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Abstract

We propose a novel approach to deal with the problem of indeterminacy in Linear Rational

Expectations models. The method consists of augmenting the original model with a set of

auxiliary exogenous equations that are used to provide the adequate number of explosive

roots in presence of indeterminacy. The solution in this expanded state space, if it exists,

is always determinate, and is identical to the indeterminate solution of the original model.

The proposed approach accommodates determinacy and any degree of indeterminacy, and

it can be implemented even when the boundaries of the determinacy region are unknown.

Thus, the researcher can estimate the model by using standard packages without restricting

the estimates to a certain area of the parameter space. We apply our method to simulated

and actual data from a prototypical New-Keynesian model for both regions of the parameter

space. We show that our method successfully recovers the true parameter values independent

of the initial values.
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1 Introduction

Sunspot shocks and multiple equilibria have been at the center of economic thinking at least since

the seminal work of Cass and Shell (1983), Farmer and Guo (1994) and Farmer and Guo (1995).

Furthermore, in many of the Linear Rational Expectation (LRE) models used to study the

properties of the macroeconomy the possibility of multiple equilibria arises for some parameter

values, but not for others. This paper proposes a novel approach to solve LRE models that

easily accommodates both the case of determinacy and indeterminacy. As a result, the proposed

methodology can be used to easily estimate a LRE model that could potentially be characterized

by multiplicity of equilibria. Our approach is implementable even when the analytic conditions

for determinacy or the degrees of indeterminacy are unknown and can be implemented to study

indeterminacy in standard software packages, such as Dynare and Sims’(2001) code Gensys.

To understand how our approach works, it is useful to recall the conditions for determinacy

as stated by Blanchard and Kahn (1980). Indeterminacy arises when the parameter values

are such that the number of explosive roots is smaller than the number of non-predetermined

variables. The key idea behind our methodology consists of augmenting the original model by

appending additional autoregressive processes that can be used to provide the missing explosive

roots. The innovations of these exogenous processes are assumed to be linear combinations of

a subset of the forecast errors associated with the expectational variables of the model, and a

newly defined vector of sunspot shocks. Whether the autoregressive processes are mean-reverting

or explosive is central, and the intuition follows. When a model is determinate, the roots of the

additional autoregressive process are within the unit circle (i.e., the Blanchard-Kahn condition is

satisfied) and the auxiliary process is irrelevant for the dynamics of the model. The law of motion

for the endogenous variables is in this case equivalent to the solution obtained using standard

solution algorithms (King and Watson (1998), Klein (2000), Sims (2001)). When the model is

indeterminate, the appended autoregressive processes are explosive, and the solution we obtain

for the endogenous variables is equivalent to the one obtained with the methodology of Lubik

and Schorfheide (2003) or, equivalently, Farmer et al. (2015).

Our methodology simplifies the common approach used to deal with indeterminacy. First, the

common procedure requires the researcher to solve the model differently depending on the area of

the parameter space that is being studied. Second, the procedure requires to estimate the same

model twice, first under determinacy, then under indeterminacy. This is the same procedure that

would be followed if the researcher were comparing two structurally different models, while she

is in fact estimating the same structural model in alternative regions of the parameter space. Fi-

nally, the estimation under indeterminacy is not generally implementable in standard estimation

packages and requires a significant amount of coding work on the side of the researcher.
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In this respect, our methodology provides three main advantages. First, it accommodates both

the case of determinacy and indeterminacy while considering the same augmented system of

equations. The model can therefore be solved by using standard solution algorithms. Instead,

existing methods require to rewrite the model based on the existing degree of indeterminacy

(Farmer et al. (2015)) or to construct the solution under indeterminacy ex-post following the

seminal contribution of Lubik and Schorfheide (2003). Second, given that the method accom-

modates both the case of determinacy and indeterminacy, the researcher does not need to take

a stance on which area of the parameter space she is interested in exploring. We show that our

methodology ensures that standard estimation algorithms explore the entire parameter space,

increasing the probability of finding a global maximum over the parameter space. This is par-

ticularly relevant when considering that the posterior mode is a crucial object used for Bayesian

inference.1 Finally, even when the region of determinacy is unknown, the methodology allows the

researcher to estimate the model without imposing a priori assumptions about the uniqueness

of the equilibrium, which can be equivalently thought of as restrictions on the parameter space

over which inference is conducted. Hence, information contained in the data indicates whether

an estimated model is characterized by a unique solution or by multiplicity of equilibria.

Our work is related to the vast literature that studies the role of indeterminacy in explaining

the evolution of the macroeconomy. Prominent examples in the monetary policy literature in-

clude the work of Clarida et al. (2000) and Kerr and King (1996), that study the possibility

of multiple equilibria as a result of violations of the Taylor principle in New-Keynesian (NK)

models. Applying the methods developed in Lubik and Schorfheide (2003) to the canonical NK

model, Lubik and Schorfheide (2004) test for indeterminacy in U.S. monetary policy. Using a

calibrated small-scale model, Coibon and Gorodnichenko (2011) find that the reduction of the

target inflation rate in the U.S. also played a key role in explaining the Great Moderation, and

Arias et al. (2015) support this finding in the context of a medium-scale model à la Christiano

et al. (2005). In a similar spirit, Arias (2013) studies the dynamic properties of medium-sized

NK models with trend inflation. More recently, Aruoba and Schorfheide (2015) study inflation

dynamics at the Zero Lower Bound (ZLB) and during an exit from the ZLB.

The paper closest to our is Farmer et al. (2015). As explained above, the main difference

between the two approaches is that our method accommodates both the case of determinacy and

indeterminacy while considering the same augmented system of equations. Instead, the method

proposed by Farmer et al. (2015) require to rewrite the model based on the existing degree of

indeterminacy. With respect to Lubik and Schorfheide (2003), the main novelty of our approach

1Specifically, using simulated data we show that our methodology leads the estimation algorithm to converge
to the "right" area of the parameter space. Once the algorithm converges to such area, the probability of leaving
it is very low, in line with the results of Lubik and Schorfheide (2004) that show that the likelihood presents
potentially very large jumps/drops between the determinacy/indeterminacy regions.
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is to provide a unified approach to study determinacy and indeterminacy of different degrees.

Ascari et al. (2016) allow for temporarily unstable paths, while we require all solutions to be

stationary, in line with previous contributions in the literature. Finally, we deliberately use

Dynare in all the examples presented in this paper to show that our method can be combined

with standard packages. However, our solution method can be combined with more sophisticated

estimation techniques such as the ones developed in Herbst and Schorfheide (2015).

The remainder of the paper is organized as follows. Section 2 builds the intuition by using a

univariate example in the spirit of Lubik and Schorfheide (2004). Section 3 describes the meth-

odology and shows that the augmented representation of the LRE model delivers solutions which

under determinacy are equivalent to those obtained using standard solution algorithms, and un-

der indeterminacy to those obtained using the methodology provided by Lubik and Schorfheide

(2003, 2004) and Farmer et al. (2015). Section 4 provides an analytic example of the theoretical

result and in Section 5, we apply our theoretical results to the NK model of Lubik and Schorfheide

(2004). In Section 5.1, we first generate series of simulated data for parameter values which sat-

isfy the condition for determinacy and indeterminacy, respectively. We then estimate the model

by using the proposed augmented representation for both cases. The model is estimated over the

entire parameter space and the true parameter values are recovered, providing evidence in favor

of determinacy or indeterminacy. Section 5.2 shows that this is true even when we assume that

the researcher does not know the boundaries of the determinacy region. Hence, our methodology

can be used to test for indeterminacy in a wide class of models, including medium- and large-

scale models for which the region of determinacy cannot be derived analytically. We also repeat

the exercise on actual data using the dataset from Lubik and Schorfheide (2004) in Section 5.3.

Finally, we provide guidance on how to properly implement our methodology in Section 6 and

our conclusions are presented in Section 7.

2 Building the intuition

Before presenting the theoretical results of the paper, this section builds the intuition behind

our approach by considering a univariate example similar to the one proposed in Lubik and

Schorfheide (2004). While Section 2.1 explains our approach from an analytical perspective,

Section 2.2 addresses questions which could arise at the time of its practical implementation.
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2.1 A useful example

Consider a classical monetary model characterized by the Fisher equation

it = Et(πt+1) + rt, (1)

and the simple Taylor rule

it = φππt, (2)

where it denotes the nominal interest rate. We assume that the real interest rate rt is given and

described by a mean-zero Gaussian i.i.d. shock.2 To properly specify the model, we also define

the one-step ahead forecast error associated with the expectational variable, πt, as

ηt ≡ πt − Et−1(πt). (3)

Combining (1) and (2), we obtain the univariate model

Et(πt+1) = φππt − rt. (4)

First, we consider the case φπ > 1. Rewriting equation (4), it is clear that this case is associated

with the determinate solution,

πt =
1

φπ
Et(πt+1) +

1

φπ
rt (5)

=
1

φπ
rt. (6)

where the last equality is obtained by solving equation (5) forward and recalling the assumptions

on rt. The strong response of the monetary authority to changes in inflation (φπ > 1) guarantees

that inflation is pinned down as a function of the exogenous real interest rt. From a technical

perspective, the condition φπ > 1 is such that the Blanchard-Kahn condition is satisfied: the

number of explosive roots matches the number of expectational variables, that in this univariate

case is πt.

The second case corresponds to φπ ≤ 1. The solution to (4) is obtained by combining (4) with

2 In the classical monetary model, the real interest rate results from the equilibrium in labor and goods market
and it depends on the technology shocks. We are considering an exogenous process for the technology shocks and
therefore we take the process for the real interest rate as given.
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(3), and it corresponds to any process that takes the following form

πt = φππt−1 − rt−1 + ηt. (7)

When the monetary authority does not respond aggressively enough to changes in inflation

(φπ ≤ 1), there are multiple solutions for the inflation rate, πt, each indexed by the expectations

that the representative agent holds about future inflation, ηt. Equivalently, the solution to the

univariate model is indeterminate: the Blanchard-Kahn solution is not satisfied since there is no

explosive root to match the number of expectational variables, that is πt.

From a methodological and computational perspective, the latter case constitutes a challenge.

Standard software packages such as Dynare do not allow for indeterminacy. Of course, a re-

searcher could in principle code an estimation algorithm herself, following the methods outlined

in Lubik and Schorfheide (2004). However, this approach requires a substantial amount of time

and technical skills. Hence, the result is that in practice most of the papers simply rule out the

possibility of indeterminacy, even if the model at hand could in principle allow for such a feature.

From a purely technical point of view, the problem that a researcher faces when solving a LRE

model such as the one presented in (4) using standard solution algorithms is the following.

Under determinacy, the model already has a suffi cient number of unstable roots to match the

number of expectational variables. However, under indeterminacy, the model is missing one

explosive root since it still has one expectational variable, but no unstable root. Therefore, our

approach proposes to augment the original model by appending an independent process which

could be either stable or unstable. The key insight consists of choosing this auxiliary process

in a way to deliver the correct solution. When the original model is determinate, the auxiliary

process must be stationary so that also the augmented representation satisfies the Blanchard-

Kahn condition. In this case, the auxiliary process represents a separate block that does not

affect the law of motion of the model variables. When the model is indeterminate, the additional

process should however be explosive so that the Blanchard-Kahn condition is satisfied for the

augmented system, even if not for the original model. In what follows, we apply this intuition

to the example considered in this section and explain how to choose the auxiliary process.

Our methodology proposes to solve an augmented system of equations which can be dealt with

by using standard solution algorithms such as Sims (2001) under both determinacy and inde-

terminacy. Consider the following augmented system{
Et(πt+1) = φππt − rt,
ωt =

(
1
α

)
ωt−1 − νt + ηt,

(8)

where ωt is an independent autoregressive process, α ∈ [0, 2] and νt is a newly defined mean-
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Blanchard-Kahn condition in the augmented representation
Unstable Roots B-K condition in Solution

augmented model (8)

Determinacy φπ > 1
in original model (4)
1
α< 1 1 Satisfied

{
πt = 1

φπ
rt, ωt = αωt−1 − νt + εt

}
1
α> 1 2 Not satisfied -

Indeterminacy φπ ≤ 1
in original model (4)
1
α< 1 0 Not satisfied -
1
α> 1 1 Satisfied {πt = φππt−1 − rt−1 + ηt, ωt = 0}

Table 1: The table reports the regions of the parameter space for which the Blanchard-Kahn
condition in the augmented representation is satisfied, even when the original model is indeterm-
inate.

zero sunspot shock with standard deviation σv. Table 1 summarizes the intuition behind our

approach.

When the original LRE model in (4) is determinate, φπ > 1, the Blanchard-Kahn condition

for the augmented representation in (8) is satisfied when 1/α < 1. Indeed, for φπ > 1 the

original model has the same number of unstable roots as the number of expectational variables.

