally, to identify “deceptions”, I keep track

of a set Ai, for each i, which is initially empty, and records all agents who propose to

i as the algorithm progresses.

The algorithm stops when all agents are matched under µ to the best option in

their current budget set. If a stable matching is reached, all subsequent proposals

are rejected but formally the algorithm continues until the above stopping criterion is

satisfied.

The definition is illustrated with examples in Appendix B. The reader may find it

helpful to compare DACC to its simpler but inferior (in terms of properties) versions

defined in Section 6.

The first two parts of the description directly generalize 1DA to a two-sided deferred

acceptance procedure. To understand the addition of compensation chains, note that

in 1DA any offer is effectively available to the receiver till the end of the algorithm.

An offer to a woman in a men-proposing 1DA immediately becomes a lower bound

on her final match utility. This monotonicity drives the convergence of 1DA to a

stable outcome. With two-sided offers, we cannot guarantee that property. A proposer

may withdraw an offer if he or she later receives an offer from a preferred partner, an

event that I called “deception”. CCs are a way to partially restore monotonicity by

compensating agents for the loss of a withdrawn offer.

Because deceptions never take place if only one side of the market applies (and

hence there are no CCs), DACC generalizes 1DA. Formally, if only men appear in

Φ initially for sufficiently many rounds, the algorithm is effectively identical to the

men-proposing 1DA, and it converges to the men-optimal stable outcome.

The main result of the paper is Theorem 1.

Theorem 1. For any sequence Φ, DACC(Φ) stops in finite time and its outcome µ is

stable. Conversely, for an arbitrary stable matching µ, there exists a sequence Φ such

that µ is the outcome of DACC(Φ). Therefore, a matching is stable if and only if it is

the outcome of a DACC algorithm.

The remainder of this section proves Theorem 1 in a series of claims.

Claim 1. If DACC stops, the outcome is stable.

Proof. Suppose not. Then there is a blocking pair {i, j}. By the stopping criterion,

there exists the last time τ in the algorithm when i and j interacted. That is, up to
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Algorithm 1 Deferred Acceptance with Compensation Chains - DACC(Φ)

MAIN BLOCK

1. For i ∈ N set Bi := Ni and Ai := ∅; (Bi - budget set of i; Ai - agents who applied to i)

2. Set µ := ∅ and CC := ∅; (CC keeps track of agents that need to be compensateda)

3. Set k := 1 and t := 1; (k keeps track of rounds and t keeps track of time)

4. While ∃i ∈ N, µ(i) ≺i argmax{Bi; �i} do:

(a) If CC = ∅ then: (If there are no agent to be compensated)

i. i := Φ(k);

ii. i applies;

iii. k := k + 1; (Update the round number)

(b) else:

i. i := take from the top of CC (Compensate the agent at the top of the stack)

ii. i applies;

iii. If µ(i) 6= ∅ or Bi = ∅ then remove i from CC;

(c) t := t+ 1. (Update physical time)

a CC has a stack structure; the agent at the top of CC is next to be compensated.

Description of the procedure “i applies”

1. Set j := argmax{Bi; �i}; (i applies to j)

2. If {i, j} ∈ µ or j = ∅ then return; else: (If i and j are already matched or i applies to ∅)

3. Set Aj := Aj ∪ {i} and Bj := Bj ∪ {i}; (Record that i applied to j and increase j′s budget)

4. If i �j µ(j) then:a (If i is accepted by j)

(a) If ∃j′ 6= j such that {i, j′} ∈ µ then: (If i was matched to someone)

i. If i ∈ Aj′ then add j′ to the top of CC; (Compensate j′ if i deceives j′)

ii. Bj′ := Bj′ \ {i};
iii. µ := µ \ {i, j′}; (divorce i and j′)

(b) If ∃i′ 6= i such that {j, i′} ∈ µ then: (If j was matched to someone)

i. If j ∈ Ai′ then add i′ to the top of CC; (Compensate i′ if j deceives i′)

ii. Bi′ := Bi′ \ {j};
iii. µ := µ \ {j, i′}; (divorce j and i′)

(c) µ := µ ∪ {{i, j}}; (match i and j)

5. else: Bi := Bi \ {j}. (If i is rejected by j, remove j from i′s budget)

a Items (a) and (b) can be executed in any order, even random, i.e. if there are two CCs, it does
not matter which one is run first.
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relabeling, either (i) i applied to j and was rejected, or (ii) i and j were matched and

j divorced i. In both cases, i ∈ Bj after τ , and hence also when the algorithm stops.

Indeed, in case (i) i is added to j’s budget set because i applies to j, and in case (ii)

this follows from the fact that whenever agents are matched, they have each other in

their respective budget sets. But i ∈ Bj is a contradiction with the stopping criterion.

Because {i, j} is a blocking pair, j must be matched to someone less preferred to i,

despite i being in j′s budget set.

The proof is a direct generalization of the argument used by Gale and Shapley

(1962), expressed in the language of budget sets. A careful inspection shows that

i ∈ Bj or j ∈ Bi, for all i ∈ N, j ∈ Ni, at all times in DACC. If i �j µ(j) when the

algorithm stops, then i /∈ Bj, so j ∈ Bi. Thus, equation (2.1) holds for all agents once

DACC terminates.

To state the next claim, I have to make precise what I mean by a (single) CC.

Consider an instance in the k-th round of the DACC algorithm when Φ(k) applies and

causes a divorce of some agent i by j ∈ Ai (i.e. j deceives i).8 Then we initiate a CC

at i. Let i0 = i. Fixing a sequence of agents (i0, i1, ..., im−1) who applied in that CC

so far, I show how to choose im. If im−1 applied and was rejected, choose im = im−1.

If im−1 applied and was accepted by j who deceived agent l, set im = l (now l will be

compensated). In all other cases, terminate the CC.

Claim 2. Every CC stops in finite time.

Proof. The claim follows from two observations. First, in a CC initiated at a man, only

men propose (analogously for women). Second, in a CC where men propose, budget

sets of men never grow, and in every round of the CC in which it doesn’t terminate,

a budget set of some man shrinks. If the CC does not terminate for other reasons, it

terminates because the budget set of some man proposing in the CC becomes empty.

Claim 3. The DACC algorithm stops in finite time.

Proof. Fixing Φ, let (Bk, µk) be the budget system and matching at the end of round

k in the DACC(Φ) algorithm. I introduce the following function for each agent i ∈ N :

di(Bk, µk) = |{j ∈ Bk
i : j �i µk(i)}|. (3.1)

8 It could be either that Φ(k) = j, i.e. i and Φ(k) were matched, or that Φ(k) applied to j who was
matched to i. In every round, we can have zero, one, or two CCs.
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The function di counts the agents in i′s budget set that i prefers to his or her current

match. Because no agent is ever matched to a partner who is not in the budget set,

the stopping criterion is satisfied if and only if

d(Bk, µk) :=
∑
i∈N

di(Bk, µk) = 0. (3.2)

In light of Claim 1, the function d measures the distance to stability.

Lemma 1. Fixing Φ, there exists a strictly increasing sequence of positive integers

(ak)k∈N such that d is strictly decreasing along the sequence (Bak , µak)k=1, 2,..., for all k

such that DACC(Φ) hasn’t yet stopped in round ak.

The proof of the Lemma is technical and hence relegated to Appendix A. I sketch it

below. By direct inspection, the function di decreases weakly when agent i receives an

offer, and decreases strictly when agent i applies. Thus, d declines in every round of the

algorithm in which there are no divorces. I show that after sufficiently many periods,

every divorce leads to a CC. This rules out a loop involving non-deceptive divorces.

When a CC stops, all agents who applied in the CC are matched to the most preferred

option in their budget set, i.e. di attains value 0 for such agents. In particular, di must

have gone weakly down. Hence, d is strictly decreasing along (Bak , µak)k=1, 2,..., where

the restriction to a subsequence a eliminates rounds k when the stopping criterion is

already satisfied for Φ(k) (i.e. dΦ(k) = 0).

By Lemma 1, the distance to stability declines as the algorithm progresses. Because

the function d is bounded above by 2 · |W | · |M |, there must exist a finite time K such

that d(BK , µK) = 0. Thus, the algorithm stops at K. �

Remark 1. It is clear from the proof that there is some flexibility in specifying when

CCs should be run. For example, if (i) we run a CC after every divorce, or (ii) we

run CCs only after some round k? (where k? could be random, endogenous etc.), then

DACC will still converge to a stable matching in finite time.

The following observation will be relevant for the discussion in Section 5. It follows

directly from the proofs of Claims 1-3 which made no use of the fact that the initial

matching is empty.
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Observation 2. If DACC starts at an arbitrary matching, and initial budget sets sat-

isfy i ∈ Bj or j ∈ Bi for all i ∈ N, j ∈ Ni, then the algorithm will converge in finite

time to a stable matching.

The final claim establishes the converse part of Theorem 1.

Claim 4. For any stable µ, there is an ordering Φ such that µ is the outcome of

DACC(Φ). Moreover, µ can be achieved with an order Φ that does not lead to any

compensation chains.

Proof. Fix µ that is stable. Say that j ∈ Ni is the µ−partner of i if {i, j} ∈ µ. I

construct Φ recursively. Choose Φ(1) to be an arbitrary agent i ∈ N . In round k+1, if

the DACC algorithm hasn’t stopped, I choose Φ(k+1) as a function of what happened

when Φ(k) applied in round k:

1. if Φ(k) was rejected, set Φ(k + 1) = Φ(k);

2. if Φ(k) was accepted by his or her µ−partner, set Φ(k + 1) to be an arbitrary

agent who is not currently matched to the µ− partner;

3. if Φ(k) was accepted by j who is not his or her µ−partner, set Φ(k + 1) = j.

