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Abstract

We derive exact conditions relating the distributions of firm productivity, sales,

output, and markups to the form of demand; in particular, for a large family (including

Pareto, log-normal, and Fréchet), the distributions of productivity and output are the

same if and only if demand is “CREMR” (Constant Revenue Elasticity of Marginal

Revenue). We then use the Kullback-Leibler Divergence to quantify the information

loss when a predicted distribution fails to match the actual one; and we find that,

to explain sales and markups, the choice between Pareto and log-normal productivity

distributions matters less than the choice between CREMR and other demands.

Keywords: CREMR Demands; Heterogeneous Firms; Kullback-Leibler Divergence; Log-

Normal Distribution; Pareto Distribution.

JEL Classification: F15, F23, F12



1 Introduction

Models of monopolistic competition with heterogeneous firms have provided a fertile labo-

ratory for studying a range of problems relating to the process of globalization. Much of

this work to date has assumed special forms for preferences and technology, usually CES

preferences on the demand side, and a Pareto distribution of firm productivity on the supply

side. Well-known examples include Helpman, Melitz, and Yeaple (2004), Chaney (2008) and

Arkolakis, Costinot, and Rodŕıguez-Clare (2012). More recently, a number of contributions

has explored the implications of relaxing these assumptions. The implications of prefer-

ences other than CES have been considered by Melitz and Ottaviano (2008), Simonovska

and Waugh (2011), Zhelobodko, Kokovin, Parenti, and Thisse (2012), Arkolakis, Costinot,

Donaldson, and Rodŕıguez-Clare (2012), Mrázová and Neary (2013), Bertoletti and Epifani

(2014), and Parenti, Thisse, and Ushchev (2014), among others. Alternatives to the Pareto

distribution have been less widely explored, though the pioneering work of Melitz (2003)

avoided making explicit distributional assumptions, and Bee and Schiavo (2014) and Head,

Mayer, and Thoenig (2014) consider the implications of a log-normal distribution.

Recent work has also drawn attention to the distribution of markups across firms. De Loecker,

Goldberg, Khandelwal, and Pavcnik (2016) and Lamorgese, Linarello, and Warzynski (2014)

present suggestive evidence that markups exhibit an approximately log-normal distribution,

but to date there is no model of industry equilibrium which would generate such patterns.

In this paper, we provide a general characterization of the problem of explaining the dis-

tribution of firm size and firm markups, given particular assumptions about the structure of

demand and the distribution of firm productivities. We present two different kinds of results.

On the one hand, we present exact conditions under which specific assumptions about the

distribution of firm productivity are consistent with a particular form of the distribution of

sales revenue, output, or markups. On the other hand, we use the Kullback-Leibler diver-

gence from information theory to quantify the information loss when a predicted distribution

fails to match the actual one. We show that applying this tool in the context of models of



heterogeneous firms leads to new insights about the relationship between fundamentals and

the size distribution of firms, and also provides a quantitative framework for gauging how

well a given set of assumptions explain a given data set.

The first part of the paper presents exact characterizations of the links between the

distributions of firm attributes, technology and preferences. We begin in Section 2 with

two general propositions which characterize the form that very general distributions of firm

characteristics and general models of firm behavior must take if they are to be mutually

consistent. Sections 3 and 4 then apply these results to distributions of sales and markups

respectively.1 Among the results we derive is a characterization of the demand functions

which are necessary and sufficient for productivity and sales to exhibit the same distribution

from a wide family which includes Pareto, log-normal and Fréchet. We show that this

property is implied by a new family of demands, a generalization of the CES, which we call

“CREMR” for “Constant Revenue Elasticity of Marginal Revenue.”2 The CREMR class has

many desirable properties but is very different from most of the non-CES demand systems

used in applied economics. We also derive the distributions of markups which are implied

by CREMR and other demand functions.

The second part of the paper addresses the question of how to proceed when the condi-

tions for exact consistency between distributions, preferences and technology do not hold.

Section 5 presents some tools from information theory which have a natural application in

this context, explores their implications in the context of evaluating how “close” a predicted

distribution comes to an actual one, and shows how these tools make it possible to quantify

the cost of using the “wrong” assumptions about demand or technology to calibrate a hy-

pothetical distribution of firm sales or markups. Section 6 illustrates how the tools can be

applied to actual data sets. Finally, Section 7 concludes, while the Appendix contains proofs

and more technical details.

1We use “sales” throughout to refer to sales revenue.
2“CREMR” rhymes with “dreamer”.
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2 Characterizing Links Between Distributions

The two central results of the paper link the distributions of two firm characteristics to a gen-

eral specification of the relationship between them: we make no assumptions about whether

either characteristic is exogenous or endogenous, nor about the details of the technological

and demand constraints faced by firms which generate the relationship. All we assume is a

hypothetical dataset of a continuum of firms, which reports for each firm i its characteristics

x(i) and y(i), both of which are monotonically increasing functions of i.3 Formally:

Assumption 1. {i, x(i), y(i)} ∈
[
Ω× (x, x)× (y, y)

]
, where Ω is the set of firms, with both

x(i) and y(i) monotonically increasing functions of i.

Examples of x(i) and y(i) include firm productivity, sales and output in most models of

heterogeneous firms.

Our first result adapts a standard result in mathematical statistics to our context; it is

closely related to Lemma 1 of Matzkin (2003).

Proposition 1. Given Assumption 1, any two of the following imply the third:

(1) x is distributed with CDF G (x), where g(x) ≡ G′(x) > 0;

(2) y is distributed with CDF F (y), where f(y) ≡ F ′(y) > 0;

(3) Firm behavior, given technology and demand, is such that: x = v(y), v′(y) > 0;

provided the functions are related as follows:

(i) (1) and (3) imply (2) with F (y) = G[v(y)] and f(y) = g[v(y)]v′(y); similarly, (2) and

(3) imply (1) with G(x) = F [v−1(x)] and g(x) = f [v−1(x)]d[v−1(x)]
dx

.

3The assumption that they are increasing functions is without loss of generality. For example, if x(i)
is increasing and y(i) is decreasing, Proposition 1 can easily be reformulated using the survival function
of y. Monotonicity here is a property of theoretical models. In our empirical applications we do not need
to assume that any measured firm characteristics are monotonic in i. We follow standard models of firm
heterogeneity under monopolistic competition by considering a continuum of firms whose characteristics are
realizations of a random variable. Because we work with a continuum, the c.d.f. of this random variable is
the actual distribution of these realizations. Henceforward, we use lower-case variables to describe both a
random variable and its realization.
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(ii) (1) and (2) imply (3) with v(y) = G−1[F (y)].

Part (i) of the proposition is a standard result on transformations of variables. Part (ii) is

less standard, and requires Assumption 1: characteristics x(i) and y(i) must refer to the

same firm and must be monotonically increasing in i.4 The proof is in Appendix A. The

importance of the result is that it allows us to characterize fully the conditions under which

assumptions about distributions and about the functional forms that link them are mutually

consistent. Part (ii) in particular provides an easy way of determining which specifications

of firm behavior are consistent with particular assumptions about the distributions of firm

characteristics. All that is required is to reverse-engineer the form of v(y) implied by any

pair of distributional assumptions.

Our next result shows how Proposition 1 is significantly strengthened when the distribu-

tions of the two firm characteristics share a common parametric structure.

Proposition 2. Given Assumption 1, any two of the following imply the third:

(1) x is distributed with CDF: G(x;θ) = H
(
θ0 + θ1

θ2
xθ2
)

, Gx > 0;

(2) y is distributed with CDF: F (y;θ′) = G [h(y); θ′] = H
(
θ0 +

θ′1
θ′2
h(y)θ

′
2

)
, Fy > 0

(3) x = x0h(y)E;

provided the parameters are related as follows:

(i) (1) and (3) imply (2) with θ′1 = Eθ1x
θ2
0 and θ′2 = Eθ2; similarly, (2) and (3) imply (1)

with θ1 = E−1θ′1x
−E−1θ′2
0 and θ2 = E−1θ′2.

(ii) (1) and (2) imply (3) with x0 =
(
θ2
θ1

θ′1
θ′2

) 1
θ2 and E =

θ′2
θ2

.

We call the functional form H
(
θ0 + θ1

θ2
xθ2
)

in (1) a Generalized Power Function (hence-

forward “GPF”) family of distributions. It is generalized in two respects: the elementary

power function θ1
θ2
xθ2 is shifted by a constant θ0, and is then subject to an arbitrary monotonic

4This implies that the Spearman rank correlation between x and y is one.
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transformation H(·). As for the functional form in (2), it is the same as that in (1), except

that the θ1 and θ2 parameters are different, and y is then subject to an arbitrary mono-

tonic transformation h(y). Both the H(·) and h(·) functions are completely general, and the

components of the parameter vector θ = {θ0, θ1, θ2} can take on any values, except in three

respects: the derivative of H at every point must have the same sign as θ1, from the strict

monotonicity restriction on G: H ′θ1 > 0 since Gx = H ′θ1x
θ2−1 > 0; h must be monotonically

increasing from the corresponding restriction on F : h′ > 0 since Fy = Gxh
′ > 0; and θ0 must

be the same in both distributions, so both G(x;θ) and F (y;θ′) are two-parameter families

of distributions.

The GPF family of distributions characterized by H(·) nests many of the most widely

used in applied economics, including Pareto, truncated Pareto, log-normal, uniform, Fréchet,

Gumbel, and Weibull. (See Appendix B for the proof of Proposition 2 and Appendix C for

details of the GPF family.) Each choice of the h(·) function generates in turn a further family,

such that the transformation h(y) follows a distribution from the GPF family.5 Proposition 2

shows that these families are intimately linked via a simple power function that expresses one

of the two firm characteristics as a transformation of the other. In much of the paper we will

concentrate on two special forms for the h(·) function. The identity transformation, h(y) = y,

implies from Proposition 2 a property we call “self-reflection”, since the distributions of x and

y are the same. This case proves particularly useful when we consider distributions of firm

sales and output in Section 3. The other case we consider in detail is the odds transformation,

h(y) = y
1−y , where 0 ≤ y ≤ 1. This implies a property we call “odds-reflection”, since the

distribution of y is an odds transformation of that of x. This case proves particularly useful

when we consider distributions of firm markups in Section 4.

