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Abstract

They should reduce their equity position. We study the portfolio problem of a
long-horizon investor that allocates between a risk-less and a risky asset in an envi-
ronment where both volatility and expected returns are time-varying. We find that
investors, regardless of their horizon, should substantially decrease risk exposure af-
ter an increase in volatility. Ignoring variation in volatility leads to large utility losses
(on the order of 35% of lifetime utility). The utility benefits of volatility timing are
larger than those coming from expected return timing (i.e., from return predictability)
for all investment horizons we consider, particularly when parameter uncertainty is
taken into account. We approximate the optimal volatility timing portfolio and find
that a simple two fund strategy holds: all investors choose constant weights on a
buy-and-hold portfolio and a volatility timing portfolio that scales the risky-asset ex-
posure by the inverse of expected variance. We then show robustness to cases where
the degree of mean-reversion in stock returns co-moves with volatility over time.
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Stock market volatility is highly variable and easily forecastable, yet it is a conven-

tional view among many practitioners and academics that investors should sit tight and

not sell after increases in volatility which typically follow market downturns. Further-

more, it is often argued that long-term investors should view these high volatility periods

as unique buying opportunities. In this paper, we investigate this conventional view.

Specifically, we answer two questions: (1) how much volatility timing should investors

do, if any, and (2) what are the utility benefits of volatility timing? Our approach is to

study the portfolio problem of a long-lived investor that allocates her wealth between a

risk-less and a risky asset in an environment where both volatility and expected returns

are time-varying. We then provide comprehensive and quantitative answers to these

questions and show how our answers depend on the investor’s horizon and their risk

aversion. Importantly, our analysis also takes into account that investors’ face parameter

uncertainty regarding the dynamics of volatility and expected returns.

Our main finding is that investors should substantially decrease risk exposure after an

increase in volatility and that ignoring variation in volatility leads to large utility losses.

The benefits of volatility timing are on the order of 35% of lifetime utility for our pre-

ferred parameterization of an investor with risk aversion of 5 and a 20 year horizon.

These benefits are significantly larger than those coming from expected return timing

(i.e., from return predictability), particularly when parameter uncertainty is taken into

account. We approximate the optimal volatility timing portfolio and find that its depen-

dence on volatility is very simple: all investors, regardless of horizon, will choose fixed

weights on a buy-and-hold portfolio that invests a constant amount in the risky-asset,

and a volatility managed portfolio that scales the risky-asset exposure by the inverse of

expected variance 1/σ2
t . Further, we show that the weight on the volatility timing port-

folio is independent of the investors’ horizon in our baseline results. In contrast, the

weight on the buy-and-hold portfolio depends strongly on horizon and the amount of

mean reversion investors’ perceive in stock returns, but doesn’t depend on the dynamics

of volatility. Thus, despite an apparently complex numerical exercise, our solution turns

out to be simple and intuitive.

We begin our analysis by estimating a rich model for the dynamics of excess stock
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returns using simulated method of moments (SMM) and the last 90 years of stock return

data. Our process for returns allows for time-variation in both volatility and expected

returns. Allowing for both features is essential to capture the common argument that high

volatility periods are “buying opportunities” for long horizon investors. It also enables

our stochastic model for returns to fit the most salient features of the US data, i.e. that both

expected returns and volatility vary significantly over time (Campbell and Shiller, 1988;

Schwert, 1989) but are not strongly related to each other at short horizons, despite the fact

that increases in volatility are associated with market downturns (Glosten et al., 1993).

Finally, it allows us to compare the utility benefits from timing variation in volatility to the

long literature on the utility benefits of timing expected returns (for example, Campbell

and Viceira (1999), Barberis (2000)). While the benefits from expected return timing have

been studied extensively, the potential benefits from volatility timing have received much

less attention. In our analysis, we also use both the parameter point estimates and the

associated estimation uncertainty to consider a range of parameters governing the return

process that are likely given the data.

Given this return process, we study the portfolio problem of an infinite-lived investor

with recursive preferences (Epstein and Zin, 1989) with unit EIS. These preferences allow

us to conveniently control the horizon of the investor, i.e. the timing of her consumption,

while at the same time it also keeps the environment stationary and not time dependent.

These preferences should accurately capture individuals and institutions that target a con-

stant expenditure share of their wealth (e.g., university endowments, sovereign wealth

funds, or pension funds). Given investor preferences and the return process, we then

quantitatively study how the optimal portfolio responds to volatility.

As is typical in the portfolio choice literature (Merton, 1971) our optimal portfolio

weight in the risky asset takes the form

(port f olio weight)t = (myopic demand)t + (hedging demand)t, (1)

where the myopic demand, µt/γσ2
t , is equal to the optimal portfolio weight of a short

horizon, log utility, or mean-variance investor.

In light of this equation, our quantitative questions are (1) ∂(port f olio weight)/∂σ2:
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what is the optimal response to a change in volatility?, and (2) what are the utility costs as-

sociated with ignoring variation in volatility (i.e., what are the costs of a portfolio strategy

that sets ∂(port f olio weight)/∂σ2 = 0)?

The effect of volatility on the myopic, mean-variance demand term is strongly nega-

tive: in the data increases in variance are not offset by proportional increases in expected

returns, so an increase in variance lowers the myopic demand. Our estimation finds that

expected returns do rise by small amounts after an increase in volatility, but this is not

nearly enough to keep the term µt/σ2
t from falling; that is, the elasticity of this term with

respect to volatility is near -1. Moreira and Muir (2016) empirically show that volatility

timing can increase Sharpe ratios through this channel for a wide range of factors. Thus,

short horizon investors or investors with log utility, for which the hedging demand term

is absent, should sell in response to an increase in volatility.

The second term, the hedging demand term, relates primarily to the amount of mean-

reversion in stock returns and can be quantitatively large on average, particularly for

longer investment horizons, when risk aversion is greater than 1 – a result which has been

extensively analyzed in the literature (e.g., Campbell and Viceira (1999), Brandt (1999)

Barberis (2000) and Wachter (2002)).1 However, there is little work on how this term may

change in response to changes in volatility. Thus, rather than focusing on the level of the

hedging demand, we are interested in its dynamics and in particular in how the hedging

demand term changes with volatility: ∂(hedging demand)t/∂σ2
t .

In fact, there is a widespread consensus among practitioners and academics that vari-

ation in the hedging demand term is such that long-term oriented investors should not

volatility time at all. For example, Cochrane (2008a), Buffett (2008), and more recently

Vanguard –a leading mutual fund company– argue that long-term oriented investors are

better off ignoring movements in volatility.2 The argument is that, since volatility is typi-

cally associated with market downturns, and downturns are attractive buying opportuni-

ties, it is not wise to sell when volatility spikes. Further, and more importantly, because of

1There is also a hedging demand term that relates to volatility shocks, but quantitatively this turns out
to be small (Chacko and Viceira, 2005).

2For the Vanguard reference see “What to do during market volatility? Perhaps nothing.” See
https://personal.vanguard.com/us/insights/article/market-volatility-082015. In the appendix,
we reference similar advice from Fidelity, the New York Times, and many other sources.
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mean-reversion in stock returns, investors with long horizons should not view increases

in volatility as an increase in risk – the idea is that an increase in volatility makes stock

prices more uncertain tomorrow, but not more uncertain over long horizons that these

investors care about. Thus, the argument is that periods of high volatility may be much

more attractive to long horizon investors relative to short horizon investors through the

hedging demand term.

We find that if the share of mean-reverting shocks is constant (i.e., the volatility of

mean-reverting shocks increases proportionally to total return volatility), as it is typically

assumed in the literature, then the hedging demand is essentially constant, meaning it

does not change with volatility. Specifically, we show that a simple strategy of the form

w∗ = ω0 +
1
γ

µt
σ2

t
achieves the same utility as the fully optimal strategy, so that the optimal

portfolio can be approximated very accurately by the myopic portfolio plus a constant

weight investment in the buy-and-hold portfolio. Thus, contrary to conventional wis-

dom, investors with different horizons should reduce their dollar investment in equity by

exactly the same amount in response to changes in the risk-return trade-off. This affine

form for the portfolio strategy holds for a wide range of parameters that are likely given

the data. Our answer to question (1) is thus unambiguous. A long-lived investor should

volatility time quite aggressively. It is worth emphasizing that, though our rich process

for return dynamics requires a numerical solution for the optimal portfolio, the optimal

portfolio is almost perfectly approximated with a simple, practical, and intuitive portfolio

rule. This differs from Campbell and Viceira (1999) who first approximate the portfolio

problem itself through log-linearization and then study an analytical solution.

We next evaluate the utility benefits from volatility timing, where we define a volatil-

ity timing strategy as a strategy that only uses conditional information on volatility, but

not expected returns. Specifically, we restrict ourselves to constant weight combinations

of the buy-and-hold portfolio and the volatility managed portfolio from Moreira and

Muir (2016), i.e. strategies of the form wσ = ω0 + ω1
1
γ

µ

σ2
t

where µ sets the expected re-

turn to its unconditional mean. Notice, this strategy is exactly the fully optimal strategy

described before but does not time conditional expected returns. We compare the utility

of this strategy to the fully optimal strategy, w∗, that conditions on both expected returns
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and volatility, and to the optimal buy-and-hold strategy that chooses a constant weight in

the risky-asset, w.

We find very large gains from volatility timing. The increase in utility from volatility

timing relative to a buy-and-hold strategy ranges from 20% to 80% with our point esti-

mate implying gains close to 35%. These gains are about 60% of the total gain of switching

from the buy-and-hold strategy w to the fully optimal strategy w∗ (i.e., a strategy that also

conditions on expected returns as well as volatility). Thus, ignoring variation in volatility

is very costly, even for long horizon investors, and the benefits to timing volatility are

significantly larger than the benefits to timing expected returns. We then reevaluate these

gains taking into account the parameter uncertainty implied by our estimation procedure

for return dynamics. Specifically, we use the uncertainty in our estimation to recover the

probability that inaction is the optimal response to volatility variation and find that this

probability is close to zero. We then use the estimation uncertainty to evaluate the ro-

bustness of the gains from volatility timing. We find that the the gains vary as function of

the parameters but are extremely likely to be positive and large. In contrast, we find that

the gains from expected return timing are much more sensitive to parameter uncertainty,

consistent with Barberis (2000) and Pástor and Stambaugh (2012) among others.

We then relax the standard assumption that the share of mean-reverting shocks is

constant and show that variation in the composition of volatility leads to variation in the

hedging demand term. This volatility composition channel could act as a counteracting

force to the variation in the myopic demand. This happens when increases in volatility

are associated with a larger share of mean-reverting shocks; that is, prices become more

volatile only in the short term but not more volatile in the long term because of an in-

creased degree of mean-reversion. Both Cochrane (2008a) and Buffett (2008) argued that

the huge spike in volatility in the fall of 2008 was mostly about “short-term volatility”.3

Motivated by this, we complement our analysis by allowing the composition of volatil-

ity shocks to be time-varying. In particular, allowing for a positive correlation between

3“And what about volatility?(...) expected returns would need to rise from 7% per year to 78% per year
to justify a 50/50 allocation with 50% volatility. (...) The answer to this paradox is that the standard formula
is wrong. (...) Stocks act a lot like long-term bonds – (...)If bond prices go down more, bond yields and
long-run returns will rise just enough that you face no long-run risk.(...)the same logic explains why you
can ignore “short-run” volatility in stock markets.”(Cochrane, 2008a)
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volatility and the share of mean-reverting shocks allows us to study the notion that in-

vestors should ignore “short-term volatility.”

