The Gendered Impact of Young Children's Health on Human Capital: Evidence from Turkey

Marcella Alsan AEA Meeting, Topics in Development

January 4, 2016

• How technology interacts with underlying cultural norms can have unintended consequences for development

- How technology interacts with underlying cultural norms can have unintended consequences for development
- Immunizations and Gender Norms

- How technology interacts with underlying cultural norms can have unintended consequences for development
- Immunizations and Gender Norms
 - Large scale immunization campaign in Turkey
 - Effects on mortality, disability and human capital for age-eligible participants

- How technology interacts with underlying cultural norms can have unintended consequences for development
- Immunizations and Gender Norms
 - Large scale immunization campaign in Turkey
 - Effects on mortality, disability and human capital for age-eligible participants
 - Spillover effects on older children

- Large biomedical and economic literature on the impact of early child/in utero health on later health and socioeconomic outcomes
 - Currie, Almond, Gertler, Barker, Bhardwaj, Bleakley, Persson & Rossin-Slater

- Large biomedical and economic literature on the impact of early child/in utero health on later health and socioeconomic outcomes
 - Currie, Almond, Gertler, Barker, Bhardwaj, Bleakley, Persson & Rossin-Slater
- Fewer studies on the spillover impacts of early childhood health interventions on other household members
 - Adhvaryu and Nyshadham, Parham, Ozier

- Large biomedical and economic literature on the impact of early child/in utero health on later health and socioeconomic outcomes
 - Currie, Almond, Gertler, Barker, Bhardwaj, Bleakley, Persson & Rossin-Slater
- Fewer studies on the spillover impacts of early childhood health interventions on other household members
 - Adhvaryu and Nyshadham, Parham, Ozier
- Hypothesize because girls are frequently tasked with childcare or household chores, they will differentially benefit from early childhood health interventions • Time Use

- Large biomedical and economic literature on the impact of early child health on later health and socioeconomic outcomes
 - Currie, Almond, Gertler, Barker, Bhardwaj et al., Bleakley, Macours, Persson & Rossin-Slater
- Fewer studies on the spillover impacts of early childhood health interventions on other household members
 - Adhvaryu and Nyshadham, Parham, Ozier
- Hypothesize because girls are tasked with childcare or household chores, they will differentially benefit from early childhood health interventions
 - investigate this hypothesis using difference-in-differences estimator of campaign

- Large biomedical and economic literature on the impact of early child health on later health and socioeconomic outcomes
 - Currie, Almond, Gertler, Barker, Bhardwaj et al., Bleakley, Macours, Persson & Rossin-Slater
- Fewer studies on the spillover impacts of early childhood health interventions on other household members
 - Adhvaryu and Nyshadham, Parham, Ozier
- Hypothesize because girls are tasked with childcare or household chores, they will differentially benefit from early childhood health interventions
 - investigate this hypothesis using difference-in-differences estimator of campaign
 - differs from other literature because policy specifically targeted under5
 - complication rate of vaccine preventable disease U-shaped (lowest for middle-schoolage children who will be focus of spillover effects)

Data from Turkish DHS

Motivation Schooling and Young Children's Illness (Turkish Boys 11-15)

Motivation

Gender, Schooling and Young Children's Illness (Turkish Boys and Girls 11-15)

Motivation

Gender, Schooling and Young Children's Illness (Turkish Boys and Girls 11-15)

- Background
- Empirical Approach & Data
- Results
- Concluding Comments

Background on Turkish National Immunization Campaign (1)

- Jim Grant a good friend of Turgut Özal
 - friends since the 1960s when Grant worked as USAID Rep to Turkey and Özal was part of the State Planning Organization
- They both get new jobs
 - Grant became the head of UNICEF in 1980 and Özal became the Prime Minister of Turkey in December 1983
- They make a plan
 - In 1984 they decide to make Turkey the test case for a large-scale national immunization of a LMIC (smaller countries had been done before but with limited success)

- Three ten day rounds of mass vaccination
 - launched over a month in 1985
- Immunization Schedule
 - Kids under-five (estimated 5.1 million) receive three doses of DPT and oral polio and kids at least 9 months receive measles

Photos: High Level Political and Religious Involvement

THE STRATEGY OF MASS VACCINATION Panel A. Panel B.

President Evren and Premier Özal lead the campaign.