In the next two sections we give some examples of links between distributions and models

of firm behavior implied by Propositions 1 and 2, with detailed derivations in Appendix F.

5Assuming that a transformation of a variable follows a standard distribution is a well-known method of
generating new functional forms for distributions. See Johnson (1949), who attributes it to Edgeworth, and
Jones (2015).
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3 Backing Out Demands

The first set of applications of Proposition 2 apply part (ii) of the proposition: we ask what

demand functions are consistent with assumed distributions of two different firm attributes.

Moreover, following the existing literature, we ask when will we observe self-reflection, in

the sense that the distributions of the two attributes are the same (though with different

parameters of course). Figure 1 summarizes schematically the results of this section, which

specify the demand functions that are necessary and sufficient for self-reflection between the

distributions of any two of firm output x, sales revenue r, and productivity ϕ.

CEMR

r

CES

CREMR



x

Figure 1: Links Between Firm Characteristics

3.1 Self-Reflection of Productivity and Sales

We begin in this sub-section by focusing on the two central attributes of productivity and

sales revenue. We know from Helpman, Melitz, and Yeaple (2004) and Chaney (2008) that

CES demands are sufficient to bridge the gap between two Pareto distributions; and we also

know from Head, Mayer, and Thoenig (2014) that a log-normal distribution of productivity

coupled with CES demands implies a log-normal distribution of sales. We want to establish

the necessary conditions for these links, which in turn will tell us whether there are other

demand systems that ensure an exact correspondence between the form of the productivity

and sales distributions.

The answer to these questions is immediate from Proposition 2: if both productivity
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ϕ and sales r follow the same distribution, which can be any member of the GPF family,

including the Pareto and the log-normal, then they must be related by a power function:

ϕ = ϕ0r
E. The implications of this for demand are immediate, provided we assume only

that firms equate marginal cost to marginal revenue, so ϕ = c−1 = (r′)−1.6 Combining

these gives a simple differential equation in sales revenue, which is a function of output since

r(x) = xp(x):

[r′(x)]−1 = ϕ0r(x)E (1)

Integrating this we find that a necessary and sufficient condition for self-reflection of pro-

ductivity and sales is that the inverse demand function take the following form:

p(x) =
β

x
(x− γ)

σ−1
σ , 1 < σ <∞, x > γσ, β > 0 (2)

We are not aware of any previous discussion of the family of inverse demand functions in (2),

which expresses expenditure as a power function of consumption relative to a benchmark γ.

We detail its properties in Appendix D. Its key property, from (1), is that the elasticity of

marginal revenue with respect to total revenue is constant: E = 1
σ−1

. Hence we call it the

“CREMR” family, for “Constant Revenue Elasticity of Marginal Revenue.” It includes CES

or isoelastic demands as a special case: when γ equals zero, (2) reduces to p(x) = βx−
1
σ , and

the elasticity of demand is constant, equal to σ. More generally, the elasticity of demand

varies with consumption, ε(x) ≡ − p(x)
xp′(x)

= x−γ
x−γσσ, though it approaches σ for large firms.

To give some intuition for the result that CREMR demands link GPF productivity and

sales, consider the Pareto case. A Pareto distribution of productivities ϕ implies that the

elasticity of the density of the productivity distribution is constant: if G(ϕ) is Pareto, so

G(ϕ) = 1 −
(
ϕ
ϕ

)−k
, with density function g(ϕ) = G′(ϕ), then the elasticity of density is

ϕg′(ϕ)
g(ϕ)

= −(k+1). Similarly, a Pareto distribution of sales, r = px, implies that the elasticity

6Our approach does not require that the marginal costs be exogenous. They could be chosen endogenously
by firms either by optimizing subject to a variable cost function, as in Zhelobodko, Kokovin, Parenti, and
Thisse (2012), or as the outcome of investment in R&D.
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of the density of the sales distribution is constant: if F (r) = 1 −
(
r
r

)−n
, with density

function f(r) = F ′(r), then the elasticity of density is rf ′(r)
f(r)

= −(n + 1). These two log-

linear relationships are only consistent with each other if demands also imply a log-linear

relationship between firm productivity and firm sales. In a Melitz-type model, productivity is

the inverse of marginal cost, which equals marginal revenue. Hence Pareto productivities and

Pareto sales are only consistent with each other if there is a log-linear relationship between

marginal and total revenue, which is the eponymous defining feature of CREMR demands.

To see this slightly more formally, suppose that the distribution of productivity is Pareto

with shape parameter k. Then for any two levels of productivity, c−1
1 and c−1

2 , the ratio

of their survival functions (one minus their cumulative probabilities) is
(
c2
c1

)k
. Since firms

are profit-maximizers, this is also the ratio of the survival functions of marginal revenues,[
r′(x2)
r′(x1)

]k
. But if the elasticity of marginal revenue to sales revenue is constant and equal

to 1
σ−1

, this in turn equals
(
r2
r1

) k
σ−1

. Since this is true for any arbitrary level of sales, it

implies that sales are distributed as a Pareto with scale parameter n = k
σ−1

. This result

was derived for the case of Pareto productivities and CES demands by Chaney (2008). (See

also Helpman, Melitz, and Yeaple (2004).) The formal proof, a corollary of Proposition 2,

shows that it generalizes from CES to CREMR, and that GPF productivities and CREMR

demands are necessary as well as sufficient for this outcome.

x

p(x)

p

r'(x)

(a) γ = 0: CES

x

p(x)

p

r'(x)

(b) γ > 0: Subconvex

x

p(x)

p

r'(x)

(c) γ < 0: Superconvex

Figure 2: Examples of CREMR Demand and Marginal Revenue Functions

Figure 2 shows three representative inverse demand curves from the CREMR family, along
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with their corresponding marginal revenue curves. The CES case in panel (a) combines

the familiar advantage of analytic tractability with the equally familiar disadvantage of

imposing strong and counter-factual properties. In particular, the proportional markup

p
c

must be the same for all firms in all markets. By contrast, members of the CREMR

family with non-zero values of γ avoid this restriction. Moreover, we show in Appendix D

that the sign of γ determines whether a CREMR demand function is more or less convex

than a CES demand function. The case of a positive γ as in panel (b) corresponds to

demands that are “subconvex”: less convex at each point than a CES demand function with

the same elasticity. In this case the elasticity of demand falls with output, which implies

that larger firms have higher markups and that globalization has a pro-competitive effect.

These properties are reversed when γ is negative as in panel (c). Now the demands are

“superconvex” – more convex than a CES demand function with the same elasticity – and

larger firms have smaller markups. CREMR demands thus allow for a much wider range

of comparative statics responses than the CES itself. Finally, CREMR demands can be

rationalized by an additively separable utility function where the sub-utility functions take

a hypergeometric form. (For details, see Appendix E.) This is straightforward to simulate,

so CREMR demands can also be used as a foundation for quantitative analysis of normative

issues.

How do CREMR demands compare with other better-known demand systems? Inspect-

ing the demand functions themselves is not so informative, as they depend on three different

parameters. Instead, we use the approach of Mrázová and Neary (2013), who show that any

well-behaved demand function can be represented by its “demand manifold”, a smooth curve

relating its elasticity ε(x) ≡ − p(x)
xp′(x)

to its convexity ρ(x) ≡ −xp′′(x)
p′(x)

. We show in Appendix

D that the CREMR demand manifold can be written in closed form as follows:

ρ̄(ε) = 2− 1

σ − 1

(ε− 1)2

ε
(3)
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0.0

1.0

2.0

3.0

4.0

-2.0 -1.0 0.0 1.0 2.0 3.0





 = 1.2

 = 1.5

= 2  = 6 = 3SM CES

(a) CREMR Demands

0.0

1.0

2.0

3.0

4.0

-2.0 -1.0 0.0 1.0 2.0 3.0





Linear

CARA
Stone-Geary

Translog
CESSM

(b) Some Well-Known Demand Functions

Figure 3: Demand Manifolds for CREMR and Other Demand Functions

Whereas the demand function (2) depends on three parameters, the corresponding demand

manifold only depends on σ. Panel (a) of Figure 3 illustrates some manifolds from this

family for different values of σ, while panel (b) shows the manifolds of some of the most

commonly-used demand functions in applied economics: linear, CARA, Translog and Stone-

Geary.7 It is clear that CREMR manifolds, and hence CREMR demand functions, behave

very differently from the others. The arrows in Figure 3 denote the direction of movement as

sales increase. In the empirically relevant subconvex region, where demands are less convex

than the CES, CREMR demands are more concave at low levels of output (i.e., at high

demand elasticities) than any of the others, and their elasticity of demand falls more slowly

with convexity as sales rise.

7These manifolds are derived in Mrázová and Neary (2013). We confine attention to the admissible region,
{ε > 1, ρ < 2}, defined as the region where firms’ first- and second-order conditions are satisfied. The curve
labeled “CES” is the locus ε = 1

ρ−1 , each point on which corresponds to a particular CES demand function;

this is also equation (3) with ε = σ. To the right of the CES locus is the superconvex region (where demand
is more convex than the CES), while to the left is the subconvex region. The curve labeled “SM ” is the
locus ε = 3−ρ; to the right is the “supermodular” region (where selection effects in models of heterogeneous
firms have the conventional sign, e.g., more efficient firms serve foreign markets by foreign direct investment
rather than exports); while to the left is the submodular region. See Mrázová and Neary (2011) for further
discussion.
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3.2 CREMR and GPF Distributions: Some Special Cases

While the result of the previous sub-section holds for any distributions from the GPF family,

it is useful to consider in more detail the Pareto and log-normal cases. Starting with the

Pareto, since it is a member of the GPF family of distributions, it follows immediately as

a corollary of Proposition 2 that CREMR demands are necessary and sufficient for self-

reflection in this case. We state the result formally for completeness, and because it makes

explicit the links that must hold between the parameters of the two Pareto distributions and

the demand function. (In what follows we use r ∼ P(r, n) to indicate that r follows a Pareto

distribution with threshold parameter r and shape parameter n, so F (r) = 1−
(
r
r

)−n
.)