To explore this case, we set the volatility of permanent shocks to returns (sometimes

labeled “cash flow shocks”) to be constant. We then have all time-variation in return

volatility be driven by the volatility of transitory or mean-reverting shocks (labeled “dis-

count rate shocks”). Thus, when volatility is very low, returns are entirely driven by

permanent shocks, i.e., there is no mean-reversion in returns and no return predictability.

Then both long term and short term investors will choose the same allocation to stocks

(Samuelson, 1969) – the hedging demand term will be zero. However, in high volatility

times, stock returns become strongly mean-reverting because the volatility of discount

rate shocks increases. In these periods, a short term investor sees the increase in volatility

and wants to sell. The long term investor weighs two effects: the myopic desire to sell,

but also the large hedging demand that now arises from mean-reversion. Thus, the long

term investor will react less strongly to the increase in volatility in this case, because it is

accompanied by an increase in the degree of mean-reversion in returns. Here, hedging

demands are no longer constant, but are positively correlated with volatility.

Empirically, there is no evidence on how the share of mean-reverting shocks varies

with volatility. Importantly, even in the case of extreme co-movement described above,

when volatility variation is completely driven by variation in the volatility of mean-

reverting shocks, we show that long-term investors still find it optimal to time volatility.

The key for this result is that in the data mean reversion takes many years, making even

mean-reverting shocks risky for realistic investment horizons.4 Specifically, we find that

now the optimal portfolio has a weight on the volatility timing portfolio that is 30% lower

than before, meaning investors time volatility somewhat less aggressively, and we find

that volatility timing can capture utility gains of around 20% relative to a buy-and-hold

strategy.

Our results are important for investors such as pension funds, endowments, sovereign

wealth funds, individuals saving for retirement, or other long-term investors as they pro-

4Sharpe ratios for stocks increase only slowly with investment horizon (Poterba and Summers, 1988),
and valuation ratios that predict returns are highly persistent with auto-correlation close to one (Campbell
and Shiller, 1988).
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vide guidance in how to optimally respond to volatility. To the best of our knowledge

this paper is the first to directly speak to the consensus view that long term investors

should ignore volatility variation, and is the first to study the portfolio choice response

to volatility in the presence of expected return shocks. We also highlight how variation

in the composition of volatility shocks could potentially make long-horizon investors op-

timally ignore variation in volatility. Finally, we argue that our results hold up for other

preference specifications and are likely to hold up in settings with non-financial income.

Our results are also important because they further sharpen the puzzle documented in

Moreira and Muir (2016). That paper finds that short-term investors should sell when

volatility increases. The results in this paper show that a longer investment horizon does

not qualitatively change the desire to sell after an increase in volatility. Thus, horizon

effects cannot explain the weak equilibrium relationship between expected returns and

volatility Moreira and Muir (2016) document.

The paper proceeds as follows. Section 2 describes the process for returns and investor

preferences. Section 3 analyzes the optimal portfolio and associated utility gains from

volatility timing. Section 4 describes our parameter estimation in more detail and studies

robustness of our results to parameter uncertainty. Section 5 contains extensions to our

main results. Section 6 concludes.

1. Literature Review

Our paper builds on the prolific literature on long-term asset allocation. Starting with the

seminal work of Samuelson (1969) and Merton (1971), this literature has studied carefully

the implications of mean-reversion for portfolio choice. Campbell and Viceira (1999),

Barberis (2000) and Wachter (2002) study the optimal portfolio problem in the presence

of time-varying expected returns. The key result is that the presence of mean-reversion

in market returns imply investors with longer horizons should invest more in the stock

market. An important caveat is that parameter uncertainty can attenuate these horizon

effects (see Barberis (2000) and Xia (2001)). To a large extent, the results in this literature

have percolated into practice and non-academic discourse. The view that the stock market
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is safer over the long-term is now standard in the money management industry. Also

in line with this literature is the view that market dips are good buying opportunities

(Campbell and Viceira, 1999).

Much less studied, but we think equally important, is time-variation in second mo-

ments. Chacko and Viceira (2005) and Liu (2007) study variation in volatility and Buraschi

et al. (2010) study variation in correlations. For realistic calibrations, this literature finds

only modest deviations from myopic behavior. Thus, the optimal portfolio is very close to

the simple myopic weight. The absence of large hedging demands suggests that volatility

timing as in Moreira and Muir (2016) is desirable and investment horizon effects are not

first order. However, these papers abstract from variation in expected returns. Thus, they

cannot speak to the conventional wisdom that volatility spikes are mostly “buying oppor-

tunities” or that return volatility is mostly due to transitory shocks that mean-revert over

the long run. It is precisely this gap that this paper fills. Consistent with the intuition be-

hind the traditional view, we show that there is an important interaction between volatil-

ity and expected return variation through the volatility composition channel. However,

we show that for parameters consistent with the data, this mechanism is not large enough

to offset the variation in the myopic demand. Related papers that account for both volatil-

ity and expected returns include Collin-Dufresne and Lochstoer (2016) and Johannes et al.

(2014). Collin-Dufresne and Lochstoer (2016) have a time-varying risk-return relationship

in a general equilibrium setting and point out that long-terms investors only want to buy

at “low prices” if effective risk-aversion, rather than risk itself, has increased in order to

cause the fall in prices. Johannes et al. (2014) solve a Bayesian problem that accounts for

time-varying volatility when forming out of sample expected return forecasts.

Finally, we build on the results in Moreira and Muir (2016) who study volatility timing

in the context of a mean-variance investor who simply maximizes unconditional Sharpe

ratios. This paper generalizes those results by allowing for much more general prefer-

ences, and goes well beyond the results in that paper by solving for the optimal portfo-

lio, considering parameter uncertainty, and by studying the interaction of volatility and

mean-reversion in returns.
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2. The portfolio problem

We study the problem of a long-horizon investor and investigate how much they should

adjust their portfolio to changes in volatility.

2.1 Investment opportunity set

We assume there is a riskless bond that pays a constant interest rate r, and a risky asset

St, with dynamics given by

dSt

St
= (r + µt)dt + σtdBS

t , (2)

where St is the value of a portfolio fully invested in the asset and that reinvests all divi-

dends. We model expected (excess) returns as an auto-regressive process with stochastic

volatility,

dµt = κµ(µ− µt)dt + σµσtdBµ
t , (3)

Notice that this means that the volatility of shocks to expected returns scale up and down

proportionally with shocks to realized returns. In later sections, we consider cases where

we break this proportionality. We write log volatility f (σ2
t ) = ln

(
σ2

t − σ2) as an auto-

regressive process with constant volatility,

d f (σ2
t ) = κσ

(
f − f (σ2

t )
)

dt + νσdBσ
t , (4)

where the parameter σ2 controls the lower bound of the volatility process. This lower

bound is important in eliminating arbitrage opportunities (i.e., infinite Sharpe ratios).

Our assumption about a lognormal volatility process should not be seen as crucial, al-

though it allows for easier solutions in our numerical exercise. Results using a square

root process (Heston, 1993; Cox et al., 1985) for volatility along the lines of Chacko and

Viceira (2005) are similar.

Shocks to realized returns, expected returns, and volatility, are thus captured by the
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Brownian motions dBS
t , dBµ

t , and dBσ
t . We now specify the correlation of these shocks.

First, we impose

Et[dBµ
t dBS

t ] = −
σµ

κµ
, (5)

Note that the correlation between between expected returns and realized returns is

not a free parameter. The correlation −σµ

κµ
implies that shocks to expected returns induce

an immediate change in prices so that in the long run, it exactly offsets expected return

innovations, i.e. it imposes that expected return shocks have no effect on the long-run

value of the asset. We make this choice to emphasize that we want to consider transitory

shocks to returns that have no long run impact, however, we also note that if one freely

estimates this correlation in the data, one recovers roughly this value (Cochrane, 2008b)

– hence it is not an overly restrictive assumption. This correlation also defines the share

of “discount rate shocks” that drive returns – that is, when the correlation is 1, then all

variation in returns is driven by discount rate shocks, and when it is zero, expected re-

turn shocks play no role. We label this correlation −αµ. We will thus write σµ = αµκµ

and focus on estimating αµ and κµ in the data as these parameters have direct economic

interpretations as the share and persistence of discount rate shocks.

We next specify parameters the remaining correlations

Et[dBµ
t dBσ

t ] = ρσ,µ, (6)

Et[dBS
t dBσ

t ] = −ρσ,µαµ − ρσ,S

√
1− α2

µ, (7)

The correlation between volatility and expected and realized returns are free parame-

ters which must satisfy ρ2
σ,S + ρ2

σ,µ ≤ 1.5 Finally, we set the unconditional mean of the log

volatility process f (σ2
t ) to f = ln(σ2 − σ2)− ν2

σ
2κσ

.

This parametrization leads to a natural interpretation of the parameters: µ is the av-

erage expected excess return of the risky asset, σ2 is the average conditional variance of

5We specify these correlations as constant. In particular, we don’t consider time-variation in the corre-
lation between volatility and expected returns. See Collin-Dufresne and Lochstoer (2016) for a case where
this time-variation plays a role in a general equilibrium model for long term portfolio choice.
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returns, ν2
σ is the conditional variance of log variance, ρσ,µ controls the covariance vari-

ance and discount rate shocks, ρσ,S controls the covariance between variance and cash

flow shocks (return innovations uncorrelated to innovation is discount rates). Through-

out, we adopt the language from the literature (Campbell and Shiller, 1988; Campbell,

1996; Campbell and Vuolteenaho, 2004), using “cash flow shocks” to denote permanent

shocks to returns that are uncorrelated to shocks that affect expected returns. Next, αµ

denotes the discount rate share of return variation.

The stochastic environment described by (2) and (3) allows for variation in volatil-

ity; variation expected returns (i.e., mean-reversion in returns); and flexible time-series

relation between expected returns and volatility (ρσ,µ). The latter governs the risk-return

trade-off relationship between variance and the risk premium. In the appendix, we dis-

cuss even more sophisticated and flexible ways of modeling this relationship. In particu-

lar, we discuss allowing expected returns to more directly depend on volatility by having

two frequencies for expected returns: a shorter frequency component that is related to

volatility, and a slower moving component (specifically, we write µt = xt + bσ2
t where b

governs the risk-return relation and x and σ2 are allowed to move at different frequen-

cies). It turns out, however, that because the risk-return relation is empirically weak, we

do not lose much by incorporating a less rich relationship between expected returns and

variance. In fact, we will show in our estimation that the current model is able to cap-

ture the essential empirical moments relating risk and return in the time-series, meaning

our modeling of the risk-return tradeoff is appropriate. Finally, in later we also allow for

variation in the composition of volatility shocks (that is, we consider the case where αµ

is not constant, but varies over time). This will allow for variation in the share of return

volatility due to discount-rate shocks.