Men of religion were asked to help:

The Directorate of Religious Affairs contacted directly. issued an official circular to the imams in Turkey's Mosques, calling on their support. The directorate also agreed to publish articles and sermons on the benefits of immunization in its monthly gazette. A sermon was prepared for Imams to preach simultaneaously on the eve of the campaign through the loudspeakers of the country's 54,000 Mosques, many of which also served as

Men of Religion gave sermons.

Campaign (3)

• Distribution/Dissemination

- imported 41 million doses of vaccine, and distributed 27 million
- 45,000 vaccination stations, aimed at being between 10-15 minute walk from home (used schools, mosques, businesses for distn as well)
- over 4 million children received at least one dose of vaccine
- continued to immunize after campaign; though with not as much coordination

Vaccine	Age Grp	Pre (%)	Post (%)
DPT	2-11 months	28	92
&	12-59 months	52	94
OPV	total	47	94
	2.11months	12	70
	2-1111011ths	12	12
Measles	12-59 months	40	84
	total	37	83

Did the Campaign Achieve its Goals?

▶ Enteritis ▶ MOD

- Data: Census (1985 1990 & 2000), DHS (1993 1998 & 2003/4, 2008), Vital Statistics, National Enrollment Statistics
- Age Eligible Sample: individuals ages 15 to 19 across two censuses (1985, 2000)

- Data: Census (1985 1990 & 2000), DHS (1993 1998 & 2003/4, 2008), Vital Statistics, National Enrollment Statistics
- Age Eligible Sample: individuals ages 15 to 19 across two censuses (1985, 2000)
 - evaluate human capital and disability, before and after intervention

- Data: Census (1985 1990 & 2000), DHS (1993 1998 & 2003/4, 2008), Vital Statistics, National Enrollment Statistics
- Age Eligible Sample: individuals ages 15 to 19 across two censuses (1985, 2000)
 - evaluate human capital and disability, before and after intervention
 - exclude individuals less than 15 due to major education reform affecting children born >=1986
 - (1997 reform that extended 5 year "compulsory" education instituted by Ataturk to 8 years)

- Data: Census (1985 1990 & 2000), DHS (1993 1998 & 2003/4, 2008), Vital Statistics, National Enrollment Statistics
- Age Eligible Sample: individuals ages 15 to 19 across two censuses (1985, 2000)
 - evaluate human capital and disability, before and after intervention
 - exclude individuals less than 15 due to major education reform affecting children born >=1986
 - (1997 reform that extended 5 year "compulsory" education instituted by Ataturk to 8 years)
- Spillover Estimation: individuals ages 11-15 across two censuses (1985, 1990) with a younger sibling in household

- Data: Census (1985 1990 & 2000), DHS (1993 1998 & 2003/4, 2008), Vital Statistics, National Enrollment Statistics
- Age Eligible Sample: individuals ages 15 to 19 across two censuses (1985, 2000)
 - evaluate human capital and disability, before and after intervention
 - exclude individuals less than 15 due to major education reform affecting children born >=1986
 - (1997 reform that extended 5 year "compulsory" education instituted by Ataturk to 8 years)
- Spillover Estimation: individuals ages 11-15 across two censuses (1985, 1990) with a younger sibling in household
- Treatment assigned based on province of birth (main sample nonmigrants)
- Two levels of analysis

$Outcome_{pt} = \alpha + \beta \ \left(VPD_{p}I_{t}^{post} \right) + \gamma I_{t}^{post} + \rho VPD_{p} + \mathbf{X}_{pt}^{\prime}\Gamma + \varepsilon_{pt} \quad (1)$

► VPDPrevalence

- *p* province, *t* time
 - Card (1992) -federal min wage law
 - Children under-five at the time of the campaign treated : ($I_t^{Post}=1$)
 - X : variables suggested to influence outcome variables (demographics, household characteristics, local health infrastructure)
 - Outcomes: literacy, disability, educational attainment (none, less primary, primary complete, secondary complete, university/higher), infant and child mortality