Corollary 1. Pareto Productivity and Sales Revenue: Any two of the following state-

ments imply the third: 1. Firm productivity ϕ ∼ P(ϕ, k); 2. Firm sales revenue r ∼ P(r, n);

3. The demand function belongs to the CREMR family in (2); where the parameters are

related as follows:

σ =
k + n

n
⇔ n =

k

σ − 1
and β =

(
k + n

k

r
n
k

ϕ

) k
k+n

⇔ r = βσ
(
σ − 1

σ
ϕ

)σ−1

(4)

Note that the demand parameter γ does not appear in (4), so these expressions hold for all

members of the CREMR family, including the CES. This confirms that Corollary 1 extends

a result of Chaney (2008), as already noted earlier.

Although it has become customary to assume that actual firm size distributions can be

approximated by the Pareto, at least for larger firms, there are other candidate explanations

for the pattern of firm sales. Head, Mayer, and Thoenig (2014) and Bee and Schiavo (2014)

argue that firm size distribution is better approximated by a log-normal distribution than

a Pareto. We have already noted that the log-normal distribution is a special case of the

GPF family in Proposition 2. It follows immediately from the proposition that the CREMR

relationship ϕ = ϕ0r
E is necessary and sufficient for self-reflection in the log-normal case.

However, unlike in the Pareto case, this does not imply that all CREMR demand functions

13



are consistent with log-normal productivity and sales. The reason is that, except in the CES

case (when the CREMR parameter γ is zero), the value of sales revenue for the smallest firm

is strictly positive.8 Strictly speaking, this is inconsistent with the log-normal distribution,

whose lower bound is zero. We can summarize this result as follows. (We use r ∼ LN (µ, s)

to indicate that r follows a log-normal distribution with location parameter µ and scale

parameter s, equal to the mean and standard deviation of the natural logarithm of r. Hence

F (r) = Φ
(

log r−µ
s

)
, where Φ is the cumulative distribution function of the standard normal

distribution.)

Corollary 2. Log-Normal Productivity and Sales Revenue: Any two of the following

statements imply the third: 1. Firm productivity follows a LN (µ, s) distribution; 2. Firm

sales follow a LN (µ′, s′) distribution; 3. The demand function is CES: p(x) = βx−
1
σ ; where

the parameters are related as follows:

σ =
s+ s′

s
⇔ s′ = (σ−1)s and β =

s+ s′

s′
exp

( s
s′
µ′ − µ

)
⇔ µ′ = (σ−1)

[
µ+ log

(
β

σ

)]
(5)

Hence, unlike the Pareto case, the only demand function that is exactly compatible with log-

normal productivity and sales is the CES. Relaxing the assumption of Pareto productivity in

favor of log-normal productivity comes at the expense of ruling out pro-competitive effects.

However, in practical applications, where there is a finite interval between the output of the

smallest firm and zero, we may not wish to rule out combining log-normal productivity with

members of the CREMR family other than the CES.

8Since p′(x) = − β
σx2 (x− γ)−

1
σ (x− γσ), the output of the smallest firm when γ is strictly positive is γσ,

while its sales revenue is r(x) = β [γ(σ − 1)]
σ−1
σ > 0. When demands are strictly superconvex, so γ is strictly

negative, sales revenue is discontinuous at x = 0: lim
x→0+

r(x) = β(−γ)
σ−1
σ > 0, but r(0) = 0.
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3.3 Self-Reflection of Productivity and Output

The distribution of sales revenue is not the only outcome predicted by models of heteroge-

neous firms. We can also ask what are the conditions under which output follows the same

distribution as productivity. Proposition 2 implies that a necessary and sufficient condition

for this form of self-reflection is that the elasticity of productivity with respect to output be

constant. This turns out to be related to a different demand family:

p(x) =
1

x
(α + βx

σ−1
σ ) (6)

The demand function in (6) plays the same role with respect to the characteristic of interest,

in this case firm output, as the CREMR family does with respect to firm sales. It is necessary

and sufficient for a constant elasticity of marginal revenue with respect to output, equal to

1
σ
. Hence we call it “CEMR” for “Constant (Output) Elasticity of Marginal Revenue.”9

Unlike CREMR, there are some precedents for this class. It has the same functional

form, except with prices and quantities reversed, as the direct PIGL (“Price-Independent

Generalized Linearity”) class of Muellbauer (1975).10 In particular, the limiting case where

σ approaches one is the inverse translog demand function of Christensen, Jorgenson, and

Lau (1975). However, except for the CES (the special case when α = 0), it bears little

resemblance to commonly-used demand functions.11

When the common distribution of productivity and output is a Pareto, we can immedi-

ately state a further corollary of Proposition 2:

Corollary 3. Pareto Productivity and Output: Any two of the following statements

imply the third: 1. Firm productivity ϕ ∼ P(ϕ, k); 2. Firm output x ∼ P(x,m); 3. The de-

9“CEMR” rhymes with “seemer.”
10For this reason, Mrázová and Neary (2013) called it the “inverse PIGL” class of demand functions.
11As shown by Mrázová and Neary (2013), the CEMR demand manifold implies a linear relationship

between the convexity and elasticity of demand, passing through the Cobb-Douglas point (ε, ρ) = (1, 2):
ρ = 2− ε−1

σ . For high elasticities (corresponding to small firms when demand is subconvex), CEMR demands
are qualitatively similar to CREMR, except that they are somewhat more elastic: the CEMR manifold can
be written as ε = (2− ρ)σ + 1, while for high ε the CREMR manifold becomes ε = (2− ρ)(σ − 1) + 1.
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mand function belongs to the CEMR family (6); where the parameters are related as follows:

σ =
k

m
⇔ m =

k

σ
and β =

k

k −m
x
m
k

ϕ
⇔ x =

(
β
σ − 1

σ
ϕ

)σ
(7)

However, when both productivity and output follow a log-normal distribution, we en-

counter a similar though less extreme restriction on the range of admissible CEMR demand

functions to that in the CREMR case of Corollary 2. Now the requirement that output be

zero for the smallest firm is only possible if both the parameters α and β in the CEMR

demand function (6) are positive. As shown by Mrázová and Neary (2013), this corresponds

to the case where CEMR demands are superconvex. By contrast, if either α or β is strictly

negative, then demands are strictly subconvex: more plausible in terms of its implications

for the distribution of markups, but not compatible with a log-normal distribution of output.

Summarizing:

Corollary 4. Log-Normal Productivity and Output: Any two of the following state-

ments imply the third: 1. Firm productivity follows a LN (µ, s) distribution; 2. Firm output

follows a LN (µ′, s′) distribution; 3. The demand function belongs to the superconvex sub-

class of the CEMR family (6) with α ≥ 0, β ≥ 0, and αβ > 0; where the parameters are

related as follows:

σ =
s′

s
⇔ s′ = σs and β =

s′

s′ − s
exp

( s
s′
µ′ − µ

)
⇔ µ′ = σ

[
µ+ log

(
β
σ − 1

σ

)]
(8)

3.4 Self-Reflection of Output and Sales

A final self-reflection corollary of Proposition 2 relates to the case where output and sales

follow the same distribution. This requires that the elasticity of one with respect to the

other is constant, which implies that the demand function must be a CES.12 Formally:

12Suppose that x = x0r(x)E . Recalling that r(x) = xp(x), it follows immediately that the demand function
must take the CES form.
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Corollary 5. Pareto Output and Sales Revenue: Any two of the following statements

imply the third: 1. The distribution of firm output x is a member of the generalized power

function family; 2. The distribution of firm sales revenue r is the same member of the

generalized power function family; 3. The demand function is CES: p(x) = βx−
1
σ , where

β = x
− 1
E

0 and σ = E
E−1

.

In the Pareto case, the sufficiency part of this result is familiar from the large literature

on the Melitz model with CES demands: it is implicit in Chaney (2008) for example. The

necessity part, taken together with earlier results, shows that it is not possible for all three

firm attributes, productivity, sales and revenue, to have the same distribution from the

generalized power family class under any demand system other than the CES. Corollary 5

follows immediately from previous results when productivities themselves have a generalized

power function distribution, since the only demand function which is a member of both the

CEMR and CREMR families is the CES itself. However, it is much more general than that,

since it does not require any assumption about the underlying distribution of productivities.

It is an example of a corollary to Proposition 2 which relates two endogenous firm outcomes

rather than an exogenous and an endogenous one.

Taken together, the results of this section show that exactly matching a Pareto or log-

normal distribution of firm sales or output, when productivity is assumed to have the same

distribution, places strong restrictions on the admissible demand function. The elasticity of

marginal revenue with respect to the firm outcome of interest must be constant, and the

implied demand function must be consistent with the range of the distribution assumed.

However, that leaves open the question of how great an error would be made by using a

demand function which does not allow for an exact fit. We address this question in Section 5.

First, we turn to consider the implications of different demand functions for the distributions

of sales and markups.
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4 Inferring Sales and Markup Distributions

The previous section used part (ii) of Proposition 2 to back out the demands implied by

assumed distributions of two firm characteristics. In this section we show how part (i) can be

used to derive the distributions of firm characteristics given the distribution of productivity

and the form of the demand function. Section 4.1 considers the distributions of markups

implied by CREMR demands, while Section 4.2 presents the distributions of both sales and

markups implied by a number of widely-used demand functions.

4.1 CREMR Markup Distributions

We begin with the case of CREMR demands, since they imply a particularly simple form

for the markup distribution. In order to be able to invoke Proposition 2, we need to express

productivity as a function of the markup.

The first step is to express output as a function of the markup. In general, with the

markup m defined as p
c
, we can write the markup as a function of output by invoking a

standard expression in terms of the elasticity of demand: m(x) = ε(x)
ε(x)−1

. Specializing to the

case of CREMR demands, recall from Section 3.1 that the elasticity of demand for CREMR

demand functions is ε(x) = x−γ
x−γσσ. Hence, we can write the CREMR markup as a function

of output: m(x) = x−γ
x

σ
σ−1

. We concentrate on the case of subconvex demands (i.e., γ > 0),

which implies that larger firms have higher markups: m(x) ∈
[
m, σ

σ−1

]
as x ∈ [x,∞]. Define

the relative markup as the markup relative to its maximum value, σ
σ−1

, which is the value

that obtains under CES preferences with the same value of σ: m̌ ≡ m
m

= σ−1
σ
m ∈ [m̌, 1].