Together, these ingredients are novel and essential to study the optimal response to

volatility variation. Earlier work on portfolio choice has studied expected return varia-

tion, volatility variation, or volatility variation with a constant risk-return trade-off. Ex-

amples of work that study volatility timing in a dynamic environment are Chacko and

Viceira (2005) and Liu (2007). But these papers do not study the interaction of discount

rate and volatility shocks which are the basis for the conventional view that long horizon
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investors should ignore volatility variation.

2.2 Estimation of parameters

We estimate the model using Simulated Method of Moments (Duffie and Singleton, 1993)

and use the estimated parameters in Table 1 to discuss the model implications for portfo-

lio choice.

Our goal is for the model to match the key dynamic properties of US stock returns

documented in the empirical finance literature. With that in mind, we use the US mar-

ket excess return from 1926-2015 from Ken French (ultimately, the CRSP value-weighted

portfolio). We use daily data to construct a monthly series of realized volatility, RV, which

will use to match the properties of volatility in the model. Specifically, we will simulate

the model at daily frequency and compute realized volatility in the same manner as in

the data – thus the true volatility process is unobserved. We then aggregate to monthly

frequency in the data and model to match all moments. Finally, we bring in additional

monthly data on the US dividend price ratio from Robert Shiller to match moments re-

lated to expected returns and return predictability.

We first calibrate the real riskless rate (r = 1%) and the market expected excess returns

(µ = 5%), which reflect the U.S. experience in the post-war sample. We also calibrate the

volatility lower bound to (σ = 7%) based on the data.6

We estimate the remaining seven parameters. Let θ = (σ2, νσ, κσ, αµ, κµ, ρσ,µ, ρσ,S) be

the vector of parameters to be estimated. Our SMM estimator is given by

θ̂ = arg min
θ

(g(θ)− gT)
′S(θ)(g(θ)− gT), (8)

where gT is a set of target moments in the data and g(θ) is the vector of moments in the

model for parameters θ. We use an identity weighting matrix S in our main results.

We choose the vector of target moments gT to be informative about the parameters θ.

Our target moments are: (1) average realized monthly variance, (2) the auto-correlation

6Here we use that the minimum of the VIX from 1990-2015 is 10%, so our 7% for the longer 90 year
sample is reasonable. Note we use VIX to calibrate this number rather than realized volatility, because
realized volatility is noisy and hence would not properly measure a lower bound for true volatility.
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coefficient of the logarithm of realized monthly variance, (3) the standard deviation of

innovations to log realized variance based on an AR(1) forecasting model, (4) the covari-

ance between volatility innovations and realized returns, (5) the alpha of the volatility

managed market portfolio on the market portfolio (see (Moreira and Muir, 2016)), (6-7)

the R-squared of a predictability regression of one month and five year-ahead returns on

the price-dividend ratio. The the alpha of the volatility managed portfolio is defined by

the regression c
RV2

t
Rt+1 = α + βRt+1 + εt+1 where the alpha measures whether one can

increase Sharpe ratios through volatility timing. Moreira and Muir (2016) show this alpha

measures the strength of the risk-return tradeoff over time, but is a sharper measure than

standard forecasting regressions.

While there is not an exact one-to-one mapping between moments and parameters,

the link between parameters and moments is intuitive, and the moments are very infor-

mative about the parameters of interest. Average realized monthly variance identifies

σ2. The auto-correlation of volatility and the standard deviation of volatility innovations

identify νσ and κσ. These moments imply that the estimated volatility process is highly

volatile but not very persistent. The return predictability R-squares at one month and five

year horizons identify αµ, the discount rate share, and κµ, the volatility and persistence of

discount-rate shocks. Intuitively, the one-month R-square implies the share of discount-

rate shocks must be large and the fact that five-year R-squares are substantially larger

implies that expected returns must be highly persistent. The covariance between realized

returns and volatility innovations and the volatility managed alpha identify ρσ,µ and ρσ,S.

In the data, the large negative correlation between volatility innovations and realized re-

turns implies that ρσ,µ + ρσ,S is close to one. The alpha of the volatility managed portfolio

disciplines the extent to which this co-movement is due to a correlation between discount

rates and volatility shocks. In the data, a portfolio that takes less risk when volatility is

high generates a large Sharpe ratio, implying that the co-movement between volatility

and discount rate shocks is not strong (see Moreira and Muir (2016)).

Table 1 reports targeted moments in the model and in the data. Overall the model

matches the data extremely well and matches the key empirical facts on the dynamics of

stock returns documented in the finance literature. In particular, the estimated volatil-
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ity process is highly volatile, so there substantial time-variation in conditional volatility

(Schwert, 1989). Expected returns are quite variable, i.e. discount-rate volatility is an

important component of stock market volatility (Campbell and Shiller, 1988), and these

discount rate shocks are strongly correlated with volatility shocks (French et al., 1987).

That is, increases in volatility are associated with low realized returns and increases in

expected returns. However, this correlation does little to dampen variation in the risk-

return trade-off because shocks to expected returns are much more persistent than shocks

to volatility, and also the correlation between volatility and expected returns, while large,

is not equal to 1. Thus, the model is able to produce positive volatility managed alphas

consistent with Moreira and Muir (2016) because the model, like the data, does not fea-

ture an overly strong risk return tradeoff.7 That is, consistent with a long literature, there

is some risk-return tradeoff in the data but it appears to be fairly weak (French et al., 1987;

Glosten et al., 1993; Lettau and Ludvigson, 2003). Thus, taken together, our process for

returns matches the key empirical features about the properties of expected returns, con-

ditional volatility, and realized returns documented by a long literature in asset pricing.

We also report bootstrapped standard errors for the estimated parameters in Table

1. That is, we reestimate the model using many 90 year simulations and reestimate pa-

rameters to have a sense of parameter variation. We report standard deviations across

parameter estimates obtained from moment matching individual simulations. Consis-

tent with the large literature on market timing, the dynamics of expected returns is the

least well estimated aspect of our model. This estimation uncertainty will play a role in

later sections where we consider that the investor may not know the true parameters in

making his portfolio decision.

2.3 Preferences and optimization problem

Investors preferences are described by Epstein and Zin (1989) utility, a generalization of

the more standard CRRA preferences that separates risk aversion from elasticity of in-

7We undershoot slightly the volatility managed alpha because we calibrate the equity premium to 5%,
which is lower than the in sample equity premium (7.8%). In unreported results we verify that our model
generates a 5% volatility managed alpha if we were to calibrate the model to the in sample equity premium.
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tertemporal substitution. We adopt the Duffie and Epstein (1992) continuous time imple-

mentation and focus on the case of constant elasticity of substitution:

Jt = Et

[∫ ∞

t
f (Cs, Js)ds

]
, (9)

where f (Ct, Jt) is an aggregator of current consumption and continuation utility that takes

the form

f (C, J) = h(1− γ)J ×
[

log(C)− log((1− γ)J)
1− γ

]
, (10)

where h is rate of time preference, γ the coefficient of relative risk aversion. The unit

elasticity of substitution is convenient for our purposes because it allow us to directly

vary the investor horizon in a way that is independent of the attractiveness of the invest-

ment opportunity set. Specifically, 1− exp(−h) is the share of investors wealth consumed

within one year. Thus 1/h can be thought as the horizon of the investor. In Section 5.1 we

consider alternative preference specifications.

The investor maximizes utility subject to his intertemporal budget constraint (Eq. 11

below ) and the evolution of state variables (Eq. (3) ). Let Wt denote the investor wealth

and wt the allocation to the risky asset, then the budget constraint can be written as,

dWt

Wt
= wt

(
dSt

St
− rdt

)
+ rdt− Ct

Wt
dt. (11)

3. Analysis

Our aim is to quantify the optimal amount of volatility timing for a realistic portfolio

problem in which an investor decides how much to invest in the market portfolio and in

a riskless asset. We solve for the investor value function numerically and study how the

optimal portfolio should respond to changes in volatility. Our analysis is quantitative in

nature and it is therefore important that our model for returns described in Eqs. (2)-(3) fit

the dynamics of returns in the data.

In the baseline case we study the problem of an investor with a 20 year horizon (h =
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1/20) and risk-aversion of 5, and we investigate the sensitivity of our results to these

parameter choices.

3.1 Solution

The optimization problem has three state variables: the investor’s wealth plus the invest-

ment opportunity set state variables µt, σt.

The Bellman equation for this problem is standard

0 = sup
w,C
{ f (Ct, Jt) + [wtµtWt + rWt − Ct] JW +

1
2

w2
t W2

t JWWσ2
t (12)

− wtWt

(
JWµαµσ2

t + JWσσt

(
αµρσ,µ +

√
1− α2

µρσ,S

))
(13)

+ Jµκµ(µ− µt) + Jσκσ( f − f (σ2
t )) +

1
2

(
Jµµα2

µκ2
µσ2

t + Jσσν2
σ + 2Jµσρσ,µνσσtαµκµ

)
} ,

where we omit the argument on Jt = J(Wt, µt, σt) for convenience. It is well known that

the value function for this type of problem is of the form J(W, Z) = W1−γ

1−γ eg(µt,σt). Plugging

this form in (12) we obtain that the optimal consumption to wealth ratio is constant, Ct =

hWt and the optimal portfolio weight satisfies

w∗(µt, σ2
t ) = wm(µt, σ2

t ) + wh(µt, σ2
t ), (14)

where the first term in (14) is the myopic portfolio weight

wm(µt, σ2
t ) =

1
γ

µt
σ2

t
. (15)

It calls the investor to scale up his position on the risky asset according to the strength

of the risk-return trade-off and her coefficient of relative risk aversion. This is also the

optimal portfolio weight of a short-horizon mean-variance investor (or log-investor). The

additional term in (14) is a hedging demand (Merton, 1971) which is given by

wh(µt, σ2
t ) = − 1

γ
gµαµ −

1
γ

gσ

(
αµρσ,µ +

√
1− α2

µρσ,S

)
σt

. (16)
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The hedging demand wh arises because a long-horizon investor is concerned with

the overall distribution of her consumption and not only the short-term dynamics of her

wealth. Changes in the risky asset expected returns or volatility lead to changes in the

distribution of the investor wealth, resulting in a demand for assets that hedge these

changes. To the extent that the risky asset is correlated with changes in the opportunity

set , this demand for hedging impacts the investor’s position in the risky asset.

This hedging effect means that a long-horizon investor might behave very differently

from a short-term oriented investor. An increase in volatility might generate an increase

in the hedging demand that is enough to completely offset the reduction in exposure due

to the myopic demand– i.e. it might be that long-horizon investors should just ignore

time-variation in volatility, in line with the argument articulated in Cochrane (2008a).8

The empirical fact that expected returns increase after low return realizations, dBµdBs <

0, makes investment in the risky asset a natural investment hedge for changes in expected

returns. This effect has been studied extensively in the literature (e.g. Campbell and Vi-

ceira (1999), Barberis (2000), and Wachter (2002)), which has shown that when γ > 1, this

hedging demand leads a long-horizon investor to have a larger average position in the

risky asset.

