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Abstract

We propose a new method of testing asset pricing models that relies on using
quantities rather than prices or returns. We use the capital flows into and out
of mutual funds to infer which risk model investors use. We derive a simple test
statistic that allows us to infer, from a set of candidate models, the model that
is closest to the true risk model. Using this methodology, we find that of the
models most commonly used in the literature, the Capital Asset Pricing Model is
the closest. Given our current state of knowledge, we argue that the Capital Asset
Pricing Model is the appropriate method to use to calculate the cost of capital of an
investment opportunity. Despite the Capital Asset Pricing Model’s success, we also
document that a large fraction of mutual fund flows remain unexplained by existing
asset pricing models.
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The starting point of this paper is the insight that if an asset pricing model correctly

prices risk, investors must be using it. Based on this idea we develop a novel test of asset

pricing models.

All capital asset pricing models assume that investors compete fiercely with each other

to find positive net present value investment opportunities, and in doing so, eliminate

them. As a consequence of this competition, equilibrium prices are set so that the expected

return of every asset is solely a function of its risk. When a positive net present value

(NPV) investment opportunity presents itself in capital markets (that is, an asset is

mispriced relative to the model investors are using) investors react by submitting buy

or sell orders until the opportunity no longer exists (the mispricing is removed). These

buy and sell orders reveal the preferences of investors and therefore they reveal which

asset pricing model investors are using. By observing whether or not buy and sell orders

occur in reaction to the existence of positive net present value investment opportunities

as defined by a particular asset pricing model, one can infer whether investors price risk

using that asset pricing model.

There are two criteria that are required to implement this methodology. First, one

needs a mechanism that identifies positive net present value investment opportunities.

Second, one needs to be able to observe investor reactions to these opportunities. We

demonstrate that we can satisfy both criteria if we implement the methodology using

mutual fund data. Under the assumption that a particular asset pricing model holds,

we use the main insight from Berk and Green (2004) to show that positive (negative)

abnormal return realizations in a mutual fund investment must be associated with positive

net present value buying (selling) opportunities. We then measure investor reactions to

these opportunities by observing the subsequent capital flow into (out of) mutual funds.

Using this methodology, we derive a simple test statistic that allows us to infer, from

a set of candidate models, the model that is closest to the true asset pricing model. Our

test can be implemented by running a simple univariate ordinary least squared regression

using the t-statistic to assess statistical significance. We take as the set of candidate

models, the Capital Asset Pricing Model (CAPM), originally derived by Sharpe (1964),

Lintner (1965) and Mossin (1966), the reduced form factor models specified by Fama

and French (1993) and Carhart (1997) and the dynamic equilibrium models derived by

Merton (1973), Breeden (1979), Campbell and Cochrane (1999) and Bansal and Yaron

(2004). We find that the CAPM is the closest model to the true model. Importantly,

the CAPM better explains flows than no model at all, indicating that investors do price

risk. Furthermore, it also outperforms a naive model in which investors ignore beta and

simply chase any outperformance relative to the market portfolio. This result suggests
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that investors measure risk using the CAPM beta. However, much of the flows in and

out of mutual funds remain unexplained. To that end the paper leaves as an unanswered

question whether the unexplained part of flows result because investors use a superior,

yet undiscovered, risk model, or whether investors use other, non-risk based, criteria to

make investment decisions.

It is important to emphasize that implementing our test requires accurate measure-

ment of the variables that determine the Stochastic Discount Factor (SDF). In the case

of the CAPM, the SDF is measured using market prices which contain little or no mea-

surement error, and more importantly, can be observed by investors as accurately as by

empiricists. Testing the dynamic equilibrium models relies on observing variables such

as consumption, which investors can measure precisely (they presumably know their own

consumption) but empiricists cannot, particularly over short horizons. Consequently our

tests cannot differentiate whether these models underperform because they rely on vari-

ables that are difficult to measure, or because the underlying assumptions of these models

are flawed.

Ultimately, the reason financial economists are interested in discovering the true risk

model is that it is required to calculate the cost of capital of an investment opportunity.