I prove that in any round k, the following properties hold:

(a) The set of matches at the end of round k consists of pairs in µ and at most one

pair that is not in µ. If such pair exists, it involves the agent Φ(k + 1) who

proposes next.

(b) Up to (and including) round k, there haven’t been any CCs.

(c) Up to (and including) round k, µ(i) ∈ Bi, ∀i ∈ N (no agent was rejected by their

µ−partner).

If the above properties hold for all k until the DACC algorithm stops at K, then

we are done. Because property (c) holds at K, it cannot be that some agents who are

matched under µ remain unmatched (that would contradict the stopping criterion).

By property (a), there can exist at most one pair that is not in µ. If it did, then by

property (c) and the stopping criterion we would get a contradiction with stability of

µ (agents in that pair would prefer each other to their respective µ−partners).

I prove properties (a)-(c) by induction over k. For k = 0 (before the algorithm

starts) the claim is obvious. Suppose that the claim holds up to and including round

k. Consider round k + 1.
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Let i = Φ(k + 1) and suppose a stable matching hasn’t been reached yet. By the

choice of Φ and the inductive hypothesis (property (a)), i is not matched to his or

her µ− partner. Moreover, once i divorces the current partner (assuming i has one),

all matched pairs will be in µ. Agent i applies. If i is rejected, properties (a)-(c) are

obviously satisfied (i cannot be rejected by µ(i) because µ(i) is not matched). If i is

accepted, property (a) follows from the inductive hypothesis and the way we choose Φ,

property (c) is obvious, and property (b) follows from two observations. First, by the

inductive hypothesis (property (c)), i never applied to someone less preferred to µ(i).

In particular, in round k + 1, i applies to some j that i prefers weakly to µ(i). By

stability of µ, i cannot be accepted by any matched agent (as all matched agents are

matched to their µ−partners), so j was unmatched. Thus j did not divorce anybody.

Second, if i was matched to some agent l, it must be that l applied to i in round k.

Thus, by property (c), l prefers i to µ(l). If i applied to l before, we would have that

i prefers l to µ(i) which contradicts stability of µ. Hence i /∈ Al. It follows that this

divorce could not lead to a CC. �

4 A Fixed-Point Approach

It is well known (see Adachi, 2000, Fleiner, 2003, Hatfield and Milgrom, 2005, Echenique

and Oviedo, 2006) that the set of stable matchings can be closely related to the set of

fixed points of a monotone operator.9 Theorem 1 characterizes stability as a set of out-

comes that arise when agents apply one-by-one according to a decentralized procedure.

I aim to draw a connection between these two approaches. I introduce an abstract

setting, and then show that DACC is a special case of a more general procedure.

Take an arbitrary finite set X , and suppose we are interested in finding a fixed

point of an operator Ψ : X → X . Let X? = {x ∈ X : Ψ(x) = x}. Assume that there

exist operators (Ψi)i∈N on X such that

(Ψ(x) = x) ⇐⇒ (Ψi(x) = x, ∀i ∈ N) , ∀x ∈ X . (4.1)

I will say that (Ψi)i∈N decentralize Ψ. In a typical application, Ψ is an operator de-

scribing aggregate behavior of some economic system, and Ψi is an action taken by

9 Recently, a number of papers, for example Azevedo and Hatfield (2015) and Che, Kim and Kojima
(2015), use topological fixed-point theorems to analyze stability in large matching markets. Their
constructions do not rely on monotonicity but instead exploit the tractability of continuous models.
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agent i in that system (N is the set of agents). I would like to see whether a decen-

tralized procedure in which agents take actions sequentially (i.e. applying operators

Ψi recursively) can lead to a stable outcome of the system (i.e. a fixed point of Ψ).

Let Λ be a subset of NN. A generic element φ ∈ Λ specifies the order in which

agents take actions. I say that f : X → N is a potential function10 for the system

((Ψi)i∈N , Λ, x0) if (i) f(x) = 0 ⇐⇒ x ∈ X?, and (ii) for every φ ∈ Λ, there exists an

increasing sequence of positive integers (ak)k∈N such that f is strictly decreasing along

the sequence (xak)k=1, 2,..., for all k such that f(xak) > 0, where xk is defined recursively

by

xk = Ψφ(k)(xk−1), (4.2)

for all k ≥ 1. Existence of a potential function rules out cycles in the procedure.

Observation 3. For a fixed x0 ∈ X , the sequence (xk) defined by (4.2) converges in

finite time to a point in X? for any φ ∈ Λ if and only if the system ((Ψi)i∈N , Λ, x0)

admits a potential function.

Proof. Sufficiency follows from the argument used at the end of the proof of Claim 3.

Necessity is trivial because we can take f = 1{x/∈X?} and sequence a with a1 = min{k ∈
N : xk ∈ X?}, where (xk) is defined by equation (4.2) (the rest of the sequence a can

be chosen arbitrarily).

To see how this abstract result relates to the matching model, define X as

X = {(B, µ) : B is a budget system, µ is a matching, i ∈ Bj or j ∈ Bi, ∀i ∈ N, j ∈ Ni}

The starting point x0 is (B0, ∅), where B0 specifies a full budget for every agent. I define

Ψi : X → X , in the following way. Ψi(B, µ) is the outcome which arises in the DACC

algorithm when agent i applies to the most preferred option in Bi when the current

matching is µ (for a formal definition, see the description of the procedure “i applies”

in frame Algorithm 1).11

Proposition 1. If Ψi(B?, µ?) = (B?, µ?), for all i ∈ N , then B? supports µ? and µ?

is stable. Conversely, if µ? is stable, there exists a budget system B? that supports µ?

and such that Ψi(B?, µ?) = (B?, µ?), for all i ∈ N .
10 In the theory of differential equations, such a function is often called the Lyapunov function.
11 This procedure preserves the property that i ∈ Bj or j ∈ Bi, ∀ i ∈ N, j ∈ Ni, so Ψi is indeed

a mapping from X into itself. Note that any point in X could be taken as the starting point x0,
consistent with Observation 2.
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Proof. I first show that if Ψi(B?, µ?) = (B?, µ?), for all i ∈ N , then B? supports

µ?. Suppose not. Then, either (i) µ?(j) �j argmax {B?
j ; �j}, or (ii) µ?(j) ≺j

argmax {B?
j ; �j}, for some j ∈ N . In both cases we get a contradiction with Ψj(B?, µ?) =

(B?, µ?) because according to Ψj, j makes an offer to argmax {B?
j ; �j}, and so either

B?
j or µ?(j) has to change. Once we know that B? supports µ?, stability of µ? follows

immediately from the discussion directly following the proof of Claim 1 and from Ob-

servation 1. For the converse part, fix a stable µ?, and define the budget set of agent

i, for each i ∈ N , by

B?
i = {j ∈ Ni : i �j µ?(j) or µ?(i) �i j}.

By stability of µ?, B? supports µ?, and Ψi(B?, µ?) = (B?, µ?), for all i ∈ N . It is easy

to check that (B?, µ?) ∈ X .

CCs are effectively a modification of the order in which agents propose. We can

obtain the set Λ for the matching problem by mapping each original Φ into the actual

ex-post (i.e. including CCs) order in which agents proposed in DACC(Φ). The DACC

algorithm can then be interpreted as iterative application of operators Ψi in the mod-

ified order. By restricting orders Φ to lie in Λ, I was able to find a potential function

d defined by (3.1) and (3.2) for the system ((Ψi)i∈N , Λ, x0).

Hatfield and Milgrom (2005) provide a tight connection between the set of stable

matchings and the set of fixed points of a monotone operator in a more general setting of

many-to-one matching with contracts. If only one side of the market applies in DACC,

the outcome of the algorithm and the operators Ψi are equivalent to what Hatfield

and Milgrom (2005) call the Generalized Gale-Shapley Algorithm.12 However, they do

not define an iterative procedure that achieves other, non-extreme stable matchings. In

fact, this cannot be done by applying a monotone operator on a lattice starting from an

extreme element, because Tarski’s fixed point theorem predicts that such a procedure

converges to an extreme fixed point. That is why I assumed no such structure. The

non-monotone operators Ψi can be seen as a decentralization of the Hatfield-Milgrom

operator in the sense defined by relation (4.1). Note that DACC produces a matching

in every step of the algorithm unlike some other algorithms with pre-matchings (see,

for example, Adachi, 2000).

Convergence of DACC is reminiscent of the tâtonnement process for prices in com-

12 See Appendix D for an extension of DACC to many-to-one matching with contracts.
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petitive equilibrium. Arrow and Hurwicz (1958) and Uzawa (1960) show that, under

conditions, a competitive equilibrium can be found by sequentially adjusting prices of

individual goods in the economy. Their potential functions are defined on trajectories

of differential equations describing the movement of prices, while this paper provides

a discrete analog that is defined on “trajectories” of a matching algorithm.13

5 Generalizations and Comparison to other Algorithms

Knuth (1976) showed that if one starts from an unstable matching and satisfies blocking

pairs in an arbitrary order, a stable outcome need not be reached. Roth and Vande

Vate (1990) demonstrated that if blocking pairs are satisfied in random order, then

the procedure converges with probability one to a stable outcome. They prove it by

constructing a sequence of blocking pairs which, if satisfied, lead to a stable outcome.14

An alternative proof of this result is provided by the DACC algorithm. It is enough

to run the DACC algorithm starting at an arbitrary matching for any sequence Φ. By

Observation 2, the outcome is stable. Ma (1996) shows that a random order mechanism

based on Roth and Vande Vate (1990) does not achieve all stable matchings. By Claim

4, if we start from an empty matching and satisfy blocking pairs according to the

DACC procedure, we can reach all stable outcomes.