Our methodology thus suggests to append a stable autoregressive process. When φπ > 1 and

1/α < 1, the solution method of Sims (2001) delivers the same solution for the endogenous

variable πt as in equation (5). Since the coeffi cient 1/α is smaller than 1, the solution also

includes the autoregressive process ωt. Importantly, its dynamics do not impact the endogenous

variable yt.

Considering the case of indeterminacy (i.e. φπ ≤ 1), the original model has one expectational

variable, but no unstable root, thus violating the Blanchard-Kahn condition. By appending

an explosive autoregressive process, the augmented representation that we propose satisfies the

Blanchard-Kahn condition and delivers the same solution as the one resulting from the meth-

odology of Lubik and Schorfheide (2003) or Farmer et al. (2015) described by equation (7).

Moreover, stability imposes conditions such that ωt is always equal to zero, and the solution for

the endogenous variable does not depend on the appended autoregressive process.

Summarizing, the choice of the coeffi cient 1α should be made as follows. For values of φπ greater

than 1, the Blanchard-Kahn condition for the augmented representation is satisfied for values

of α greater than 1. Conversely, under indeterminacy (i.e. φπ ≤ 1) the condition is satisfied
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when α is smaller than 1. The choice of parametrizing the auxiliary process with 1/α instead

of α induces a positive correlation between φπ and α that facilitates the implementation of our

method when estimating a model.

Finally, note that under both determinacy and indeterminacy, the exact value of 1/α is irrelevant

for the law of motion of πt. Under determinacy, the auxiliary process ωt is stationary, but its

evolution does not affect the law of motion of the model variables. Under indeterminacy, ωt
is always equal to zero. This makes clear that introducing the auxiliary processes does not

affect the properties of the solution in the two cases. These processes only serve the purpose

of providing the necessary explosive roots under indeterminacy and of creating the mapping

between the sunspot shocks and the expectation errors. As we will see in Section 3, this result

can be generalized and applies to more complicated models with potentially multiple degrees of

indeterminacy.

2.2 Choosing α

A natural question that arises with the approach we propose is how to choose α. We consider

the following three cases: (1) The researcher knows the analytic condition defining the region of

determinacy; (2) she only has an relatively good idea of the threshold of the determinacy region;

(3) the region of determinacy is completely unknown to the researcher. We consider the three

cases separately.

We first consider the case in which the researcher is able to analytically derive the condition

which defines when the model is determinate or indeterminate. For the example considered in

this section, this case corresponds to knowing that when φπ ≤ 1 the model in (4) is indeterminate.

We thus suggest to write the parameter α as a function of the parameter φπ so that the augmented

representation in (8) always satisfies the Blanchard-Kahn condition. This can be obtained by

setting α ≡ φπ. When the original model is determinate (φπ > 1), the appended autoregressive

process is stationary since 1/α < 1. Under indeterminacy (φπ ≤ 1) of the original model, the

coeffi cient 1/α is greater than 1 and the appended process is therefore explosive. Hence, when the

region of determinacy is known, the researcher should carefully choose α such that the augmented

representation always delivers a solution under both determinacy and indeterminacy. Using the

NK model in Lubik and Schorfheide (2004), we implement this suggestion in Section 5.1 where

we estimate the model assuming that the researcher knows the region of determinacy.

There are however instances in which the researcher does not know the exact properties of the

determinacy region. Suppose that the researcher does not know the region, but for values of

the parameter φπ slightly above 1 she can solve the original model under determinacy, while for

values just below 1 the model is indeterminate. She thus has a relatively good idea that the
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threshold for determinacy is somewhere around 1, even if she is not able to derive the analytical

condition. In this case, she could set a prior distribution for the parameter α such that there

is a higher probability of drawing values above 1 when the parameter φπ is greater than 1 and

vice versa. Similarly, the variance-covariance matrix used by the Metropolis-Hastings algorithm

to propose new draws should be chosen to display a positive correlation between the values of

φπ and α. This practice would increase the likelihood of obtaining a solution in the augmented

representation and therefore the effi ciency of the algorithm.

Finally, it could be the case that the region of determinacy is completely unknown to the re-

searcher. For a given draw of the parameter φπ, the researcher would like to make draws of α

smaller or greater than 1 with equal probabilities. In this case, the researcher could use a uniform

distribution over the interval [0, 2] or any symmetric interval around 1 as a prior distribution.

Also, note that the prior distribution does not necessarily have to be continuous. A discrete

probability distribution that allows to make draws of α to be either equal 0.5 or 1.5 could also

be specified as a prior. In this context, the effi ciency of the algorithm would also be improved if

it were to be designed as follows. If for a given draw of φπ and α the augmented representation

in (8) does not have a solution, the algorithm should be coded as to make a new draw of α′ equal

to the inverse of the earlier draw α.

3 Methodology

Given the general class of LRE models described in Sims (2001), this paper proposes an aug-

mented representation which embeds the solution for the model under both determinacy and

indeterminacy.3 In particular, the augmented representation of the LRE model delivers solu-

tions which under determinacy are equivalent to those obtained using standard solution al-

gorithms, and under indeterminacy to those obtained using the methodology provided by Lubik

and Schorfheide (2003, 2004) or equivalently Farmer et al. (2015). In the following, we generalize

the intuition built in the previous section. Consider the following LRE model

Γ0(θ)Xt = Γ1(θ)Xt−1 + Ψ(θ)εt + Π(θ)ηt, (9)

where Xt ∈ Rk is a vector of endogenous variables, εt ∈ R` is a vector of exogenous shocks,

ηt ∈ Rp collects the one-step ahead forecast errors for the expectational variables of the system
and θ ∈ Θ is a vector of parameters. The matrices Γ0 and Γ1 are of dimension k × k, possibly
singular, and the matrices Ψ and Π are of dimension k × ` and k × p, respectively. Also, we

3 In this paper we focus on linear rational expectation models. Schmitt-Grohé and Uribe (2004) and Judd
(1998) use perturbation methods to solve DSGE models using higher order approximations.
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assume

Et−1(εt) = 0, and Et−1(ηt) = 0. (10)

We also define the `× ` matrix Ωεε,

Ωεε ≡ Et−1(εtεTt ), (11)

which represents the covariance matrix of the exogenous shocks.

Consider a model whose maximum degree of indeterminacy is denoted by m.4 The proposed

methodology appends to the original LRE model in (9) the following system of m equations

ωt = Φωt−1 + νt − ηf,t, Φ ≡


1
α1

0
. . .

0 1
αm

 (12)

where the vector ηf,t is a subset of the endogenous shocks and the vectors
{
ωt, νt, ηf,t

}
are

of dimension m × 1. The equations in (12) are autoregressive processes whose innovations are

linear combinations of a vector of sunspot shocks, νt, and a subset of forecast errors, ηf,t, where

Et−1(νt) = Et−1(ηf,t) = 0. As we will show below, the choice of which expectational errors to

include in (12) does not affect the solution.

The intuition behind the proposed methodology works as in the example considered in the previ-

ous section. Let m∗ (θ) denote the actual degree of indeterminacy associated with the parameter

vector θ. Under indeterminacy the Blanchard-Kahn condition for the original LRE model in (9)

is not satisfied. Suppose that the system is characterized by m∗ (θ) degrees of indeterminacy,

then it is necessary to introduce m∗ (θ) explosive roots to solve the model using standard solu-

tion algorithms. In this case, the (absolute value of the) m∗ (θ) of the diagonal elements of the

matrix Φ are assumed to be outside the unit circle, and the augmented representation is there-

fore determinate since the Blanchard-Kahn condition is now satisfied. On the other hand, under

determinacy the (absolute value of the) diagonal elements of the matrix Φ are assumed to be

all inside the unit circle, since the number of explosive roots of the original LRE model in (9)

already equals the number of expectational variables in the model (m∗ (θ) = 0). Also, in this

case the augmented representation is determinate due to the stability of the appended auxiliary

processes. Importantly, as shown for the univariate example in Section 2, the block structure

of the proposed methodology guarantees that the autoregressive process, ωt, does not affect the

4Denoting by n the minimum number of unstable roots of a LRE model, the maximum degrees of indeterminacy
are defined as m ≡ p− n. When the minimum number of unstable roots of a model is unknown, then m coincides
with number of expectational variables p. This represents the maximum degree of indeterminacy in any model
with p expectational variables.
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solution for the endogenous variables, Xt.

Denoting the newly defined vector of endogenous variables X̂t ≡ (Xt, ωt)
T and the newly defined

vector of exogenous shocks ε̂t ≡ (εt, νt)
T , the system in (9) and (12) can be written as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (13)

where

Γ̂0 ≡
[

Γ0(θ) 0

0 I

]
, Γ̂1 ≡

[
Γ1(θ) 0

0 Φ

]
, Ψ̂ ≡

[
Ψ(θ) 0

0 I

]
, Π̂ ≡

[
Πn(θ) Πf (θ)

0 −I

]
,

and without loss of generality the matrix Π in (9) is partitioned as Π = [Πn Πf ], where the

matrices Πn and Πf are respectively of dimension k × (p−m) and k ×m.

Section 3.1 and 3.2 show that the augmented representation of the LRE model delivers solutions

which under determinacy are equivalent to those obtained using standard solution algorithms,

and under indeterminacy to those obtained using the methodology provided by Lubik and Schorf-

heide (2003, 2004) and Farmer et al. (2015). In order to simplify the exposition, when analyzing

the case of indeterminacy we assume, without loss of generality, m∗(θ) = m. As it will become

clear, the case of m∗(θ) < m is a special case of what we present below.

3.1 Equivalence under determinacy

This section considers the case in which the original LRE is determinate, and shows the equi-

valence of the solution obtained using the proposed augmented representation with the one from

the standard solution algorithm described in Sims (2001).

3.1.1 Canonical solution

Consider the LRE model in (9) and reported below as (14)

Γ0
k×k

Xt
k×1

= Γ1
k×k

Xt−1
k×1

+ Ψ
k×
εt
×1

+ Π
k×p

ηt
p×1

. (14)

The method described in Sims (2001) delivers a solution, if it exists, by following four steps.

First, Sims (2001) shows how to write the model in the form

SZTXt = TZTXt−1 +QΨεt +QΠηt, (15)
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where Γ0 = QTSZT and Γ1 = QTTZT is the QZ decomposition of {Γ0,Γ1}, and the k × k

matrices Q and Z are orthonormal, upper triangular and possibly complex. Also, the diagonal

elements of S and T contain the generalized eigenvalues of {Γ0,Γ1}.

Second, since the QZ decomposition is not unique, Sims’algorithm chooses a decomposition that

orders the equations so that the absolute values of the ratios of the generalized eigenvalues are

placed in an increasing order, that is

|tjj | / |sjj | ≥ |tii| / |sii| for j > i.

The algorithm then partitions the matrices S, T , Q and Z as

S =

[
S11 S12

0 S22

]
, T =

[
T11 T12

0 T22

]
, Z ′ =

[
Z1

Z2

]
, Q =

[
Q1

Q2

]
, (16)

where the first block corresponds to the system of equations for which |tjj | / |sjj | < 1 and the

second block groups the equations which are characterized by explosive roots, |tjj | / |sjj | > 1 .

The third step imposes conditions on the second, explosive block to guarantee the existence of

at least one bounded solution. Defining the transformed variables

ξt ≡ ZTXt =


ξ1,t

(k−n)×1

ξ2,t
n×1

 , (17)

where n is the number of explosive roots, and the transformed parameters

Ψ̃ ≡ QTΨ, and Π̃ ≡ QTΠ, (18)

the second block can be written as

ξ2,t = S−122 T22ξ2,t−1 + S−122 (Ψ̃2εt + Π̃2ηt). (19)

Since this system of equations contains the explosive roots of the system, then a bounded solution,

if it exists, will set

ξ2,0
n×1

= 0 (20)

Ψ̃2
n×`

εt
`×1

+ Π̃2
n×p

ηt
p×1

= 0, (21)
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where n also denotes the number of equations in (21).5

A necessary condition for the existence of a solution requires that the number of unstable roots (n)

equals the number of expectational variables (p). In this section, we are considering the solution

under determinacy and this guarantees that there are no degrees of indeterminacy m∗(θ) = 0.

The suffi cient condition then requires that the columns of the matrix Π̃2 are linearly independent

so that there is at least one bounded solution. In that case, the matrix Π̃2 is a square, non-singular

matrix and equation (21) imposes linear restrictions on the forecast errors, ηt, as a function of

the fundamental shocks, εt,

ηt = −Π̃−12 Ψ̃2εt. (22)

The fourth and last step finds the solution for the endogenous variables, Xt, by combining the

restrictions in (20) and (22) with the system of stable equations in the first block,

ξ1,t = S−111 T11ξ1,t−1 + S−111 (Ψ̃1εt + Π̃1ηt)

= S−111 T11ξ1,t−1 + S−111

(
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

)
εt (23)

Using the algorithm by Sims (2001), the solution of the LRE model in (14) is described by

equations (20), (22), and (23).