It is tempting to assume that a model that better explains cross-sectional variation in

average asset returns is a better model to use to calculate the cost of capital. The

problem with this line of thinking is that it assumes that all cross-sectional variation in

average returns results from risk differences. If not all variation in average returns results

from risk differences, a model that better explains this cross sectional variation is not

necessarily a better model to use to adjust for risk. Because the flow of funds reveals the

risk preferences of investors, our methodology allows researchers to determine whether

cross sectional variation not explained by a model represents an omitted risk factor. If

this unexplained cross sectional variation does not represent an omitted risk factor, then

even if a new model can explain this variation, it is inappropriate to use that model to

calculate the cost of capital. So, for example, the fact the reduced-form factor models

do not outperform the CAPM implies that these additional factors should not enter the

cost of capital calculation. What our empirical work shows is that, given our current

level of knowledge, the appropriate way to calculate the cost of capital of an investment

opportunity is to use the CAPM.

Because we implement our methodology using mutual fund data, one might be tempted

to conclude that our tests only reveal the risk preferences of mutual fund investors, rather

than all investors. But this is not the case. When an asset pricing model correctly prices

risk, it rules out positive net present value investment opportunities in all markets. Even
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if no investor in the market with a positive net present value opportunity uses the asset

pricing model under consideration, so long as there are investors in other markets that

use the asset pricing model, those investors will recognize the positive net present value

opportunity and will act to eliminate it. That is, if our test rejects a particular asset

pricing model, we are not simply rejecting the hypothesis that mutual fund investors use

the model, but rather, we are rejecting the hypothesis that any investor who could invest

in mutual funds uses the model.

The first paper to use mutual fund flows to infer investor preferences is Guercio and

Tkac (2002). Although the primary focus of their paper is on contrasting the inferred

behavior of retail and institutional investors, that paper documents flows respond to

outperformance relative to the CAPM. The paper does not consider other risk models.

In work subsequent to ours, Barber, Huang, and Odean (2014) use our approach and

confirm our result (implementing the approach using a different methodology) that the

investors use the CAPM rather than the other reduced form factor models that have been

proposed. They do not consider the dynamic equilibrium models, nor do they consider the

possibility that investors use no model at all, and so do not show that risk-based models

better explain flows than either the behavior model that investors just chase passed returns

or a model of risk neutrality.1

1 A New Asset Pricing Test

The core idea that underlies every financial asset pricing model in economics is that prices

are set by agents chasing positive net present value investment opportunities. When fi-

nancial markets are perfectly competitive, these opportunities are competed away so that,

in equilibrium, prices are set to ensure that no positive net present value opportunities

exist. Under the neoclassical assumptions that underly these models, prices respond to

the arrival of new information by instantaneously adjusting to eliminate any positive net

present value opportunities that arise. It is important to appreciate that this price adjust-

ment process is part of all asset pricing models, either explicitly (if the model is dynamic)

or implicitly (if the model is static). The output of all these models – a prediction about

expected returns – relies on the assumption that this price adjustment process occurs.

The importance of this price adjustment process has long been recognized by financial

economists and forms the basis of the event study literature. In that literature, the

1Readers interested in the exact chronology can consult “Note on the relation between the chronology
of Barber, Huang and Odean and this paper” located at http://www.gsb.stanford.edu/
faculty-research/working-papers/assessing-asset-pricing-models-using-revealed-preference.
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asset pricing model is assumed to be correctly identified. In that case, because there

are no positive net present value opportunities, the price change that results from new

information (i.e., the part of the change not explained by the asset pricing model) measures

the value of the new information.

Because prices always adjust to eliminate positive net present value investment oppor-

tunities, under the correct asset pricing model, expected returns are determined by risk

alone. Modern tests of asset pricing theories test this powerful insight using return data.

Rejection of an asset pricing theory occurs if positive net present value opportunities are

detected, or, equivalently, if investment opportunities can be found that consistently yield

returns in excess of the expected return predicted by the asset pricing model. The most

important shortcoming in interpreting the results of these tests is that the empiricist is

never sure that a positive net present value investment opportunity that is identified ex

post was actually available ex ante.2

An alternative testing approach, that does not have this shortcoming, is to identify

positive net present value investment opportunities ex ante and test for the existence of

an investor response. That is, do investors react to the existence of positive net present

value opportunities that result from the revelation of new information? Unfortunately,

for most financial assets, investor responses to positive net present value opportunities are

difficult to observe. As Milgrom and Stokey (1982) show, the price adjustment process

can occur with no transaction volume whatsoever, that is, competition is so fierce that no

investor benefits from the opportunity. Consequently, for most financial assets the only

observable evidence of this competition is the price change itself. Thus testing for investor

competition is equivalent to standard tests of asset pricing theory that use return data to

look for the elimination of positive net present value investment opportunities.