DACC is a natural extension of the Gale-Shapley algorithm in that it preserves the

logic of applications and rejections, is easy to describe, and does not rely on structural

elements or auxiliary mathematical constructions. To the best of my knowledge, it is

the first such class of algorithms with the feature that the outcome of each algorithm is

stable, and each stable outcome can be achieved by an algorithm from the class. There

are papers that characterize the set of stable matchings using non-deferred-acceptance

algorithms relying on more complex mathematical objects: Irving and Leather (1986)

use rotations, Adachi (2000) and Hatfield and Milgrom (2005) - pre-matchings and

fixed-point theory on lattices, Kuvalekar (2015) - graph theory.

An important extension of the Gale-Shapley algorithm has been provided by McVi-

tie and Wilson (1971). In fact, McVitie-Wilson propose two procedures. The first

McVitie-Wilson algorithm can be seen as a sequential version of the (one-sided) Gale-

13 For more recent examples of using potential functions to show convergence in auction settings,
see Ausubel (2006) and Sun and Yang (2009).

14 Kojima and Ünver (2008) extend the result of Roth and Vande Vate (1990) to many-to-many
matching under suitable assumptions on preferences. Their construction of the converging sequence
of blocking pairs uses ideas similar to the notion of compensation in DACC.
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Shapley algorithm in which, using the language of the current paper, every rejection

and divorce triggers a compensation chain. I showed that far less frequent compensa-

tions (only following deceptions) are sufficient to obtain stability, even if both sides

of the market propose. Due to an arbitrary choice of proposers in most rounds,

DACC generates all stable matchings, unlike the McVitie-Wilson algorithm. The sec-

ond McVitie-Wilson algorithm15 does find the set of all stable matchings by, roughly

speaking, repeatedly running the first version of the algorithm with properly truncated

preference rankings for the side of the market receiving offers. However, this second

procedure produces non-stable matchings that have to be “manually” discarded. In

contrast, every DACC algorithm is guaranteed to produce a stable matching in every

instance of the problem.

The McVitie-Wilson procedure is superior to DACC for numerical computation of

the set of all stable matchings. While DACC can be shown to run in polynomial time

for any fixed order, running DACC repeatedly for all possible orders is not a compu-

tationally efficient procedure for generating all stable matchings. Irving and Leather

(1986) provide results on efficient computation of the full set of stable matchings in the

marriage model. By extending the McVitie-Wilson algorithm, Mart́ınez et al. (2004)

find all stable outcomes in a many-to-many matching model.

A related algorithm, called the “compromise algorithm”, is proposed in an unpub-

lished manuscript by Kesten (2004) for the setting of one-to-one matching in a bal-

anced market. In the compromise algorithm, agents apply on-by-one, and the resulting

matching is always stable. The order over proposers is determined by assigning ranks

to agents and giving priority in applying to higher-ranked agents (over lower-ranked

agents) every time they become unmatched. Using the language of DACC, follow-

ing a divorce, the compromise mechanism compensates higher-ranked agents rather

than deceived agents. This rule gives the compromise mechanism the monotonicity

structure possessed by the original Gale-Shapley algorithm. For the same reason, the

compromise algorithm may not generate all stable matchings.

An immediate extension of the DACC algorithm can be obtained by restricting the

set of agents available in any round. This allows to capture the possibility that agents

arrive gradually to the market. Formally, let (Pk)k be a non-decreasing sequence of

subsets of N with the property that Pk = N for sufficiently large k (i.e. all agents

15 McVitie and Wilson (1971) give two versions of this procedure but the distinction between them
is irrelevant for the discussion below. An algorithm with very similar properties, based on the idea of
backtracking, has been proposed by Wirth (1978).
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eventually arrive to the market). Only agents in Pk are present in the market in round

k. To run DACC, we define budget sets in round k as Bk
i ∩ Pk. It is clear from the

proofs that we will reach a stable matching in finite time.

Blum and Rothblum (2002) (see also Blum, Roth and Rothblum, 1997) consider a

model in which agents arrive to a stable matching market sequentially. The arriving

agent applies to the most preferred partner with whom she forms a blocking pair (if

such partner exists). If some agent is divorced as a result, she will now be matched to

the most preferred partner with whom she forms a blocking pair. Blum and Rothblum

(2002) call this process the greedy correcting procedure and show that it converges and

restores stability in the larger market. The greedy correcting procedure can be seen as a

special case of a CC, in the sense that the two would be observationally equivalent in the

sequential arrival model of Blum and Rothblum (2002), assuming that we run the CC

after every divorce (see Remark 1). The extension of DACC considered above allows

us to interpret the Sequential Greedy Correcting procedure of Blum and Rothblum

(2002) as a realization of a DACC algorithm for a particular sequence Φ, where we

choose the sets Pk to reflect the arrival of agents to the market.

Blum and Rothblum (2002) show that agents prefer to arrive late in their model.

In particular, the last arriving agent obtains the most preferred stable match partner.

This implies that, unlike DACC, their algorithm cannot reach all stable matchings.

On the other hand, the class of orders allowed by DACC is too large to obtain similar

comparative statics result. It is easy to construct counterexamples to claims that in

DACC agents prefer to come earlier or later in the sequence Φ.

The DACC algorithm is not strategy-proof for either side of the market in gen-

eral. Note that strategy-proofness of a stable algorithm depends solely on which stable

matching it eventually selects. The results of Sönmez (1999) can be used to show that

DACC is strategy-proof for a subset of agents if and only if it generates stable match-

ings that are most preferred (among all stable matchings) by each agent in that subset.

Therefore, the question of strategy-proofness for a subset of agents boils down to un-

derstanding the mapping between orders Φ and the corresponding stable matchings.

As noted in the preceding paragraph, this mapping is probably complicated.

On Fairness

Fairness is an important concern in practical market design. Because the DACC al-

gorithm doesn’t differentiate between the two sides of the market, it has many “fair”
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implementations. The sequence of proposers can be chosen i.i.d. uniformly at random.

Alternatively, agents can be randomly ordered, and the fixed order repeated ad infini-

tum. The flexibility of DACC allows for further fine-tuning; for example, the order can

be reversed so that the agent who applied last, applies first in the next block of pro-

posals. Compared to a fair randomization over the men- and women-proposing 1DA,

DACC lowers the variance of outcomes (measured by the rank of the stable-match

partner), as it often produces non-extreme stable matchings.

Teo and Sethuraman (1998) and Schwarz and Yenmez (2011) define a median

matching, which can be viewed as ex-post “fair”, and which reduces the variance even

further. Cheng (2008) shows that finding a median matching is NP-hard in certain

instances, while running DACC for a given sequence of proposers requires polynomial

time. Moreover, as argued by Li (2015), in practical market design, desirable proper-

ties of mechanisms often matter to the extent that they are recognized by participating

agents. DACC is “procedurally fair”, i.e. understanding that it is “fair” does not re-

quire understanding the exact mapping from inputs to outcomes.

The algorithms proposed by Ma (1996) and Romero-Medina (2005) also achieve

procedural, or ex-ante, fairness, and are easy to implement and understand. Ex-ante

fair matching algorithms are analyzed by Klaus and Klijn (2006) and Kuvalekar (2015),

although these are more structural in nature. To the best of my knowledge, none of

the above algorithms generates all stable matchings in the one-to-one setting. More-

over, DACC admits a natural extension to many-to-one matching with contracts (see

Appendix D) which is necessary for most practical applications.

6 Can DACC be made simpler?

The class of DACC algorithms has three main properties, proved in Section 3: (1) every

DACC algorithm stops in finite time, (2) if a DACC algorithm stops, the outcome is

stable, and (3) every stable matching can be achieved by an algorithm from the DACC

class. In this section, I explore the potential of simpler classes of mechanisms to achieve

properties 1-3. I define two natural simplifications of DACC, the Two-Sided Deferred

Acceptance (2DA) algorithms and the Budget-Based Two-Sided Deferred Acceptance

(B2DA) algorithms, and demonstrate that:

• 1DA has property 1 and 2, but not 3;

• 2DA has property 1 and 3, but not 2;
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• B2DA has property 2 and 3, but not 1.

Thus, none of the features of DACC (in particular the presence of CCs) are redundant.

6.1 1DA (Gale-Shapley algorithm)

Gale and Shapley (1962) proved that 1DA algorithms have property 1 and 2. Property 3

fails because there generally exist stable matchings that are neither men- nor women-

optimal. In Appendix B, I present a simple example of a market with three stable

matchings and demonstrate how the median matching can be achieved by DACC.

6.2 2DA (Two-Sided Deferred Acceptance)

In the Two-Sided Deferred Acceptance algorithm, the order in which agents make offers

is still governed by Φ. Whenever it’s i’s turn to apply, i applies to the best partner

that hasn’t rejected or divorced i yet (effectively, budget sets are replaced by rejection

sets that can only grow). We do not run CCs. The algorithm terminates when every

agent is matched to the best partner among those who haven’t rejected or divorced

him or her (or unmatched if rejected by all acceptable partners).

2DA stops in finite time due to monotonicity of rejection sets. The proof of Claim

4 shows that every stable matchings can be achieved by 2DA with an appropriately

chosen Φ. However, there are matching markets and sequences Φ for which 2DA will

converge to an unstable outcome. An example is provided in Appendix B. The gist of

the example is as follows. Suppose that i and j should be matched at a stable outcome.

When i proposes to j, j is temporarily matched to a more preferred partner, and hence

rejects i. Later, j loses this better match, and proposes to i who is now matched to a

more preferred partner, and hence rejects j. This double deviation can occur because,

unlike in 1DA, offers can be withdrawn when both sides of the market propose.

6.3 B2DA (Budget-Based Two-Sided Deferred Acceptance)

The Budget-Based Two-Sided Deferred Acceptance algorithm corrects the double-

rejection problem of 2DA by replacing rejection sets with budget sets. Formally, B2DA

is defined as DACC, but without the compensation chains.