Empirical Framework (2 of 2)

$$Outcome_{ipt} = \alpha + \beta (VPD_p I_t^{post}) + \sum_c \gamma_c I_p^c + \sum_j \rho_j I_t^j + \theta I_i^{girl} + \mathbf{X}_{ipt}' \Gamma + \varepsilon_{ipt},$$

$$Outcome_{ipt} = \alpha + \beta (VPD_p I_t^{post}) + \sum_c \gamma_c I_p^c + \sum_j \rho_j I_t^j + \theta I_i^{girl} + \mathbf{X}_{ipt}' \Gamma + \varepsilon_{ipt},$$

$$\begin{aligned} \textit{Outcome}_{ipt} &= \alpha + \beta_1 (\textit{VPD}_p \textit{I}_t^{\textit{post}}) + \beta_2 (\textit{VPD}_p \textit{I}_t^{\textit{post}} \textit{I}_i^{\textit{girl}}) + \sum_c \gamma_c \textit{I}_p^c \\ &+ \sum_j \rho_j \textit{I}_t^j + \theta \textit{I}_i^{\textit{girl}} + \mathbf{X}'_{ipt} \Gamma + \left(\textit{I}_i^{\textit{girl}} \mathbf{X}'_{ipt}\right) \Psi \\ &+ \sum_c \gamma_c^{\textit{girl}} \left(\textit{I}_i^{\textit{girl}} \textit{I}_p^c\right) + \sum_j \omega_j^{\textit{girl}} \left(\textit{I}_i^{\textit{girl}} \textit{I}_t^j\right) + \varepsilon_{ipt} \end{aligned}$$

- *i* individual, *p* province, *t* time
 - Outcomes: literacy, disability, educational attainment

Summary Statistics by VPD Prevalence

Identifying assumptions:CIA, Parallel trends

Province Characteristics in 1985 by VPD Prevalence				
Variable	A 11	VPD Prevalence		
	All	without controls	with controls	
Disabled	0.012	0.0006***	0.0005**	
	[0.003]	(0.0002)	(0.0002)	
Literate	0.904	-0.0237**	0.001	
	[0.116]	(0.0091)	(0.0032)	
Educational Attainment	1.927	-0.0563***	0.0002	
	[0.151]	(0.0207)	(0.0074)	
Father Professional	0.158	-0.0023	0.0001	
	[0.044]	(0.0023)	(0.0025)	
Mom Literate	0.445	-0.0414***	-0.0056	
	[0.187]	(0.0128)	(0.0067)	
Family Size	6.263	0.2668***	0.0524	
	[1.179]	(0.0833)	(0.0510)	
Population Density	66.879	0.1630	0.5564	
	[56.869]	(2.2169)	(2.0672)	
Fraction Male	0.517	-0.0015	-0.0009	
	[0.025]	(0.0017)	(0.0020)	
Log Health Personnel	5.787	0.0114	0.0291	
	[0.857]	(0.0509)	(0.0523)	
Number Provinces	61	61	61	

Dependent Variable	Disabled	Literate	Educational Attainment	Log Child Mortality Rate	Log Infant Mortality Rate
	(1)	(2)	(3)	(4)	(5)
VDD Desustance *Dest	-0.0006**	0.0128**	0.0234**	0.0143	-0.0459
VPD Prevalence *Post	(0.0003)	(0.0058)	(0.0111)	(0.0279)	(0.0400)
D (0.0074***	-0.0151	0.0247	-0.2775**	-0.1646
POSt	(0.0012)	(0.0170)	(0.0347)	(0.1378)	(0.1712)
VDD Descolance	0.0005**	-0.0059	-0.0125	0.0028	0.0817**
VPD Prevalence	(0.0002)	(0.0044)	(0.0092)	(0.0366)	(0.0371)
Observations	122	122	122	120	117
R-squared	0.3769	0.7433	0.8240	0.2642	0.2778
Number Clusters	61	61	61	60	60

province level: mortality

Dependent Variable	Disabled	Literate	Educational Attainment	Log Child Mortality Rate	Log Infant Mortality Rate
	(1)	(2)	(3)	(4)	(5)
VDD Dravalance *Doct	-0.0006**	0.0128**	0.0234**	0.0143	-0.0459
VPD Prevalence "Post	(0.0003)	(0.0058)	(0.0111)	(0.0279)	(0.0400)
Dest	0.0074***	-0.0151	0.0247	-0.2775**	-0.1646
Post	(0.0012)	(0.0170)	(0.0347)	(0.1378)	(0.1712)
VDD Provolonco	0.0005**	-0.0059	-0.0125	0.0028	0.0817**
VPD Prevalence	(0.0002)	(0.0044)	(0.0092)	(0.0366)	(0.0371)
Observations	122	122	122	120	117
R-squared	0.3769	0.7433	0.8240	0.2642	0.2778
Number Clusters	61	61	61	60	60