Hence it follows that: m̌(x) = x−γ
x

. Inverting this allows us to express output as a function

of the relative markup: x(m̌) = γ
1−m̌ .

The next step is to express productivity ϕ as a function of output. This follows from

profit-maximization, which implies that marginal cost ϕ−1 equals marginal revenue, given

by equation (26) in Appendix D: ϕ(x) = 1
β

σ
σ−1

(x− γ)
1
σ . Finally, combining ϕ(x) and x(m̌),
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gives the desired relationship between productivity and the markup:

ϕ(m̌) = ϕ0

(
m̌

1− m̌

) 1
σ

ϕ0 ≡
1

β

σ

σ − 1
γ

1
σ (9)

Clearly this satisfies Proposition 2’s conditions for “Odds Reflection”. Hence, if productivity

follows any distribution in the GPF class, and if the demand function belongs to the sub-

convex CREMR family, equation (2) with γ > 0, then Proposition 2 implies that markups

follow the corresponding “GPF-odds” distribution.
Introduction From theory to data Empirics

Logit-normal

Figure 4: The Log-Normal-Odds Distribution

Once again, we focus on three particularly interesting cases:

1. Pareto: If demands are subconvex CREMR and productivity ϕ is distributed as a

Pareto, so G(ϕ) = 1− ϕkϕ−k, then the relative markup must follow a “Pareto-Odds”

distribution:

F (m̌) = 1−
(

m̌

1− m̌

)n′ (
m̌

1− m̌

)−n′
m̌ ∈ {m̌, 1} m̌ ≡ m

m
, m̌ ≡ m

m
. (10)

This distribution appears to be new, and may prove useful in future applications.

However, it implies that the distribution of markups is U-shaped, which is less in line

with the available evidence than the next case we consider.

2. Log-Normal: If demands are subconvex CREMR and productivity follows a log-normal

distribution, so G(ϕ) = Φ
[

1
s
{logϕ− µ}

]
, then the relative markup must follow a

19



“Log-Normal-Odds” distribution:

F (m̌) = Φ

[
1

s′

{
log

m̌

1− m̌
− µ′

}]
(11)

This distribution has been studied in the statistics literature where it is known as the

“Logit-Normal”, though we are not aware of a theoretical rationale for its occurrence

as here.13 Figure 4 illustrates some members of this family of distributions. Compar-

ing these with the empirical results illustrated in De Loecker, Goldberg, Khandelwal,

and Pavcnik (2016) and Lamorgese, Linarello, and Warzynski (2014), which also ex-

hibit inverted-U-shaped profiles, we can conclude that the log-normal-odds distribution

matches the empirical markup distribution extremely well.

3. Fréchet: Finally, if productivity follows a Fréchet distribution and demands are CREMR,

then the relative markup must follow a “Fréchet-Odds” distribution. Once again, this

distribution appears to be new. It provides an exact characterization of the distribution

of profit margins for a firm that sells in many foreign markets, where the distribution

of productivity draws across markets follows a Fréchet distribution, as in the model of

Tintelnot (2014).

4.2 Other Sales and Markup Distributions

Proposition 2 can be used to derive the distributions of sales and markups implied by any

demand function. In particular, closed-form expressions for productivity as a function of sales

or markups can be derived for some of the most widely-used demand functions in applied

economics. Table 1 gives results for linear, Stone-Geary or linear expenditure system (LES),

and translog demands, along with the CREMR results already derived.14 Combining these

with different assumptions about the distribution of productivity, and invoking Proposition

13See Johnson (1949) and Mead (1965).
14From a firm’s perspective, the translog is observationally equivalent to the almost ideal AIDS model of

Deaton and Muellbauer (1980).
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p(x) or x(p) ϕ(r) or ϕ(ř) ϕ(m) or ϕ(m̌)

CREMR β
x (x− γ)

σ−1
σ ϕ0r

1
σ−1 ϕ0

(
m̌

1−m̌

) 1
σ

Linear α− βx 1
α

(
1

1−ř

) 1
2 2m−1

α

LES δ
x+γ γδ

(
1

1−ř

)2
γ
δm

2

Translog 1
p (γ − η log p) ϕ0(r + η) exp

(
r
η

)
m exp

(
m− η+γ

η

)
Table 1: Productivity as a Function of Sales and Markups for Selected Demand Functions

2, it is clear that a wide variety of sales and markup distributions are implied.15 For example,

the relationships between productivity and sales implied by linear and LES demands have

the same form, so the sales distributions implied by these two very different demand systems

are observationally equivalent. The same is not true of their implied markup distributions,

however: in the LES case, productivity is a simple power function of markups, so the LES

implies self-reflection of the productivity and markup distributions if either is a member of

the GPF class.16

It is clearly desirable to have some way of comparing the distributions implied by these

different demand functions with each other and with a given empirical distribution. In the

next section we turn to develop tools of this kind.

15For parameter restrictions and other details, such as the form of ϕ0 (which differs in each case), see
Appendix G. Note that in some cases it is desirable to express the results in terms of sales relative to the
maximum level, ř ≡ r

r , just as with CREMR demands the markup distribution is most easily expressed in
terms of the relative markup m̌.

16For example, a log-normal distribution of productivity and LES demand imply a log-normal distribution
of markups, so providing microfoundations for an assumption made by Epifani and Gancia (2011).
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5 Comparing Predicted and Actual Distributions

5.1 From Theory to Calibration

Our approach so far has been to characterize the distributions of firm size and firm markups

implied by particular assumptions about the primitives of the model: the structure of de-

mand and the distribution of firm productivities. Results of this kind provide an essential

benchmark, but they are not so helpful from a quantitative perspective: they do not tell

us by how much this counterfactual distribution departs from a given distribution, whether

hypothetical or observed. This is a standard problem encountered in calibration exercises

targeting the distribution of firms. Typically, this is done by generating a distribution whose

moments match those of the observed distribution. Figure 5 suggests why it may be desir-

able to follow a different route. It shows the distributions of firms whose productivities are

drawn from the same Pareto distribution when the demand they are facing is, respectively,

isoelastic and linear. This figure is obtained when the parameters of the demand functions

are chosen so that both the mean and the variance of the two distributions are equalized.

This suggests that a comparison of the first two moments alone is a poor guide to how “close”

two distributions are in practice.17

For these reasons, we make use of a different tool to quantify the differences between

distributions: the Kullback-Leibler divergence (denoted “KLD” hereafter), introduced by

Kullback and Leibler (1951).18 The next sub-section sketches the information-theoretic back-

ground of the KLD, while Section 5.3 shows how it can be applied in our context. Through-

out, we concentrate on explaining the distribution of firm sales. Adapting the framework to

explain the distribution of output, markups, or any other firm outcome, is straightforward.

17There is a separate problem with matching moments for the Pareto distribution. The t’th moment exists
if and only if the dispersion parameter k exceeds t; however, empirically, raw data often exhibit values of k
that are less than one, so even the mean does not exist.

18Other criteria could be used, though none is as satisfactory as the KLD. A first- or second-order stochastic
dominance criterion is not informative about the dissimilarity between the two firm size distributions if
their cumulative distributions intersect more than once. Similarly, the Kolmogorov-Smirnov test is not
very helpful, as it privileges the maximum deviation between the two cumulative distributions, and ignores
information about the distributions at other points.
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Figure 5: Predicted Size Distributions of Firms from CES and Linear Demands

5.2 Elements of Information Theory

The starting point of information theory is an axiomatic basis for a quantitative measure

of the information content of a single draw from a known distribution F (r).19 It is natural

that a measure of information should be additive, non-negative, and inversely related to the

probability of the draw. The only function satisfying these requirements is minus the log

of the probability: I(r) = − log(f(r)).20 This in turn leads to the concept of the Shannon

entropy of F (r), which is the expected value of information from a single draw:21

SF ≡ E[I(r)] = −
∫ r

r

log (f(r)) f(r)dr (12)

(See Shannon (1948).) Intuitively, Shannon entropy can be thought of as a measure of the

unpredictability or uncertainty about an individual draw implied by the known distribution

F (r). In general it ranges from zero to infinity. It equals zero when F (r) is a Dirac distribu-

19See Cover and Thomas (2012) for an introduction to information theory. Previous applications of
Shannon entropy to economics include the work on inequality by Theil (1967), and the theory of rational
inattention developed by Sims (2003), and applied to trade by Dasgupta and Mondria (2014). The KLD has
been used as a goodness-of-fit criterion in econometrics (see Vuong (1989), Cameron and Windmeijer (1997)
and Ullah (2002)), and empirical demand analysis (see Adams (2013)), but not before to our knowledge in
applied theory fields such as international trade.

20In information theory it is customary to take all logarithms to base 2, so information is measured in
bits. For some theoretical results it is more convenient to use natural logarithms, though most results hold
irrespective of the logarithmic base used.

21Shannon entropy was first introduced for discrete distributions. The application to continuous distribu-
tions is also called “differential entropy”.
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tion with all its mass concentrated at a single point: in this case, knowing the distribution

tells us everything about individual draws, so an extra draw conveys no new information.

By contrast, Shannon entropy can be arbitrarily large when F (r) is a uniform distribution:

F (r) =
r − r
r − r

, r ∈ [r, r] ⇒ SF = SUniform = log(r − r) (13)

In this case, knowing the distribution conveys no information whatsoever about individual

draws, so, as the upper bound r becomes arbitrarily large, the same happens to Shannon

entropy.