Because j is added to i’s budget set when j applies to i, a double rejection does

not prevent i and j from being matched to each other when the algorithm stops. The
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proof of Claim 1 applies directly to B2DA giving property 2, and the proof of Claim

4 establishes property 3. The price we pay is lack of property 1. Unlike rejection

sets, budget sets behave in a non-monotone way. In the absence of CCs, it is possible

to construct a matching market and a Φ such that the B2DA algorithm falls into a

loop. Budget sets fluctuate, and proposals and acceptance decisions exhibit a recurring

pattern. In the language of Section 4, B2DA does not admit a potential function.

Details are provided in Appendix B.

7 Concluding Remarks

This paper establishes an equivalence between stability and a class of deferred accep-

tance procedures by defining a generalization of the Gale-Shapley algorithm in which

both sides of the market may propose in an arbitrary pre-determined order. For ev-

ery order in which agents are allowed to make offers, the DACC algorithm converges

in finite time to a stable matching, and every stable matching can be obtained by

appropriately choosing the sequence of proposers.

The DACC algorithms have attractive properties from a practical market design

perspective. They always reach a stable outcome and are relatively easy to understand

and implement. They can treat the two sides of the market symmetrically, for exam-

ple, if the sequence of proposers is chosen uniformly at random. Unlike some other

algorithms with above features, they generalize easily to many-to-one matching with

contracts which is important from the point of view of practical applicability.

Because the definition of DACC does not rely on the two-sidedness of the marriage

market, it can be applied to the roommates problem (see Appendix C). It would be

interesting to see if DACC could work equally well in other settings, e.g. the coalition

formation problem (see Pycia, 2012).

The DACC algorithms shed some light on the behavior of decentralized match-

ing markets where offers may be made in an arbitrary (random) order. Just as the

tâtonnement process for prices provides theoretical support for convergence of markets

to the competitive equilibrium, DACC establishes sufficient conditions (complementary

to Roth and Vande Vate, 1990) for decentralized matching markets to reach stability.
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Uzawa, H. (1960). Walras’ Tâtonnement in The Theory of Exchange. The Review of
Economic Studies, 27 (3), 182–194.

Wirth, N. (1978). Algorithms + Data Structures = Programs. Upper Saddle River,
NJ, USA: Prentice Hall PTR.

A Appendix A - Proof of Lemma 1

I let k index the rounds in the DACC algorithm, and I use the superscript k to denote

sets at the end of round k. For example, Aki is the set of agents that applied to agent

i up to and including round k.

First, note that the sets Aki never shrink. Thus, for a fixed Φ, there exists a round

k? such that all Aki are constant after k?. For all k ≥ k?, define the set Xk as

Xk = {{i, j} : i ∈ N, j ∈ Ni, i and j never interact after round k}.

Moreover, to simplify notation, let dki = di(Bk, µk), and dk =
∑

i∈N d
k
i .

Claim 5. For every k > k?, unless dk−1
Φ(k) = 0, either dk decreases strictly or |Xk| grows

strictly.
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Proof. Fix a round k > k?. If dk−1
Φ(k) = 0, then Φ(k) is already matched to the most

preferred partner in his or her budget set, and thus nothing happens in round k. I

assume from now on that dk−1
Φ(k) > 0 which means that Φ(k) proposes in round k.

I prove that the only case in which dk doesn’t go strictly down relative to dk−1 is

when some agent l is divorced by some l′ /∈ Akl in round k. That is, if either (i) there

are no divorces in round k, or (ii) all divorces lead to CCs, then dk decreases strictly

in that round.

Denote by j the agent that i = Φ(k) proposes to. By direct inspection, dki + dkj
goes down strictly regardless of whether i’s offer is rejected or accepted. If i and j were

not matched to anyone, there are no divorces. This is case (i). Otherwise, we have to

show that the function d decreases weakly along a CC. That is, the value it takes when

some agent l is divorced (and we run a CC starting at l) is not smaller that the value

it takes when this CC stops. This will cover case (ii).

Suppose wlog that l is a man. Then, in the CC starting at l, women receive offers,

so
∑

w∈W dw decreases weakly along the CC. By definition of a CC, all men who apply

in a CC end up being matched to the most preferred option in their respective budget

sets. Thus, dkm = 0 for all m who apply in the CC, and
∑

m∈M dm must decrease at

least weakly as well.

Now suppose that dk doesn’t strictly decrease in round k. By what I have shown

so far, it must be that some agent l is divorced by l′ /∈ Akl , i.e. we have a divorce which

is not followed by a CC. Because l is divorced, we have l′ /∈ Bk
l . Because l′ /∈ Akl and

Akl = Ak+n
l for any n ∈ N (because k > k?), l′ /∈ Bk+n

l for all n ∈ N. That is, l can

never apply to l′. And due to l′ /∈ Ak+n
l for all n, l′ never applies to l either. Thus, we

add {l, l′} to Xk, and thus |Xk| grows strictly. �

To finish the proof, I show how to choose the sequence a. Because |Xk| is bounded

above by the number of potential pairs of agents, |Xk| − |Xk−1| > 0 in only finitely

many rounds k. Thus, there exists k̄ > k? such that |Xk| is constant after k̄.

By Claim 5, in all rounds k > k̄, either dk−1
Φ(k) = 0 (in which case nothing happens and

dk stays constant), or dk decreases strictly. I define a recursively starting from a0 = k̄.

Having picked (a0, a1, ..., an−1), and assuming that the algorithm hasn’t stopped at

an−1, define

an = min{k ∈ N : k > an−1, d
k−1
Φ(k) > 0}.

The number an is well defined. Indeed, because the algorithm didn’t stop at an−1,

there exists an agent i with d
an−1

i > 0. By assumption, Φ takes the value i infinitely

many times, and thus Φ(k) = i for some k > an−1. Having excluded rounds in which dk

stays constant, we know that d decreases strictly along the sequence (Ban , µan)n=1, 2,....
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B Appendix B - Examples

This section presents three examples corresponding to the three subsections of Sec-

tion 6. In all examples, the market consists of three agents on each side, i.e. M =

{m1, m2, m3} and W = {w1, w2, w3}. When introducing preferences, I list only ac-

ceptable partners.

B.1 Example for Subsection 6.1

The example below shows the simplest possible matching market with a stable matching

that is neither men- nor women-optimal. This example is known, but I present it here

for completeness, and to illustrate how the DACC algorithm works.

Example 1. 1DA does not generally achieve all stable matchings.

Let the preferences be given by:

m1 : w1 � w2 � w3 w1 : m2 � m3 � m1

m2 : w2 � w3 � w1 w2 : m3 � m1 � m2

m3 : w3 � w1 � w2 w3 : m1 � m2 � m3

There are three stable matchings: men-optimal µM = {{m1, w1}, {m2, w2}, {m3, w3}},
women-optimal µW = {{m1, w3}, {m2, w1}, {m3, w2}}, and the median matching

µ? = {{m1, w2}, {m2, w3}, {m3, w1}}. The median matching cannot be achieved

by 1DA.

To see how the DACC algorithm can lead to µ?, consider the sequence

Φ = m1, w1, m2, w2, m3, w3, m1, m2, m3, . . . .

In the first six rounds, all agents get a chance to propose to their favorite partner,

and subsequently get divorced. Thus, starting from round 7, all agents have budget

sets without their most preferred partners. In rounds 7-9, men propose to their second

choices, and we reach µ?.

B.2 Example for Subsection 6.2

In this subsection, I demonstrate how 2DA may fail to achieve a stable matching.

Example 2. 2DA may in general converge to an unstable outcome.

Consider the following preferences:



B Appendix B - Examples 26

m1 : w3 � w1 w1 : m2 � m1

m2 : w2 � w1 w2 : m3 � m2

m3 : w3 � w2 w3 : m3 � m1

The unique stable matching is µ? = {{m1, w1}, {m2, w2}, {m3, w3}}. Consider a

sequence Φ with initial ordering over agents as shown in Table 1. Then, in the matching

achieved by 2DA, m1 and w1 are unmatched, contradicting stability (see Table 1 for

details).

Tab. 1: 2DA - failure of stability
Round k Φ(k) applies to Decision Current matches

1 w1 m2 accept w1m2

2 m2 w2 accept ����w1m2, m2w2

3 m1 w3 accept m2w2, m1w3

4 w1 m1 reject m2w2, m1w3

5 w2 m3 accept ����m2w2, m1w3, w2m3

6 m2 w1 accept m1w3, w2m3, m2w1

7 w3 m3 accept ����m1w3, ����w2m3, m2w1, w3m3

8 m1 w1 reject m2w1, w3m3

9 w2 m2 accept ����m2w1, w3m3, w2m2

10 m1 ∅ accept w3m3, w2m2, m1∅
11 w1 ∅ accept w3m3, w2m2, m1∅, w1∅
... ... ... ... ...

The algorithm fails to produce a stable matching because when w1 applies to m1

in round 4, m1 is temporarily matched to a more preferred w3. By the time when

m1 applies to w1 in round 8, w1 is temporarily matched to a preferred m2. As a

consequence, m1 and w1 reject each other although they should be matched in the

unique stable matching.

Suppose DACC were run instead of 2DA for the same sequence Φ. Then, in round

9, w1 is compensated because w1 is divorced by m2 who applied to w1 in round 6.

Because m1 ∈ Bw1 (m1 proposed to w1 in round 8), and m2 /∈ Bw1 (m2 divorced w1),

w1 proposes to m1 and the stable matching is reached.

B.3 Example for Subsection 6.3

Finally, I show that in the absence of CCs, the two-sided deferred acceptance procedure

may never stop.