3.1.2 Augmented representation

We now consider the methodology proposed in this paper, and we augment the LRE model in

(14) with the following system of m equations

ωt = Φωt−1 + νt − ηf,t, Φ ≡


1
α1

0
. . .

0 1
αm


where Φ is a m ×m diagonal matrix. Since the original model in (14) is determinate, then we

assume that all the diagonal elements αi belong to the interval [1, 2]. Therefore, we are appending

a system of stable equations, and we show that the solution for the endogenous variables, Xt,

is equivalent to the one found in Section 3.1.1. Defining the augmented vector of endogenous

variables, X̂t ≡ (Xt, ωt)
T and the augmented vector of exogenous shocks ε̂t ≡ (εt, νt)

T , the

5Note that the eigenvalues of S−122 T22 are all greater than one in absolute value.
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representation that we propose takes the form

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (24)

where

Γ̂0 ≡
[

Γ0 0

0 I

]
, Γ̂1 ≡

[
Γ1 0

0 Φ

]
, Ψ̂ ≡

[
Ψ 0

0 I

]
, Π̂ ≡

[
Πn Πf

0 −I

]
,

and without loss of generality the matrix Π is partitioned as Π = [Πn Πf ], where the matrices

Πn and Πf are respectively of dimension k × (p−m) and k ×m.

We can find a solution to the augmented representation in (24) by using Sims’algorithm. Sim-

ilarly to the previous section, we follow the four steps which describe the algorithm. First, the

solution algorithm performs the QZ decomposition of the matrices {Γ̂0, Γ̂1} and the augmented
representation takes the form

ŜẐT X̂t = T̂ ẐT X̂t−1 + Q̂Ψ̂ε̂t + Q̂Π̂ηt, (25)

where Γ̂0 = Q̂T ŜẐT and Γ̂1 = Q̂T T̂ ẐT is the QZ decomposition of {Γ̂0, Γ̂1}, and

Ŝ =

S11 0 S12

0 I 0

0 0 S22

 , T̂ =

T11 0 T12

0 Φ 0

0 0 T22

 , ẐT =

Z1 0

0 I

Z2 0

 , Q̂ =

Q1 0

0 I

Q2 0

 .
Importantly, note that the inner matrices of {Ŝ, T̂ , ẐT , Q̂} are the same as those which define
the matrices {S, T, ZT , Q} in (16) found in the previous section.

Second, the algorithm chooses a QZ decomposition which groups the equations in a stable and

an explosive block. Since this section assumes that the original model is determinate and that

the diagonal elements of the matrix Φ are within the unit circle, the explosive block corresponds

to the third system of equations in (25) which is characterized by explosive roots. Recalling the

definition of the matrices Ψ̂ and Π̂, the system of equations in the third block is

ξ2,t = S−122 T22ξ2,t−1 + S−122 (Ψ̃2εt + Π̃2ηt). (26)

The third step imposes conditions to guarantee the existence of a bounded solution. However,

the explosive block in (26) is identical to the system of equations found in (19). Therefore, the

algorithm imposes the same restrictions to guarantee the existence of a bounded solution, that
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is

ξ2,0 = 0 (27)

and as found earlier

ηt = −Π̃−12 Ψ̃2εt. (28)

Finally, the last step combines these restrictions with the system of equations in the stable block

which corresponds to the first and second systems of equations in (25),

ξ1,t = S−111 T11ξ1,t−1 + S−111

(
Ψ̃1 − Π̃1Π̃

−1
2 Ψ̃2

)
εt, (29)

ωt = Φωt−1 + νt − ηf,t. (30)

The solution in (27)∼(30) obtained for the augmented representation of the LRE model delivers
the same solution for the endogenous variables of interest, Xt, found in the previous section and

defined in equations (20), (22), and (23).

Two remarks should be made when comparing the two solutions. First, as shown in (28), the

forecast errors are only a function of the exogenous shocks εt, and not of the sunspot shocks

vt. It is therefore clear that the endogenous variables, Xt, of the original LRE model in (14)

do not respond to sunspot shocks either, as expected under determinacy. Second, (29) and (30)

indicate that under determinacy the appended system of equations constitutes a separate block,

which does not affect the dynamics of the endogenous variables, Xt, and therefore the likelihood

function associated with Xt.

3.2 Equivalence under indeterminacy

This section shows the equivalence of the solutions obtained for a LREmodel under indeterminacy

using the proposed augmented representation and the methodology of Lubik and Schorfheide

(2003, 2004).

3.2.1 Lubik and Schorfheide (2003)

As in Section 3.1, we consider the LRE model in (14) and reported below as (31)

Γ0Xt = Γ1Xt−1 + Ψεt + Πηt. (31)

In this section we assume that the model is indeterminate, and we present the method used by

Lubik and Schorfheide (2003). The authors implement the first two steps of the algorithm by Sims
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(2001) and described in Section 3.1.1.6 They proceed by first applying the QZ decomposition

to the LRE model in (31) and then ordering the resulting system of equations in a stable and

an explosive block as defined in (15) and (16). However, their approach differs in the third step

when the algorithm imposes restrictions to guarantee the existence of a bounded solution. In

particular, the restrictions in (20) and (21) reported below as (32) and (33) require that

ξ2,0
n×1

= 0, (32)

Ψ̃2
n×`

εt
`×1

+ Π̃2
n×p

ηt
p×1

= 0. (33)

Nevertheless, it is clear that the system of equation in (33) is indeterminate since the number

of forecast errors exceeds the number of explosive roots (p > n). Equivalently, there are less

equations (n) than the number of variables to solve for (p). To characterize the full set of

solutions to equation (33), Lubik and Schorfheide (2003) decompose the matrix Π̃2 using the

following singular value decomposition

Π̃2
n×p

≡ U
n×n

[
D11
n×n

0
n×m

]
V T

p×p
,

where m represents the degrees of indeterminacy. Given the partition V
p×p
≡
[
V1
p×n

V2
p×m

]
,

equation (33) can be written as

D−111
n×n

UT
n×n

Ψ̃2
n×`

εt
`×1

+ V T
1

n×p
ηt
p×1

= 0. (34)

Since the system is indeterminate, Lubik and Schorfheide append additional m equations,

M̃
m×`

εt
`×1

+ Mζ
m×m

ζt
m×1

= V T
2

m×p
ηt
p×1

. (35)

The m × 1 vector ζt is a set of sunspot shocks that is assumed to have mean zero, covariance

matrix Ωζζ and to be uncorrelated with the fundamental shocks, εt, that is

E [ζt] = 0, E
[
ζtε

T
t

]
= 0, E

[
ζtζ

T
t

]
= Ωζζ .

The matrix M̃ captures the correlation of the forecast errors, ηt, with fundamentals, εt, and

Lubik and Schorfheide (2003) choose the normalization Mζ = Im. Appending the system of

6 It is relevant to mention that in this section the matrices obtained from the QZ decomposition and the ordering
of the equations into a stable and an explosive block differ from those in Section 3.1 both in terms of the elements
constituing them and their dimensions. However, we opted to use the same notation for simplicity.
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equations in (35) to the equations in (34), the expectational errors can be written as a function

of the fundamental shocks, εt, and the sunspot shocks, ζt,

ηt
p×1

=

(
−V1
p×n

D−111
n×n

UT1
n×n

Ψ̃2
n×`

+ V2
p×m

M̃
m×`

)
εt
`×1

+ V2
p×m

ζt
m×1

.

More compactly,

ηt
p×1

=

(
V1
p×n

N
n×`

+ V2
p×m

M̃
m×`

)
εt
`×1

+ V2
p×m

ζt
m×1

, (36)

where

N
n×`
≡ −D−111

n×n
UT1
n×n

Ψ̃2.
n×`

is a function of the parameters of the model.

Given the earlier restriction in (32) and (36), the fourth step in the algorithm combines these

equations with the system of stable equations in the first block as in Section 3.1.1,

ξ1,t = S−111 T11ξ1,t−1 + S−111 (Ψ̃1εt + Π̃1ηt)

= S−111 T11ξ1,t−1 + S−111

(
Ψ̃1 + Π̃1V1N + Π̃1V2M̃

)
εt + S−111

(
Π̃1V2

)
ζt. (37)

Using the method in Lubik and Schorfheide (2003), the solution for the original LRE model

under indeterminacy is described by (32), (36) and (37).

3.2.2 Augmented representation

We now consider the augmented representation as in (24) and reported below as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt, (38)

where X̂t ≡ (Xt, ωt)
T , ε̂t ≡ (εt, νt)

T and

Γ̂0 ≡
[

Γ0 0

0 I

]
, Γ̂1 ≡

[
Γ1 0

0 Φ

]
, Ψ̂ ≡

[
Ψ 0

0 I

]
, Π̂ ≡

[
Πn Πf

0 −I

]
. (39)

where the matrix Π is partitioned as Π = [Πn Πf ] without loss of generality.

The novelty of our approach is that, given our representation, we can easily obtain the solution by

using Sims’algorithm even when the original LRE is assumed to be indeterminate. It is enough

to assume that the auxiliary processes ωt are characterized by explosive roots, or equivalently

that the diagonal elements of the matrix Φ are outside the unit circle. This guarantees that the
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Blanchard-Kahn condition for the augmented representation is satisfied and, given the analytic

form that we propose for the auxiliary processes, we show that the solution for the endogenous

variables of interest, Xt, is equivalent to the method of Lubik and Schorfheide (2003).

To show this result, we simply apply the four steps of the algorithm described in Sims (2001) to

the proposed augmented representation. First, the QZ decomposition of (38) takes the form

ŜẐT X̂t = T̂ ẐT X̂t−1 + Q̂Ψ̂ε̂t + Q̂Π̂ηt, (40)

where Γ̂0 = Q̂T ŜẐT and Γ̂1 = Q̂T T̂ ẐT is the QZ decomposition7 of {Γ̂0, Γ̂1} and

Ŝ =

S11 S12 0

0 S22 0

0 0 I

 , T̂ =

T11 T12 0

0 T22 0

0 0 Φ

 , ẐT =

Z1 0

Z2 0

0 I

 , Q̂ =

Q1 0

Q2 0

0 I

 . (41)
Second, the QZ decomposition chosen by the algorithm groups the explosive dynamics of the

model in the second and third system of equations in (40), which are reported below as (42)

[
S22 0

0 I

][
ξ2

ωt

]
=

[
T22 0

0 Φ

][
ξ2,t−1
ωt−1

]
+

[
Q2 0

0 I

](
Ψ̂ε̂t + Π̂ηt

)
, (42)

where ξt ≡ ZTXt.

In the third step, the following restrictions are imposed,

ξ2,0
n×1

= 0, (43)

ω0
m×1

= 0, (44)[
Q2 0

0 I

](
Ψ̂ε̂t + Π̂ηt

)
= 0. (45)

Recalling the definition of Ψ̂ and Π̂ and that we define Ψ̃ ≡ QTΨ, and Π̃ ≡ QTΠ, then

equation (45) can be written as[
Ψ̃2 0

0 I

]
︸ ︷︷ ︸
p×(`+m)

ε̂t
(`+m)×1

+

[
Π̃n,2 Π̃f,2

0 −I

]
︸ ︷︷ ︸

p×p

ηt
p×1

= 0. (46)

7Note that the inner matrices of {Ŝ, T̂ , ẐT , Q̂} are the same as those which define the matrices {S, T, ZT , Q}
found from the QZ decomposition using the methodology of Lubik and Schorfheide (2003).
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Equation (46) shows transparently how the explosive auxiliary process that we append help to

solve the original LRE model under indeterminacy. The system of equations in (46) is determinate

as the number of equations defined by the explosive roots of the system equals the number of

expectational errors of the model. This guarantees that the necessary condition for the existence

of a bounded solution for the augmented representation is satisfied. Assuming that the columns

of the matrix associated with the vector of non-fundamental shocks, ηt, are linearly independent,

we can therefore impose linear restrictions on the forecast errors as a function of the augmented

vector of exogenous shocks ε̂t ≡ (εt, νt)
T ,

ηt = −
[

Π̃−1n,2Ψ̃2 Π̃−1n,2Π̃f,2

0 −I

]
ε̂t. (47)

More compactly,

ηt = C1εt + C2νt, (48)

where C1 ≡ −
[

Π̃−1n,2Ψ̃2

0

]
and C2 ≡ −

[
Π̃−1n,2Π̃f,2

−I

]
are a function of the structural parameters of

the model.