A similar hedging demand arises due to changes in volatility, though with the op-

posite sign. The fact that increases in volatility tend to be associated with low return

realizations also implies that the risky asset co-moves with the investment opportunity

set. Work by Chacko and Viceira (2005) and more recently Buraschi et al. (2010) show

that this effect tends to be small for realistic calibrations, which we confirm here for real-

istic parameters. Specifically, when γ > 1 the hedging demand due to volatility pushes

investors to hold slightly smaller positions in the risky asset.

The direction of these hedging demands follows from the interaction between changes

in the Sharpe ratio and the coefficient of relative risk-aversion. An investor that is more

8“And what about volatility?(...) if you were happy with a 50/50 portfolio with an expected return of
7% and 15% volatility , 50% volatility means you should hold only 4.5% of your portfolio in stocks! (...)
expected returns would need to rise from 7% per year to 78% per year to justify a 50/50 allocation with 50%
volatility. (...) The answer to this paradox is that the standard formula is wrong. (...) Stocks act a lot like
long-term bonds – (...)If bond prices go down more, bond yields and long-run returns will rise just enough
that you face no long-run risk.(...)the same logic explains why you can ignore ”short-run” volatility in stock
markets.”(Cochrane, 2008a)
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conservative than a log investor (γ > 1) wants to transfer resources from states where

the opportunity set is better to states where it is worse. Because expected and realized

returns are negatively correlated, a positive tilt towards the risky asset implies her wealth

increases following reduction in the Sharpe ratio due to a reduction in expected returns.

Symmetrically, because volatility and realized returns are negatively related, a negative tilt

towards the risky asset implies her wealth increases following a reduction in the Sharpe

ratio due to an increase in volatility.

Investment horizon, together with the persistence of the state variables (κµ, κσ), shapes

the strength of the hedging demand through the sensitivity of the value function to changes

in the state variables (gµ, gσ). Intuitively, persistent changes to the state impact the in-

vestment opportunity set for longer, and this impact is larger for investors with a longer

horizon, which are naturally more exposed to persistent changes in the opportunity set.

As a result the value function is typically more sensitive to the state variables and the

resulting hedging demands are larger for investors with longer horizons. Here the unit

IES is particularly convenient as the patience parameter h directly controls the effective

horizon of the investor, i.e. the timing of their consumption.

We use projection methods to solve for g(µt, σt). See Appendix for details.

3.2 Optimal portfolios

It is illuminating to discuss our results by contrasting the optimal choices of long and

short-term investors. Because we are especially interested in how investors should re-

spond to variation in volatility, we first represent our results in terms of an Impulse Re-

sponse Function (IRF). In the top panels of Figure 1 we start by showing the response of

variance and expected returns to a one standard deviation shock to variance, and then

show how long and short-term investors respond.

Expected returns go up in response to a volatility shock, though quantitatively this in-

crease is small. This is due to the high correlation between realized returns and volatility

innovations present in the data. Thus, a innovation in volatility is correlated with inno-

vations in expected returns. Nevertheless, the myopic and the optimal portfolio go down

sharply and in parallel. This means that two investors with the same risk-aversion but
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different horizons will reduce the fraction of their wealth allocated to stocks by exactly

the same amount. In this sense, horizon has no impact on how investors should respond

to changes in volatility.

There are however large level differences across portfolios. The long term investors

invests on average a much higher fraction of their wealth in stocks. Level differences

across the optimal and the myopic portfolio are shown in the level of the flat yellow line,

which plots wh(µt, σ2
t ) = w∗(µt, σ2

t ) − wm(µt, σ2
t ) normalized by the steady state long-

term portfolio w∗(µ, σ2). The long-term investor has a risk exposure that is about 20%

larger than the myopic investors in the steady state, but this difference–as fraction of the

risky portfolio share– grows large as volatility goes up and the myopic weight goes down.

The flat yellow line implies that the hedging demand is, at least locally, not related to

volatility. The hedging demand term drives a difference between short and long term in-

vestors, but this hedging demand term is roughly constant, so that conditional responses

to volatility variation are not substantially different. The response of a long-term investor

to volatility is completely driven by the myopic component of her portfolio, i.e. variation

due to the instantaneous risk-return trade-off.

3.2.1 The optimal portfolio is simple

Motivated by the constant hedging term we see in Figure 1, we consider portfolio strate-

gies that invest in the myopic portfolio plus a constant position in the buy-and-hold port-

folio,

w̃∗(µt, σ2
t ) = ω0 + ω1wm(µt, σ2

t ). (17)

We solve for the investor’s lifetime utility and find that a portfolio strategy with

ω0 = E[wh
t ] and ω1 = 1 attains the same life-time utility as the optimal portfolio. The

approximation w̃∗ is not only a good local approximation for the optimal portfolio, but

also an excellent global approximation. We refer to w̃∗(µt, σ2
t ) as the optimal linear port-

folio because it’s weight is a linear function of the myopic portfolio.9

This result can be seen in Table 2 which shows the optimal policy weights and the

9Formally, it is an Affine function of wm.
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percentage lifetime expected utility loss from switching from the optimal portfolio to the

Affine approximation. A utility loss close to zero implies the investors forego almost no

consumption if it adopts the simpler strategy. Thus w̃∗ provides a good global approxi-

mation to w∗.10

The results that the optimal linear portfolio w̃∗ achieves the optimal utility is impor-

tant because the numerical solution generates simple and implementable portfolio advice.

Every Investor can implement their strategy with two mutual funds–one that holds the

market and one that times the risk-return trade-off. The results that ω1 = 1 implies that

investment horizons play a role only on the allocation to the buy-and-hold mutual fund.

At least for our point estimates, all investors, irrespective of their investment horizon,

allocate the same fraction of their wealth to the timing mutual fund.

Table 2 also shows that the (approximate) optimality of the linear portfolio holds up

across a wide range of parameters for the stochastic process, investment horizons, and

risk aversion. Thus, investor portfolio response to volatility–as a fraction of their wealth–

is always the same regardless of the investment horizon.

3.2.2 The optimal portfolio elasticity to changes in volatility

Another way to evaluate how responsive to volatility changes investors should be is in

terms of an elasticity, i.e. the percentage change in the portfolio allocation resulting from

a 1% increase in volatility,which is defined as

ζ = −dlog(w∗(µt, σ2
t ))

dlog(σ2
t )

. (18)

This perhaps provides a more direct measure of the importance of volatility driven changes

for a particular investor. For a myopic investor ζ = 1− d ln(µt)/d ln(σ2
t ), which goes to

1 as the conditional risk-return trade-off goes to zero. Our estimates imply ζm = 0.97,

which reflects the small increase in expected return following a volatility shock we see in

Figure 1. An elasticity of 1 implies an investor reduce their exposure to stocks by 10% for

a 10% increase in volatility.

10A 1% utility loss is equivalent to decreasing the investor consumption by 1% state by state.

20



The approximation (17) implies ζ ≈ wm
t

ω0+wm
t

ζm, with the long-term investor elasticity

lower than the myopic as long ω0 > 0. The elasticity also goes to zero as the myopic

weight goes down, due for example to an increase in volatility. In Table 2 we focus on

the elasticity of the optimal portfolio around the median value of the state variables to

a one-standard deviation increase in variance,i.e. the typical response to volatility. For

the baseline parameters we find an elasticity of 0.7, which implies that as a share of her

portfolio a long horizon investor should respond less aggressively to variation in volatil-

ity. This happens because the long-horizon investor has a larger investment in the stock

market to begin with (from the hedging demand term).

In Table 2 we see that variation in ζ tracks variation in ω0, the optimal allocation to

the buy-and-hold portfolio. For example, when the expected return is very volatile , high

αµ, the weight ω0 is extremely high and the elasticity very low, close to 0.4. To a smaller

extent this also happens as we increase the investment horizon with the elasticity going

down from 0.68 to 0.65 as the investment horizon increases from 20 to 50 years.

In summary, the data on stock market returns when looked at through the lens of

the standard moments studied in the literature, strongly rejects the conjecture that in-

vestors should ignore movements in volatility. Investors with long investment horizons

are somewhat less responsive to changes in volatility in terms of the percentage change

in the size of their equity portfolio a given volatility movement calls for. However, as a

percentage of their total wealth both short and long-term investors respond by identical

amounts.

3.3 The (large) costs of ignoring variation in volatility

It is now clear that long-horizon investors should volatility time quite aggressively. Yet

one could think that because volatility shocks are not very persistent, it might not be very

costly to deviate from the optimal strategy. Here we evaluate the benefits of volatility tim-

ing by comparing increases in utility of only using information on conditional volatility,

with the fully optimal policy that also uses information on conditional expected returns.
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Specifically, we focus on a volatility timing strategies of the form

w̃(σ2
t ) = ω0 + ω1wv(σ2

t ), (19)

where wv(σ2
t ) = µ

γσ2
t

is the weight of a volatility managed portfolio from Moreira and

Muir (2016). We refer to w̃(σ2
t ) as the volatility timing portfolio. We then compute the in-

crease in life-time utility of switching from the myopic buy-and-hold portfolio to a port-

folio that holds ω0 = E[wh] in the buy and hold portfolio and ω1 = 1 in the volatility

managed portfolio. We refer to w̃(σ2
t ) as the optimal volatility timing portfolio11 We then

compare these gains from volatility timing with the utility increase from switching from

buy-and-hold to the fully optimal policy.

The first row in Table 3 show results for our point estimates. Following the myopic

buy-and-hold strategy is very costly. For the baseline estimates, volatility timing increases

utility by 35% relative to buy-and-hold, and switching to the full optimal policy that also

uses expected return information increases utility by about 60%. Thus the gains from

volatility timing are large when compared to the total benefits of exploiting conditioning

information. Specifically, the third column shows that one can capture 60% of the total

gains from timing by only timing volatility.

Looking across rows in Table 3 we see that that this pattern holds up across a wide

set of parameters. Volatility timing always increases utility relative to buy-and-hold, and

typically leads to increases that are more than 50% of the total gains form timing. All com-

parative statics are very intuitive. Gains make up a larger fraction of total gains when

volatility is more variable and more persistent, expected returns less volatile and more

persistent, and investment horizons are shorter. Even though as a fraction of the total

gains from timing, the gains from volatility timing decreases with the investment hori-

zon, it still accounts for more than 40% of the gains for an investor with a 50 year horizon.

Therefore, volatility timing should be an essential component of investors portfolio strat-

egy even when these investors have really long horizons.

Lastly it is worth highlighting the importance of the unconditional expected return.

11We do note solve for the optimal weights ω0 and ω1, but in unreported results we find that weights
ω0 = E[wh] and ω1 = 1 are very close to the optimal weights.
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We see in Table 3 that the gains from volatility timing are strongly increasing in the uncon-

ditional expected return. This is consistent with the analysis in Moreira and Muir (2016)

who find that when there is no conditional risk-return trade-off, the gains from volatil-

ity timing for a myopic investor increase proportionally to the unconditional risk-return

trade-off. While we calibrate our the average equity premium to 5%,our sample has an

unconditional equity premium average of 7.8%. Thus, the utility gains shown in Table 3

can be thought as conservative estimates.