Example 3. B2DA may never converge.
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Consider the following preferences:

m1 : w3 � w2 w1 : m3 � m2

m2 : w1 � w3 w2 : m1 � m3

m3 : w2 � w1 w3 : m2 � m1

Take the sequence Φ = w2, m2, m3, w3, (m3, w3, m2, w2, m1, w1), ..., where the

string in brackets is repeated periodically. Table 2 illustrates how the B2DA algorithm

falls into a loop.

Tab. 2: B2DA - failure of convergence
Round k Φ(k) applies to Changes in budgets Current matches

1 w2 m1 - w2m1

2 m2 w1 - w2m1, m2w1

3 m3 w2 w2 /∈ Bm3 w2m1, m2w1

4 w3 m2 m2 /∈ Bw3 w2m1, m2w1

5 (+6n) m3 w1 m3 ∈ Bw1 , w1 /∈ Bm2 w2m1,����m2w1, m3w1

6 (+6n) w3 m1 w3 ∈ Bm1 , m1 /∈ Bw2 ����w2m1, m3w1, w3m1

7 (+6n) m2 w3 m2 ∈ Bw3 , w3 /∈ Bm1 m3w1, ����w3m1, m2w3

8 (+6n) w2 m3 w2 ∈ Bm3 , m3 /∈ Bw1 ����m3w1, m2w3, w2m3

9 (+6n) m1 w2 m1 ∈ Bw2 , w2 /∈ Bm3 m2w3, ����w2m3, m1w2

10 (+6n) w1 m2 w1 ∈ Bm2 , m2 /∈ Bw3 ����m2w3, m1w2, w1m2

The reason why convergence may fail is easy to understand when we compare B2DA

with 1DA. In the men-proposing DA, budget sets of women can only increase, and

budget sets of men can only decrease. Due to this monotonicity, the 1DA algorithm

always converges. In the B2DA, budget sets of agents may change in both directions.

This is the case in the example. During the cycle, each agent i receives an application

from the most preferred partner j, and thus rejects the current partner. But then j

receives as application from j’s most preferred partner, and thus divorces i, and so on.

The budget sets fluctuate accordingly.

Suppose we ran DACC with the same sequence of applicants. The initial 6 steps

are identical. In round 7, w3 divorces m1 because she receives a better offer from m2.

At that time, w3 ∈ Am1 because w3 applied to m1 in round 6. Thus, we start a CC at

m1. We have Bm1 = {w1, w2}, so m1 applies to w2. Woman w2 accepts the offer and

a stable matching is reached.
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Online Appendix (Not For Publication)

C Appendix C - The Stable Roommates Problem

In this appendix, I discuss the application of the DACC algorithm to the stable room-

mates problem (henceforth SRP). That is, agents are allowed to have preferences over

the entire set of agents N , and a matching is a partition of N into sets of cardinality at

most two.16 I continue to assume for ease of exposition that preferences are strict. The

definition of DACC made no reference to the two-sidedness of the marriage market and

thus it applies directly to the SRP.

As observed by Gale and Shapley (1962), a stable matching may fail to exist for

the SRP. Because Claim 1 remains true, DACC cannot be guaranteed to stop. This

is due to failure of Claim 2 - in the absence of the two-sided structure the chain of

compensations may never end. However, if all CCs stop in finite time, the DACC

algorithm converges.

Observation 4. For an instance of the SRP and a given sequence Φ, if all CCs stop

in finite time, then DACC converges in finite time to a stable matching.

The observation follows directly from the proofs in Section 3.

If stable matchings exist, they can all be achieved by DACC algorithms.

Proposition 2. For any stable matching in the SRP, there is an ordering Φ such that

µ is the outcome of DACC(Φ). Moreover, it can be achieved with an order Φ that does

not lead to any CCs.

The proof is identical to that of Claim 4, except that a separate argument is needed

to show convergence of DACC for the constructed order over applying agents. Because

there are no CCs under that order, this follows directly from Observation 4.

If all CCs stop in finite time under a sequence Φ, then by Observation 4, a stable

matching exists in the SRP. More primitive sufficient conditions for existence of stable

matchings in the SRP can be found in the literature.

Definition 1. Let L be an ordered list of k ≥ 3 agents in the SRP. L is a ring with

respect to strict preferences � if

∀i ∈ L, L(i+ 1) �L(i) L(i− 1),

where all indices are taken modulo k.

16 See Gudmundsson (2013) for a formal definition of the SRP.
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Chung (2000) shows that if there are no odd rings, then a stable matching exists

for the SRP.

Proposition 3. If there is no odd ring in the SRP, then for any sequence Φ, the

DACC(Φ) algorithm converges in finite time to a stable matching.

The proposition follows directly from the results in Section 3 and the lemma below

whose proof I provide in Subsection C.1. Existence of a stable matching is obtained as

a trivial corollary.

Lemma 2. Fixing Φ and an instance of the SRP, if a compensation chain never stops,

then there exists an odd ring among (a subset of) the agents participating in that CC.

It is easy to construct examples in which a stable matching exists despite the

presence of odd rings, and where a CC never stops in the DACC algorithm. Irving

(1985) provides an algorithm that finds a stable matching whenever it exists, regardless

of the properties of preferences.

C.1 Proof of Lemma 2

Suppose that a CC never stops. Because there is a finite number of agents, the CC must

cycle, i.e. there is a sequence of proposals (and corresponding acceptance/ rejection

decisions) that repeats itself indefinitely. Note that once the CC enters a cycle, each

agent, whenever matched, is matched to the best option in his or her budget set.

Fixing a full cycle of the CC, for each agent i, the following event must take place

within the cycle: i applies, i’s application is accepted, and later i receives an application

that i accepts (before applying again). Let ni be the number of rounds between the

successful application of i, and the moment when i receives the offer, as described above.

If there are several such events for i within the cycle, take ni to be the minimum.

I prove that such an event indeed takes place for each i. There exists a round

in the cycle of the CC when i has the smallest budget set (among budget sets that

i has during the cycle). Since the smallest budget set must arise after i is rejected

or divorced, there exists a round when i applies under this smallest budget set. The

application of i must be accepted, as otherwise the budget set would shrink further.

Moreover, and for the same reason, i must subsequently receive an application that is

accepted before i applies again.

Let j be the agent with the smallest ni across all i. Let a0 = j, and consider

the round in the cycle when j applies under the smallest budget set. Let a1 be the

agent who accepts the application of j. Because the CC continues, a1 must have been
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matched to some a2. Moreover, a1 prefers j to a2, and a2 applies next. Note that the

length of the sequence a = (a0, a1, a2) is an odd number, and a1 prefers a0 to a2.

Agent a2 is eventually accepted (otherwise the CC would stop) by some agent a3.

By the observation made in the first paragraph, a2 prefers a1 to a3. a3 was matched to

some a4, and a3 prefers a2 to a4. The sequence a is of odd length, and for all l = 1, 2, 3,

al prefers al−1 to al+1.

Proceeding inductively, we get a sequence a = (a0, a1, ... a2m+1) such that for all

l = 1, 2, ..., 2m, al prefers al−1 to al+1. There exists a smallest m̄ such that a2m̄+1

applies to a0 = j. a0 prefers a2m̄+1 to a1 by the observation made in the first paragraph.

For a = (a0, a1, ... a2m̄+1) to be an odd ring, it would have to be that no agent

appears twice in a. There cannot be an agent who applies and then receives an appli-

cation as that would contradict the choice of j as the agent with the smallest nj. So

suppose that there is an agent k who applies (and gets accepted) twice in a. That is,

we have a subsequence b = (a2l, a2l+1, ..., a2m) of a such that a2l = a2m = k. Then we

can delete the subsequence (a2l+1, ..., a2m) from a without changing its properties. In

particular, a remains to be of odd length. Deleting such subsequences iteratively, we

eventually arrive at an odd ring.

D Appendix D - DACC for Matching with Contracts

D.1 The model

I adopt the framework for matching with contracts from Hatfield and Milgrom (2005).

The results of Aygün and Sönmez (2013) allow me to use choice functions (as opposed

to preference relations) as a primitive description of agents’ preferences.17

Let D be the set of doctors, H the set of hospitals, and X the set of contracts.

Each x ∈ X is a bilateral contract between a doctor dx ∈ D and a hospital hx ∈ H.

When agent i signs contract x, icx denotes the counterparty of i under contract x. X

always contains the null contract ∅ that can be chosen unilaterally by any agent.

Each doctor d ∈ D can sign at most one contract, and the contract must be from

the set Xd ≡ {x ∈ X : dx = d}. Preferences of doctor d are given by a choice function

Cd : 2X → 2X which for every subset of contracts Y ⊂ X returns a single contract

that d prefers most among Y ∩Xd, or ∅ if there are no acceptable contracts in Y ∩Xd.

Each hospital h ∈ H can sign multiple contracts from Xh ≡ {x ∈ X : hx = h}
17 Aygün and Sönmez (2013) argue that the results of Hatfield and Milgrom (2005) depend only

on the properties of choice functions derived from the primitive preference relations. They show that
existence of an underlying preference relation is an unnecessarily strong assumption. They propose to
define choice functions as a primitive of the model under the assumption that choice functions satisfy
irrelevance of removed contracts.
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but at most one with any given doctor d ∈ D. The preferences of hospital h are given

by a choice function Ch : 2X → 2X which for every Y ⊂ X returns the set of chosen

contracts, a subset of Y ∩Xh. I assume throughout that Ch, for every h ∈ H, satisfies

irrelevance of rejected contracts.

Definition 2 (Aygün and Sönmez, 2013). Contracts satisfy irrelevance of rejected

contracts (IRC) for hospital h if

∀Y ⊂ X, ∀z ∈ X \ Y, z /∈ Ch(Y ∪ {z}) =⇒ Ch(Y ) = Ch(Y ∪ {z}).