Individual level-baseline

Dependent Variable	Disability	Literacy	Educational Attainment
VDD Provelopce*Post	-0.0004*	0.0139**	0.0227**
VID Hevalence 10st	(0.0002)	(0.0057)	(0.0101)
Observations	342,197	342,096	341,969
Mean Dependent Variable	0.0126	0.920	1.871
Year of Birth Fixed Effects	Yes	Yes	Yes
Birth Province Fixed Effects	Yes	Yes	Yes
Individual Characteristics	Yes	Yes	Yes
No. Clusters	61	61	61

1 SD \downarrow disability by~6-8%, \uparrow literacy by 2-3% and 3-4% forPSC

Age Eligible Effects

► DHS ► Parental ► Robustness ► RobustnessGeo

Individual level-interacted

Dependent Variable	Disability	Literacy	Educational Attainment
	Gender Interacted	Gender Interacted	Gender Interacted
VPD Prevalence*Post	-0.0003	0.0102**	0.0166*
VID Hevalence Tost	(0.0003)	(0.0049)	(0.0088)
	-0.0002	0.0088**	0.0155**
VPD Prevalence *Post *Girl	(0.0004)	(0.0039)	(0.0071)
Observations	342,197	342,096	341,969
Mean Dependent Variable	0.0126	0.920	1.871
Year of Birth Fixed Effects	Yes	Yes	Yes
Birth Province Fixed Effects	Yes	Yes	Yes
Individual Characteristics	Yes	Yes	Yes
No. Clusters	61	61	61

Note: all RHS variables interacted with girl

• Girls higher returns to early child health intervention than boys

- Girls higher returns to early child health intervention than boys
 - for human capital, not for disability
• Girls higher returns to early child health intervention than boys

- for human capital, not for disability
- consistent with other authors [Maluccio et al, 2009; Bobonis, Miguel and Puri-Sharma, 2006; Field, Robles and Torero 2009]

• Girls higher returns to early child health intervention than boys

- for human capital, not for disability
- consistent with other authors [Maluccio et al, 2009; Bobonis, Miguel and Puri-Sharma, 2006; Field, Robles and Torero 2009]
 - Pitt et al (2012) microfounded model of inc opportunity cost to schooling for boys as health improves (brawn-based economy)

• Girls higher returns to early child health intervention than boys

- for human capital, not for disability
- consistent with other authors [Maluccio et al, 2009; Bobonis, Miguel and Puri-Sharma, 2006; Field, Robles and Torero 2009]
 - Pitt et al (2012) microfounded model of inc opportunity cost to schooling for boys as health improves (brawn-based economy)
- Spillover Analysis Setup
 - Exploit that there are two censuses 5 year apart (1985, 1990)
 - Identify those treated via spillovers as middle school aged children with a younger child in household

DisabilityRegressions

Empirical Framework Spillovers

$$Outcome_{ipt} = \alpha + \beta(VPD_p \left[I_t^{postspillover} \right]) + \theta I_i^{girl} + \mathbf{X}_{ipt}' \Gamma + \varepsilon_{ipt},$$

$$\begin{aligned} \textit{Outcome}_{ipt} &= \alpha + \beta_1(\textit{VPD}_p \left[\mathbf{I}_t^{\textit{postspillover}} \right]) + \beta_2(\textit{VPD}_p \left[\mathbf{I}_t^{\textit{postspillover}} \right] I_i^{\textit{girl}}) + \\ &+ \sum_c \gamma_c I_p^c + \sum_j \rho_j I_t^j + \theta I_i^{\textit{girl}} + \mathbf{X}_{ipt}' \Gamma \\ &+ \left(I_i^{\textit{girl}} \mathbf{X}_{ipt}' \right) \Psi + \sum_c \gamma_c^{\textit{girl}} \left(I_i^{\textit{girl}} I_p^c \right) \\ &+ \sum_j \omega_j^{\textit{girl}} \left(I_i^{\textit{girl}} I_t^j \right) + \varepsilon_{ipt}. \end{aligned}$$

- *i* individual, *p* province, *t* time
 - *Outcomes:* literacy, educational attainment (disability not available in 1990 census)