Overall, these results show that ignoring volatility is likely to be very costly. These

costs are large not only for our point estimates but also for a wide range of parameters

that are consistent with the data.

3.4 The composition of volatility shocks

We have so far followed the empirical literature and assumed that the composition of

volatility shocks is constant (equal to αµ) (see for example Campbell et al. (2012)). Thus,

when volatility changes, discount rate and cash flow volatility change proportionally (this

is captured by the conditional volatility of dµt being proportional to σt). As a result, the

amount of mean-reversion in returns is constant. While this assumption is plausible a

priori, it rules out the idea that movements in volatility are mostly due to ”short-term

volatility”. For example, Cochrane (2008a) argued that the huge spike in volatility in the

fall of 2008 was fundamentally about an increase in the volatility of transitory shocks:

“And what about volatility?(...)the standard formula is wrong. (...) Stocks act

a lot like long-term bonds – (...)If bond prices go down more, bond yields and

long-run returns will rise just enough that you face no long-run risk.(...)the

same logic explains why you can ignore “short-run” volatility in stock mar-

kets.”(Cochrane, 2008a)

Empirically, there is no direct empirical evidence that confirms or refutes Cochrane

(2008a) conjecture. In light of the fact that measuring the average share of discount rate

shocks is already challenging (Goyal and Welch, 2008), measuring time-variation in the
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share is even harder. Nevertheless, Golez and Koudijs (2014) provides some indirect ev-

idence that suggests that there might be a positive correlation between volatility and the

discount rate share. Using data that goes back to seventeenth century, Golez and Koudijs

(2014) show that most of the evidence for return predictability comes from periods identi-

fied as economic recessions. Together with the evidence that volatility tends to be high in

recessions (Moreira and Muir, 2016; Lustig and Verdelhan, 2012), this evidence suggests

that the share of discount-rate volatility might increase in periods of high volatility consis-

tent with the idea that at least some of the movements in volatility are due to short-term

volatility.

This correlation matters to an investor because if increases in volatility are entirely due

to increases in discount-rate volatility, the increase in return mean-reversion will offset

the increase in volatility, making the risky asset just as safe in the long-run. Thus, the

intuition is that investors with long investment horizons should not perceive periods of

high discount rate volatility as much riskier than low volatility periods.

To capture this idea that volatility variation is driven by discount rate shocks we now

explicitly decompose return innovations into discount rate (dBµ
t ) and cash flow shocks

(dBc
t ) as

dBS
t = −

√
σ2

t − σ2

σ2
t

dBµ
t +

√
σ2

σ2
t

dBc
t , (20)

which implies that the volatility of cash flow shocks is constant and only discount rate

volatility varies. Consistent with Equation (20) we set the volatility of expected returns in

Equation (3) to κµ

√
σ2

t − σ2 , which implies the discount rate share of return shocks is

σ2
t − σ2

σ2
t

. (21)

This share goes to 1 as volatility spikes to high levels and goes to zero as volatility

drifts to the lower bound.12

12The correlation between cash flow and volatility shocks is simply < dBc
t , dBσ

t >= −ρσ,S
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Figure 2 show the IRFs for this extreme case where all volatility variation is due to

variation in the volatility of discount rate shocks. In the middle panel we see how the

discount rate share spikes up with volatility and then slowly comes down. In the bottom

panel we see that this results in an increase in hedging demand, which counteracts the

decrease is exposure due to the myopic demand. It is still optimal to reduce the portfolio

exposure after a volatility shock, but the response is less aggressive. Intuitively, stocks

become relatively safer for a long term investor than for a short-term investor when the

share of discount rate shocks goes up. In response to a one standard deviation shock, the

investor reduces his position in the risky asset by 25%, substantially less than the 40% in

the constant discount rate share case.

The optimal portfolio can still be implemented with a constant position in the buy-

and-hold and the myopic portfolio, but now the exposure to the myopic portfolio devi-

ates from 1. In Table 4, we contrast the optimal portfolio and utility gains from timing in

a discount rate volatility world with our baseline case where discount rate and cash flow

vol go up proportionally with volatility. The general pattern is consistent with Figure

2. The second column shows that a positive co-movement between volatility and the dis-

count rate share implies the optimal portfolio has a lower elasticity ζ. This lower response

to volatility also means lower gains from volatility timing. For our point estimates, the

utility gain from switching from buy-and-hold to a volatility managed strategy falls from

30% to 20%.

Overall, this section shows that the composition of volatility shocks is a quantitatively

important determinant of the optimal response to volatility. The co-movement of volatil-

ity with the discount rate share determines whether is optimal to respond more or less

aggressively to changes in volatility. Note however that it is always optimal to reduce the

position in the risky asset when volatility goes up, and the benefits of such a strategy are

always large.13

13In unreported results we study the case where all volatility is driven by cash flow shocks. We find that
in this case the optimal response to volatility variation and utility gains from volatility timing are larger
than in our baseline case.
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3.5 Why do investors respond to increases in the volatility of purely

transitory shocks to returns?

Because in the data shocks are very persistent. Specifically, our SMM estimation inter-

prets the return forecasting R-squares increase from 0.6% at the monthly horizon to 23%

at the five year horizon as evidence that the expected return process should be very per-

sistent. This steep slope implies a mean-reversion coefficient of κµ = 0.12 for movement

in expected returns, which translates into an auto-correlation of about 0.88 at the yearly

frequency (a half-life of about six years). To put in perspective, an investor with a 20 year

horizon (our baseline calibration) consumes about 30% of her wealth during this period.

Thus, investors respond to variation in the volatility of discount rate shocks because a

substantial fraction of their consumption responds to variation in discount rates.

However, it is well known that return forecasting R-squares based on price-dividend

ratios might lead us to over-estimate the persistence of expected returns. Among others,

Lettau and Van Nieuwerburgh (2008) and more recently Kelly and Pruitt (2013) find evi-

dence that expected returns are much less persistent than implied the return forecasting

R-squares we use in our estimation. For example, Lettau and Van Nieuwerburgh (2008)

shows that when they allow for a structural break in the sample, the half-life of expected

return shocks decrease to about three years.14

Motivated by these findings, here we study the sensitivity for our results to the possi-

bility that that expected returns are less persistent than implied by the moments we match

in our estimation. Note however that as the persistence of expected return decrease, the

persistence of both processes become more similar (recall that the volatility process is

much less persistent than expected returns in our estimation),and the high correlation be-

tween expected return and volatility shocks map into a high unconditional correlation,

which is inconsistent with the weak risk-return trade-off present in data (see Moreira and

Muir (2016)).

In Table 5 we study how our results change as we vary the persistence of the discount

rate process κµ. We choose values to reflect the wide range of estimates in the literature,

14See also evidence presented in Drechsler and Yaron (2011).
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which are often found using different methods and predictors. In addition to our base-

line result solution with an annualized persistence (auto-correlation) of expected returns

equal to 0.89 (κµ = 0.12), as estimated from price-dividend ratio based return forecasting

regressions, we also report persistence to 0.94 (κµ = 0.06), in line with estimates from

the dividend yield coming from Cochrane (2008b), among others, and persistence of 0.78

(κµ = 0.25). This lower discount rate persistence is more towards the lower end of the

persistence of variables that predict returns found in the predictability literature (see e.g.,

Lettau and Ludvigson (2001), Kelly and Pruitt (2013), or Drechsler and Yaron (2011)).

First looking across the three columns where we vary persistence but keep the stan-

dard assumption of constant discount rate share, we see that the elasticity to volatility

variation gradually goes down, but it is still above 0.6 even for the very low persistence

calibration. We also see that while total gains from timing goes up as the persistence goes

down, the gains form volatility timing goes down. Therefore, the fraction of timing gains

due to volatility timing goes down sharply from 66% to 39% as as we move from the more

to the less persistent calibration. It is important to note that while the R-squares increase

more for short horizon forecasts as we reduce the persistence of expected returns, longer

horizons also exhibit an increase. This happens here because we setup conditional volatil-

ity of expected returns to be σµ = κµαµ so that the parameter αµ has the interpretation

of a discount rate share. As a result the unconditional volatility of expected returns (ap-

proximately αµ
√

κµ) increases with the parameter κµ. Nevertheless this overall increase

in volatility of discount rates is convenient to fit the forecasting patterns documented in

Kelly and Pruitt (2013) who document much larger R-squares than our estimates for both

the short (1 month) and medium range frequencies (1 year).

In the second set of columns we follow the analysis in Section 3.4 and assume that all

variation in volatility is driven by variation in the volatility of discount rates. We see now

that elasticities go down sharply. Utility gains from volatility timing are as low as 13%

with the share of total timing gains now close to 30%. This numbers are still not quite

consistent with the ”ignoring” volatility advice, but are much closer.

In summary, ignoring volatility variation is less costly to investors if discount rate

shocks have a very low persistence and all variation in volatility is about these low per-
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sistence transitory shocks. However, even in this case, there are still meaningful benefits

to timing volatility.

4. Incorporating Uncertainty

This section does two things. First, we assess the uncertainty surrounding our utility

gains. Specifically, rather than only reporting the point estimate for average utility gains,

we study the full distribution of utility gains where we use the uncertainty from our

estimation procedure about the parameters. We find the gains from volatility timing are

extremely likely to be positive. Second, we then incorporate the fact that the parameters

are unlikely to be known by the investor ex-ante. We incorporate parameter uncertainty

by assuming an investor observes a signal for expected returns and volatility but does not

know the true process for each and thus faces estimation risk, along the lines of Barberis

(2000).

4.1 What is the probability that ignoring volatility variation is optimal?

The uncertainty surrounding our SMM parameter estimates indicates this probability is

zero. We reach this conclusion by leveraging our SMM estimation to recover the uncer-

tainty surrounding our parameter estimates and convert the uncertainty in this estima-

tion to uncertainty about utility gains. We build on our approach to estimate parameter

standard errors. Using our point estimates we simulate a sample of identical length as

our sample, we then re-estimate the model using the artificial data of the simulation , and

use these new estimated parameters to solve for the optimal portfolio choice. We then

use the optimal portfolio functions to calculate the elasticity of portfolio with respect to

changes in volatility and compute the utility gains from switching from the myopic buy-

and-hold strategy to a volatility managed strategy. This approach allow us to recover

the full distribution of the optimal portfolio elasticity and the economic gains of volatility

timing.

The distribution of these quantities are shown in Figure 3. The portfolio elasticity to

volatility ranges from 0.4 to 1. This implies that inaction is never optimal across boot-
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strapped parameters. Economics gains of volatility timing reflect this large elasticity. We

find utility gains of volatility timing range form 20% to 90%. Thus, ignoring volatility

variation is extremely likely to be very costly.

It is important to emphasize that here we abstract form uncertainty about the uncon-

ditional expected return. As we emphasized in Section 3.3 the level of expected returns is

an important determinant of the overall gains of volatility timing. In terms of the average

level of utility gains form vol timing, our approach of calibrating the equity risk premium

is conservative, but this approach is likely to lead us to underestimate the amount of over-

all uncertainty in the gains from volatility timing. We plan in the future to incorporate

this source of uncertainty in our analysis. We expect the average gains to increase, but to

become slightly more uncertain.