The key to designing a test to directly detect investor responses to positive net present

value opportunities is to find an asset for which the price is fixed. In this case the market

equilibration must occur through volume (quantities). A mutual fund is just such an

asset. The price of a mutual fund is always fixed at the price of its underlying assets, or

the net asset value (NAV). In addition, fee changes are rare. Consequently, if, as a result

of new information, an investment in a mutual fund represents a positive net present

value investment opportunity, the only way for investors to eliminate the opportunity is

by trading the asset. Because this trade is observable, it can be used to infer investments

investors believe to be positive net present value opportunities. One can then compare

those investments to the ones the asset pricing model under consideration identifies to

be positive net present value and thereby infer whether investors are using the asset

2For an extensive analysis of this issue, see Harvey, Liu, and Zhu (2014).
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pricing model. That is, by observing investors’ revealed preferences in their mutual fund

investments, we are able to infer information about what (if any) asset pricing model they

are using.

1.1 The Mutual Fund Industry

Mutual fund investment represents a large and important sector in U.S. financial markets.

In the last 50 years there has been a secular trend away from direct investing. Individual

investors used to make up more than 50% of the market, today they are responsible for

barely 20% of the total capital investment in U.S. markets. During that time, there has

been a concomitant rise in indirect investment, principally in mutual funds. Mutual funds

used to make up less than 5% of the market, today they make up 1/3 of total investment.3

Today, the number of mutual funds that trade in the U.S. outnumber the number of stocks

that trade.

Berk and Green (2004) derive a model of how the market for mutual fund investment

equilibrates that is consistent with the observed facts.4 They start with the observation

that the mutual fund industry is like any industry in the economy — at some point it

displays decreasing returns to scale.5 Given the assumption under which all asset pricing

models are derived (perfectly competitive financial markets), this observation immediately

implies that all mutual funds must have enough assets under management so that they

face decreasing returns to scale. When new information arrives that convinces investors

that a particular mutual fund represents a positive net present value investment, investors

react by investing more capital in the mutual fund. This process continues until enough

new capital is invested to eliminate the opportunity. As a consequence, the model is

able to explain two robust empirical facts in the mutual fund literature: that mutual

fund flows react to past performance while future performance is largely unpredictable.6

Investors chase past performance because it is informative: mutual fund managers that

do well (poorly) have too little (much) capital under management. By competing to

take advantage of this information, investors eliminate the opportunity to predict future

performance.

A key assumption of the Berk and Green (2004) model is that mutual fund managers

3See French (2008).
4Stambaugh (2014) derives a general equilibrium version of this model based on the model in Pastor

and Stambaugh (2012).
5Pastor, Stambaugh, and Taylor (2014) provide empirical evidence supporting this assumption.
6An extensive literature has documented that capital flows are responsive to past returns (see Chevalier

and Ellison (1997) and Sirri and Tufano (1998)). Yet future investor returns are largely unpredictable
(see Carhart (1997)).
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are skilled and that this skill varies across managers. Berk and van Binsbergen (2013)

verify this fact. They demonstrate that such skill exists and is highly persistent. More

importantly, for our purposes, they demonstrate that mutual fund flows contain useful

information. Not only do investors systematically direct flows to higher skilled managers,

but managerial compensation, which is primarily determined by these flows, predicts

future performance as far out as 10 years. Investors know who the skilled managers are

and compensate them accordingly. It is this observation that provides the starting point

of our analysis. Because the capital flows into mutual funds are informative, they reveal

the asset pricing model investors are using.

1.2 Private Information

Most asset pricing models are derived under the assumption that all investors are sym-

metrically informed. Hence, if one investor faces a positive NPV investment opportunity,

all investors face the same opportunity and so it is instantaneously removed by competi-

tion. The reality is somewhat different. The evidence in Berk and van Binsbergen (2013)

of skill in mutual fund management implies that at least some investors have access to

different information or have different abilities to process information. As a result, not all

positive net present value investment opportunities are instantaneously competed away.