Dependent Variable		Lite	rate		Educational Attainment			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Baseline	Gender Interacted	Mother Works Outside Home	Cotton Producing Area	Baseline	Gender Interacted	Mother Works Outside Home	Cotton Producing Area
VPD Prevalence*PostSpillover	0.0052** (0.0022)	0.0022 (0.0015)	0.0024 (0.0017)	0.0015 (0.0022)	0.0106** (0.0045)	0.0027 (0.0033)	0.0023 (0.0034)	0.0048 (0.0054)
VPD Prevalence *PostSpillover*Girl		0.0067*** (0.0021)	0.0081*** (0.0024)	0.0095** (0.0035)		0.0174*** (0.0045)	0.0194*** (0.0049)	0.0234*** (0.0069)
Sum of Above		0.00894*** (0.00329)	0.0106*** (0.00320)	0.0110** (0.00522)		0.0201*** (0.00669)	0.0217*** (0.00588)	0.0281*** (0.0110)
Observations	254,831	254,831	128,443	130,250	254,495	254,495	128,287	130,092
Mean of Dependent Variable	0.909	0.909	0.872	0.894	1.629	1.629	1.54	1.603

Note: all RHS variables interacted with girl in gender interacted specification

Dependent Variable	Literate					Educational Attainment			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
	Baseline	Gender Interacted	Mother Works Outside Home	Cotton Producing Area	Baseline	Gender Interacted	Mother Works Outside Home	Cotton Producing Area	
VPD Prevalence*PostSpillover	0.0052** (0.0022)	0.0022 (0.0015)	0.0024 (0.0017)	0.0015 (0.0022)	0.0106** (0.0045)	0.0027 (0.0033)	0.0023 (0.0034)	0.0048 (0.0054)	
VPD Prevalence *PostSpillover*Girl		0.0067*** (0.0021)	0.0081*** (0.0024)	0.0095** (0.0035)		0.0174*** (0.0045)	0.0194*** (0.0049)	0.0234*** (0.0069)	
Sum of Above		0.00894*** (0.00329)	0.0106*** (0.00320)	0.0110** (0.00522)		0.0201*** (0.00669)	0.0217*** (0.00588)	0.0281*** (0.0110)	
Observations	254,831	254,831	128,443	130,250	254,495	254,495	128,287	130,092	
Mean of Dependent Variable	0.909	0.909	0.872	0.894	1.629	1.629	1.54	1.603	

Note: all RHSy variables interacted with girl in gender interacted specification

Dependent Variable		Lite	rate		Educational Attainment			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Baseline	Gender Interacted	Mother Works Outside Home	Cotton Producing Area	Baseline	Gender Interacted	Mother Works Outside Home	Cotton Producing Area
VPD Prevalence*PostSpillover	0.0052** (0.0022)	0.0022 (0.0015)	0.0024 (0.0017)	0.0015 (0.0022)	0.0106** (0.0045)	0.0027 (0.0033)	0.0023 (0.0034)	0.0048 (0.0054)
VPD Prevalence *PostSpillover*Girl		0.0067*** (0.0021)	0.0081*** (0.0024)	0.0095** (0.0035)		0.0174*** (0.0045)	0.0194*** (0.0049)	0.0234*** (0.0069)
Sum of Above		0.00894*** (0.00329)	0.0106*** (0.00320)	0.0110** (0.00522)		0.0201*** (0.00669)	0.0217*** (0.00588)	0.0281*** (0.0110)
Observations	254,831	254,831	128,443	130,250	254,495	254,495	128,287	130,092
Mean of Dependent Variable	0.909	0.909	0.872	0.894	1.629	1.629	1.54	1.603

Note: all RHS variables interacted with girl in gender interacted specification

▶ SpilloverPrimary

Heterogenous Spillover Effects by Gender

• 1998, 2003/4 and 2008 have place of birth

Dense los Washell	Years	No	Compulsory	Additional
Dependent Variable	Schooling	Education	Education	Years
PANEL	A: SPILLOVI	ER EFFECTS		
VPD Prevalence*PostSpillover	-0.0989	-0.0107	0.0096	-0.2686
VFD Flevalence FostSpillover	(0.0792)	(0.0066)	(0.0064)	(0.1614)
VPD Provolonce *PostSpillover*Cirl	0.1627***	-0.0243**	0.0194*	0.0763
VFD Flevalence 'Fostspillovel'Oll'	(0.0573)	(0.0099)	(0.0108)	(0.1198)
Observations	8,363	8,367	8,367	8,363
No. Clusters	61	61	61	61
PAN	EL B: PLACE	BO TEST		
VPD Prevalence*PostSpillover	-0.0790	-0.0058	-0.0007	-0.1804
VID Hevalence Tostspinover	(0.0769)	(0.0042)	(0.0054)	(0.1130)
VPD Prevalence *PostSpillover*Girl	0.0526	0.0152*	-0.0075	0.1547
VID Hevalence Tostspinover Gill	(0.1328)	(0.0077)	(0.0096)	(0.1967)
Observations	4,065	4,071	4,071	4,065
No. Clusters	61	61	61	61