The last step of Sims’algorithm combines the restrictions in (43), (44) and (48) with the sta-

tionary block derived from the QZ decomposition in (40),

ξ1,t = S−111 T11ξ1,t−1 + S−111 (Ψ̃1εt + Π̃1ηt)

= S−111 T11ξ1,t−1 + S−111

(
Ψ̃1 + Π̃1C1

)
εt + S−111

(
Π̃1C2

)
vt. (49)

3.2.3 Indeterminate equilibria and equivalent characterizations

The indeterminate equilibria found using the methodology of Lubik and Schorfheide (2003)

are parametrized by two sets of parameters. The first set is defined by θ1 ∈ Θ1, where

θ1 ≡ vec(Γ0,Γ1,Ψ,Ωεε)
T is a vector of structural parameters of the model as well as the co-

variance matrix of the exogenous shocks. The second set corresponds to θ2 ∈ Θ2, where

θ2 ≡ vec
(

Ωζζ , M̃
)T

is a parameter vector related to the additional equations introduced in

(35) and reported below as (50),

M̃
m×`

εt
`×1

+ Mζ
m×m

ζt
m×1

= V T
2

m×p
ηt
p×1

. (50)

Given the normalization Mζ = I chosen by Lubik and Schorfheide (2004), equation (50) intro-

duces m × (m + 1)/2 parameters associated with the covariance matrix of the sunspot shocks,

Ωζζ , and additional m× ` parameters of the matrix M̃ that is related to the covariances between
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ηt and εt. In Appendix A, we show how the normalization chosen in Lubik and Schorfheide

(2004) maps into the methodology we propose.

The characterization of a Lubik-Schorfheide equilibrium is a vector θLS ∈ ΘLS , where ΘLS is

defined as

ΘLS ≡ {Θ1,Θ2} . (51)

Similarly, the full characterization of the solutions under indeterminacy using the proposed aug-

mented representation is parametrized by the set of parameters θ1 ∈ Θ1 common between the

two methodologies, and the set of additional parameters θ3 ∈ Θ3 , where θ3 ≡ vec(Ωνν ,Ωνε)
T .

Using our approach, we also introduce m× (m+ 1)/2 parameters associated with the covariance

matrix of the sunspot shocks, Ωvv, and m × ` parameters of the covariances, Ωvε, between the

sunspot shock vt and the exogenous shocks εt. A Bianchi-Nicolò equilibrium is characterized by

a parameter vector θBN ∈ ΘBN , where ΘBN is defined as

ΘBN ≡ {Θ1,Θ3} . (52)

The following theorem establishes the equivalence between the characterizations of indeterminate

equilibria obtained by using the methodology in Lubik and Schorfheide (2003) and the proposed

augmented representation.

Theorem 1 Let θLS and θBN be two alternative parametrizations of an indeterminate equilib-

rium of the model

Γ0Xt = Γ1Xt−1 + Ψεt + Πηt.

For every BN equilibrium, parametrized by θBN , there is a unique matrix M̃ and a unique matrix

Ωζζ such that θ2 = vec(Ωζζ , M̃)T , and {θ1, θ2} ∈ ΘLS defines an equivalent LS equilibrium.

Conversely, for every LS equilibrium, parametrized by θLS, there is a unique matrix Ωvv and a

unique covariance matrix Ωvε such that θ3 = vec(Ωvv,Ωvε)
T , and {θ1, θ3} ∈ ΘBN defines an

equivalent BN equilibrium.

Proof. See Appendix B.

In the paper Farmer et al. (2015), the authors also show that their characterization of indeterm-

inate equilibria is equivalent to Lubik and Schorfheide (2003). Therefore, the following corollary

holds.

Corollary 2 Given a parametrization θBN of a Bianchi-Nicolò indeterminate equilibrium, there

exists a unique mapping into the parametrization of an indeterminate equilibrium for Farmer et

al. (2015), and vice-versa.
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Moreover, the following two considerations support Corollary 3 below, which describes a relevant

result on the likelihood function of the augmented representation. First, as emphasized in this

section, the reduced form of the augmented representation has a block structure which ensures

that solution for endogenous variables in Xt is not a function of the autoregressive processes, ωt.

Second, note that the appended autoregressive processes, ωt, have no economic interpretation and

therefore have no relation with the observable variables used in a measurement equation. These

two considerations imply that the parameters of the matrix Φ introduced with the augmented

representation are not identified (within a certain region). Corollary 3 then follows.8

Corollary 3 The likelihood function associated with the newly defined vector of endogenous vari-
ables, X̂t, does not depend on the additional parameters included in the augmented representation,

Φ, and is equivalent to the likelihood function associated with the endogenous variables, Xt.

While Section 3.1 shows that the augmented representation of the LRE model delivers solutions

which under determinacy are equivalent to those obtained using standard solution algorithms,

Theorem 1 proves that under indeterminacy the solutions of our methodology are equivalent

to those obtained using Lubik and Schorfheide (2003, 2004) and Farmer et al. (2015). This

theoretical result is crucial for the estimation exercises conducted in Section 5. The augmented

representation guarantees that the Metropolis-Hastings algorithm explores the entire domain of

the parameter space.

4 Analytic example

This section considers the canonical NK model to provide an analytic example of the theoretical

result presented in Section 3. Let

xt = Et(xt+1)− τ(Rt − Et(xt+1)) (53)

πt = βEt−1(πt+1) + κxt (54)

Rt = ψπt + εR,t (55)

η1,t = xt − Et−1(xt) (56)

η2,t = πt − Et−1(πt) (57)

8Notice that Corollary 3 holds when the augmented representation has a unique solution. This happens in two
cases. First, values of the structural parameters θ which guarantee determinacy in the original LRE model should
be combined with values for αi in the matrix Φ whose absolute value lies within the unit circle. Second, values
of the structural parameters θ for which the original model is indeterminate should be combined with (absolute)
values of αi outside the unit circle.
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where equations (53)∼(55) represent the dynamic IS curve, the NK Phillips curve and a monetary
policy reaction function, respectively. The variable xt represents log deviations of GDP from a

trend path and πt and Rt are log deviations from the steady state level of inflation and the

nominal interest rate. The one-step ahead forecast errors for the deviations of output from its

trend and of inflation from its steady state are defined in (56) and (57). This model can be

expressed in matrix form as

Γ0Xt = Γ1Xt−1 + Ψεt + Πηt, (58)

where Xt = (xt, πt, Et(xt+1), Et(πt+1))
T , εt = (εR,t) and ηt = (η1,t, η2,t)

T .

It is well known that the region of determinacy is associated with an active response of the

monetary authority to changes in inflation, a condition satisfied when |ψ| > 1. Alternatively,

the equilibrium is indeterminate when the monetary policy is “passive”, that is 0 < |ψ| ≤ 1. In

the latter case, there is one degree of indeterminacy (m = 1) since there are two forecast errors

while the system is characterized by only one unstable root.9 Given that m = 1, the proposed

methodology consists in appending to the original LRE model in (58) the following equation

ωt =
1

α
ωt−1 + νt − η2,t. (59)

To provide the intuition, consider α ≡ |ψ|. When the monetary authority is “passive,” inde-
terminacy arises and the Blanchard-Kahn condition for the original LRE model is not satisfied.

Our representation augments the system in (58) with the explosive autoregressive process in

(59). Note that under indeterminacy 0 < |ψ| ≤ 1, which implies 1/α > 1. The augmented

representation not only mechanically satisfies the Blanchard-Kahn condition, but, as proven in

Theorem 1, it describes all the set of equilibria which would be equivalently obtained using the

methodology of Lubik and Schorfheide (2003, 2004) or Farmer et al. (2015). Alternatively, when

the monetary policy adopts an “active”stance, the original system is determinate and the auxil-

iary autoregressive process is stationary (i.e. 0 < 1/α < 1), thus satisfying the Blanchard-Kahn

condition under determinacy. Importantly, as shown both in this example and more generally

in Section 3, the block structure of the augmented representation ensures that the endogenous

variables contained in the vector Xt are not a function of the process ωt for both regions of the

parameter space.

We now show that the equivalence results in Section 3 hold for the NK model described by

(53) ∼ (57). As described in the previous section, the proposed methodology defines a new
9As shown in Appendix C, one of the roots of the system is always outside the unit circle. This implies that

the maximum degree of indeterminacy is m = 1, and that we append only one auxiliary autoregressive process.
However, it is not always possible to derive this analytical results. Under those circumstances, the number of
auxiliary processes to append to the original LRE model equals the number of expectational variable. The latter
indeed corresponds to the maximum degree of indeterminacy of the original model.
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vector of endogenous variables X̂t ≡ (Xt, ωt)
T = (xt, πt, Et(xt+1), Et(πt+1), ωt)

T and a newly

defined vector of exogenous shocks as ε̂t ≡ (εt, νt)
T = (εR,t, νt)

T . The system in (58) and (59)

can then be written as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt. (60)

The representation in (60) always delivers a solution of the following form under both determinacy

and indeterminacy,

X̂t = T̂ X̂t−1 + R̂ε̂t. (61)

In what follows, we show the equivalence of our solutions under determinacy with the one from

Sims (2001), and under indeterminacy with the solution proposed by Farmer et al. (2015).

4.1 Determinacy

This section clarifies the details for the equivalence of the solutions which are obtained in the

determinacy region of the parameter space when using the following two representations:

a) The matrix representation of the model in (58) and reported here as equation (62)

Γ0Xt = Γ1Xt−1 + Ψεt + Πηt (62)

b) The proposed augmented representation in (60) and reported here as equation (63)

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt. (63)

Representations a) and b) deliver the equilibrium conditions reported in Table 2, where α ≡
|ψ| > 1.10 Comparing the obtained solutions, it is clear that they are equivalent. While our

augmented representation potentially allows for the sunspot shock to affect the model dynamics,

the coeffi cients which determine its impact on the endogenous variables equal zero. Moreover,

the dynamics of the endogenous variables Xt = (xt, πt, Et(xt+1), Et(πt+1))
′ are not affected by

the autoregressive process ωt since it constitutes a separate block.

4.2 Indeterminacy

Under indeterminacy, the Blanchard-Kahn condition is not satisfied and to solve the model we

use the solution method suggested by Farmer et al. (2015).11 The solution obtained using the

10Details on the derivation of the solutions are provided in the Appendix C.
11The derivation of the solutions obtained using the method by Farmer et al. (2015) and the proposed augmented

representation are provided in Appendix D.
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Equivalence of solutions under determinacy
Sims (2001) Bianchi-Nicolò

Et(xt+1) = Et(πt+1) = 0 Et(xt+1) = Et(πt+1) = 0

ηt= − τ
1+κτψ

[
1
κ

]
εR,t ηt= − τ

1+κτψ

[
1 0
κ 0

] [
εR,t
νt

]

(
xt
πt

)
= − τ

1+κτψ

[
1
κ

]
εR,t

(
xt
πt

)
= − τ

1+κτψ

[
1 0
κ 0

] [
εR,t
νt

]

- ωt=
(
1
α

)
ωt−1+

[
τκ

1+κτψ 1
] [εR,t

νt

]

Table 2: Equivalence of solutions under determinacy. The table compares the solution obtained
by using our methodology with Sims (2001).

method of Farmer et al. (2015) is equivalent to Lubik and Schorfheide (2003,2004). We use

Farmer et al. (2015) solution because easier to compare with our solution. Hence, the solutions

that we compare in this section derive from the following two representations:

c) The matrix representation of the LRE model using the methodology of Farmer et al. (2015)
when the forecast error for the deviations of inflation from its steady state, η2,t, is included

as newly defined fundamental shock. Given the partition of the matrix Π in (58) as Π =

[Πn Πf ], then

Γ0Xt = Γ1Xt−1 + Ψf ε̃t + Πnη1,t (64)

where ε̃t ≡ (εt, η2,t)
T and Ψf ≡ [Ψ Πf ].

d) The proposed augmented representation, equivalent to the representation b) in Section 4.1

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt.

24



The equilibrium conditions obtained using representations c) and d) are reported in Table 3,

where

G
4×1
≡


− a2
2κ

1

−a1a2
4βκ
a1
2β

 H
4×2
≡


−2βτa3

2κτ(1−βψ)−a2
a3κ

0 1

− τa2
a3

−a2(1+κτψ)
a3κ

2κτ
a3

−2(1+κτψ)a3

 (65)

and a1 = (β−φ+κτ+1), a2 = (a1−2), a3 = (a1+2φ) and φ = [(1+β+κτ)2−4β(1+κτψ)]−1/2.

To understand the equivalence result, it is useful to compare the linear restrictions imposed on

the vector of forecast errors using the augmented representation. In particular, note that our

methodology imposes the restriction η2,t = νt. Thus, the solution to the augmented representa-

tion sets restrictions on the forecast error, η2,t, (which has been redefined as fundamental using

the methodology of Farmer et al. (2015)) such that it corresponds to the sunspot shock, νt. Also,

to guarantee a bounded solution, restrictions are imposed such that the autoregressive process

ωt equals zero at any time t. Therefore, the solutions for the two alternative representations are

equivalent.