As Grossman (1976) argued, in a world where there are gains to collecting information

and information gathering is costly, not everybody can be equally informed in equilibrium.

If everybody chooses to collect information, competition between investors ensures that

prices reveal the information and so information gathering is unprofitable. Similarly, if

nobody collects information, prices are uninformative and so there are large profits to

be made collecting information. Thus, in equilibrium, investors must be differentially

informed (see, e.g., Grossman and Stiglitz (1980)). Investors with the lowest information

gathering costs collect information so that, on the margin, what they spend on information

gathering, they make back in trading profits. Presumably these investors are few in

number so that the competition between them is limited, allowing for the existence of

prices that do not fully reveal their information. As a result, information gathering is a

positive net present value endeavor for a limited number of investors.

The existence of asymmetrically informed investors poses a challenge for empiricists

wishing to test asset pricing models derived under the assumption of symmetrically in-

formed investors. Clearly, the empiricist’s information set matters. For example, asset

pricing models fail under the information set of the most informed investor, because the

key assumption that asset markets are competitive is false under that information set.
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Consequently, the standard in the literature is to assume that the information set of the

uninformed investors only contains publicly available information all of which is already

impounded in all past and present prices (or returns), and to conduct the test under that

information set. For now, we will adopt the same strategy but will revisit this assumption

in Section 5.2, where we will explicitly consider the possibility that the majority of in-

vestors’ information sets includes more information than just what is already impounded

in past and present prices.

1.3 Methodology

To formally derive our testing methodology, let qit denote assets under management

(AUM) of fund i at time t and let θi denote a parameter that describes the skill of the

manager of fund i.7 At time t, investors use the time t information set It to update their

beliefs on θi resulting in the distribution function gt(θi) implying that the expectation of

θi at time t is:

θ̄it ≡ E [θi | It] =

∫
θi gt (θi) dθi. (1)

We assume throughout that gt(·) is not a degenerate distribution function. Let Rn
it denote

the excess return (that is, the net-return in excess of the risk free rate) earned by investors

between time t − 1 and t. Let RB
it denote the risk adjustment prescribed by the asset

pricing model over the same time interval. Note that qit, R
n
it and RB

it are elements of It.

Let αit(q) denote investors’ subjective expectation of the risk adjusted return they make

when investing in fund i that has size q between time t and t+ 1, also commonly referred

to as the net alpha:

αit(q) = θ̄it − hi (q) , (2)

where hi (q) is a strictly increasing function of q, reflecting the fact that, under the as-

sumptions underlying every asset pricing model, all mutual funds must face decreasing

returns to scale in equilibrium. In equilibrium, the size of the fund qit adjusts to ensure

that there are no positive net present value investment opportunities so αit(qit) = 0 and

θ̄it = hi (qit) . (3)

At time t+ 1, the investor observes the manager’s return outperformance,

εit+1 ≡ Rn
it+1 −RB

it+1, (4)

7For expositional simplicity we do not allow θi to depend on qit. This assumption is without loss of
generality under the assumption that either the manager is allowed to borrow or can set his own fee, see
Berk and Green (2004).
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which is a signal that is informative about θi. The conditional distribution function of

εit+1 at time t, f (εit+1|αit(qit)), satisfies the following condition in equilibrium:

E[εit+1 | It] =

∫
εit+1f (εit+1|αit(qit)) dεit+1 = αit(qit) = 0. (5)

Our testing methodology relies on the insight that good news, that is, εit > 0, implies good

news about θi and bad news, εit < 0, implies bad news about θi. The following proposition

shows that, in expectation, this condition holds generally. That is, on average, a positive

(negative) realization of εit leads to a positive (negative) update on θi implying that before

the capital response, the fund’s alpha will be positive (negative).

Proposition 1 On average, a positive (negative) realization of εit leads to a positive

(negative) update on θi:

E[αit+1(qit)εit+1 | It] > 0.

Proof:

E[αit+1(qit)εit+1 | It] = E[E[αit+1(qit)εit+1 | θi ] | It]

= E[(θi − hi(qit)) E[εit+1 | θi] | It]

= E[(θi − hi(qit)) (θi − hi(qit)) | It]

> 0.

Unfortunately this proposition is not directly testable because αit+1(qit) is not observable.