4.2 Parameter uncertainty and imperfect information

Our analysis so far endows investors’ with perfect information with respect to variation

in the investment opportunity set, i.e. we take our in-sample point estimates for each

parameter as the true generating process and assume this is known to the investor. In

practice investors have to form portfolios and trading strategies while facing uncertainty

about the true return generating process.

We now consider the case where the investor is not sure of the process for returns

and thinks about parameter uncertainty. We investigate how sensitive the utility gains of

volatility timing and expected return timing are to the parameter uncertainty present in

the data. Our goal is to assess how this separately affects the utility gains from volatility

timing and expected return timing described before. This is important because, as many

papers have shown, parameter uncertainty surrounding return predictability can have

very large effects (Barberis (2000), Goyal and Welch (2008), Cochrane (2008b), Pástor and

Stambaugh (2012)). We confirm these results but show that parameter uncertainty is not

a big issue for volatility timing. Our approach to parameter uncertainty follows closely

the method described in Barberis (2000).

Specifically, we take the approach of an investor who is given a 90 year sample for

returns and who must estimate a rule to forecast returns and to forecast volatility using
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this 90 year sample. The investor then adopts permanently a portfolio timing rule based

on this forecasting relationship. We then compute the expected utility for the investor

going forward and compare this expected utility to the case where the investor knows

the true process for returns (as computed earlier).

We begin by assessing the benefits of expected return timing given this parameter

uncertainty, which we implement as follows. In a given 90 year sample, the investor ob-

serves the variable xt which is the true conditional expected return for the risky-asset, and

uses this variable to forecast returns in a given sample.15 One can think of this as running

predictive regressions with a candidate predictor such as the price dividend ratio. The

regression the investor runs in each sample is

rt+1 = a + bxt + εt+1, t = 1, ..., T

The true value for this regression is a = 0, b = 1, but the investor does not know this,

he only sees xt as a candidate predictor of returns. In estimating this regression using a

given sample, s, the investor estimates âs, b̂s where these are the coefficients recovered in

a given sample. He then devises a trading strategy for what he believe is the expected

return process going forward using these coefficients as the fitted value from this regres-

sion µ̂T+t,s = âs + b̂sxT+t applied to the optimal portfolio rule w̃(µt, σ2
t ) described earlier

in the paper. Notice that if, given 90 years of data, the investor always recovered the true

coefficients a and b, then this would be equivalent to the utility benefits of the full timing

case studied earlier. We assume the investor knows all other parameters of the return

process so as to isolate only the effects coming from not knowing expected returns.

We then ask what is the expected utility associated with this rule given that these co-

efficients may vary from sample to sample, i.e., given that, even with 90 years of data, the

investor may not know the true relationship between the predictor variable and future

returns? These results are given in the bottom of Table 6. It turns out that the expected

utility of the investor is much lower than the case when he knows the true expected re-

15Note that the estimation uncertainty we document here would be even larger if we were to consider
imperfect predictors, that is, the investor only observes a noisy signal of xt, see Pástor and Stambaugh
(2012).
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turn. The reason is that these estimated coefficients âs, b̂s vary dramatically from sample

to sample, even with 90 years of data. Largely this has to do with expected returns being

very persistent making the relationship in the predictability regression difficult to esti-

mate in a given sample. This point is well recognized by Goyal and Welch (2008), among

others.

Next, we consider that the investor needs to make a forecast for volatility. Here, we

assume the investor observes realized volatility in a given sample, where realized volatil-

ity is the volatility of daily returns in a given month. He uses this realized volatility to

try to forecast the process for volatility in the next month – that is the investor maps

realized volatility to expected volatility in a 90 year sample, and then uses this going for-

ward in the following periods to forecast volatility. This is captured by (rt+1 − µt)
2 =

a + bσ2
t + εt+1 where we study the variation in these coefficients as before. As was the

case before with the return forecasting regression, the investor is given a perfect signal,

σt, about volatility, but must use this signal in the given sample to make a forecast about

future volatility. Thus, the investor may poorly estimate the relationship between realized

volatility and true volatility – analogous to the difficultly in predicting expected returns.

This turns out to be inconsequential – given 90 years of data, and the much lower persis-

tence of volatility, the investor faces very low estimation risk. Table 6 contains these re-

sults and shows that the utility gains for volatility timing are essentially preserved when

we take into account estimation risk.

In both the return and volatility forecasts we assumed the investor had perfect signals

of the true process – in practice this is much more likely to be true of volatility as investors

observe realized volatility and have signals like the VIX which give near perfect signals

of volatility in real time. In contrast, it is less likely that the investor would have a perfect

signal for expected returns. Thus, our analysis here if anything understates the affects of

parameter uncertainty on expected returns if one incorporates imperfect predictors.

In summary, because expected returns appear very persistent, predictive variables in

a given sample can work poorly as forecasts for returns out of sample. This means that

the benefits of timing expected returns are very sensitive to parameter uncertainty. We

confirm this fact here, but this fact is well documented. However, this result is not true
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with volatility – this is essentially because volatility is easy to forecast both in and out of

sample. Hence, the utility gains from volatility timing are far more robust to parameter

uncertainty.

5. Extensions

We consider a number of extensions to our model including alternative preferences, and

outside income risk and we briefly discuss how these extensions might interact with

volatility timing.

5.1 Alternative preferences

Thus far we have studied EZ preferences with unit elasticity of substitution. These pref-

erence are not only standard in the portfolio choice literature, but also very convenient as

we can directly control the investor horizon by varying the impatience parameter ρ. Alter-

native preferences studied in the literature include: (1) EZ preferences with non-unit IES,

(2) Constant Relative Risk Aversion preferences (i.e., IES=1/RRA), and (3) preferences

with habit formation.

Here we extend our analysis to (1) and (2). Figure 5 show these results by comparing

impulse responses across preferences. We normalize each portfolio weight by it’s steady

state value so we can focus exclusively of the weight elasticity to a volatility shock. Panel

A shows the volatility IRF and Panels B to D show the portfolio response in three differ-

ent cases. Starting with Panel B, which shows results for the baseline assumption that the

composition of volatility shocks is constant we see that all investors respond identically.

The same is true for Panel D, the case of negative co-movement between the discount

rate share and volatility. Only in the case of positive co-movement we see some differ-

ences across investors responses. Most interesting we see that high IES investors tend to

respond less to a volatility shock in this case. The reason behind this result is intuitive. In-

vestors with higher IES tend to be less responsive to discount rate volatility because they

optimally choose to save more when the investment opportunity set is very attractive, i.e.

because their are more willing to postpone consumption their horizon is endogenously
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longer when the opportunity set is more attractive.

Case (3), habit, is substantially more complicated, as it requires adding a habit state

variable. We haven’t analyzed this case explicitly, but the analysis in Detemple and Zapa-

tero (1992) and Gomes and Michaelides (2003) suggests that such preferences will lead us

to similar results. For example, Detemple and Zapatero (1992) show that habit formation

leads investors to first invest in a perfectly safe portfolio that finances habit consumption,

and then invest as a standard CRRA agent that had only the residual wealth (the wealth

minus the safe portfolio) would. Thus, they respond to a volatility shock as a CRRA agent

with a similar allocation to the risky asset would. Their result suggest that while agents

with habit forming preferences will invest much less in the market, their elasticity to a

volatility shock is equal to a standard CRRA investor.

5.2 Non-financial income

Our baseline analysis is purposefully stark as it relies on the assumption that the investor

only source of income is her financial wealth. A more realistic assumption is that the

investor also earns wage or other sources of income. For example, Merton (1971), Viceira

(2001), Cocco et al. (2005) , and Polkovnichenko (2007) are examples of recent work that

study how non-financial income shape portfolio decisions. For the baseline case where

outside income is risk-less, these papers show that optimal portfolio is simply

wt
Wt

Wt + PDVt(E)
=

µt
γσ2

t
+ hedging demand, (22)

where PDVt(E) is the present discounted value of the investor non-financial income, Wt

is the investor financial wealth, and wt is the share of financial invested in the risky asset.

The solution implies that the investor targets the same share of total wealth allocated to

the risky asset, what implies a much higher share of financial wealth, as Wt
Wt+PDVt(E) < 1.

In this simple risk-less case, the solution is analogous to the investor having a lower risk-

aversion, γ̃ = Wt
Wt+PDVt(E)γ. Thus, all our our result will carry through to this case. We

simply need to use γ̃ as the investor coefficient of relative risk-aversion.

The impact of risk in the non-financial income stream can be understood by decom-
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posing it in an idiosyncratic component that cannot be hedged or diversified, and a com-

ponent that co-varies with the risky asset. Both idiosyncratic has the effect of reducing

the present discounted value of the outside income. Intuitively, the higher the volatility,

the higher the co-variance between the income and the investor marginal utility. The end

result is a higher discount-rate. Again, our results will apply as in the risk-less case after

adjusting the outside income present discounted value. The aggregate component has a

second effect because it not only impacts the value of the income stream, but because it

can be hedged. The effect on the present value of the income stream is straightforward: a

positive exposure increases the discount rate according to the risk-premium earned in the

risky asset. The co-variance with the risky asset induces a new kind of hedging demand

to emerge. Intuitively, the optimal portfolio choice adjusts for any exposure the investors

income already has to the risky asset. A positive co-variance thus induces a negative

hedging demand, reducing the share of the investor financial wealth allocated to stocks.

While in practice, it is hard to find industries with wage income that is sufficiently

strongly correlated with the stock market for these hedging demands to matter, more so-

phisticated modeling of labor income risk emphasizes a long run relation between the

stock market and wages. For example, Benzoni et al. (2007) show that if labor income is

co-integrated with dividends, the hedging demand can be large for empirically plausible

parameters. Could this type of hedging demand overturn our results? As we have seen in

Section 3.2, a constant negative hedging demand has the effect of increasing the elasticity

of the portfolio weight to volatility. Thus, the ”level” of the hedging demand will tend to

amplify the optimal response to volatility. Our results can be overturn only if outside in-

come hedging demand increases with volatility (push the portfolio towards stocks). The

logic of co-integration is that all permanent shocks to stock prices, i.e. cash-flow shocks,

end up eventually impacting the labor income. Thus variation in cash-flow volatility

should translate one-to-one to variation in the hedging demands, i.e. the hedging de-

mand should become more negative in response to an increase in volatility. Variation in

discount rate volatility on the other hand would not impact the hedging demand in this

case. Thus, this co-integration channel would either increase or not impact the portfolio

elasticity to volatility.
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In order for the hedging demand to actually go up as volatility increases, the corre-

lation between stock returns and wage income would have to go down enough to more

than off-set the increase in volatility. That is, a constant co-variance between wage income

and stock returns is not sufficient to overturn our results. In fact, this co-variance would

have to be strongly negatively related to volatility in order for hedging demand to in-

crease with volatility. We don’t know of any empirical evidence pointing in this direction.