While Shannon entropy measures the expected information gain conveyed by a draw from

a single distribution, the KLD measures the information loss when one distribution is used

to approximate another one, typically the one observed in the data. Formally, if F (r) is the

observed c.d.f. of firms’ sales, and F̃ (r) is the distribution used to approximate F (r), then

the KLD is defined as follows:

DKL
(
F ||F̃

)
≡
∫ r

r

log

(
f(r)

f̃(r)

)
f(r)dr (14)

To get some intuition for the KLD, it is helpful to rewrite it as follows:

DKL
(
F ||F̃

)
= −

∫ r

r

log
(
f̃(r)

)
f(r)dr − SF (15)

The first term on the right-hand side of (15) measures the cross-entropy between F (r) and

F̃ (r). Intuitively, this is a measure of the unpredictability of an individual draw from the

benchmark distribution F (r) implied by the tested distribution F̃ (r). Equation (15) thus

shows that the KLD equals the difference between the cross-entropy and Shannon entropy.

Heuristically, it can be interpreted as the “excess” unpredictability of F (r) implied by F̃ (r)

relative to the unpredictability of F (r) implied by itself; or as the informativeness of a

draw from F̃ (r) relative to one from F (r). The KLD also has a statistical interpretation:
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it equals the expected value of the log likelihood ratio, so choosing the parameters of a

distribution to minimize KLD is equivalent to maximizing the likelihood of the sample. By

Gibbs’ inequality, the KLD is always non-negative, DKL
(
F ||F̃

)
≥ 0, and attains its lower

bound of zero if and only if F (r) = F̃ (r) almost everywhere, when the distribution F̃ (r) is

completely informative about F (r).

A number of qualifications need to be kept in mind when we use the KLD as a measure

of the “closeness” of two distributions. First, the KLD is not symmetric with respect to

both distributions: DKL
(
F̃ ||F

)
6= DKL

(
F ||F̃

)
. Formally, the KLD is a pre-metric, not

a metric, and it does not satisfy the triangle inequality. In our application, this does not

pose a problem, since it is natural to take the actual firm size distribution as a benchmark,

whether it comes from theory or from empirical observation. The role of the KLD is then to

quantify how well different candidate methods of calculating a distribution F̃ (r) approximate

the “true” distribution F (r): it measures the divergence of F̃ (r) from F (r), not the distance

between them.

Second, for the KLD to be well defined, the tested distribution F̃ (r) must have a strictly

positive density, f̃(r) > 0, at every point in [r, r].22 This can pose problems when we

encounter a situation such as that illustrated in Figure 5, where we wish to compare a

distribution implied by a demand function (such as the linear) which implies a saturation

consumption level with an unbounded distribution such as the Pareto or log-normal. This is

not a problem in practical applications, since we can always calibrate demand to fit the upper

limit of the observed values of F (r). Even in theoretical contexts, it is an advantage rather

than a disadvantage in our context, since it leads us to consider right-truncated distributions.

This is a particularly desirable direction to explore in the light of Feenstra (2014), who shows

that, without truncation, a Pareto distribution does not allow us to distinguish between the

product-variety and pro-competitive gains from trade.

Third, the KLD, like Shannon entropy, attaches the same weight to all observations. In a

22The converse is not needed, since by convention lim
f(r)→0

f(r) log (f(r)) = 0.
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heterogeneous-firms context, we may be more interested in explaining the behavior of large

firms, which account for a disproportionate share of total production and exports. One way

of implementing this would be to calculate a “weighted KLD”, where higher weights are

attached to larger firms.23 A more direct approach, illustrated below, is to see how the KLD

behaves as we drop more observations on smaller firms.

5.3 Decomposing the KLD

Because our main focus is on comparing an observed distribution with one predicted by

a model, it is helpful to relate the KLD to the elasticities of density of the two distribu-

tions. Consider first Shannon entropy. Integrating by parts the definition given in (12) (see

Appendix H.1 for details) yields:

SF = − log f (r)−
∫ r

r

1− F (r)

r

rf ′ (r)

f (r)
dr (16)

This shows that Shannon entropy can be decomposed into two terms. The first is the infor-

mation content of the lower limit of the distribution, i.e., in our application, the information

content of the marginal firms. The second equals the integral of the elasticity of the density,

rf ′(r)
f(r)

, times the relative survival function, 1−F (r)
r

. The latter is declining in sales, so, when

written in this way, Shannon entropy attaches more weight to the elasticities of density of

larger firms.24

23For a discrete version of such a measure, called a “quantitative-qualitative measure of relative infor-
mation,” see Taneja and Tuteja (1984) and Kv̊alseth (1991). A more satisfactory alternative is the gen-
eralization of KLD known as the Rényi divergence of order α, α ≥ 0 (see Rényi (1959)): Dα

(
F ||F̃

)
≡

1
α−1 log

( ∫ r
r

f(r)α

f̃(r)α−1
dr
)
. The KLD is the limiting case of this as α→ 1: D1

(
F ||F̃

)
= DKL

(
F ||F̃

)
. For values

of α between zero and one, the Rényi divergence weights all possible draws more equally than the KLD,
regardless of their probability.

24The rate at which the relative survival function declines is one plus the proportional hazard rate:

d log
[
1−F (r)

r

]
= −

(
1 + rf

1−F

)
d log r. Equation (38) in Appendix H.1 gives an alternative decomposition

of Shannon entropy, where the first term is the information content of the upper limit of the distribution.
However, this is less useful in our analytic derivations below, since for many distributions, including the
Pareto and the log-normal, log f(b) = −∞.
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Now, we apply the same decomposition to the KLD:

DKL
(
F ||F̃

)
= log f (r)− log f̃ (r) +

∫ r

r

1− F (r)

r

[
rf ′ (r)

f (r)
− rf̃ ′ (r)

f̃ (r)

]
dr (17)

Once again, this can be decomposed into two terms. The first is the difference between

the information contents of the lower limits of the two distributions. The second equals

the integral of the difference between their elasticities of density, times the relative survival

function, 1−F (r)
r

. Recalling that the latter is declining in sales shows that the KLD attaches

less weight to underestimates of the elasticity of density of larger firms.

The decomposition of the KLD in (17) proves particularly insightful when the predicted

size distribution is derived from an underlying model of firm behavior. As in Section 3, this

comes from a distribution of firm productivity g(ϕ) and a model that links productivity to

sales via a function ϕ(r). From the standard result on densities of transformed variables

(part (i) of Proposition 1), we can relate the density of the derived distribution of sales to

the density of the underlying distribution of firm productivity: f̃(r) = g(ϕ(r))dϕ
dr

. Hence,

as we show in Appendix H.2, the elasticity of density of the derived distribution of sales

can be expressed in terms of the elasticity of density of the underlying distribution of firm

productivity, the revenue elasticity of marginal revenue, E(r) ≡ rϕ′(r)
ϕ(r)

, and the elasticity of

E with respect to r:

rf̃ ′(r)

f̃(r)
=

[
ϕg′{ϕ(r)}
g{ϕ(r)}

+ 1

]
E(r)− 1 +

rE ′(r)

E(r)
(18)

Substituting this into (17) gives:

DKL
(
F ||F̃

)
= log f(r)− log

[
g (ϕ(r))

dϕ

dr

∣∣∣∣
r

]
︸ ︷︷ ︸

(1)

+

∫ r

r

1− F (r)

r

[{
rf ′(r)

f(r)
+ 1

}
−
{
ϕg′(ϕ(r))

g(ϕ(r))
+ 1

}
E(r)︸ ︷︷ ︸

(2)

− rE ′(r)

E(r)︸ ︷︷ ︸
(3)

]
dr

(19)
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This can be seen as an extension of Proposition 2. That result derived necessary and sufficient

conditions for an exact match between the distributions of two firm characteristics when

both distributions belonged to the same member of the generalized power function family:

the elasticity of one characteristic with respect to the other should be constant, and its

value should be consistent with the parameters of the two distributions. Equation (19) goes

further and quantifies the information loss when the assumptions of Proposition 2 do not

hold. In particular, it identifies three distinct sources of information loss in matching a

fitted distribution F̃ (r) to an actual distribution of firm sizes F (r), when the conditions of

Proposition 2 do not hold. First is a failure to match the lower end-point of the distribution,

r. Second is the use of an incorrect value of E to link the elasticities of density of the two

underlying distributions, g(ϕ) for productivity and f(r) for firm size. And third is a failure

to allow for variations in the elasticity E. Each of these three components can be positive

or negative, but their sum must be non-negative.

5.4 Quantifying the Information Loss from Incorrect Assumptions

To illustrate the application of equation (19) in the previous section, we show its implications

in the benchmark case where both productivity and sales have a Pareto distribution, and

demands are of the CREMR type. This eliminates the third source of information loss in

(19), since E ′ = 0. However, this does not mean that a perfect calibration is guaranteed, as

we shall see.

When F̃ and F are both Pareto with parameters ñ and n, the KLD can be calculated

from equation (17):

DKL(F ||F̃ ) = log
n

ñ
+
ñ

n
− 1 (20)

To relate this to the primitive parameters as in (18), recall from Section 3 that with CREMR

demands the elasticity of marginal revenue with respect to total revenue, E, equals 1
σ−1

,

and so, with a Pareto distribution of productivity, the shape parameter for the derived
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Figure 6: KLD as a Function of σ in the Pareto-CREMR Case

distribution of sales is ñ = Ek = k
σ−1

. Substituting into (20) gives the KLD decomposition,

equation (19), in the Pareto-CREMR case:

DKL(F ||F̃ ) = log
n

k
+ log(σ − 1)︸ ︷︷ ︸

(1)

+
k

n

1

σ − 1
− 1︸ ︷︷ ︸

(2)

(21)

This is illustrated in Figure 6 as a function of σ, drawn for values of k = 1 and n = 2. (The

properties of this KLD locus are derived in Appendix H.3.)
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Figure 7: Decomposition of KLD in the Pareto-CREMR Case

Figure 6 shows clearly that the information cost of using the “wrong” estimate of σ
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is highly asymmetric. For given values of k and n, the true value of σ equals k+n
n

. (Recall

equation (4).) Given the assumed values of k and n, this equals 1.5, which is the value of σ at

which the KLD is minimized. For other values, it is much more sensitive to underestimates

than to overestimates of the true value of σ. Why this is so is shown from two different

perspectives in Figure 7. Panel (a) shows the two components of the KLD from (21),

while panel (b) shows how a higher assumed value of σ affects the location of the predicted

distribution relative to that of the true distribution corresponding to σ = 1.5. Clearly,

underestimating σ means overestimating the mass of the smallest firms and underestimating

the mass of the larger firms. From (21), the cost of the former is increasing in the log of

σ − 1, whereas the cost of the latter is falling in the reciprocal of σ − 1. For values of σ

below 1.5, the second effect dominates: because the Pareto has an infinite tail, it is more

important to fit the larger firms than the smaller ones. This is clear from panel (b), while

the numerical values of the components of the KLD in panel (a) show explicitly how the

gains and losses in information that come from an increase in σ are traded off against each

other.