By induction, one can show that IRC is equivalent to the following seemingly

stronger property that is more convenient to work with.

Definition 3. Contracts satisfy strong irrelevance of rejected contracts (SIRC) for

hospital h if

∀Y ⊂ X, ∀Z ⊂ X \ Y, Z ∩ Ch(Y ∪ Z) = ∅ =⇒ Ch(Y ) = Ch(Y ∪ Z).

For a set of contracts Y , let Yi denote the subset of contracts in Y that name agent

i as a signee. I say that a set of contracts Yi ⊂ Xi is acceptable for i if Ci(Yi) = Yi.

Definition 4 (Hatfield and Milgrom, 2005). A set of contracts Y ? ⊂ X is a stable

allocation (stable set of contracts) if

1. Y ?
i is acceptable for i, for each i ∈ H ∪D,

2. There exists no hospital h and set of contracts Y 6= Ch(Y
?) such that

Y = Ch(Y
? ∪ Y ) ⊂

⋃
d∈D

Cd(Y
? ∪ Y ).

Finally, a substituability condition on hospitals’ preferences is needed to obtain

existence of stable allocations, as shown by Kelso and Crawford (1982) or Hatfield and

Milgrom (2005). For any i ∈ H ∪ D, let Ri(Y ) = Y \ Ci(Y ) be the set of contracts

rejected from the set Y by agent i.

Definition 5. Contracts in X are substitutes for hospital h, if for all subsets Y ′ ⊂
Y ⊂ X, Rh(Y

′) ⊂ Rh(Y ).

D.2 Definition of DACC

There are multiple ways to generalize DACC to matching with contracts. I propose

a definition that aims to reflect the decentralized and sequential nature of DACC by
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assuming that the proposer, whether a doctor or a hospital, can propose at most one

contract at a time. The definition is equivalent to the baseline definition of DACC

from Section 3 if hospitals have singleton preferences.

Every agent i starts with a full budget set Bi = Xi of all contracts that i can

potentially sign. The initial set of signed contracts Y is empty. The budget system

{Bi}i∈H∪D and the set Y are adjusted during the course of the algorithm.

Proposals and Acceptance. In round k, agent i = Φ(k) proposes a contract

x ∈ Ci(Bi) \ Yi to j = icx.
18 The choice of x in case Ci(Bi) \ Yi has more than one

element is arbitrary and will not influence subsequent results. Agent j (tentatively)

signs the contract if x ∈ Cj(Yj ∪ {x}). In that case, we adjust Y by adding x, and

removing contracts Rj(Yj ∪ {x}) and Ri(Yi ∪ {x}). Otherwise, j rejects x and the

allocation Y is unchanged.

Budget Sets. Whenever some agent i proposes a contract x to j = icx, we add x to

j’s budget set Bj. Whenever x is rejected or broken by i, we remove x from the budget

set Bj of j = icx. Throughout, the term “contract x is broken by i” means that i and icx
signed contract x, and then i broke the contract with icx after signing another contract.

Compensation Chains (CCs). In the current setting, CCs are more complicated

because multiple contracts can be broken simultaneously, leading to multiple decep-

tions. (A more accurate name for a CC would be a compensation cascade.) To address

this issue, I introduce a notion of a waitlist. The waitlist contains all agents waiting to

be compensated in the current CC. A formal definition of a CC is simplified by using

the potential function to describe it. I define the potential function as

di(Bi, Yi) = |{x ∈ Bi \ Yi : x ∈ Ci(Yi ∪ {x})}|. (D.1)

That is, di counts the number of additional contracts agent i would accept given her

current allocation Yi. This definition coincides with (3.1) when agent i can sign at

most one contract.

I say that i deceived j = icx if i broke the contract x which i proposed before. When

some i deceives j, we compensate agent j (with one exception, described below).

Compensation takes the following form. Let d0
j be the value of j’s potential function

(D.1) prior to deception. Agent j is allowed to propose contracts, regardless of the

sequence Φ, until her dj falls weakly below d0
j . This may in general require multiple

proposals (unlike in the one-to-one case, where one accepted proposal brings dj to zero).

During j’s compensation, whenever a proposed contract is accepted by k who by

doing so deceives her counterparty kcy for some contract y, we put kcy on the waitlist.

18 If Ci(Bi) ⊆ Yi, we skip the round.
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After j is compensated, we compensate the next agent on the waitlist (the order does

not matter). Agents are removed from the waitlist after being compensated.

The CC ends when the last agent on the waitlist is compensated, and no new agents

are added to the waitlist. Then, the algorithm proceeds to the next round, and the

proposer is determined by Φ.

One type of deception does not induce compensation. Within a CC, if an agent i

deceives agent j as a consequence of i proposing a contract (as opposed to i receiving

an offer), the deceived agent j is not compensated. Such a scenario is possible when

an agent holds multiple contracts, proposes a new one which is accepted, and as a

consequence breaks some of the old contracts. The counterparties of the old contracts

are not compensated when this takes place inside a CC. This has no bite in the one-to-

one case where the agent proposing in a CC is always unmatched. In the many-to-one

setting, this restriction ensures that in a CC initiated at a hospital, only hospitals are

compensated (the analogous property holds automatically for doctors).

The algorithm stops when Yi = Ci(Bi) for all agents i.

D.3 Convergence to a Stable Allocation

The following result generalizes the first part of Theorem 1.

Theorem 2. If contracts are substitutes for hospitals, then for any sequence Φ, DACC(Φ)

stops in finite time and its outcome Y is a stable allocation.

The proof of Theorem 2 is similar to the proof of Theorem 1, and I skip the parts

that are analogous. Several additional arguments are needed to fill in the details, and

I provide them below.

First, if DACC stops, the outcome is a stable allocation (see Claim 1). The proof

of Claim 1 can be translated directly to the language of matching with contracts, and

there are no substantial changes to the argument. The current set of contracts remains

acceptable for agents when contracts are broken because of the substitutes property.

Second, every CC stops in finite time (see Claim 2). This follows from the observa-

tion made above that in a CC initiated at a hospital (doctor), only hospitals (doctors)

apply. Budget sets can never grow inside a CC for the proposing side. Compensa-

tion for any agent i ends, because as i applies, her potential function di goes strictly

down.19 After every compensation, either some agent’s budget set on the proposing

side shrinks, or the waitlist’s length is reduced. Because budget sets cannot decrease

indefinitely, the waitlist will eventually be empty.

19 In the case when a proposed contract is accepted by i’s counterparty, this conclusion requires that
contracts are substitutes.
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Third, DACC stops in finite time (see Claim 3). To prove that, I follow the approach

from the one-to-one case by showing that di is a potential function.

Lemma 3. When contracts are substitutes, di(Bi, Yi) = 0 if and only if Ci(Bi) = Yi.

Proof. Suppose that di(Bi, Yi) = 0. Let A := Ci(Bi). Because Yi ⊂ Bi, by SIRC, A =

Ci(Yi ∪ A). Towards a contradiction, suppose that A 6= Yi. Because Yi is acceptable,

it cannot be that A ( Yi, so there exists x ∈ A \ Yi. Due to di(Bi, Yi) = 0, we

have x ∈ Ri(Yi ∪ {x}). Then, by substitutes, x ∈ Ri(Yi ∪ A), a contradiction with

A = Ci(Yi ∪ A).

In the opposite direction, suppose that Ci(Bi) = Yi. If di(Bi, Yi) > 0, then there

exists x ∈ Bi \ Yi, x ∈ Ci(Yi ∪ {x}). That contradicts SIRC.

Next, it is easy to show that di goes strictly down when i’s offer is rejected, or

when i signs a new contract (the latter property requires substitutes). By the same

argument as in the proof of Claim 3, for every hospital di will eventually converge to

zero. An important part of that argument was that after sufficiently many rounds,

every time a contract is broken, it is a deception, and hence a CC follows.

However, this argument is not enough to establish an analogous property for doc-

tors. Hospitals may break contracts when proposing in a CC, and according to the

definition of DACC, doctors do not receive compensation even if this constitutes a

deception. To fill this gap, I prove the following lemma.

Lemma 4. When contracts are substitutes for hospitals, there exists a number M such

that after round M , no hospital ever deceives a doctor during a CC.

Proving the lemma will finish the proof of Theorem 2; the same arguments from

Claim 3 can be then used to show that di converges to zero for every doctor.

Proof of Lemma 4. Take M to be a round in which di is equal to zero for all hospitals

and will remain zero at the end of each subsequent round20. In any round after M ,

if a hospital h is proposing some contract x in a CC, it must be that it has just lost

some other contract x′. Prior to that, x′ ∈ Yh = Ch(Bh) because dh was equal to zero.

Towards a contradiction, suppose that some doctor d is deceived because h breaks

contract y ∈ Yh with d when the new contract x is signed. This would mean that

y ∈ Rh(Yh \ {x′} ∪ {x})

but since Yh \ {x′} ∪ {x} ⊂ Bh, substitutability of h’s preferences implies that y ∈
Rh(Bh), contradicting y ∈ Yh = Ch(Bh).

20 Such a round M exists by the arguments used in the proof of Claim 3. Note that the statement
emphasizes the end of each subsequent round. In any round after M , a hospital may lose a contract
(which leads to a jump in its di) but a CC will bring di back to zero before the round is finished.
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D.4 Generating all Stable Allocations

One could expect the second part of Theorem 1 to generalize to matching with contracts

as easily as the first the part. However, this is not the case for a trivial reason.

Example 4. Suppose there is one hospital and one doctor. Let X = {l, m, h, ∅}.
Suppose the doctor prefers h to m to l, and the hospital has a reversed ranking (think

of the contract specifying the salary of the doctor). Then, there are three stable

allocations, and the stable allocation {m} cannot be achieved by DACC.