6. Conclusion

We study the portfolio problem of a long-lived investor that allocates her wealth between

a risk-less and a risky asset in an environment where both volatility and expected re-

turns are time-varying. We then comprehensively and quantitatively study how investors

should respond to changes in volatility and what the utility costs to ignoring volatility

variation are, and we study how these results change with the investor’s horizon. Im-

portantly, our analysis also takes into account that investors’ face parameter uncertainty

regarding the dynamics of volatility and expected returns.

The main finding in this paper is that investors should substantially decrease risk ex-

posure after an increase in volatility and that ignoring variation in volatility leads to large

utility losses. The benefits of volatility timing are on the order of 50% of lifetime util-

ity for our preferred parameterization of an investor with risk aversion of 5 and a 50

year horizon. These benefits are significantly larger than those coming from expected

return timing (i.e., from return predictability), particularly when parameter uncertainty

is taken into account. We approximate the optimal volatility timing portfolio and find

that its dependence on volatility is very simple: all investors, regardless of horizon, will

choose fixed weights on a buy-and-hold portfolio that invests a constant amount in the

risky-asset, and a volatility managed portfolio that scales the risky-asset exposure by the

inverse of expected variance 1/σ2
t . Further, we show that the weight on the volatility

timing portfolio is independent of the investors’ horizon in our baseline results.

We then show a novel channel through which long-horizon investors may differ in

their response to volatility: they respond less aggressively to increases in volatility when

35



only the volatility of mean-reverting shocks increases. Intuitively, this effect makes stock

prices more volatile in the short run but doesn’t change the distribution of long run stock

prices. This effect can dampen, but does not eliminate, long horizon investors’ response

to changes in volatility.
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7. Tables and Figures
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Table 1: Estimates for the stochastic processes.Panel A provides the parameters we cal-
ibrate and their calibrated values. Panel B the parameters we estimate together with
their standard errors. Panel C provides the matched moments in the data and in the
model, together with their standard errors. Parameters are estimated using simulated
method of moments (SMM). We report bootstrapped standard errors. For the moments
this consists of using the model to simulate 1000 samples of equal size as ours and then
computing the standard error of each moments across samples. For the parameters this
consists of re-estimating the model for each of these sample realizations and then comput-
ing the standard errors across point the point estimates of each simulated sample. Note
that RVt = ∑1

d=1/22(Re
t+d − (∑1

d=1/22 Re
t+d/22)) is the daily realized variance in month t,

where Re
t+d is the excess return on the market on date t + d. Small cap rvt = ln(RVt) is

short for log realized variance. Re
t→T is the excess return on the market between dates t

and T. The alpha of the volatility managed portfolio α(SMKT → MKT) is the intercept
of a regression of the volatility managed (excess) market portfolio on the (excess) market
portfolio itself (See Moreira and Muir (2016) for details).

Panel A: Calibrated parameters

Parameter Description Value

r Risk-free rate 0.01
µ Equity premium 0.05
σ Volatility lower bound 0.07

Panel B: Estimated parameters

Parameter Description Point estimate s.e. 10% 90%

σ Avg vol 0.17 0.02 0.14 0.20
κσ Vol persistence 3.34 0.45 2.70 3.83
νσ Vol volatility 5.25 0.40 4.89 5.82
αµ Share of discount rate shocks 0.59 0.34 0.02 1.00
κµ Discount rate shocks persistence 0.12 0.01 0.12 0.14
ρσ,S Corr vol and CF shocks 0.44 0.31 0.04 0.95
ρσ,µ Corr vol and DR shocks 0.57 0.19 0.26 0.82

Panel C: Estimated Moments

Moment Description Data Model std. er. 10% 90%√
E(RVt) Avg. realized vol. (annual units) 16.787% 16.756% 2.090 14.296 19.688

ρ(rvt, rvt−1) Auto-corr. of log vol. 0.722 0.704 0.029 0.672 0.743
stdev(rvt − r̂vt) Std dev of log vol. shocks 0.729 0.715 0.033 0.671 0.757
corr(rvt − r̂vt, Rt) Corr(vol. shocks, returns) -0.360 -0.344 0.046 -0.410 -0.289
R2(Re

t→t+1 → pdt) Predict. regression R-sq (1 month) 0.591% 0.585% 0.418 0.096 1.251
R2(Re

t→t+60 → pdt) Predict. regression R-sq (5 years) 23.427% 21.740% 14.224 3.524 40.685
α(SMKT → MKT) Alpha of vol. managed portfolio 4.830 % 4.446% 2.435 1.068 7.364
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Table 2: Optimal portfolio. We first show ζ, the local elasticity of the optimal portfolio
to changes in variance ζ = −dlog(w∗t )/dlog(σ2

t ). We then show the approximation of the
optimal portfolio that is affine in the myopic portfolio w̃∗(µt, σ2

t ) = ω0 + ω1wm(µt, σ2
t )

where wm(µt, σ2
t ) =

µt
γσ2

t
and γ is investor risk aversion. We report weights in the static

buy-and-hold portfolio (ω0) and the myopic portfolio (ω1). The last column computes
the utility losses from following the affine portfolio w̃ compared to the optimal portfolio,
i.e. ∆Ũ∗ = U[w̃∗]/U[w∗] − 1. It shows that our linear approximation captures the true
optimal portfolio well in terms of resulting in small utility losses. Utility losses are in
wealth units (e.g. a 1% loss is equivalent to a 1% state-by-state loss in the investor life-
time consumption)

Parameter value ζ ω0 ω1 R2 ∆Ũ∗

baseline 0.68 0.27 1.00 0.99 -0.00

1/h 10 0.72 0.20 1.00 0.99 -0.00
50 0.65 0.33 1.00 0.99 -0.00

γ 3 0.70 0.38 1.00 1.00 -0.00
10 0.66 0.15 1.00 0.99 -0.00

κσ 2.67 0.71 0.26 1.00 0.99 -0.01
3.82 0.67 0.27 1.00 1.00 -0.00

νσ 4.94 0.68 0.26 1.00 0.99 -0.00
5.83 0.68 0.28 1.00 0.99 -0.00

αµ 0.02 1.03 -0.04 1.00 1.00 -0.00
1.00 0.37 1.01 1.00 0.99 -0.03

κµ 0.12 0.68 0.27 1.00 0.99 -0.00
0.14 0.67 0.28 1.00 0.99 -0.00

ρS,σ 0.04 0.63 0.35 1.00 1.00 -0.00
0.62 0.67 0.26 1.00 0.99 -0.00

ρµ,σ 0.25 0.64 0.29 1.00 1.00 -0.03
0.65 0.68 0.28 1.00 0.99 -0.00

µ 0.03 0.59 0.22 1.00 1.00 -0.00
0.07 0.74 0.31 1.00 0.99 -0.00
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Table 3: Utility gains from timing. We compare utility gains from several portfolio strate-
gies. The first strategy is the optimal linear portfolio w̃∗(µt, σ2

t ) = ω0 + ω1wm(µt, σ2
t )

(with associated utility U[w̃∗]) where wm(µt, σ2
t ) =

µt
γσ2

t
is the myopic portfolio weight.

The second, w̃(σ2
t ) = ω0 + ω1wv(σ2

t ) is the volatility timing portfolio, which is the ap-
proximation of the optimal portfolio that is an affine function of the volatility managed
portfolio wv

t = µ

γσ2
t
. The third is the myopic buy-and-hold portfolio w̄ = µ/(γσ2).

The first column shows the the utility gain from switching from buy-and-hold to the
optimal linear portfolio (∆U∗ = U(w̃∗)/U(w̄) − 1), the second column shows the util-
ity gains from switching from buy-and-hold to the volatility timing portfolio (∆Uσ =
U(w̃[σ2

t ])/U(w̄)− 1). The third columns shows the faction of the total utility gain from
switching to the optimal portfolio can be achieved with the volatility timing portfolio
(∆Uσ/∆U∗) Utility gains are in wealth units (e.g. a 1% gain is equivalent to a 1% state-
by-state increase in the investor life-time consumption) .

Parameter value ∆U∗ ∆Uσ ∆Uσ/∆U∗

baseline 57 34 60

1/h 10 31 22 70
50 184 77 42

γ 3 112 63 56
10 33 23 70

κσ 2.67 68 49 72
3.82 54 31 58

νσ 4.94 54 32 59
5.83 65 43 65

αµ 0.02 80 75 93
1.00 154 95 62

κµ 0.12 57 34 59
0.14 58 32 56

ρS,σ 0.04 61 37 60
0.62 58 32 54

ρµ,σ 0.25 56 30 53
0.65 57 35 61

µ 0.03 40 21 52
0.07 117 75 63
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Table 4: Time-varying composition of volatility shocks. Here we show how time-
variation in the discount rate share impacts the optimal investment strategy. In the first
column this share is constant (our baseline case), and in the next column the discount
rate share is increasing with volatility, which we label “Increasing share.” In short, while
the degree of mean-reversion in returns is constant in our baseline case, in the second
column there is relatively more mean-reversion in returns when volatility is high. Specif-
ically, the second column sets the volatility of “permanent” shocks to returns, which we
label “cash flow shocks”, to a constant equal to 7%. Thus, in this case, all variation in
return volatility is about the volatility of discount rate shocks, or transitory shocks, to
returns. When volatility is low, returns are mainly driven by permanent (cash flow)
shocks, making stock returns risky for long run investors. An increase in volatility in
this case is associated with a large increase in short run risk in returns but less of an
increase in long run risk in returns because only the volatility of transitory shocks in-
creases. We show the weights ω0 and ω1 that implement the optimal linear portfolio
w̃∗(µt, σ2

t ) = ω0 + ω1wm(µt, σ2
t ) where wm(µt, σ2

t ) =
µt

γσ2
t
, and we compare the utility

from alternative portfolio strategies. The first, w̃∗(µt, σ2
t ) is the optimal linear portfolio

(with associated utility U[w̃∗]). The second, w̃(σ2
t ) is the volatility timing portfolio. It is

an approximation of the optimal portfolio that is affine in the volatility managed portfolio
wσ(σ2

t ). The third is the myopic buy-and-hold portfolio w̄ = µ/(γσ2). The row denoted
∆U∗ shows the utility gain for an investor going from the myopic buy-and-hold portfolio
to the optimal linear portfolio (∆U∗ = U[w̃∗]/U[w̄] − 1). The row denoted ∆Uσ shows
the utility gain for an investor going from the buy-and-hold portfolio to the volatility tim-
ing portfolio (∆Uσ = U[w̃(σ2

t )]/U[w̄] − 1). The last row shows the fraction of the total
utility gain from the optimal portfolio can be achieved with the volatility timing portfo-
lio (∆Uσ/∆U∗). Utility gains are in wealth units (e.g. a 1% gain is equivalent to a 1%
state-by-state increase in the investor life-time consumption).