A further implication of equation (21) is that, with Pareto productivity and CREMR

demands, the KLD depends on only one of the three parameters in the CREMR demand

function. Figure 6 applies equally well to the CES case (where the CREMR parameter γ

is zero) as it does to any other member of the CREMR class. This suggests a further role

for the CREMR family in calibrations. To calibrate the size distribution of firms, the only

demand parameter that is needed is σ. Hence the values of the other parameters β and γ can

be chosen to match other features of the data: γ to match the size distribution of markups

across firms, and β to match the level of demand.

30



6 Empirical Applications

To illustrate how the KLD can be used to compare the goodness of fit of different assumptions

about demand and the distribution of productivity, we end with two empirical applications.

The first uses data on French exports to Germany in 2005, drawn from the same source as

that used by Head, Mayer, and Thoenig (2014). The second uses firm-level data on Indian

sales and markups, as used by De Loecker, Goldberg, Khandelwal, and Pavcnik (2016).

6.1 French Exports to Germany

(a) A First Look: Obviously Pareto?

(1) (2) (3)

(b) A Second Look: Obviously Log-Normal?

Figure 8: Alternative Perspectives on the Data

The data consists of a 10% representative sample of French exports to Germany in 2005.25

Figure 8 shows that the data exhibit some typical features of such data sets. When we plot

a histogram with the log frequency on the vertical axis and actual sales on the horizontal,

as in Panel (a), the long tail is clearly in evidence, and it seems plausible that the data are

generated by a Pareto distribution. However, the first bin contains over half the firms, which

is brought out more clearly when we plot the actual frequency on the vertical axis and log

sales on the horizontal, as in Panel (b). Now the data seem self-evidently log-normal. Yet a

25It gives information on 16,119 products exported by 7,928 firms: 2.03 products per firm, all adjusted by
an arbitrary constant to preserve confidentiality. We are very grateful to Julien Martin for performing the
analysis for us on French Customs data.
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third perspective comes from the vertical lines in Panel (b). The line labeled (1) is at median

sales, with 50% of firms to the left, but these account for only 0.1% of sales; the line labeled

(2) is at 76.7% of firms, but these account for only 1.0% of sales; finally, the line labeled

(3) is at 99.6% of firms, which account for only 50% of sales. Thus, we might reasonably

conclude that the data are Pareto where it matters, with the top firms dominating.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
8

(a) Pareto and Log-Normal

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
8

(b) Linear Demand with Pareto and Log-Normal

Figure 9: KLD-Minimizing Predicted Distributions under Different Assumptions

These subjective considerations provide a poor basis for discriminating between rival

views of the best underlying distribution, and justify our turning to use the KLD as a more

objective indicator of how well different assumptions fit the data. Figure 9 illustrates some

of the candidate distributions. In each case, we choose parameter values for the specification

in question that minimize the KLD: recall that this is equivalent to a maximum likelihood

estimation of those parameters, conditional on the specification. Panel (a) compares the

best-fit Pareto (in green) and log-normal (in red). From Section 3, each of these amounts to

assuming that demand is CREMR, and that the underlying productivity distribution is either

Pareto or log-normal. (Note that the distribution and demand parameters are not separately

identified.) Inspecting the fitted distributions, it is evident that the log-normal matches the

smaller firms better, and conversely for the Pareto. Panel (b) of Figure 9 adds the best-fit

distributions implied by linear demands in association with either a Pareto (light blue) or
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log-normal (dark blue) distribution of productivity. These distributions are calculated by

combining the relevant productivity distribution with the relationships between productivity

and sales implied by linear demands from the middle column of Table 1. (Recall from that

table that the linear and LES specifications are observationally equivalent.) Clearly, both

imply distributions that are highly log-concave, and that do not fit the data well.

CREMR/CES Translog/AIDS Linear and LES

Pareto 0.0090 0.21 1.40
[0.0082, 0.0201] [0.1970, 0.2187] [1.3354, 1.4113]

Log-Normal 0.0017 2.35 3.68
[0.0013, 0.0033] [2.2928, 2.3674] [3.5981, 3.6938]

Table 2: KLD for Selected Demand Functions and Productivity Distributions
(Bootstrapped 95% Confidence Intervals in Parentheses)

To formalize these comparisons, Table 2 gives the values of the KLD for each of the

four cases shown in Figure 9, and also for the translog demand function combined with

either Pareto or log-normal productivities. (From a firm’s perspective, the translog is ob-

servationally equivalent to the almost ideal AIDS model of Deaton and Muellbauer (1980).)

Each entry in the table gives the value of the KLD that gives the information loss when

the combination of assumptions indicated by the row and column is used to explain the

observed distribution of sales. The values in parentheses are bootstrapped 95% confidence

intervals. (See Appendix I for details on how these are calculated.) Inspecting these, none

of the intervals overlap, implying that the differences between all the KLD values shown are

statistically significant at the 5% level.

As we saw in panel (b) of Figure 9, the log-normal matches the smaller firms better, and

conversely for the Pareto. With a preponderance of the bins corresponding to smaller firms,

it is not surprising that the log-normal does better as measured by the KLD: as shown in

the second column of Table 2, it yields a value of 0.0017, considerably lower than the value

of 0.0090 for the Pareto. However, the difference between distributions turns out to be much
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less significant than that between different specifications of demand. The KLD values for the

linear/LES specification are much higher than for the CREMR case, as shown in the third

column of Table 2, with the Pareto now preferred to the log-normal. A similar pattern is

exhibited by the translog/AIDS specification, shown in the final column of Table 2, although

now the Pareto does not do so badly.

A different perspective on the values of the KLD statistics in Table 2 is to compare

them with the value implied by a uniform distribution of sales. This is in the spirit of

the “dartboard” approach to benchmarking the geographic concentration of manufacturing

industry of Ellison and Glaeser (1997), or the “balls and bins” approach to benchmarking the

world trade matrix of Armenter and Koren (2014). With such an uninformative prior, the

value of the KLD is 3.5943. Thus we can conclude that linear and translog demands combined

with log-normal productivities explain the data about as well as a random explanation, while

CREMR and to a lesser extent translog with Pareto do considerably better.

6.2 Indian Sales and Markups

CREMR Translog LES Linear

A. Sales
Pareto 0.4110 0.3192 0.6114 0.6114
Log-Normal 0.0205 2.1646 2.7603 2.7603

B. Markups
Pareto 0.0345 0.0769 0.0749 0.1176
Log-Normal 0.0359 0.0792 0.0619 0.0612

Table 3: KLD for Sales and Markups

The second data set we use gives information on both sales and markups, so for each

combination of assumptions on productivity and demand we can calculate the value of the

KLD for both sales and markups. (See De Loecker, Goldberg, Khandelwal, and Pavcnik

(2016) for a detailed description of the data.) The results are given in Table 3 and illustrated
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Figure 10: KLD for Sales and Markups

in Figure 10.

With this data set, the results for sales are broadly in line with those from the French

data. Assuming a Pareto distribution of productivities, translog demands do somewhat

better than Pareto, and linear and LES do not perform much worse. However, the ranking

is broadly the same as in the previous case. This is even more pronounced with log-normal

productivities: as before, CREMR does best, with translog performing much less well and

Linear-LES worst of all.

Of most interest are the results for markups. Here CREMR demands clearly do best,

irrespective of the assumed distribution, with translog and LES performing at the same level,

and linear doing equally well under Pareto assumptions but less well in the log-normal case.

(Recall from Table 1 that linear and LES demands are not separately identified for sales,

but they are for markups.) The overwhelming conclusion from these results is that, if we

want to fit the distributions of sales and markups in this data set, then the choice between

Pareto and log-normal distributions is less important than the choice between CREMR and

other demands.
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7 Conclusion

This paper has addressed the question of how to explain the distributions of firm size and

firm markups using models of heterogeneous firms. We provide a general necessary and

sufficient condition for consistency between arbitrary assumptions about the distributions

of two firm characteristics and an arbitrary model of firm behavior which relates those two

characteristics at the level of an individual firm. In the specific context of Melitz-type models

of heterogeneous firms competing in monopolistic competition, we showed that our condition

implies a new demand function that generalizes the CES. The CREMR or “Constant Revenue

Elasticity of Marginal Revenue” family of demands is necessary and sufficient for a Pareto

or log-normal distribution of firm productivities to be consistent with a similar distribution

of firm sales.

In addition to exact results of this kind, we showed how the Kullback-Leibler divergence

can be used to compare a predicted with an observed distribution of firm size. The value of

the Kullback-Leibler divergence can be expressed in terms of the difference between the elas-

ticities of density of the two distributions, which in turn can be related to errors in estimating

the level and the rate of change of the elasticity of revenue with respect to marginal revenue.

Simulations show that the information cost of using the “wrong” parameter to calibrate an

observed distribution can be highly asymmetric. Finally, two empirical applications of our

approach, to a sample of French exports to Germany and to a dataset of sales and markups

for Indian firms, suggest that the choice between Pareto and log-normal distributions is less

important than the choice between CREMR and other demands.

While we have concentrated on explaining the distributions of firm sales and markups

given assumptions about the distribution of firm productivity, it is clear that our approach

has many other potential applications. Linking observed heterogeneity of outcomes to un-

derlying heterogeneity of agents’ characteristics via an assumed model of agent behavior is

a common research strategy in many fields of economics. Both our exact results and our

approach to measuring the information cost of incorrect assumptions about behavior should
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prove useful in many other contexts.
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Appendices

A Proof of Proposition 1

To show that (1) and (3) imply (2), let F̃ (y) denote the distribution of y implied by (1) and

(3). Since v is strictly increasing from (3), we have y = v−1(x). Therefore the CDF of x is

F̃ [v−1(x)]. By Assumption 1, it has to coincide with G so:

F̃ [v−1(x)] = G(x) ∀x ∈ (x, x̄) (22)

Therefore, F̃ (y) = G[v(y)], which is the function assumed in (2), as was to be proved. A

similar proof shows that (2) and (3) imply (1).