Also, two relevant comments can be made. First, under indeterminacy the endogenous variables

are also affected by the sunspot shock. Second, comparing the form of the matrices under determ-

inacy in Table 2 with those under indeterminacy in Table 3, it is evident that the propagation

mechanism differs according to which region of the parameter space is considered.

5 Applications

While the previous section provides an analytic example clarifying the equivalence results shown

in Section 3, this section highlights the importance of our results for the estimation of LRE mod-

els. We consider the three-equation NK model of Lubik and Schorfheide (2004) and we conduct

the following exercises. Section 5.1 and Section 5.2 deal with simulated data. In particular, we

run two simulations of the model for parameter values which lie in the region of the parameter

space associated with determinacy and indeterminacy. Given the two simulations, Section 5.1

assumes that the region of determinacy is known. In Section 5.2, we then assume that the region

of determinacy is unknown. In both cases the MCMC algorithm converges to the correct area

of the parameter space. Section 5.3 then provides an example on how to implement our meth-

odology when using real data. We consider the data of Lubik and Schorfheide (2004) for the

period prior to the appointment of Chairman Paul Volcker, and we retain the assumption that

the researcher does not know the region of determinacy. We show that our method enables to

successfully recover the same posterior distributions reported by Lubik and Schorfheide (2004),

regardless of the region of the parameter space in which the estimation is initialized. Finally, we
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Equivalence of solutions under indeterminacy
Farmer et al. (2015) Bianchi-Nicolò

Et(xt+1) = − a2
2κEt(πt+1) Et(xt+1) = − a2

2κEt(πt+1)

η1,t=
[
−2βτa3

2κτ(1−βψ)−a2
a3κ

] [εR,t
η2,t

]
ηt=

[
−2βτa3

2κτ(1−βψ)−a2
a3κ

0 1

] [
εR,t
νt

]


xt
πt

Et(xt+1)
Et(πt+1)

= G
4×1

Et−1(πt)+ H
4×2

[
εR,t
η2,t

] 
xt
πt

Et(xt+1)
Et(πt+1)

= G
4×1

Et−1(πt)+ H
4×2

[
εR,t
νt

]

- ωt= 0

Table 3: Equivalence of solutions under indeterminacy. The table compares the solution obtained
by using our methodology with Farmer et al. (2015). This last method, in turn, returns the
same solution obtained by applying the methods of Lubik and Schorfheide (2003,2004).

run the estimation several times and verify that the results presented below hold across all of

them.

We consider the NK model estimated by Lubik and Schorfheide (2004). The model is described

by equations (66)∼(71) and consists of a dynamic IS curve

xt = Et (xt+1)− τ (Rt − Et (πt+1)) + gt, (66)

a NK Phillips curve

πt = βEt (πt+1) + κ (xt − zt) , (67)

and a Taylor rule,

Rt = ρRRt−1 + (1− ρR) [ψ1πt + ψ2 (xt − zt)] + εR,t. (68)
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The demand shock, gt, and the supply shock, zt, follow univariate AR(1) processes

gt = ρggt−1 + εg,t, (69)

zt = ρzzt−1 + εz,t, (70)

where the standard deviations of the fundamental shocks εg,t, εz,t and εR,t are denoted by σg, σz
and σR, respectively. As in Lubik and Schorfheide (2004), we allow for the correlation between

demand and supply shocks, ρgz, to be nonzero. The rational expectation forecast errors are

defined as

η1,t = xt − Et−1 [xt] , η2,t = πt − Et−1 [πt] . (71)

We define the vector of endogenous variables as Xt ≡ (xt, πt, Rt, Et (xt+1) , Et (πt+1) , gt, zt)
T , the

vectors of fundamental shocks and non-fundamental errors,

εt = (εR,t, εg,t, εz,t)
T , ηt =

(
η1,t, η2,t

)T
and the vector of parameters

θ =
(
ψ1, ψ2, ρR, β, κ, τ , ρg, ρz, σg, σz, σR, ρgz, ρgR, ρzR

)T
.

This leads to the following representation of the model,

Γ0(θ)Xt = Γ1(θ)Xt−1 + Ψ(θ)εt + Π(θ)ηt. (72)

The LRE model in (72) is determinate when the following analytic condition is satisfied, |ψ∗| > 1,

where ψ∗ ≡ ψ1+ (1−β)
κ ψ2. However, when the model is indeterminate, 0 < |ψ∗| ≤ 1, the system is

characterized by one degree of indeterminacy (m = 1) since there are two expectational variables

{Et (xt+1) , Et (πt+1)}T and only one root outside the unit circle. The methodology we propose
consists in augmenting the representation of the model in (72) with the autoregressive process

ωt =

(
1

α

)
ωt−1 + νt − η2,t. (73)

Hence, we define a new vector of endogenous variables X̂t ≡ (Xt, ωt)
T and a newly defined vector

of exogenous shocks as ε̂t ≡ (εt, νt)
T = (εR,t, εg,t, εz,t, νt)

T . The system in (72) and (73) can then

be written as

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ε̂t + Π̂ηt. (74)

As in Lubik and Schorfheide (2004), the vector of observables, yt = {xobs,t, πobs,t, Robs,t}, consists
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of

1. xobs,t the percentage deviations of (log) real GDP per capita from an HP-trend;

2. πobs,t the annualized percentage change in the Consumer Price Index for all Urban Con-

sumers;

3. Robs,t the annualized percentage average Federal Funds Rate.

The measurement equations are described by

yt =

 0

π∗

π∗ + r∗

+

1 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 4 0 0 0 0

Xt. (75)

where π∗ and r∗ are annualized steady-state inflation and real interest rates expressed in percent-

ages. The discount factor, β is a function of the annualized real interest rate in steady-state r∗

(i.e. β = (1 + r∗)−1/4). We then simulate the model under both determinacy and indeterminacy

and Table 4 reports the parameter values used for the simulations.12

While under determinacy we set ψ1 = 2.1 (thus guaranteeing |ψ∗| > 1), for the simulation under

indeterminacy we impose ψ1 = 0.7 for which 0 < |ψ∗| < 1. Also, under indeterminacy we use the

values for the standard deviation of the sunspot shock and its correlation with the fundamental

shocks reported in Farmer et al. (2015). Finally, Table 5 reports the prior distributions used for

the estimation exercises in the following sections.

5.1 Known region of determinacy

In this section, we assume that the region of determinacy is known. We show that our aug-

mented representation accommodates with a single framework both the case of determinacy and

indeterminacy. This feature of our solution method makes it possible for the optimization al-

gorithm to search over the entire parameter space, therefore increasing the probability of finding

the posterior mode. As explained in An and Schorfheide (2007), the posterior mode is a crucial

object for Bayesian inference. First, the posterior mode is often used as a point estimate for

the parameters of the model. Second, it is often used as a starting point for the Metropolis-

Hastings algorithm. Finally, a scaled version of the inverse of the Hessian matrix evaluated at

12The parameter values are those that we estimate in the following section using the data of Lubik and Schorf-
heide (2004) for the Pre-Volcker period. These estimates are in line with those that the authors report. Also, for
the purpose of this paper changing the values assigned to the parameters which are not directly related to the
analytic condition defining the region of determinacy is irrelevant.
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Parameter values for simulations
Parameter Determinacy Indeterminacy

ψ1 2.1 0.73
ψ2 0.16 0.16
ρR 0.67 0.67
π∗ 4.03 4.03
r∗ 1.22 1.22
κ 0.86 0.86
τ−1 1.61 1.61
ρg 0.77 0.77
ρz 0.78 0.78
σR 0.22 0.22
σg 0.24 0.24
σz 1.10 1.10
ρgz 0.46 0.46
σν - 0.24
ρRν - -0.19
ρgν - 0.15
ρzν - -0.21

Table 4: The table reports the parameter values used for the simulations.

the posterior mode is often used as the covariance matrix for the proposal distribution in the

Metropolis-Hastings algorithm.

Since we assume that the region of determinacy |ψ∗| > 1 is known, we set α ≡ |ψ∗|. This
assumption implies that when the model is determinate, the autoregressive process is stable and

the solution is equivalent to the solution of the original model (72). On the other hand, when the

model is indeterminate (i.e. 0 < |ψ∗| ≤ 1), the autoregressive process is unstable, satisfying the

Blanchard-Kahn condition. The assumption α ≡ |ψ∗| enables to search for the posterior mode
over the entire parameter space.

First, we consider the simulation of the model under determinacy, and we compute the posterior

mode of the model parameters using three different representations of the Lubik and Schorfheide

(2004) model. We consider the augmented representation proposed in this paper, the representa-

tion of the model under determinacy using Sims’(2001) algorithm, and the representation of the

model under indeterminacy using the methodology of Farmer et al. (2015).13 Figure 1 reports

the posterior mode (vertical line) and how the posterior varies to changes in the parameter ψ1,

while keeping the other structural parameters at their posterior mode estimates. While panel (a)

13As in Section 4.2, we apply the methodology of Farmer et al. (2015) by redefining the forecast error for inflation,
η2,t, as fundamental shock, that is Γ0Xt = Γ1Xt−1 + Ψf ε̃t + Πnη1,t, where ε̃t = (εR,t, η2,t)

′ and Π = [Πn Πf ].
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Prior distribution for model parameters
Name Range Density Mean Std. Dev. 90% interval
ψ1 R+ Gamma 1.1 0.50 [0.43,2.03]
ψ2 R+ Gamma 0.25 0.15 [0.06,0.54]
ρR [0, 1) Beta 0.50 0.20 [0.17,0.83]
π∗ R+ Gamma 4.00 2.00 [1.35,7.75]
r∗ R+ Gamma 2.00 1.00 [0.69,3.86]
κ R+ Gamma 0.50 0.20 [0.22,0.87]
τ−1 R+ Gamma 2.00 0.50 [1.25,2.88]
ρg [0, 1) Beta 0.70 0.10 [0.52,0.85]
ρz [0, 1) Beta 0.70 0.10 [0.52,0.85]
σR R+ Inverse Gamma 0.31 0.16 [0.14,0.60]
σg R+ Inverse Gamma 0.38 0.20 [0.17,0.74]
σz R+ Inverse Gamma 1.00 0.52 [0.47,1.95]
ρgz [-1,1] Uniform 0.00 0.58 [-0.90,0.90]
σν R+ Uniform 0.5 0.29 [0.05,0.95]
ρRν [-1,1] Uniform 0.00 0.58 [-0.90,0.90]
ρgν [-1,1] Uniform 0.00 0.58 [-0.90,0.90]
ρzν [-1,1] Uniform 0.00 0.58 [-0.90,0.90]

Table 5: The table reports the distributions used as priors for the model parameters.

considers the augmented representation, panel (b) and (c) report the plots for the representations

under model determinacy and indeterminacy, respectively.

The red dots on the horizontal axis in panel b) and c) indicate parameter values for which,

given the chosen model representation, the model could not be solved due to a violation of the

Blanchard-Kahn condition. While in panel b) the model violates these conditions for values of

the parameter ψ1 smaller than 1, panel c) shows that the representation of Farmer et al. (2015)

does not allow to solve the model for values of ψ1 greater than 1.
14 Figure 1 highlights that the

augmented representation guarantees that the optimization algorithm explores the entire domain

of the parameter space. Note that as pointed out by Lubik and Schorfheide (2004) the posterior

presents a discrete jump between the two parameter regions. This makes it unlikely that once

the correct region of the parameter space is reached, the estimation algorithm will leave such

region. We will further elaborate on this point in Section 6.

Similarly, when using the Metropolis-Hastings algorithm, candidate parameter values can be

drawn from both the determinacy and the indeterminacy region. However, once the algorithm

converges to the “correct”area of the parameter space, it is unlikely to leave it. This is reflected
14The violation of the Blanchard-Kahn conditions for values of ψ1 close to 1 results from the values chosen for

the simulation. Indeed, the term (1−β)
κ

ψ2 ≈ 0, thus implying that the region of determinacy is approximated by
the following condition ψ∗ ≈ ψ1 > 1.
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Posterior function and posterior mode for parameter ψ1 (determinacy)

panel a) panel b) panel c)

Figure 1: The figure reports the posterior function and posterior mode for the parameter ψ1 for
the augmented representation (panel (a)), the representation under determinacy (panel (b)) and
under indeterminacy (panel (c)).

in Table 6, that reports the mean and the 90% probability interval of the posterior distribu-

tions.15 The posterior estimates indicate that the true parameter values are recovered under the

augmented representation. All the parameter values used to simulate the model fall within the

90% probability intervals of the posterior distributions.