Constant share Increasing share

ζ 0.68 0.33
ω0 0.24 0.43
ω1 1 0.87

∆U∗ 57 50
∆Uσ 34 21

∆Uσ/∆U∗ 60 42
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Table 5: The importance of discount rate persistence. We compare the optimal response
and utility gains of volatility timing when we change the persistence of discount rates
(expected returns). Each column refers to a different set of parameters: the second col-
umn shows our baseline solution with an annualized persistence (auto-correlation) of
expected returns equal to 0.89 (κµ = 0.12), as estimated from the data. The first column
increases this persistence to 0.94, in line with estimates from the dividend yield coming
from Cochrane (2008b), among others. The third column lowers this persistence down
to 0.78 (κµ = 0.25). This lower discount rate persistence is more towards the lower end
of the persistence of variables that predict returns found in the predictability literature
(see e.g., Lettau and Ludvigson (2001), Kelly and Pruitt (2013), or Drechsler and Yaron
(2011)). In the first three columns the discount rate share is constant, and in the last three
the discount rate share increases with volatility (“Increasing share”). The first three rows
describe the optimal policy in terms of the local elasticity ζ and the weights ω0 and ω1
that implement the optimal linear portfolio w̃∗. The row denoted ∆U∗ shows the utility
gains from switching from a naive buy-and-hold portfolio (w = µ/γσ2) to the optimal
linear portfolio (∆U∗ = U[w̃∗]/U[w]− 1). The row denoted ∆Uσ shows the utility gain
for an investor going from the buy-and-hold portfolio to the volatility timing portfolio
(∆Uσ = U[w̃(σ2

t )]/U[w̄]− 1). The last row shows the faction of the total utility gain from
switching to the optimal linear portfolio can be achieved with the volatility timing port-
folio (∆Uσ/∆U∗). Utility gains are in wealth units (e.g. a 1% gain is equivalent to a 1%
state-by-state increase in the investor life-time consumption).

Constant share Increasing share

exp(−κµ) 0.94 0.89 0.78 0.94 0.89 0.78

ζ 0.70 0.68 0.64 0.43 0.33 0.29
ω0 0.21 0.24 0.27 0.32 0.43 0.45
ω1 1.02 1.03 1.05 0.89 0.87 0.86

∆U 56 57 61 42 50 39
∆Uσ 37 34 24 21 21 13

∆Uσ/∆U 66 60 39 49 42 33

R-sq(1 month) 0.38 0.56 0.97 0.36 0.73 1.28
R-sq(1 year) 4.25 6.19 9.84 4.40 7.42 12.24
R-sq(5 years) 17.05 21.23 24.32 11.58 25.63 32.26
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Table 6: Imperfect information and the costs of estimation uncertainty. This Table eval-
uates the robustness of adopting a volatility timing with respect to parameter uncertainty.
Specifically, we evaluate the utility costs when the investors must use a 90 year sample
to estimate a forecasting model for expected returns and volatility. Section 4.2 describes
the calculation in detail. The first row shows utility gains when the investor faces no
estimation uncertainty and now the expected return and volatility signals. The second
row shows utility gains once estimation uncertainty is factored in. Specifically, we report
the average utility gain across Bootstrapped estimation samples. The last rows show the
distribution of expected utility gains across estimation samples.

Optimal timing Volatility Timing

Perfect information 57 34
Imperfect information 5 24

Distribution of expected utility gains

5% -90 -54
25% -16 28
50% 26 33
75% 42 38
95% 50 41
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Figure 1: Optimal portfolio response to a volatility shock. The left panel shows the
behavior of the conditional expected return and conditional variance after a volatility
shock. The right panel shows the optimal portfolio response to a volatility shock for both
a mean-variance (short horizon) and a long horizon investor (labeled optimal). It also
plots the conditional hedging demand term of the long horizon investor. The top panel
does this for the case of a pure volatility shock (so that expected returns do not move).
The bottom panel allows a correlation between volatility and expected returns estimated
from the data. X-axis is in years.
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Figure 2: The composition of volatility shocks and the optimal portfolio response to a
volatility shock. We repeat the exercise in the previous figure but now allow the compo-
sition of volatility shocks to change. Specifically, we now assume that the entire variation
in volatility is due variation in the volatility of discount rate shocks. Thus, the share of
discount rate shocks in this case is increasing with volatility. To implement this, we as-
sume the volatility of permanent shocks to returns (which we label “cash flow shocks,”
consistent with the literature) is constant equal to 7% and all time variation in volatility
corresponds to discount rate volatility. This generates more mean-reversion in returns
when volatility spikes, and hence increases the hedging demand term in high volatility
periods as shown in the lower right figure. See section 3.4 for a detailed description. The
top plot show the response of volatility and expected return to a one standard devia-
tion volatility shock, the bottom left panel shows how the share of discount rate shocks
increases, and the bottom right panel shows the optimal portfolio response.
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Figure 3: Estimation uncertainty. This Figure shows how estimation uncertainty im-
pacts our results. We use our SMM estimation and optimal portfolio solution to recover
the cumulative distribution of several feature of the optimal portfolio policy. The top
left Panel shows ζ, the local elasticity of the optimal portfolio to changes in variance
ζ = −∂log(w∗)/∂log(σ2). The top right Panel shows the optimal linear portfolio weight
in the static buy and hold portfolio (ω0). The bottom left Panel shows the utility gain
for an investor going from the buy-and-hold portfolio to the optimal volatility timing
portfolio (∆Uσ = U[w̃(σ2

t )]/U[w̄]− 1). The bottom right panel shows the faction of the
total utility gain from switching to the optimal linear portfolio can be achieved with the
volatility timing portfolio (∆Uσ/∆U∗) Utility gains are in wealth units (e.g. a 1% gain is
equivalent to a 1% state-by-state increase in the investor life-time consumption). The util-
ity U[w̃∗] is associated with the optimal linear portfolio w̃∗(µt, σ2

t ). The utility U[w̃(σ2
t )] is

the utility associated with the optimal volatility timing portfolio w̃(σ2
t ), and U[w̄] is utility

associated with the myopic buy-and-hold portfolio w̄ = µ/(γσ2).
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Figure 4: Distribution of utility gains due to imperfect information. This Figure
shows how parameter uncertainty impacts the utility of an investor that must use a 90
year sample to estimate a forecasting model for expected returns and volatility. Sec-
tion 4.2 describes the calculation in detail. The first Panel shows the cumulative dis-
tribution of utility gains relative to myopic buy-and-hold when the investor does ex-
pected return and volatility timing (∆U∗ = U[w̃∗]/U[w̄] − 1) and just volatility timing
(∆Uσ = U[w̃(σ2

t )]/U[w̄] − 1). The second panel shows the cumulative distribution of
U[w̃∗] − U[w̃(σ2

t )])/U[w̃(σ2
t )], the gains from switching from pure volatility timing to

also timing expected return.
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Figure 5: Alternative preference parameters. We plot the optimal response to volatility
shocks as we change the EIS from 0.5 to 1 (our benchmark case) to 1.5. We also include
the CARA case as well where the EIS is the inverse of relative risk aversion. We see that
each choice produces quantitatively similar responses to our benchmark case of EIS=1.
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. Appendix: Not intended for publication

This appendix contains additional results.

A. Numerical solution

Our solution method follows Judd (1998, Chapter 11). We first conjecture the value func-
tion g(µ, f (σ2)) expressed as bivariate Chebyshev polynomials of order N . We use N =
6. For our baseline parameter estimates results do not change with N up to 10, but take
increasingly more time to solve. We calculate the derivatives of these functions as well as
the optimal portfolio. We then plug these quantities into the HJB (12) and project the re-
sulting residuals onto the complete set of Chebyshev polynomials up to order N. We use
the built-in Matlab routine fsolve to find the coefficients of the asset price polynomials
that make the projected residuals equal to zero.

B. Additional references on conventional wisdom

We include links (click for hyperlink) to additional advice on how to respond to volatility.
These sources are meant to convey the conventional view given by practitioners and aca-
demics that investors should not respond to increases in volatility, and that long horizon
investors may in fact want to buy stocks during periods of high volatility.

Fidelity: “A natural reaction to that fear might be to reduce or eliminate any expo-
sure to stocks, thinking it will stem further losses and calm your fears, but that may not
make sense in the long run.” “Do not try to time the market.” “Invest regularly despite
volatility.”

Charles Schwab: “Understandably, investors often become nervous when markets are
volatile, and we are hearing many questions from clients.” “They should also resist the
urge to buy and sell based solely on recent market movements, as it could hobble their
performance over time.”

Forbes: “5 Tips To Survive Stock Market Volatility In Retirement.”
“Stay The Course: While staying the course might sound boring to you, it is likely the
absolute best thing to do right now. In fact, market volatility is the main catalyst behind
a lot of bad financial behaviors – most specifically – buying high and selling low. Despite
this widespread knowledge, retirees often overreact when the market drops and divest
some of their equities. One way to minimize this harmful financial behavior is to hire a
financial advisor. One of the great benefits of having a financial advisor is to steady your
emotions during volatile markets. In fact, the retirement income certified professionals
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https://www.fidelity.com/viewpoints/investing-ideas/strategies-for-volatile-markets
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http://www.forbes.com/sites/jamiehopkins/2016/01/16/5-market-volatility-planning-tips-for-retirees/#55c1c0326638


surveyed by The American College of Financial Services stated that keeping their clients
from overreacting during volatile markets was a crucial aspect of protecting their clients?
retirement security.
Reduce Your Withdrawals: As a retiree, you often need to sell your investments in order
to generate the income needed to meet your retirement expenses. Selling investments and
taking portfolio distributions during a volatile market highlights a unique retirement risk
called sequence of returns risk. Sequence of returns risk is unique because until you start
withdrawing money from your investments it has no impact on your portfolio. However,
when you sell stocks right after a significant market downturn, you lock in lower returns
which can negatively impact the longevity of your investment portfolio. As such, if you
can be flexible when markets are volatile and avoid selling as much stock, you can vastly
improve how long your retirement portfolio will last. For many people, reducing market
withdrawals also involves reducing expenses, even if it is just for a short period of time.”

CNBC: “Investing for dummies – and smart guys – in a whipsaw market.” “What
may be good advice for a 21-year-old may not be the best course of action for a 65-year-
old.”

New York Times: “Stocks are most useful for long-term goals. So unless those goals
have changed in the last few days, it probably doesn’t make much sense to overhaul an
investment strategy based on a blip of market activity.” “Plenty of research shows that
if you miss just a few days of the market’s biggest gains, your long-term portfolio will
suffer badly.”

US News: “Volatility can also provide opportunities for investors looking for bar-
gains. Amid an uncertain outlook for the market and key influencers such as interest
rates and China, it might be a good idea to take a page from ”Dr. Strangelove” – or learn
to stop worrying and love the volatility.”

USA Today: “Don’t attempt a strategy of bailing out temporarily until things ’calm
down’.”
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http://www.cnbc.com/2014/10/17/asics-in-a-volatile-market.html
http://www.nytimes.com/2015/08/22/your-money/stocks-and-bonds/advice-after-stock-market-drop-take-some-deep-breaths-and-dont-do-a-thing.html
http://money.usnews.com/money/personal-finance/mutual-funds/articles/2015/10/15/5-investing-themes-to-remember-for-a-volatile-market
http://www.usatoday.com/story/money/columnist/powell/2016/01/07/advice-investors-during-crazy-stock-market-volatility/78412622/
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