Next, we wish to prove that (1) and (2) imply (3). We start by picking an arbitrary firm

i with characteristics x(i) and y(i). Because x(i) and y(i) are strictly increasing in i, the

fraction of firms with characteristics below x(i) and, respectively, y(i), are equal:

G[x(i)] = F [y(i)] ∀i ∈ Ω (23)

Inverting gives x(i) = G−1[F (y(i))]. Since this holds for any firm i ∈ Ω, it follows that

x = v(y) = G−1[F (y)], as required.

B Proof of Proposition 2

To show that (1) and (3) imply (2), assume G (x;θ) = H
(
θ0 + θ1

θ2
xθ2
)

, Gx > 0, and x =

x0h(y)E. Then the implied distribution of y is:

F (y;θ) = H

[
θ0 +

θ1

θ2

{
x0h(y)E

}θ2]
= H

[
θ0 +

θ′1
θ′2
h(y)θ

′
2

]
(24)
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where: θ′2 = Eθ2 and
θ′1
θ′2

= θ1
θ2
xθ20 so θ′1 = θ1

θ2
θ′2x

θ2
0 = Eθ1x

θ2
0 . Thus (1) and (3) imply (2). A

similar proof shows that (2) and (3) imply (1).

Next, to show that (1) and (2) imply (3), assume G (x;θ) = H
(
θ0 + θ1

θ2
xθ2
)

, Gx >

0, and F (y;θ′) = H
(
θ0 +

θ′1
θ′3
h(y)θ

′
2

)
, Fy > 0. From part (ii) of Proposition 1, x =

G−1 [F (y;θ′) ;θ]. Inverting G (x;θ) gives θ0 + θ1
θ2
xθ2 = H−1 (G(x;θ)), which implies that:

x =
[
θ2
θ1
{H−1 (G(x;θ))− θ0}

] 1
θ2 . Now substitute F (y;θ′) for G(x;θ):

x =

[
θ2

θ1

{
H−1

(
H

(
θ0 +

θ′1
θ′3
h(y)θ

′
2

))
− θ0

}] 1
θ2

=

[
θ2

θ1

{(
θ0 +

θ′1
θ′2
h(y)θ

′
2

)
− θ0

}] 1
θ2

= x0h(y)E

(25)

where: E =
θ′2
θ2

and x0 =
(
θ2
θ1

θ′1
θ′3

) 1
θ2 =

(
1
E

θ′1
θ1

) 1
θ2 . Thus (1) and (2) imply (3).

C Generalized Power Function Distributions

Table 4 shows that many well-known distributions are members of the Generalized Power

Function family, G (x;θ) = H
(
θ0 + θ1

θ2
xθ2
)

, introduced in Proposition 2. Hence that propo-

sition can immediately be applied to deduce a constant-elasticity relationship between any

two firm characteristics which share any of the distributions in the table, provided the two

distributions have compatible supports, and the same value of the parameter θ0. (In Section

5.4 we show that the latter condition holds for the truncated Pareto distribution.)

A simple example of a distribution which is not a member of the GPF family is the

exponential: G (x;θ) = 1 − exp (−λx). This one-parameter distribution does not have the

flexibility to match either the sufficiency or the necessity part of Proposition 2. If x is

distributed as an exponential and x = x0y
E, then y is distributed as a Weibull: F (y;θ′) =

1 − exp(−λx0y
E). Whereas if both x and y are distributed as exponentials, then x = x0y,

i.e., E = 1. For similar reasons, the one-parameter version of the Fréchet is not a member

of the GPF family, though as Table 4 shows, both its two-parameter version and the three-

parameter “Translated Fréchet” (with one of the parameters set equal to θ0) can be written
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G (x;θ) Support H (z) θ0 θ1 θ2

Pareto 1−
(
x
x

)−k
[x,∞) z 1 kxk −k

Truncated Pareto 1−xkx−k
1−xkx̄−k [x, x̄] z 1

1−xkx̄−k
kxk

1−xkx̄−k −k

Log-normal Φ
(

log x−µ
s

)
[0,∞) Φ [log (z)] 0 1

s exp
(
−µ
s

)
1
s

Uniform x−x
x̄−x [x, x̄] z − x

x̄−x
1

x̄−x 1

Fréchet exp
[
−
(x−µ

s

)−α]
[µ,∞) exp [−z−α] −µ

s
1
s 1

Gumbel exp
[
− exp

{
−
(x−µ

s

)}]
(−∞,∞) exp [− exp {−z}] −µ

s
1
s 1

Reversed Weibull exp
[
−
(µ−x

s

)α]
(−∞, µ] exp [−zα] µ

s −1
s 1

Table 4: Some Members of the Generalized Power Function Family of Distributions

as members of the family.

D Properties of CREMR Demand Functions

First, we wish to show that the CREMR property ϕ = (r′)−1 = ϕ0r
E is necessary and

sufficient for the CREMR demands given in (2). To prove sufficiency, note that, from (2),

total and marginal revenue are:

r(x) ≡ xp(x) = β (x− γ)
σ−1
σ r′(x) = p(x) + xp′(x) = β

σ − 1

σ
(x− γ)−

1
σ (26)

Combining these gives:

r′(x) = β
σ
σ−1

σ−1

σ
r(x)−

1
σ−1 (27)

Hence, the revenue elasticity of marginal revenue is indeed constant, equal to 1
σ−1

. For later

use it is also useful to express these equations in terms of proportional changes (where a
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circumflex denotes a logarithmic derivative, so r̂ ≡ dr
r
, r > 0):

r̂ = σ−1
σ

x
x−γ x̂

r̂′ = − 1
σ

x
x−γ x̂

 ⇒ r̂′ = − 1

σ − 1
r̂ (28)

To prove necessity, invert equation (1) to obtain r′(x) = ϕ−1
0 r(x)−E. This is a standard

first-order differential equation in r(x) with constant coefficients. Its solution is:

r(x) =
[
(E + 1)

(
ϕ−1

0 x− κ
)] 1

E+1 (29)

where κ is a constant of integration. Collecting terms, recalling that r(x) = xp(x), gives the

CREMR demand system (2), where the coefficients are: σ = E+1
E

, β = (E+1)
1

E+1ϕ
− 1
E+1

0 , and

γ = ϕ0κ. Note that it is the constant κ which makes CREMR more general than CES. Since

the CREMR property ϕ = (r′)−1 = ϕ0r
E is both necessary and sufficient for the demands

given in (2), we call the latter CREMR demands.

Next, we wish to derive the demand manifold for CREMR demand functions. Mrázová

and Neary (2013) show that, for a firm with constant marginal cost facing an arbitrary

demand function, the elasticities of total and marginal revenue with respect to output can

be expressed in terms of the elasticity and convexity of demand. Combining their results

leads to an expression for the revenue elasticity of marginal revenue which holds for any

demand function:

r̂ = ε−1
ε
x̂

r̂′ = −2−ρ
ε−1

x̂

 ⇒ r̂′ = −(2− ρ)ε

(ε− 1)2
r̂ (30)

Equating this to (28) leads to the CREMR demand manifold in the text, equation (3). Note

that requiring marginal revenue to be positive (ε > 1) and decreasing (ρ < 2) implies that

σ > 1, just as in the familiar CES case.

To establish conditions for demand to be superconvex, we solve for the points of intersec-

tion between the demand manifold and the CES locus, the boundary between the sub- and
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superconvex regions. From Mrázová and Neary (2013), the expression for the CES locus is:

ρ = ε+1
ε

. Eliminating ρ using the CREMR demand manifold (3) and factorizing gives:

ρ− ε+ 1

ε
= −(ε− σ)(ε− 1)

(σ − 1)ε
= 0 (31)

Given 1 < σ ≤ ∞, this expression is zero, and so every CREMR manifold intersects the

CES locus, at two points. One is at {ε, ρ} = {1, 2}, implying that all CREMR demand

manifolds must pass through the Cobb-Douglas point. The other is at {ε, ρ} = {σ, 1 + 1
σ
}.

Hence every CREMR demand manifold lies strictly within the superconvex region (where

ρ > ε+1
ε

) for σ > ε > 1, and strictly within the subconvex region for ε > σ. The condition for

superconvexity, ε ≤ σ, can be reexpressed in terms of γ by using the fact that the elasticity

of demand is ε = x−γ
x−γσσ. Substituting and recalling that σ must be strictly greater than

one, we find that CREMR demands are superconvex if and only if γ ≤ 0. As with many

other demand manifolds considered in Mrázová and Neary (2013), this implies that, for a

given value of σ, the demand manifold has two branches, one in the superconvex region

corresponding to negative values of γ, and the other in the subconvex region corresponding

to positive values of γ. Along each branch, the equilibrium point converges towards the CES

locus as output rises without bound, as shown by the arrows in Figure 3.

Similarly, to establish conditions for profits to be supermodular, we solve for the points

of intersection between the demand manifold and the SM locus, the boundary between the

sub- and supermodular regions. From Mrázová and Neary (2013), the expression for the SM

locus is: ρ = 3−ε. Eliminating ρ using the CREMR demand manifold and factorizing gives:

ρ+ ε− 3 =
[(σ − 2)ε+ 1](ε− 1)

(σ − 1)ε
= 0 (32)

Once again, this expression is zero at two points: the Cobb-Douglas point {ε, ρ} = {1, 2},

and the point {ε, ρ} = { 1
2−σ ,

5−3σ
2−σ }. The latter is in the admissible region only for σ < 2.