We perform the same estimation exercise using the simulation of the model under indeterminacy.

Figure 2 plots how the posterior varies with ψ1 while the other parameters are constant at their

posterior mode estimates. As before, the vertical line reports the corresponding posterior mode.

Figure 2 provides similar evidence as in Figure 1. Panel (a), panel (b) and panel (c) refer to the

augmented representation and the representation under determinacy and under indeterminacy,

respectively.

Contrary to the alternative representations, the proposed augmented representation ensures to

run the optimization routine to compute the posterior mode over the entire parameter space.

Reasonably, the shape of the maximized functions in panel (a) of Figure 2 mirrors the plot of panel

(a) in Figure 1, with the difference that now the peak for the posterior occurs in the indeterminacy

region. Table 7 reports the mean and 90% probability of the posterior distribution. Also in this

case, we recover the true parameter values by using the proposed augmented representation. Since

the posterior estimates indicate that the model is characterized by indeterminacy, we report the

standard error of the sunspot shock, σν , and its covariance with the fundamental shocks (i.e.

ρνR, ρνg, ρνz).

15Since the posterior estimates satisfy the analytic condition for determinacy, the endogenous variables, Xt, are
not a function of the sunspot shock and we therefore do not report the estimates of the standard error of the
sunspot shock and its correlation with the fundamental shocks.
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Posterior estimates, simulation under determinacy
True values Posterior estimates

Mean 90% probability interval
ψ1 2.1 1.90 [1.59,2.22]
ψ2 0.16 0.34 [0.03,0.62]
ρR 0.67 0.67 [0.64,0.70]
π∗ 4.03 4.17 [3.95,4.40]
r∗ 1.22 1.39 [1.13,1.65]
κ 0.86 0.71 [0.44,0.98]
τ−1 1.61 1.66 [1.22,2.10]
ρg 0.77 0.75 [0.70,0.79]
ρz 0.78 0.77 [0.73,0.82]
σR 0.22 0.21 [0.20,0.22]
σg 0.24 0.26 [0.22,0.30]
σz 1.10 1.07 [0.98,1.15]
ρgz 0.46 0.35 [0.15,0.58]

Table 6: The table reports the posterior distributions obtained by estimating the model using
the simulation under determinacy.

5.2 Unknown region of determinacy

In this section, we assume that the region of determinacy, |ψ∗| > 1, is unknown. By considering

this case, we show that our methodology can be used to study LRE models for which it is non-

trivial to derive an analytic condition describing the region of determinacy. Thus, the approach

allows a researcher to estimate medium- and large-scale LRE models that could potentially

be characterized by indeterminacy. Our methodology allows the researcher to conduct Bayesian

inference on the model parameters over the entire parameter space and to compute their posterior

estimates which could potentially lie in both regions of determinacy and indeterminacy.

The assumption that the region of determinacy is unknown implies that it is no longer possible to

impose α ≡ |ψ∗|. To ensure that the Metropolis-Hastings algorithm explores the entire parameter
space, we assume a uniform distribution over the interval [0, 2] as a prior distribution for the

parameter α.16 Equivalently, we assume that there is an equal probability of making draws of

α from the interval [0, 1) as well as from the interval [1, 2]. Draws of α from [1, 2] combined

with draws of the other parameters θ which satisfy the condition |ψ∗| > 1 ensure to solve the

augmented representation under determinacy. Similarly, draws of α from [0, 1) combined with

draws of the other parameters of interest θ such that 0 < |ψ∗| ≤ 1 ensure to solve the proposed

16The choice of the interval [0, 2] is arbitrary. For any value 0 < a ≤ 1, it is suffi cient to specify an interval
[−a+ 1, a+ 1] as the domain of the uniform distribution.
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Posterior function and posterior mode for parameter ψ1 (indeterminacy)

panel a) panel b) panel c)

Figure 2: The figure reports the posterior function and posterior mode for the parameter ψ1 for
the augmented representation (panel (a)), the representation under determinacy (panel (b)) and
under indeterminacy (panel (c)).

representation under indeterminacy.17

Importantly, the same intuition described in Section 5.1 still holds. The Metropolis-Hastings

algorithm makes draws of α and θ which could solve the augmented representation under de-

terminacy and indeterminacy, and it compares the posterior obtained for draws in both regions.

Having specified the prior for α, we estimate the augmented representation using the same two

simulations of the data as in Section 5.1. We first estimate the augmented representation of the

model using the data simulated under determinacy and the same prior distributions reported in

Table 5.

The posterior distribution for the parameter α is plotted in Figure 3. Two remarks should be

made. First, the posterior distribution is distributed over the interval [1, 2], thus providing evid-

ence that the Metropolis-Hastings algorithm explores the entire parameter space and successfully

recovers the information contained in the simulated data about model determinacy. Second, the

posterior distribution approximates a uniform distribution over the same interval. This result is

in line with the non-identifiability of the parameter α stated in Corollary 3. Finally, the posterior

mean and 90% probability intervals of the parameters are the same as those reported in Table

6 when we assume that the region of determinacy is known. As in Section 5.1, the estimation

procedure conducted on our augmented representation recovers the true parameter values. Also

in this case, the results are independent of the initial parametrization used to start the algorithm.

Regardless of whether the starting parametrization is in the ’correct’region, the estimation al-
17The virtue of using a continuous distribution for α and treating it as any other parameter of the model is that

the algorithm can be easily implemented in Dynare. However, the effi ciency of the algorithm could be improved
by using a discrete distribution for α given that the only thing that matters is if this parameter is inside or outside
the unit circle. Furthermore, the MCMC algorithm could be modified to allow for the possibility that whenever
the augmented model does not have a solution, the value of α is flipped.
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Posterior estimates, simulation under indeterminacy
True values Posterior estimates

Mean 90% probability interval
ψ1 0.73 0.76 [0.71,0.81]
ψ2 0.16 0.14 [0.02,0.26]
ρR 0.67 0.69 [0.65,0.75]
π∗ 4.03 3.28 [2.02,4.56]
r∗ 1.22 1.42 [1.13,1.72]
κ 0.86 0.77 [0.49,1.04]
τ−1 1.61 1.89 [1.32,2.50]
ρg 0.77 0.76 [0.70,0.82]
ρz 0.78 0.77 [0.72,0.81]
σR 0.22 0.21 [0.20,0.22]
σg 0.24 0.23 [0.17,0.29]
σz 1.10 1.06 [0.98,1.14]
ρgz 0.46 0.49 [0.20,0.79]
σν 0.24 0.25 [0.17,0.32]
ρRν -0.19 -0.22 [-0.37,-0.07]
ρgν 0.15 0.22 [-0.25,0.72]
ρzν -0.21 -0.19 [-0.38,0.02]

Table 7: The table reports the posterior distributions obtained by estimating the model using
the simulation under indeterminacy.

gorithm successfully recovers the true parameter values used for the simulations. However, the

speed of the convergence for the parameter estimates might be affected.

The estimation of the augmented representation using simulated data under indeterminacy de-

livers a mirrored posterior distribution for the parameter α (Figure 4). In this case, the posterior

distribution of the parameter α is distributed over the interval [0, 1) and it closely resembles a

uniform distribution over the same interval due to its non-identifiability. As for the simulation

under determinacy, we obtain the same posterior mean and the 90% probability interval as for

the case of a known region of determinacy reported in Table 7. Hence, also when we assume that

the region is unknown to the researcher, we recover the true parameter values by estimating the

augmented representation.

5.3 Indeterminacy in the 1970s

This section provides an example on how to implement our methodology when using real data.

We retain the assumption that the researcher does not know the region of determinacy, and

we show that our method enables the algorithm to jump across the regions of determinacy and
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Posterior distribution of parameter α (determinacy)

Figure 3: The grey line represents the prior distribution for the parameter α. The black line is
the posterior distribution.

Posterior distribution of parameter α (indeterminacy)

Figure 4: The grey line represents the prior distribution for the parameter α. The black line is
the posterior distribution.

35



Posterior distribution of parameter ψ1 and α

ψ1 α

Figure 5: The grey line represents the prior distribution and the black line is the posterior
distribution.

indeterminacy, thus facilitating the search for the global maximum in the marginal data density.

We consider both the model and the data that Lubik and Schorfheide (2004) use to test for

indeterminacy in U.S. monetary policy. The model is described by equations (66)∼(71) at the
beginning of Section 5 and, as previously explained, we append the process in (73) to obtain

the augmented representation that we propose. Finally, equation (75) presents the measurement

equations that link the endogenous variables of the model to the data. In the following, we focus

on the data for the pre-Volcker period (1960Q1 - 1979Q2) since Lubik and Schorfheide (2004)

show that during this period the monetary authority did not respond aggressively enough to

changes in inflation, thus not suppressing self-fulfilling inflation expectations.

We proceed by starting the algorithm from initial conditions in both regions of the parameter

space and by allowing for a large number of draws.18 We verified that this approach guarantees

the proper convergence of the posterior distributions for any initial parametrization by repeating

this estimation exercise 100 times and successfully recovering the same posterior estimates in

each case. Figure 5 reports the posterior distribution for both ψ1 and α which clearly favor

the indeterminate model regardless of the initial values for the parameters.19 Table 8 reports

the corresponding posterior mean and 90% probability interval of the model parameters. As

expected, the estimates obtained using our procedure are in line with the empirical results in

Lubik and Schorfheide (2004) that we report in the first column.20

18 In particular, we run two chains of 1,000,000 each and discard the first half of the draws.
19The prior that we used for the parameter ψ1 is the same as in Table 5 and is defined on both regions of

determinacy and indeterminacy. This is important for the possibility of the posterior estimates to lie in either
region since having a prior distribution which assigns zero probability to either one would also imply that the
posterior would have no mass in the same region.
20The minor difference in the point estimate of the posterior mean for the correlation between demand and
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Posterior estimates
LS estimates Posterior estimates

Mean 90% probability interval
α - 0.95 [0.90,0.99]
ψ1 0.77 0.73 [0.56,0.90]
ψ2 0.17 0.16 [0.01,0.30]
ρR 0.60 0.67 [0.48,0.86]
π∗ 4.28 4.03 [1.87,6.06]
r∗ 1.13 1.22 [0.64,1.78]
κ 0.77 0.86 [0.45,1.26]
τ−1 1.45 1.61 [0.93,2.27]
ρg 0.68 0.77 [0.66,0.88]
ρz 0.82 0.78 [0.68,0.88]
σR 0.23 0.22 [0.19,0.25]
σg 0.27 0.25 [0.16,0.32]
σz 1.13 1.10 [0.93,1.27]
ρgz 0.14 0.47 [-0.04,0.95]
σν - 0.24 [0.16,0.33]
ρRν - -0.19 [-0.65,0.27]
ρgν - 0.15 [-0.40,0.71]
ρzν - -0.21 [-0.55,0.14]

Table 8: The table reports the posterior distributions obtained by estimating the model using
the data from Lubik and Schorfheide (2004). The terms "-" indicate that the estimates are not
directly comparable.

6 Tips for implementation

In this section, we present some suggestions for the practical implementation of our method.

Convergence. We repeat the estimation of the model of Lubik and Schorfheide (2004) by using
parameters in the “wrong”region of the parameter space and considering only a few (200,000)

draws to show the importance of checking convergence before interpreting the estimation results.

Figure 6 reports the posterior distribution for the parameter ψ1 and α obtained for an initial

parametrization close to the Taylor Principle (i.e. we set ψ1 = 1.1). At first glance, the posterior

distribution of the parameter ψ1 would appear to be bimodal. This is consistent with the fact that

the proposed augmented representation allows the Metropolis-Hastings algorithm to visit both

supply shocks, ρgz, derives from the prior distribution that we assume for this parameter. While Lubik and
Schorfheide (2004) assume a normal prior centered at 0 and with standard deviation 0.4, we assume a flat, uniform
distribution over the interval (−1, 1). Nevertheless, both in Lubik and Schorfheide (2004) and in this paper, the
estimate of ρgz is not statistically significant.
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regions of the parameter space. At the same time, the posterior distribution for the parameter

α is very similar to the prior distribution, which is specified as a uniform distribution over the

interval [0, 2]. Such a result is just the other side of coin of the posterior for ψ1 since the algorithm

explores both regions by considering draws of α which are within as well as outside the unit circle.

Posterior distribution of parameter ψ1 and α

ψ1 α

Figure 6: Initial parametrization ψ1 = 1.1. The grey line represents the prior distribution and
the black line is the posterior distribution.

A researcher should then verify the occurrence of either of the following two circumstances. This

bimodal distribution could arise because the log-likelihood is highly discontinuous between the

two regions. In this case, the algorithm could have jumped towards the region where the peak

of the posterior lies, without having spent a significant time there. In other words, convergence

has not occurred yet. Alternatively, if the log-likelihood function varies smoothly between the

two regions of the parameter space, the posterior distribution plotted in Figure 6 could be the

result of the algorithm travelling across the two regions multiple times.