• No spillover effect on older brothers, exclusively to older sisters

- No spillover effect on older brothers, exclusively to older sisters
- Differential increasing if mother works outside the home

- No spillover effect on older brothers, exclusively to older sisters
- Differential increasing if mother works outside the home
- Differential increasing in number of young children in the home
- Suggestive evidence that girls are tasked with childcare or household chores when mother preoccupied with sick child (for various cultural/economic reasons) and gain when childcare needs are reduced
 - no effect of campaign on fertility, sex ratios, occupational scores, asset index

• Investigated the effects of a large scale campaign to vaccinate children under 5 in a LMIC

- Investigated the effects of a large scale campaign to vaccinate children under 5 in a LMIC
- Found large effects of campaign not on stated purpose to reduce early child mortality but on disability and human capital

- Investigated the effects of a large scale campaign to vaccinate children under 5 in a LMIC
- Found large effects of campaign not on stated purpose to reduce early child mortality but on disability and human capital
 - caution when extrapolating these results to other vaccines or populations

- Investigated the effects of a large scale campaign to vaccinate children under 5 in a LMIC
- Found large effects of campaign not on stated purpose to reduce early child mortality but on disability and human capital
 - caution when extrapolating these results to other vaccines or populations
- Spillover effects of vaccine campaign on human capital accrue only to older sisters

- Investigated the effects of a large scale campaign to vaccinate children under 5 in a LMIC
- Found large effects of campaign not on stated purpose to reduce early child mortality but on disability and human capital
 - caution when extrapolating these results to other vaccines or populations
- Spillover effects of vaccine campaign on human capital accrue only to older sisters
- As development agenda moves from reducing early childhood mortality to reducing morbidity, may consider gendered response in education as potential unintended consequence of early child health interventions

Time Use Data (2006) Separate spheres starts before marriage

Time Spent on Household Chores (Minutes)

Within households among never married individuals 15-24 years of age, girls spend ~ 3 hours more on household chores than their male peers

Hypothesis

▶ Health

Mechanisms of Disability

▶ Health

- Pertussis: (Whooping Cough)
 - in infants and children very dangerous: pneumonia, violent shaking, seizures/apnea/encephalopathy->brain damage and death (less contagious than measles but 1.6% of infants could die)

- cause rash, fever, pneumonia
- shocks the immune system, increases the likelihood of other infections for up to a year
- permanent disability from ear infections (deafness) and encephaloapthy (brain damage) ~1%, deaths 1/1000
- Diphtheria: (Croup)
 - thick gray membrane covering throat, difficulty breathing
- Polio
 - paralysis, neuropathy/paresthesia, meningitis (post-polio syndrome) -disability only in 1% of cases, .1% death

ProvinceSpec

- Corrects for under-reporting of vital statistics (particularly in rural areas)
- Use unique question in 1985 census which asked female >=12 about infant deaths and births in past year to construct a correction factor

$$\frac{\textit{Infant_Deaths}_{1985}^{\textit{census}}}{\textit{Infant_Deaths}_{1985}^{\textit{istatiskleri}}} = \textit{CF}_{1985}.$$

• Derive prevalence from mortality using case fatality rate (CFR) :

$$VPDprevalence_{p} = \frac{\overline{VPD_deaths}_{p} * CF_{p}}{CFR * Under5Pop_{p}} * 100$$

VPD Prevalence Map

ProvinceSpec

Compare Corrected IMR to DHS IMR

▶ ProvinceSpec

Compare Corrected VPD to Regional VPD

▶ ProvinceSpec

► CIA

Dependent Variable	Disabled	Literate	Educational Attainment
	(1)	(2)	(3)
VPD Prevalence*Placebo	-0.0002	0.0024	0.0104
Post	(0.0002)	(0.0030)	-0.0079
P. (-0.0001	0.0393**	-0.3221***
Post	(0.0010)	(0.0156)	-0.0355
VDD Duranala na a	0.0005***	0.0025	0.0004
VPD Prevalence	(0.0002)	(0.0026)	-0.0063
Observations	122	122	122
R-squared	0.3618	0.7901	0.8915
Number Clusters	61	61	61