Hence for σ ≥ 2, the CREMR demand manifold is always in the supermodular region.
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E CREMR Preferences

We seek a specification of preferences which rationalizes CREMR demands. One way of doing

this is to assume additively separable preferences, U =
∫
i∈Ω
u{x(i)} di, which implies that

u′{x(i)} = λx(i), where λ is the marginal utility of income. Integrating the CREMR demand

function (2), we can solve for the sub-utility function u{x(i)}, which takes a hypergeometric

form:

u{x(i)} = β
σ

1− σ
x(i)

σ−1
σ 2F1

(
−σ − 1

σ
,−σ − 1

σ
;

1

σ
;
γ

x(i)

)
+ κ (33)

Here 2F1 (a, b; c; z), |z| < 1, is the Gaussian hypergeometric function:

2F1(a, b; c; z) =
∞∑
n=0

(a)n (b)n
(c)n

zn

n!
(34)

and (q)n is the (rising) Pochhammer symbol:

(q)n =

 1 n = 0

q(q + 1)...(q + n− 1) n > 0
(35)

When γ is zero, (33) reduces to the CES utility function, u{x(i)} = β σ
1−σ x(i)

σ−1
σ +κ; when γ

is positive, so demands are subconvex, utility is positive; and conversely when γ is negative.

Setting κ, the constant of integration in (33), equal to zero implies that u(0) = 0. In

this case, the utility function always exhibits a taste for diversity. To see this, note that

u(x) must be increasing (since otherwise p(x) would not be positive) and concave (since

otherwise p(x) would not be decreasing in x). Any concave and differentiable function u(x)

is bounded above by its Taylor approximation: u(x0) ≤ u(x) + (x0−x)u′(x). Setting x0 = 0

and using the fact that u(0) = 0 implies that 0 ≤ u(x) − xu′(x). Hence the elasticity of

utility ξ(x) ≡ xu′(x)
u(x)

is always less than one. This in turn implies a taste for diversity in the

sense that fixing total consumption X ≡ nx, where x is the same for all varieties and n is

the measure of varieties, implies that U = nu(x) = nu
(
X
n

)
. Logarithmically differentiating
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with respect to n yields: Û = (1− ξ)n̂.

F Proofs of Corollaries 1, 2, 3, and 4

Corollaries 1 and 2 (Productivity and Sales with Pareto or Log-Normal):

Proposition 2 holds for any distribution in the generalized power function class. The

particular solutions for the constant terms in equations (4) and (5) are derived by substituting

the parameters of the Pareto and log-normal distributions into the relevant expressions in

Proposition 2. Finally, as discussed in the text, all members of the CREMR class with non-

zero γ (i.e., non-zero κ) are, strictly speaking, inconsistent with a log-normal distribution,

since they imply that the smallest firm has strictly positive sales revenue.

Corollaries 3 and 4 (Productivity and Output with Pareto or Log-Normal):

In these cases, Proposition 2 implies that productivity must be a simple power function

of output: ϕ = ϕ0x
E. Replacing ϕ by r′(x)−1 as before yields a new differential equation in

r(x), with solution:

r(x) = ϕ−1
0

x1−E

1− E
+ κ (36)

where κ is once again a constant of integration. This is the CEMR demand system (6),

where σ = 1
E

and β = 1
ϕ0(1−E)

. The final step, as in the case of Corollaries 1 and 2, is to

solve for the constant terms when the distributions are either Pareto or log-normal.

G Derivations Underlying Table 1

As in Mrázová and Neary (2013), we give the demand functions from a “firm’s-eye view”;

many of the parameters taken as given by the firm are endogenous in industry and general

equilibrium. For each demand function, we follow a similar approach to that used with

CREMR demands in Sections 3.1 and 4.1: we use the first-order condition to solve for

productivity as a function of either output or price; the definition of sales revenue to solve for
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output or price as a function of sales; and the relationship between markups and elasticities

to solve for either output or price as a function of the markup. Combining yields ϕ(r) and

ϕ(m) as required.

Linear: p(x) = α − βx, α > 0, β > 0. Sales revenue is quadratic in output, r(x) =

αx−βx2, but only the root corresponding to positive marginal revenue, r′(x) = α−2βx > 0,

is admissible. Since maximum output is x = α
2β

, maximum sales revenue is r = α2

4β
, and we

work with sales relative to their maximum: ř ≡ r
r
. Hence output as a function of relative sales

is: x(ř) = α
2β

[
1− (1− ř) 1

2

]
. Equating marginal revenue to marginal cost gives ϕ(x) = 1

α−2βx
.

Finally, the elasticity of demand is ε(x) = α−βx
βx

, so the markup as a function of output is

m(x) = α−βx
α−2βx

. We do not work with the relative markup in this case, since m(x) → ∞ as

x→ x. Inverting m(x) gives x(m) = α
β

m−1
2m−1

.

LES: p(x) = δ
x+γ

, γ > 0, δ > 0. We use the inverse demand function rather than the more

familiar direct one: x(p) = δ
p
− γ. Note that, in monopolistic competition, the second-order

condition requires that γ be positive, so its usual interpretation as (minus) a subsistence

level of consumption is not admissible. Sales revenue is r(x) = δx
x+γ

, attaining its maximum

at r = δ, so we work with relative sales: ř ≡ r
r

= x
x+γ

. Inverting gives: x(ř) = γ ř
1−ř . The

first-order condition yields: ϕ(x) = (x+γ)2

γδ
. Finally, the elasticity of demand is ε(x) = x+γ

x
,

so the markup as a function of output is m(x) = x+γ
γ

; inverting gives x(m) = γ(m− 1).

Translog: x(p) = 1
p

(γ − η log p), γ > 0, η > 0. From the direct demand function,

sales revenue as a function of price is r(p) = γ − η log p, which when inverted gives p(r) =

exp
(
γ−r
η

)
. From the first-order condition, ϕ(p) = x′(p)

r′(p)
= η+γ−η log p

ηp
. Combining this with

p(r) gives the expression for ϕ(r) in Table 1, with: ϕ0 = 1

exp( γη )
. Finally, the elasticity

of demand is ε(p) = η+γ−η log p
γ−η log p

, so the markup as a function of price is m(p) = η+γ−η log p
η

;

inverting gives p(m) = exp
(
η+γ
η
−m

)
.
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H Proofs of KLD Properties

H.1 Express KLD in terms of Elasticities of Densities

First, rewrite the definition of Shannon entropy in (12) as
∫ r
r
udv, where u ≡ log f (r), so

du = f ′(r)
f(r)

dr, and dv ≡ f (r) dr, so v = F (r) + C, where C is an arbitrary constant of

integration. Integrate by parts:

SF = − (1 + C) log f (r) + C log f (r) +

∫ r

r

F (r) + C

r

rf ′(r)

f(r)
dr (37)

Setting C equal to −1 gives equation (16) in the text, expressed in terms of the lower bound

of the distribution, while setting it equal to zero gives an alternative decomposition expressed

in terms of the upper bound:

SF = − log f (r) +

∫ r

r

F (r)

r

rf ′ (r)

f (r)
dr (38)

Repeating this process for the KLD gives in a similar fashion two alternative decompositions,

equation (17) in the text and the following:

DKL
(
F ||F̃

)
= log f (r)− log f̃ (r)−

∫ r

r

F (r)

r

[
rf ′ (r)

f (r)
− rf̃ ′ (r)

f̃ (r)

]
dr (39)

H.2 The Elasticity of Density for a Derived Sales Distribution

Recall from Proposition 1 (i) that f̃ (r) = g (ϕ (r)) dϕ
dr

. Totally differentiating this gives an

expression in terms of elasticities:

rf̃ ′(r)

f̃(r)
=
ϕ(r)g′(ϕ(r))

g(ϕ(r))

rϕ′(r)

ϕ(r)
+
rϕ′′(r)

ϕ′(r)
(40)
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We can relate the second term to the elasticity of marginal revenue with respect to total

revenue, E(r) ≡ rϕ′(r)
ϕ(r)

:

rϕ′′(r)

ϕ′(r)
= E(r)− 1 +

rE ′(r)

E(r)
(41)

(See Lemma 5 in Mrázová and Neary (2013).) Substituting into (40), the density elasticity

of the derived sales distribution F̃ (r) can be written in terms of underlying elasticities as

follows:

rf̃ ′(r)

f̃(r)
=

[
ϕ(r)g′(ϕ(r))

g(ϕ(r))
+ 1

]
E(r)− 1 +

rE ′(r)

E(r)
(42)

Substituting into (17) gives equation (19) in the text. When G(ϕ) is Pareto, G(ϕ) = 1 −(
ϕ
ϕ

)−k
, and the elasticity of density is ϕg′(ϕ)

g(ϕ)
= −(1+k). Hence (42) simplifies to the following:

rf̃ ′(r)

f̃(r)
= −[kE(r) + 1] +

rE ′(r)

E(r)
(43)

H.3 The KLD with Pareto and CREMR

We wish to derive the properties of the KLD in equation (21). The first derivative of this

with respect to σ is: dDKL
dσ

= (σ − 1)−1
(
1− ñ

n

)
= (σ − 1)−2

(
σ − k+n

n

)
. This is positive,

and so DKL is increasing, if and only if σ ≥ k+n
n

. The second derivative is: d2DKL
dσ2 =

−(σ − 1)−2
(
1− 2 ñ

n

)
= −(σ − 1)−3

(
σ − 2k+n

n

)
. This is negative, and so DKL is concave, if

and only if σ ≥ 2k+n
n

.

I Bootstrapped Confidence Intervals for KLD

To calculate the confidence intervals given in Table 2, we resampled one hundred times from

the observations and, for each sample, calculated the KLD for each of the six combinations

of assumptions: Pareto or log-normal distributions of productivity, and CREMR, linear or

translog demands. Each of the histograms in Figure 11 shows the frequency distribution

of KLD values for one of these combinations, while the smooth curve is a Gaussian kernel
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Figure 11: Frequency and Kernel Distributions of Bootstrapped KLD Values

density fitted to the histogram. Finally, we calculated 95% confidence intervals from the

histograms. It is clear from the figures that the sampled KLD values are never symmetric,

and in two cases are strongly bimodal, so the calculated confidence intervals should be viewed

as approximate only. Nevertheless, they clearly imply that the true underlying distributions

do not overlap.
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