The problem of not being able to reach {m} in the above example could be solved

by allowing agents to break contracts before they propose a new one. But then, the

extreme stable allocations l and h could not be achieved. To avoid this problem,

I maintain the following assumption throughout.

Assumption 1. The set X and agents’ preferences are such that for any two stable

allocations Y ?, Z?, for any y ∈ Y ?, z ∈ Z?, if dy = dz and hy = hz, then y = z.

Assumption 1 states that if the same agents sign a contract in two different stable

allocations, then they sign the same contract. Under this assumption, if contracts are

substitutes, the question whether the DACC can achieve all stable allocations is open

once more. I found myself unable to provide a definitive answer. The proof method

proposed in Section 3 does not work for general substitutable preferences. However,

an adjusted method works under stronger assumptions on preferences, giving a partial

converse to Theorem 2. This is the subject of the rest of this section.

I first define concepts that will be used to state the result.

Definition 6 (Dominance). Given two sets of contracts Y ?, Y ⊂ X, I say that Y ?

dominates Y for agent i if

1. ∀y ∈ Y ? \ Y, y ∈ Ci(Y ∪ {y}),

2. ∀y ∈ Y ? ∩ Y, ∀z ∈ Y ?, y ∈ Ci(Y ∪ {z}).

I say that Y ? strongly dominates Y if property 2 holds for z ∈ X, not just z ∈ Y ?.

Although it is convenient to define dominance for arbitrary sets of contracts, it

really has bite when the sets are acceptable. The following observation follows directly

from the definition (by using SIRC).

Observation 5. Y ? dominates Y for agent i if and only if Y ? is acceptable and Y ?

dominates Ci(Y ).
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If Y ? dominates Y , then (1) every contract from Y ? that is not in Y is accepted by

an agent holding contracts Y , and (2) if a new contract from Y ? is signed when the

agent holds Y , then no contract from Y ? will be broken.

Dominance will play a key role in the proof. The idea, analogous to that used in

the one-to-one setting in Section 3, is to make sure that the stable allocation we are

trying to achieve dominates the current allocation for (almost) every agent. This means

that no stable contract will be rejected or broken in the process. The next definition

formulates two properties needed for the proof technique to work.

Definition 7 (Revealed Preference and Free-slot). Suppose that Y ? is accept-

able, Y ? dominates Y , but Y ? does not dominate Ci(Y ∪{x}) for some contract x ∈ Xi.

I say that preferences of agent i satisfy:

1. the revealed preference (RP) property, if for all such Y ?, Y, x,

z ∈ Ci(Y ∪ {x}) =⇒ z ∈ Ci(Y ? ∪ {z});

2. the free-slot (FS) property, if for all such Y ?, Y, x,

z ∈ Ci(Y ∪ {x}) =⇒ Y ? dominates Ci(Y ∪ {x}) \ {z},

z ∈ Ci(Y ), x /∈ Y ? =⇒ ∀y ∈ Y ? ∩ Y, y ∈ Ci(Y ∪ {x} \ {z}).

The interpretation of these properties and their relation to other properties is dis-

cussed in detail in the next subsection.

Theorem 3. Suppose that preferences of hospitals satisfy substitutes, RP, and FS

properties. For an arbitrary stable allocation Y ?, there exists a sequence Φ such that

Y ? is the outcome of DACC(Φ). Moreover, Y ? can be achieved with an order Φ that

does not lead to any compensation chains.

The theorem is proved in Subsection D.4.2.

D.4.1 Discussion of Assumptions

The RP and FS properties as stated in Definition 7 are fairly complicated. Rather

than trying to give their economic interpretation, I define stronger but more intuitive

counterparts which imply them (the proof is by direct inspection and thus skipped).

Observation 6 (Simpler sufficient conditions). Suppose that Y ? is acceptable, and

Y is an arbitrary set of contracts. Preferences of agent i satisfy:
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1. the strong RP property, if, whenever Y ? does not dominate Y ,

z ∈ Ci(Y ) =⇒ z ∈ Ci(Y ? ∪ {z});

2. the strong FS property, if, whenever Y ? dominates Y \ {x} for some x,

z ∈ Ci(Y ) =⇒ Y ? strongly dominates Ci(Y ) \ {z}.

The strong RP (FS) property implies the RP (FS) property.

The strong RP property can be interpreted as follows. If Y ? does not dominate Y ,

it means intuitively that some contract in Y ? is less attractive than contracts chosen

from Y . The strong RP property says that in this case any contract chosen from Y

should be accepted by an agent holding Y ? (presumably because it replaces the less

attractive contract in Y ?). As for the strong FS property, suppose that Y ? dominates

Y once we remove one contract from it. Then, if any contract that is chosen from Y is

removed, the resulting smaller set should be (strongly) dominated by Y ?. The informal

idea here is that the slot created by removing a signed contract could be filled with

any contract from Y ?. Both properties are satisfied when preferences are responsive.

Definition 8. Preferences of agent i are responsive if there exists a total order �i on

Xi, and a natural number ki such that

Ci(Y ) = {x ∈ Y : x �i ∅, |{y ∈ Y : y �i x}| < ki}, ∀Y ⊂ Xi. (D.2)

Intuitively, agent i accepts the best contracts according to �i up to capacity ki.

The notion of dominance takes a straightforward form under responsive preferences.

An acceptable Y ? dominates Y if and only if either |Ci(Y )| < ki or |Ci(Y )| = ki and

the least preferred contract in Y ? is preferred to the least preferred contract in Ci(Y ).

Lemma 5. If preferences of agent i are responsive, then they satisfy the strong RP

and FS properties.

Proof. RP: If Y is not dominated by Y ?, then either there exists y ∈ Y ? \ Y such that

y /∈ Ci(Y ∪ {y}), or there exists y ∈ Y ? ∩ Y and x ∈ Y ? such that y /∈ Ci(Y ∪ {x}). In

both cases, when z ∈ Ci(Y ), we must have z �i y, and hence z ∈ Ci(Y ? ∪ {z}).
FS: This property follows immediately from the fact that under responsive prefer-

ences every acceptable Y ? strongly dominates any Y with |Y | < ki.

Preferences satisfying the RP and FS properties neither imply, nor are implied by

substitutable preferences. Suppose hospital h has access to two doctors, and the only
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acceptable sets of contracts are to employ both or none. These preferences trivially

satisfy Definition 7 but are not substitutable. On the other hand, consider preferences

induced by the following ranking over 4 doctors:

{d1, d2} �h {d1, d4} �h {d2, d3} �h {d2, d4} �h {d3, d4} �h d1 �h d2 �h d3 �h d4.

These preferences satisfy substitutes. They satisfy neither the RP nor the FS property.

Suppose that the hospital signs Y ?
h = {d2, d3} in the stable allocation. Let Y = {d3, d4}

be the set of contracts h temporarily signs in the course of the algorithm. Y ?
h dominates

Y . However, suppose that h proposes a contract to d1, and d1 accepts. Then, h will

break the stable contract d3. This poses a problem for the proof which relies heavily

on the property that stable contracts are never rejected or broken.

The RP property is violated in this example because z = d4 is chosen from Y ∪{x} =

{d1, d3, d4}, but rejected from Y ? ∪ {z} = {d2, d3, d4}. Intuitively, d1 and d4 exhibit

indirect complementarity: d4 is less attractive than the stable d3 on its own but becomes

more attractive in combination with d1.

The FS property is violated because z = d4 is chosen from Y ∪ {x} = {d1, d3, d4},
but Y ? = {d2, d3} does not dominate Ch(Y ∪{x}) \ {z} = {d1, d4} \ {d4} = {d1}. The

issue here is that {d1, d3} is not acceptable; even though a “free slot” is created by

removing d4, d3 is not accepted when d1 is employed.

D.4.2 Proof of Theorem 3

The idea of the proof of Claim 4 from Section 3 is to immediately break pairs that are

not stable, in order to guarantee that no stable match partner will be rejected. Because

hospitals can sign multiple contracts, we cannot guarantee that they will immediately

dispose of unstable contracts when they are allowed to propose. Moreover, stable

contracts can be broken when hospitals apply, an additional event we want to avoid.

In the proof, I make sure that there is at most one agent that could reject or

break stable contracts, i.e. for whom the stable allocation does not dominate the

current allocation. I say that agent i is red-flagged if Y ?
i does not dominate i’s current

allocation Yi.

Fix a stable allocation Y ?. I construct the sequence Φ recursively. Suppose that

k ≥ 0 proposers were already chosen. Consider the following properties:

(a) At the end of round k, at most one agent i is red-flagged. For that agent, Y ?
i

dominates Yi \ {z} for some contract z /∈ Y ?
i .

(b) Up to (and including) round k, there haven’t been any CCs.

(c) Up to (and including) round k, no contract has been added to Bi, for all i.
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(d) Up to (and including) round k, Y ?
i ⊂ Bi, for all i.

The first element Φ(1) is an arbitrary doctor. In round k+1, if the DACC algorithm

has not stopped, I choose Φ(k + 1) as a function of the outcome of round k.

Case 1) If there is a red-flagged agent i, choose Φ(k + 1) = icz for some contract z /∈ Y ?
i

such that Y ?
i dominates Yi \ {z};

Case 2) otherwise, set Φ(k + 1) to be an arbitrary doctor d with Yd 6= Y ?
d ; if no such

doctor exists, choose a hospital h with Yh 6= Y ?
h . (If no such hospital exists, the

algorithm has stopped.)