We therefore recommend the researcher to analyze the draws of the parameter α which have been

accepted during the MCMC algorithm. By inspecting the behavior of the auxiliary parameter

α, a researcher can detect if the algorithm reached convergence or not. We report the draws

that we obtained during our exercise in Figure 7. After approximately 40,000 draws of α in the

region of determinacy (i.e. outside the unit circle), the algorithm jumps to the indeterminate

region and never visits the determinacy region again.

Figure 6 and 7 suggest that we are in the first case, for which the log-likelihood function is

highly discontinuous at the boundary between the two regions. Therefore, the researcher should

repeat the estimation exercise, increase the number of draws, and make sure that the parameter

α stabilizes on one region of the parameter space. Under different circumstances, the researcher

could face the second scenario, for which the log-likelihood function transitions smoothly between

the two regions. In this case, the parameter α would repeatedly transition between the two areas
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Draws of the parameter α
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Figure 7: Sequence of draws for α given an initial parametrization ψ1 = 1.1.

of the parameter space and could be used to infer the probability attached to determinacy.

Only (in)determinacy. In some cases, a researcher might want to estimate the model exclus-
ively under determinacy or exclusively under indeterminacy. Our approach easily accommodates

this need. If the researcher is only interested in the solution under determinacy, the parameter

vector of alpha should be chosen in a way to guarantee stationarity of the auxiliary process (for

example, fixing all values of the alphas to 2). Furthermore, all parameters that are relevant only

under indeterminacy could be fixed to zero or any other constant, given that they do not affect

the fit of the model under determinacy. If instead the researcher is only interested in estimating

the model under indeterminacy, the parameters of the auxiliary process can be chosen in a way to

guarantee that the correct number of explosive roots are provided. In this case, the parameters

describing the properties of the sunspot disturbances should also be estimated.

Model comparison. A researcher might also be interested in comparing the fit of the model
under determinacy and under indeterminacy. Model comparison can be conducted by using

standard techniques, such as the harmonic mean estimator proposed by Geweke (1999). If the

researcher is interested in comparing the same model under determinacy and under indeterm-

inacy, we recommend the following procedure that adapts the approach used by Lubik and

Schorfheide (2004):

1. Estimate the model under determinacy by fixing the parameter(s) alpha to a value larger

than one in a way that the model is solved only under determinacy. Note that in this case

all parameters that pertain to the solution under indeterminacy, such as the volatility of the

sunspot shocks, should be restricted to zero (or any other constant). This restriction avoids

penalizing the model for extra parameters that do not affect its fit under determinacy.

2. Estimate the model under indeterminacy by fixing the parameter(s) alpha to a value smaller

than one in a way that the model is solved only under indeterminacy. Note that in this
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case all parameters that pertain to the solution under indeterminacy, such as the volatility

of the sunspot shocks, should be estimated.

3. Use standard methods to compare the fit of the model under determinacy with the fit of

the same model under indeterminacy.

7 Conclusions

In this paper, we propose a generalized approach to solve and estimate LRE models over the entire

parameter space. Our approach accommodates both cases of determinacy and indeterminacy

and it does not require the researcher to know the analytic condition describing the region of

determinacy or the degrees of indeterminacy.

When a LRE model is characterized by m degrees of indeterminacy, our approach augments it

by appending m autoregressive processes whose innovations are linear combinations of a subset

of endogenous shocks and a vector of newly defined sunspot shocks. The resulting augmented

representation embeds both the solution which is obtained under determinacy using standard

solution methods and that delivered by solving the model under indeterminacy using the approach

of Lubik and Schorfheide (2003) and equivalently Farmer et al. (2015). We provide an analytical

example for the theoretical result using a canonical NK model.

We finally apply our methodology to the NK model in Lubik and Schorfheide (2004). We simulate

two series of data under the assumption of model determinacy and indeterminacy and we then

estimate our augmented representation for both cases in which the region of determinacy is

known or unknown to the researcher. In both case, the parameters used to generate the data are

correctly recovered independently of the initial parametrization. This shows that our method is

suitable for the estimation of medium- and large-size DSGE model for which the determinacy

region is generally unknown. This feature of the solution method is used by Nicolò (2017) to

study the possibility of multiple solutions in Smets and Wouters (2007).
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8 Appendix

8.1 Appendix A

In this Appendix, we show how the normalization chosen in Lubik and Schorfheide (2004) maps

into the methodology we propose. Recall the following notation: p denotes number of expect-

ational variables, n is the number of explosive roots and m = (p − n) are the corresponding

degrees of indeterminacy.

As in Lubik and Schorfheide (2004), consider the following structural model

Γ0(θ)Xt = Γ1(θ)Xt−1 + Ψ(θ)εt + Π(θ)ηt (76)

where Xt is the vector of endogenous variables, εt is the vector of exogenous shocks, ηt is the

vector of endogenous shocks and we assume that the matrix Γ0 is invertible. The system can

therefore be written as

Xt = Γ∗1(θ)Xt−1 + Ψ∗(θ)εt + Π∗(θ)ηt (77)

Lubik and Schorfheide (2004) find that, if it exists, the solution to express the forecast errors as

a function of the exogenous shocks εt and sunspot shocks ζt takes the form

ηt
p×1

=

(
−V1
p×n

D−111
n×n

UT1
n×n

Ψ̃2
n×`

+ V2
p×m

M̃
m×`

)
εt
`×1

+ V2
p×m

Mζ
m×m

ζt
m×1

.

More compactly,

ηt
p×1

= V1
p×n

N
n×`

εt
`×1

+ V2
p×m

M̃
m×`

εt
`×1

+ V2
p×m

Mζ
m×m

ζt
m×1

, (78)

where

N(θ)
n×`

≡ −D−111 (θ)
n×n

UT1 (θ)
n×n

Ψ̃2(θ).
n×`

is a function of the parameters of the model.

Combining (77) with (78), the solution that appears in eq. (26) of their paper is

Xt = Γ∗1(θ)Xt−1 + [Ψ∗(θ) + Π∗(θ)V1(θ)N(θ)] εt + Π∗(θ)V2(θ)
(
M̃εt +Mζζt

)
(79)

Determinacy Under determinacy, Lubik and Schorfheide (2004) show that V2(θ) = 0. Hence,

the endogenous variables only respond to exogenous shocks. From (79) the solution is
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Xt = Γ∗1(θ)Xt−1 + [Ψ∗(θ) + Π∗(θ)V1(θ)N(θ)] εt (80)

Using the augmented representation that we propose in this paper, the solution under determ-

inacy is equivalent to (80). Indeed, we are appending a stationary process which constitutes a

separate block and does not interact with the endogenous variables of the model.

Indeterminacy Under indeterminacy, Lubik and Schorfheide (2004) show that V2(θ) 6= 0 and

the endogenous variables not only respond to exogenous shocks but also to the sunspot shock ζt.

Their solution is in eq. (79) and reported below

Xt = Γ∗1(θ)Xt−1 + [Ψ∗(θ) + Π∗(θ)V1(θ)N(θ)] εt + Π∗(θ)V2(θ)
(
M̃εt +Mζζt

)
. (81)

Now we consider the solution under indeterminacy that we obtain using our methodology. Also

in our case we assume that Γ0 is invertible and the system in (76) can be written as

Xt = Γ∗1(θ)Xt−1 + Ψ∗(θ)εt + Π∗(θ)ηt. (82)

Nevertheless, we can show that, if it exists, the solution to express to the endogenous shocks as

a function of the exogenous shocks εt and sunspot shocks νt takes the form

ηt
p×1

= C1(θ)
p×l

εt
`×1

+ C2(θ)
p×m

νt
m×1

. (83)

where C1(θ)
p×l

≡ −


(

Π̃n,2(θ)
)−1

n×n
Ψ̃2(θ)
n×l

0
m×l

 and C1(θ)
p×m

≡ −


(

Π̃n,2(θ)
)−1

n×n
Π̃f,2(θ)
n×m

−I
m×m

.
Combining (82) and (83), we obtain the following reduced form

Xt = Γ∗1(θ)Xt−1 + [Ψ∗(θ) + Π∗(θ)C1(θ)] εt + Π∗(θ)C2(θ)νt. (84)

Identification As shown in the previous section, the solution under indeterminacy provided

by Lubik and Schorfheide (2004) is derived by combining the following system of equations

Xt = Γ∗1(θ)Xt−1 + Ψ∗(θ)εt + Π∗(θ)ηt (85)

with the solution for the endogenous shocks as a function of the exogenous shocks εt and the

44



sunspot shock ηt

ηt
p×1

= V1(θ)
p×n

N(θ)
n×`

εt
`×1

+ V2(θ)
p×m

M̃
m×`

εt
`×1

+ V2(θ)
p×m

Mζ
m×m

ζt
m×1

, (86)

Similarly, the solution obtained using our methodology is derived by combining the same system

of equations in (85) with our solution for the endogenous shocks

ηt
p×1

= C1(θ)
p×l

εt
`×1

+ C2(θ)
p×m

νt
m×1

. (87)

So, in order to understand how the identification strategy implemented in Lubik and Schorfheide

(2004) maps into our solution, we only have to study the solutions for the endogenous shocks

expressed in (86) and (87).

Lubik and Schorfheide (2004) consider a three equation NK model for which the degree of

indeterminacy is at most 1 (i.e. m = 1). This implies that Mζ , ζt and νt are scalars. Moreover,

the authors assume the following two normalizations

E(εtζ
′
t) = 0, (88)

Mζ = 1. (89)

To understand the mapping of these normalizations, we equate the RHS of (86) and (87),

(
V1N + V2M̃

)
εt + V2Mζζt = C1εt + C2νt. (90)

Pre-multiplying by V ′2 and recalling that the matrix V2 is orthonormal,

Mζζt =
(
V ′2C1 − V ′2V1N − M̃

)
εt + V ′2C2νt. (91)

Post-multiplying by ζ ′t, we take expectation and consider the normalization in (88) to obtain

Mζσ
2
ζ =

(
V ′2C2

)
σνζ . (92)

Noting that

(
V ′2
1×p

C2
p×1

)
is also a scalar

σνζ =
Mζ

(V ′2C2)
σ2ζ . (93)
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So, the normalization in (88) corresponds to specify a relationship between the covariance of the

sunspot shock introduced in Lubik and Schorfheide (2004), ζt, and the sunspot shock that we

specify in our methodology, νt, with the standard deviation of the sunspot shock, ζt, scaled by

Mζ . Therefore, the normalization Mζ = 1 in (89) is such that the relationship in (93) becomes

σνζ =
(
V ′2C2

)−1
σ2ζ . (94)

8.2 Appendix B

We prove the equivalence between the parametrization of the Lubik-Schorfheide indeterminate

equilibrium θLS ∈ ΘLS and the Bianchi-Nicolò equilibrium parametrized by θBN ∈ ΘBN . In

particular, we show that there is a unique mapping between the linear restrictions imposed in each

of the two methodologies on the forecast errors to guarantee the existence of at least a bounded

solution. As shown in Section 3.2.1, the method by Lubik and Schorfheide (2003) imposes the

following restrictions on the non-fundamental shocks, ηt, as a function of the exogenous shocks,

εt, and the sunspot shocks introduced in their specification, ζt,

ηt
p×1

=

 V1
p×n

N
n×`

+ V2
p×m

M̃
m×`
m×`

 εt
`×1

+ V2
p×m

ζt
m×1

. (95)

Using the methodology proposed in this paper, Section 3.2.2 shows that the restrictions on the

non-fundamental shocks, ηt, as a function of the exogenous shocks, εt, and the sunspot shocks,

vt, are

ηt
p×1

= C1
p×`

εt
`×1

+ C2
p×m

νt
m×1

, (96)

where

C1 ≡ −
[

Π̃−1n,2Ψ̃2

0

]
and C2 ≡ −

[
Π̃−1n,2Π̃f,2

−I

]
.

Post-multiplying equation (95) and (96) by εTt and taking expectation,

Ωηε
p×l

= V1
p×n

N
n×`

Ωεε
`×l

+ V2
p×m

M̃
m×`

Ωεε
`×l

,

Ωηε
p×l

= C1
p×`

Ωεε
`×l

+ C2
p×m

Ωνε
m×l
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Pre-multiplying by V T
2 and equating the equations,

M̃
m×`

Ωεε
`×l

=

(
V T
2

m×p
C1
p×`
− V T

2
m×p

V1
p×n

N
n×`

)
Ωεε
`×l

+ V T
2

m×p
C2
p×m

Ωνε
m×l

.