First Stage

► CIA

Include those with missing parental characteristics

▶ AgeEligible1

Dependent Variable	Disabled		Lite	erate	Less Than Primary School		
	(1)	(2)	(3)	(4)	(5)	(6)	
	Pasalina	Gender	Pasalina	Gender	Pasalina	Gender	
	Baseline	Interacted	Buseline	Interacted	Basenne	Interacted	
VDD Provelence*Dest	-0.0003	-0.0003	0.0147**	0.0103**	-0.0135**	-0.0088*	
VFD Flevalence Fost	(0.0002)	(0.0003)	(0.0060)	(0.0050)	(0.0056)	(0.0047)	
VDD Dravalance *Drat *Cirl		-0.0000		0.0090**		-0.0097**	
VPD Prevalence *Post *Girl		(0.0003)		(0.0036)		(0.0037)	
Observations	476,178	476,178	475,975	475,975	419,530	419,530	
R-squared	0.0017	0.0019	0.1558	0.1899	0.1428	0.1681	
Year of Birth Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	
Birth Province Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	
Individual Characteristics	Yes	Yes	Yes	Yes	Yes	Yes	
No. Clusters	61	61	61	61	61	61	

◆ AgeEligib<u>le1</u>

Dependent Variable	Bi	rth	Girl Baby		
	(1)	(2)	(3)	(4)	
VPD Prevalence *Post	0.0023 (0.0022)	0.0023 (0.0022)	-0.0028 (0.006)	-0.0028 (0.006)	
Observations	61,793	61,793	9,341	9,341	
R-squared	0.0134	0.0183	0.081	0.008	
Year of Birth Fixed Effects	Yes	Yes	Yes	Yes	
Province FE	Yes	Yes	Yes	Yes	
Maternal Characteristics	No	Yes	No	Yes	
No. Clusters	58	58	58	58	

▶ AgeEligible1

Dependent Variable	Disabled	Literate	Disabled	Literate	Disabled	Literate	Disabled	Literate
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Region-1	Year FE	Province*Linear YOB		var YOB Health Professionals		ealth Professionals Mean Reversion	
VDD Bravalanaa*Bost	-0.0005**	0.0012	0.0022*	0.0143*	-0.0004*	0.0132**	-0.0004	0.0050**
VPD Prevalence*Post	(0.0002)	(0.0025)	(0.0012)	(0.0073)	(0.0002)	(0.0053)	(0.0003)	(0.0023)
Observations	342,197	342,096	342,197	342,096	342,197	342,096	342,197	342,096
Mean of Dependent Variable	0.0126	0.920	0.0126	0.920	0.0126	0.920	0.0126	0.920
Year of Birth Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Birth Province Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual Characteristics	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
No. Clusters	61	61	61	61	61	61	61	61

▶ AgeEligible1

Dependent Variable	Disabled	Literate	Disabled	Literate	Disabled	Literate
	(1)	(2)	(3)	(4)	(5)	(6)
	Url	ban	Ru	ral	Drop Kurd	lish Areas
VPD Provalence*Post	-0.0002	0.0162*	-0.0007*	0.0098	-0.0006**	0.0079*
VFD Flevalence Fost	(0.0003)	(0.0088)	(0.0003)	(0.0064)	(0.0002)	(0.0042)
Observations	233,414	233,357	108,783	108,739	311,695	311,606
R-squared	0.0023	0.1493	0.0026	0.1726	0.0022	0.1095
Year of Birth Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Birth Province Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes
Individual Characteristics	Yes	Yes	Yes	Yes	Yes	Yes
No. Clusters	33	33	28	28	56	56

SummaryResults1

Dependent Variable	Literate					
	Boys	Girls				
Disabled	-0.3031***	-0.3400***				
	(0.0100)	(0.0145)				
Observations	175,348	166,748				
R-squared	0.1222	0.2428				
Year of Birth Fixed Effects	Yes	Yes				
Province FE	Yes	Yes				
Individual Characteristics	Yes	Yes				
No. Clusters	61	61				

variable name	mean	standard deviation
year of birth	1976.47	7.538
year	1993.36	7.45
age	16.89	1.407
famsize	5.90	3.416
less	0.11	0.318
literate	0.94	0.246
disabled	0.01	0.113
gender	0.51	0.50
mother literate	0.58	0.49
vpd prevalence	2.82	1.61
In total health personnel	6.97	1.29