If properties (a)-(d) hold at k, the choice of Φ(k+1) is well defined because there is

at most one red-flagged agent i, and the contract z can be found for i. These properties

hold trivially for k = 0 (before the algorithm starts). If they hold for all k until the

algorithm stops at K, then we are done. By the stopping criterion, Ci(Bi) = Yi for

each agent i. For all j for whom Y ?
j dominates Yj, we have Yj = Y ?

j , as otherwise

dj(Bj, Yj) > 0, contradicting Lemma 3.21 By property (a), there is at most one agent

i for whom Y ?
i does not dominate Yi. But because Yi is acceptable, and contracts are

bilateral, {Yj}j 6=i uniquely determines Yi, and thus Yi = Y ?
i as well.

I now assume that properties (a) - (d) hold at k (the inductive hypothesis), choose

the proposer Φ(k + 1) accordingly, and prove that properties (a) - (d) hold at k + 1

(the inductive step). I start with a simple lemma that will be used throughout.

Lemma 6. Up to round k, no contract x was proposed by both its counterparties j and

jcx. When j proposes x, contract x is already in jcx’s budget set.

Proof. Suppose that there is a contract x, with sides j and l = jcx, and both j and l

proposed contract x at some point. By the inductive hypothesis, property (d), when

contract x was proposed, the stable allocation was in the proposer’s budget set. By

substitutes, when x is chosen from a set, it is also chosen from any subset thereof. This

means that x ∈ Cj(Y ?
j ∪ {x}) and x ∈ Cl(Y ?

l ∪ {x}). Stability of Y ? requires x ∈ Y ?.

But in this case x could not be proposed twice because stable contracts are always

accepted up to round k, by property (d).

Further, suppose that j proposes x. By the above, we know that jcx did not propose

x. By the inductive hypothesis, there were no CCs up to round k, so jcx could not be

deceived. Thus, x must be in jcx’s budget set when x is proposed.

The lemma can be used to prove a further useful fact.

21 Strictly speaking, Lemma 3 only implies that Y ?
j ⊆ Yj but a strict inclusion can easily be shown

to violate stability of Y ?.
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Lemma 7. If the inductive hypothesis holds up to round k, there are no deceptions in

round k + 1.

Proof. I consider two cases: when an agent proposes, and when she receives an offer.

Suppose that i with allocation Yi proposes a contract x, signs x, and breaks some

contract y ∈ Yi, deceiving icy. This means that i proposed y before. By the definition

of DACC, Yi ∪ {x} is in i’s budget set. By property (c) of the inductive hypothesis,

budgets can only decrease, so Yi ∪ {x} was in i’s budget set when y was proposed.

By substitutes, y needs to be chosen from Yi ∪ {x}, as it was chosen from a larger set

containing Yi ∪ {x}. This is a contradiction.

Now suppose that agent i receives an offer x, accepts it, and breaks some contract

y ∈ Yi, deceiving icy. By Lemma 6, x was already in i’s budget set when it was proposed.

The rest of the proof is the same as in the previous case.

The inductive step Consider round k + 1. Property (b) holds in round k + 1 by

Lemma 7. Because there are no CCs, there is only one proposed contract in round

k+1. By the second part of Lemma 6, the proposed contract is already in the receiving

agent’s budget set, which establishes property (c). I prove properties (a) and (d) below.

If the agent proposing in round k + 1 is rejected, property (a) is obvious (no new

agent can become red-flagged). To show property (d), it is enough to prove that the

agent receiving the offer would not reject a contract that is included in the stable

allocation. The inductive hypothesis, property (a), and the way we chose Φ(k + 1),

imply that the receiving agent is not red-flagged, and the conclusion follows directly

from the definition of dominance (Definition 6).22

From now on, I focus on the case when the offer in round k + 1 is accepted. I will

consider two cases, depending on how the proposer was determined by the outcome of

the previous round.

Case 1 in round k In this case, by the inductive hypothesis and the way we chose Φ,

the situation can be summarized as follows. Agent i is red-flagged, but Y ?
i dominates

Yi \ {z} for some contract z /∈ Y ?
i . No other agent is red-flagged. The current proposer

is j = icz, the counterparty of i under contract z. Agent j proposes some contract x to

l = jcx, and this offer is accepted.

To establish property (a) for round k + 1, I prove three lemmas.

Lemma 8. Suppose agent j holds an acceptable set of contracts Yj which is dominated

by Y ?
j . Suppose j signs contract x, and the new set of contracts Y ′j = Cj(Yj ∪ {x})

22 The only exception is when j proposes back to i. This is possible because i and j can in general sign
different contracts with each other. In this case, we use the definition of stability and Assumption 1
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is no longer dominated by Y ?
j (j becomes red-flagged). Then, there exists a contract

y ∈ Y ′j \ Y ?
j such that Y ?

j dominates Y ′j \ {y}.

Proof. If x /∈ Y ?
j , set y = x. Suppose that x ∈ Y ?

j . Because Y ?
j does not dominate Y ′j ,

we have Y ′j * Y ?
j , and so there exists y ∈ Y ′j \Y ?

j . The set Y ′j is acceptable, so contract

y is chosen from Y ′j . By the FS property (first implication), Y ?
j dominates Y ′j \ {y}.

Lemma 8 provides a way to choose a contract that will satisfy property (a) for the

red-flagged agent (y from Lemma 8 becomes the contract z in property (a) for the next

round). So I only need to prove that at most one agent is red-flagged.

Lemma 9. If j becomes red-flagged, then i stops being red-flagged.

Proof. I prove that if j becomes red-flagged, then j must break contract z with i which

means that i will no longer be red-flagged (by property (a) for round k).

Suppose otherwise, i.e. z is still chosen after j signs the contract x with l, z ∈
Cj(Yj ∪{x}). Since j becomes red-flagged, Y ?

j does not dominate j’s current allocation

Cj(Yj ∪ {x}). By the RP property, z ∈ Cj(Y
?
j ∪ {z}). Similarly for i, we know

that z ∈ Ci(Yi), and because i was red-flagged, Y ?
i does not dominate Yi. Hence,

z ∈ Ci(Y ?
i ∪ {z}). This contradicts stability of Y ?; contract z /∈ Y ? would be signed

by i and j at Y ?.

Lemma 10. When x /∈ Y ? and l = jcx accepts the contract x proposed by j, l doesn’t

become red-flagged.

Proof. Suppose that x /∈ Y ?. Because Y ?
j ⊂ Bj, and x ∈ Cj(Bj), by substitutes,

x needs to be chosen from Y ?
j as well, so we have x ∈ Cj(Y ?

j ∪ {x}). Suppose that l

becomes red-flagged, i.e. Y ?
l no longer dominates Cl(Yl∪{x}). Because x ∈ Cl(Yl∪{x}),

by the RP property, x ∈ Cl(Y ?
l ∪ {x}). This contradicts stability of Y ?.

I now finish the proof of property (a) by showing that at most one of agents i, j, or

l is red-flagged. If x /∈ Y ?, then the conclusion follows directly from Lemma 9 and 10.

If x ∈ Y ?, then there are two cases: either j is a doctor or a hospital. If j is a doctor,

then j breaks z when she signs x, so agent i is not red-flagged. Because j is a doctor

signing her stable contract x, j cannot become red-flagged. So in this case only l can

be red-flagged. If j is a hospital, then l is a doctor so l does not become red-flagged.

From Lemma 9, if j becomes red-flagged, then i stops being red-flagged, so at most

one of them can be red-flagged.

To prove property (d), I have to show that (i) j does not break some contract

included in Y ?
j when contract x is signed, and (ii) l does not break some contract

included in Y ?
l when she accepts x.
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As for (i): If j is not red-flagged at the end of the round, then, by definition, j could

not break any contracts from the stable allocation. If j becomes red-flagged, then (by

Lemma 9) j must have broken the contract z with i when j signed x. Contract z is

chosen from Yj, j’s initial allocation (before signing x) which is dominated by Y ?
j . If

x /∈ Y ?
j , we can use the second implication in the FS property, obtaining that no stable

contract is discarded from Cj(Yj ∪ {x} \ {z}). Because z /∈ Cj(Yj ∪ {x}), by SIRC,

Cj(Yj∪{x}\{z}) = Cj(Yj∪{x}), and thus the conclusion holds in this case. If x ∈ Y ?
j ,

then j could not break any stable contract by the fact that j was not red-flagged prior

to signing x (this follows from the definition of dominance).

As for (ii): If l is not red-flagged at the end of the round, then l could not break

any contracts from the stable allocation. If l is red-flagged, then we know from the

above analysis that x ∈ Y ?
l and l is a hospital. Because l was not red-flagged prior to

accepting x, the conclusion follows from the definition of dominance.

Case 2 in round k In this case, by the inductive hypothesis and the way we chose

Φ, the situation can be summarized as follows. No agent is red-flagged. The current

proposer is j who is an agent with Yj 6= Y ?
j . Agent j proposes a contract x ∈ Cj(Bj)\Yj.

If j is a hospital, then j’s offer is rejected. This follows from the fact that a hospital

is chosen as the proposer under Case 2 only if Yd = Y ?
d for all d ∈ D. Acceptance of

j’s offer would violate stability of Y ?, so x is rejected. The case of rejection of x has

been already covered.

From now on, I can assume that j is a doctor and l = jcx accepts x.

Consider property (a). Lemma 8 still applies, so I only need to prove that at most

one agent becomes red-flagged (since there are currently no red-flagged agents). This

follows directly from Lemma 10 if x /∈ Y ?. And if x ∈ Y ?, because j is a doctor, j

cannot become red-flagged.

Consider property (d). I have to show that (i) j does not break some contract

included in Y ?
j when contract x is accepted, and (ii) l does not break some contract

included in Y ?
l when she accepts x. As for (i), this cannot happen because, by the

way we choose Φ, j would not be chosen as the proposer if j’s current allocation were

stable. As for (ii), we can use the same argument as in Case 1.

This finishes the inductive step, and hence the proof of the theorem.
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