Using the properties of the vec operator, the following result holds

vec(M̃)
(m×`)×1

= (Ωεε ⊗ Im)−1

(m×`)×(m×`)

[[
Il ⊗

(
V T
2 C1 − V T

2 V1N
)]

(m×`)×`2
vec (Ωεε)

`2×1
+
(
Il ⊗ V T

2 C2
)

(m×`)×(m×`)
vec (Ωνε)
(m×`)×1

]
. (97)

Also, considering again equation (95) and (96), we post-multiply by ζTt and take expectation,

Ωηζ
p×m

= V2
p×m

Ωζζ
m×m

,

Ωηζ
p×m

= C2
p×m

Ωνζ
m×m

Pre-multiplying both equations by V T
2 and equating them,

Ωζζ
m×m

= Ωζν
m×m

(
V T
2 C2

)T
m×m

. (98)

Finally, to obtain an expression for Ωζν , we post-multiply equation (95) and (96) by νTt and

taking expectations

Ωην
p×m

=

(
V1
p×n

N
n×`

+ V2
p×m

M̃
m×`

)
Ωεν
`×m

+ V2
p×m

Ωζν
m×m

,

Ωην
p×m

= C1
p×`

Ωεν
`×m

+ C2
p×m

Ωνν
m×m

Pre-multiplying both equations by V T
2 and solving for Ωζν ,

Ωζν
m×m

=

(
V T
2

m×p
C1
p×`
− V T

2
m×p

V1
p×n

N
n×`
− M̃
m×`

)
Ωεν
`×m

+
(
V T
2 C2

)
m×m

Ωνν
m×m

. (99)

Post-multiplying (99) by
(
V T
2 C2

)T
m×m

and using (98), then

Ωζζ
m×m

=

(
V T
2

m×p
C1
p×`
− V T

2
m×p

V1
p×n

N
n×`
− M̃
m×`

)
Ωεν
`×m

(
V T
2 C2

)T
m×m

+
(
V T
2 C2

)
m×m

Ωνν
m×m

(
V T
2 C2

)T
m×m

. (100)

Therefore, equation (97) and (100) define the one-to-one mapping between the parametrization
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in Lubik and Schorfheide {Θ,ΘLS} and the parametrization in Bianchi and Nicolò {Θ,ΘBN}.

8.3 Appendix C

In this section, we provide the derivation for the solutions under the two alternative representa-

tions discussed in Section 4.1 are provided.

a) Under determinacy, it is possible to use standard solution algorithms, such as Sims (2001).

Consider the three equations NKmodel in (53)∼(55) and reported below as equations (101)∼(105)

xt = Et(xt+1)− τ(Rt − Et(xt+1)) (101)

πt = βEt−1(πt+1) + κxt (102)

Rt = ψπt + εR,t (103)

η1,t = xt − Et−1(xt) (104)

η2,t = πt − Et−1(πt) (105)

The LRE model can be written in the following matrix form

Γ0Xt = Γ1Xt−1 + Ψzt + Πηt, (106)

where Xt = (xt, πt, Et(xt+1), Et(πt+1))
T , εt = (εR,t) and ηt = (η1,t, η2,t)

T .

The solution to (106) can be found following four steps. First, since the matrix Γ0 is non-singular,

the LRE model in (106) can be written as

Xt = Γ∗1Xt−1 + Ψ∗εt + Π∗ηt, (107)

where

Γ∗1 ≡ Γ−10 Γ1 =

02×2 I2×2

02×2 A2×2

 , A ≡


1 + κτ

β τ
(
ψ − 1

β

)
−κ
β

1
β



Ψ∗ ≡ Γ−10 Ψ =


0

0

τ

0

 , Π∗ ≡ Γ−10 Π =

I2×2
A2×2
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Equivalently, the equations in (43) are

xt = Et−1(xt) + η1,t (108)

πt = Et−1(πt) + η2,t (109)

ξt = Aξt−1 +

[
τ

0

]
εR,t +Aηt (110)

where ξt = (Et(xt+1), Et(πt+1))
T .

Second, in order to study the stability of the system, the matrix A is decomposed using the

Jordan decomposition21 and (110) can be written as

J−1ξt = ΛJ−1ξt−1 + J−1

[
τ

0

]
εR,t + J−1Aηt, (111)

where

J−1 =

[
−κ
φ − a2

2φ
κ
φ

β+φ+κτ−1
2φ

]
and

Λ =

[
λ1 0

0 λ2

]
, λ1,2 =

(1 + β + κτ)± φ
2β

(112)

where a2 ≡ (β − φ+ κτ − 1), φ ≡ [(1 + β + κτ)2 − 4β(1 + κτψ)]−1/2 and the diagonal elements

of the matrix Λ are the roots of the system and under determinacy |λ1,2| > 1.

Third, restrictions which eliminate the explosive dynamics of the system have to be imposed.

Under determinacy both roots of (111) are unstable, which requires to impose the following

conditions

ξt =

(
Et(xt+1)

Et(πt+1)

)
= 02×1 (113)

ηt = −A−1
[
τ

0

]
εR,t = − τ

1 + κτψ

[
1

κ

]
εR,t (114)

Fourth, the restrictions imposed on the endogenous variables and on the forecast errors are

combined with the equations which define the remaining endogenous variables, that is (108) and

(109). This implies

21The Jordan decomposition of the matrix A is A ≡ JΛJ−1, where the diagonal elements of the matrix Λ are
the roots of the system.
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(
xt

πt

)
= ηt = − τ

1 + κτψ

[
1

κ

]
εR,t. (115)

b) Here we provide the derivation for the solution in Section 4.1 for the methodology proposed
in this paper.

The proposed methodology consists in appending to the original LRE model the following equa-

tion22

ωt =
1

α
ωt−1 + νt − η2,t,

where without loss of generality α ≡ ψ > 1. Denoting the newly defined vector of endogenous

variables X̂t ≡ (Xt, ωt)
T = (xt, πt, Et(xt+1), Et(πt+1), ωt)

T , and the newly defined vector of

exogenous shocks ε̂t ≡ (εt, vt)
T = (εR,t, vt)

T , the augmented representation of the LRE model is

Γ̂0X̂t = Γ̂1X̂t−1 + Ψ̂ẑt + Π̂ηt. (116)

Given (116), the same steps are followed to obtain the solution to the system. First, the system

in (116) is pre-multiplied by Γ̂−10 to obtain

X̂t = Γ̂∗1X̂t−1 + Ψ̂∗ε̂t + Π̂∗ηt, (117)

where

Γ̂∗1 ≡

 Γ∗1 04×1

01×4
1
α

 , Ψ̂∗ ≡

Ψ∗ 04×1

0 −1

 , Π̂∗ ≡

 Π∗4×2

0 1

 .
22Note that m = 1, thus implying that only one equation should be appended. Also, since Farmer et al. (2015)

show that the choice of which forecast errors should be redefined as fundamental, it is without loss of generality
that we consider the case when η2,t is redefined.
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Hence, defining ξ̂t ≡ (ξt, ωt)
T = (Et(xt+1), Et(πt+1), ωt)

T , the equations in (117) can be written

as

xt = Et−1(xt) + η1,t (118)

πt = Et−1(πt) + η2,t (119)

ξ̂t = Â ξ̂t−1 +

τ 0

0 0

0 1

 ẑt +

 A2×2

0 −1

 ηt (120)

where Â =

[
A 0

0 α

]
.

Second, the matrix Â is decomposed using the Jordan decomposition and the system in (120)

can be written as

Ĵ−1ξ̂t = Λ̂Ĵ−1ξ̂t−1 + Ĵ−1

τ 0

0 0

0 1

 ẑt + Ĵ−1

 A2×2

0 −1

 ηt, (121)

where

Ĵ−1 ≡

01×2 1

J−1 02×1

 , Λ̂ ≡
[
λ3 0

0 Λ

]
=

λ3 0

λ1

0 λ2


and λ1,2 are the same as in (112) and λ3 = (1/α) = (1/ψ) < 1.

Third, since |λ1,2| > 1 and λ3 < 1, then the conditions which guarantee the boundedness of the

solution are imposed on the last two equations of (121). This implies

ξt =

(
Et(xt+1)

Et(πt+1)

)
= 02×1 (122)

ηt = − τ

1 + κτψ

[
1 0

κ 0

][
εR,t

νt

]
(123)

Fourth, combining these restrictions with the first equation of (121) which displays stable dy-

namics and with (118) and (119), the obtained solution is

ωt =
1

α
ωt−1 +

[
τκ

1+κτψ 1
] [εR,t

νt

]
(124)
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(
xt

πt

)
= ηt = − τ

1 + κτψ

[
1 0

κ 0

][
εR,t

νt

]
. (125)

8.4 Appendix D

In Section 4.2, the NK model is indeterminate and the derivations for the solutions under two

alternative representations are provided.

c) To select a unique, bounded rational expectation equilibrium, we follow the solution method
suggested by Farmer et al. (2015) when the forecast error for the deviations of inflation from

its steady state is included as newly defined fundamental shock. Defining ε̃t = (εt, η2,t)
T ,

then the LRE can be written as

Γ0Xt = Γ1Xt−1 + Ψf ε̃t + Πnη1,t. (126)

The same steps as in Section 8.2 are also applied here. First, by pre-multiplying (126) by

Γ−10 , we obtain the following equations

xt = Et−1(xt) + η1,t (127)

πt = Et−1(πt) + η2,t (128)

ξt = Aξt−1 +

τ τ
(
ψ − 1

β

)
0 1

β

 ε̃t +

[
1 + κτ

β

−κ
β

]
η1t (129)

where the matrix A is the same as for the determinate case as defined in (110) and therefore also

its Jordan decomposition delivers the same matrices J and Λ as in (111) and (112) and reported

below

Λ =

[
λ1 0

0 λ2

]
, λ1,2 =

(1 + β + κτ)± φ
2β

(130)

and

J−1 =

[
−κ
φ − a2

2φ
κ
φ

β+φ+κτ−1
2φ

]
.

However, the difference with the determinate case is that, while in the latter both roots are

outside the unit circle, under indeterminacy it is the case that |λ1| > 1 and |λ2| < 1. This

implies that in the third step the restrictions imposed on the system to guarantee a bounded
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solution are also distinct from the determinate case. In particular, the restrictions are imposed

on the first equation of (129), thus obtaining the following conditions

Et(xt+1) = − a2
2κ
Et(πt+1) (131)

η1,t =
[
−2βτa3

2κτ(1−βψ)−a2
a3κ

] [εR,t
η2,t

]
(132)

where a1 = (β−φ+κτ+1), a2 = (a1−2), a3 = (a1+2φ) and φ = [(1+β+κτ)2−4β(1+κτψ)]−1/2.

Fourth, using these restrictions, the solution obtained with the methodology of Farmer et al.

(2015) is


xt

πt

Et(xt+1)

Et(πt+1)

 = G
4×1

Et−1(πt) + H
4×2

[
εR,t

η2,t

]
(133)

where

G
4×1
≡


− a2
2κ

1

−a1a2
4βκ
a1
2β

 H
4×2
≡


−2βτa3

2κτ(1−βψ)−a2
a3κ

0 1

− τa2
a3

−a2(1+κτψ)
a3κ

2κτ
a3

−2(1+κτψ)a3

 .

d) The derivation of the solution provided by the proposed methodology when the model is
indeterminate closely follows the one described in Appendix B, part b). In particular,

the first two steps of the solution method are equivalent and, recalling the definition of

ξ̂t ≡ (ξt, ωt)
T = (Et(xt+1), Et(πt+1), ωt)

T and ε̂t ≡ (εt, vt)
T = (εR,t, vt)

T , equation (121) is

reported below as (134)

Ĵ−1ξ̂t = Λ̂Ĵ−1ξ̂t−1 + Ĵ−1

τ 0

0 0

0 1

 ε̂t + Ĵ−1

A2×2 0

0 −1

 ηt, (134)

where

Ĵ−1 ≡

01×2 1

J−1 02×1

 , Λ̂ =

[
λ3 0

0 Λ

]
=

λ3 0

λ1

0 λ2

 .
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It is however important to note that under indeterminacy not only |λ1| > 1 and |λ2| < 1 as in

representation c), but also |λ3| = (1/α) = (1/ψ) > 1. Hence, the third steps imposes restrictions

on the first two equations of (134), which result in the following conditions

ωt = 0 (135)

Et(xt+1) = − a2
2κ
Et(πt+1) (136)

ηt =

[
−2βτa3

2κτ(1−βψ)−a2
a3κ

0 1

][
εR,t

νt

]
(137)

Fourth, using these restrictions, the solution of the LRE model for the endogenous variables

takes the following form


xt

πt

Et(xt+1)

Et(πt+1)

 = G
4×1

Et−1(πt) + H
4×2

[
εR,t

νt

]
. (138)
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