Model of Intrahousehold Time Allocation in the Presence of Early Childhood Illness (1)

Preferences

 Parent(s) seek to maximize parental welfare (utility) which is additively separable in own consumption (µ) and expected earnings (E) of their children

$$U(\mu, \mathbf{E}) = V[\mu, \mathbf{E}]$$

- Follow Behrman et al. (1982); model allocation as one-period problem
- Assume 3 children (i) per household, older siblings of each gender
 b, g and younger child y :

$$E_i = E(S_i, X_i) \equiv p(S_i, X_i) w_s + (1 - p(S_i, X_i)) w_u$$

for older children X fixed and younger children, E=E(X), p is concave

- Focus on time constraints
 - other mechanisms

- Focus on time constraints
 - other mechanisms
 - epidemiological spillovers- probably played a much smaller role given U-shaped, age-dept complication rate

- other mechanisms
 - epidemiological spillovers- probably played a much smaller role given U-shaped, age-dept complication rate
 - taste-based discrimination/income: no evidence campaign affected proxies for wealth (occupational status of parents, assets)

- other mechanisms
 - epidemiological spillovers- probably played a much smaller role given U-shaped, age-dept complication rate
 - taste-based discrimination/income: no evidence campaign affected proxies for wealth (occupational status of parents, assets)
- Accords with other findings on importance of time for children's health in the developing world: Miller & Urdinola, UNICEF

- other mechanisms
 - epidemiological spillovers- probably played a much smaller role given U-shaped, age-dept complication rate
 - taste-based discrimination/income: no evidence campaign affected proxies for wealth (occupational status of parents, assets)
- Accords with other findings on importance of time for children's health in the developing world: Miller & Urdinola, UNICEF
- Young child requires time input of care Z which increases with illness $X_y(I)$

$$X_{y}(I) = \alpha Z_{b} + Z_{g}$$

- other mechanisms
 - epidemiological spillovers- probably played a much smaller role given U-shaped, age-dept complication rate
 - taste-based discrimination/income: no evidence campaign affected proxies for wealth (occupational status of parents, assets)
- Accords with other findings on importance of time for children's health in the developing world: Miller & Urdinola, UNICEF
- Young child requires time input of care Z which increases with illness $X_y(I)$

$$X_y(I) = lpha Z_b + Z_g$$

- αε(0, 1) reflects gendered relative efficiency of girl siblings in providing childcare
- older children divide time between caring for young child and schooling

$$\max_{S_b S_g} U(\mu, \mathbf{E}) = v(\mu) + p(S_b, \bar{X}) w_s + (1 - p(S_b, \bar{X})) w_u + p(S_g, \bar{X}) w_s + (1 - p(S_g, \bar{X})) w_u + p(X_y(I)) w_s + (1 - p(X_y(I)) w_u)$$

s.t. $X_y(I) = \alpha Z_b + Z_g$, $T = Z_b + S_b$ and $T = Z_g + S_g$

Proposition

In equilibrium, boys are allocated more time in school than girls.

Proof.

Dividing the two FOC yields: $p'(S_b^*) = p'(S_g^*)\alpha$. Since $\alpha \epsilon(0, 1)$, $p'(S_g^*) > p'(S_b^*) \Leftrightarrow S_g^* < S_b^*$.

Note: if $w_{g,s} < w_{b,s} \rightarrow p'(S_b^*) = p'(S_g^*) \alpha \frac{w_{g,s}}{w_{b,s}}$

Proposition

Girls' schooling increases when younger siblings are healthy and is more responsive to siblings health than boys' schooling.

Proof.

from the FOC: $S_g^* = p'^{-1}p'(X(I)) \rightarrow \frac{\partial S_g^*}{\partial I} = p(\cdot)^{-1''}p(\cdot)''\frac{\partial X}{\partial I} < 0$ since the inverse of a concave function is convex, the 1st and 3rd term are positive and the 2nd is negative. Similarly: $\frac{\partial S_b^*}{\partial I} = \alpha p(\cdot)^{-1''}p(\cdot)''\frac{\partial X}{\partial I} < 0$ which is less than the comparative static for girls by α .