Instead what we do observe are the capital flows that result when investors update their

beliefs. Our next objective is to restate the result in Proposition 1 in terms of capital

flows.

What Proposition 1 combined with (3) tells us is that positive (negative) news must,

on average, lead to an inflow (outflow). However, without further assumptions, we cannot

quantify the magnitude of the capital response. Rather than lose generality by making

further assumptions, we can sidestep this issue by focusing only on the direction of the

capital response. With that in mind we begin by first defining the function that returns

the sign of a real number, taking values 1 for a positive number, -1 for a negative number

and zero for zero:

φ(x) ≡

{
x
|x| x 6= 0

0 x = 0
.
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Next, let the flow of capital into mutual fund i at time t be denote by Fit, that is,

Fit+1 ≡ qit+1 − qit.

The following lemma proves that the sign of the capital inflow and the alpha inferred from

the information in εit+1 must be the same.

Lemma 1 The sign of the capital inflow and the alpha inferred from the information in

εit+1 must be the same:

φ(Fit+1) = φ(αit+1(qit)).

Proof:

φ(αit+1(qit)) = φ(αit+1(qit)− αit+1(qit+1))

= φ(h(qit+1)− h(qit))

= φ(qit+1 − qit)

= φ(Fit+1).

where the first line follows from (5) and the third line flows from the fact that h(q) is a

strictly increasing function.

We are now ready to restate Proposition 1 as a testable prediction.

Proposition 2 The regression coefficient of the sign of the capital inflows on the sign of

the realized return outperformance is positive, that is,

βFε ≡
cov(φ(Fit+1), φ(εit+1))

var(φ(εit+1))
> 0. (6)

Proof: See appendix.

This proposition provides a testable prediction and thus a new method to reject an asset

pricing model. Under our methodology, we define a model as working when investors’

revealed preferences indicate that they are using that model to update their inferences

of positive net present value investment opportunities. Because flows reveal investor

preferences, a measure of whether investors are using a particular asset pricing model

is the fraction of decisions for which outperformance (as defined by the model) implies

capital inflows and underperformance implies capital outflows. The next Lemma shows

that βFε is a simple linear transformation of this measure.
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Lemma 2 The regression coefficient of the sign of the capital inflows on the sign of the

realized return outperformance can be expressed as follows:

βFε = Pr [φ (Fit) = 1 | φ (εit) = 1] + Pr [φ (Fit) = −1 | φ (εit) = −1]− 1

= Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1 | φ (εit) = −1] .

Proof: See appendix.

Practically, it is likely that not all asset pricing models under consideration will be

rejected. In that case a natural question to ask is, of the models that cannot be rejected,

which model is “best.” By best we mean the model that comes closest to pricing risk

correctly. To formalize this concept, consider a set of candidate risk models, indexed by

c ∈ C, such that the risk adjustment of each model is given by Rc
it, so the risk-adjusted

performance is given by:

εcit = Rn
it −Rc

it.

Because at most only one element of the set of candidate risk models can be the true risk

model, the rest of the models in C do not fully capture risk. We refer to these models as

false risk models. We will maintain the assumption throughout this paper that conditional

on knowing the true risk model, any false risk model cannot have additional explanatory

power for flows:

Pr [φ (Fit) | φ (εit) , φ (εcit)] = Pr [φ (Fit) | φ (εit)] . (7)

Under the Null that the asset pricing model holds, there are no other reasons for aggregate

flows to occur other than the existence of a positive NPV opportunity. For a false risk

model c ∈ C, let βFc be the signed flow-performance regression coefficient of that model,

that is,

βFc ≡
cov (φ (Fit) , φ (εcit))

var (φ (εcit))
.

Notice, from Lemma 2, that −1 ≤ βFc ≤ 1. When outperformance relative to asset

pricing model c is uninformative about flows, that is, Pr [φ (Fit) | φ (εit)] = Pr [φ (Fit)],

then βFc = 0.

The next proposition proves that the regression coefficient of the true model must

exceed the regression coefficient of a false model.

Proposition 3 The regression coefficient of the sign of the capital inflows on the sign

of the realized return outperformance is maximized under the true model, that is, for any
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false model c,

βFε > βFc.

Proof: See appendix.

We are now ready to formally define what we mean by a model that comes closest to

pricing risk. The following definition defines the best model as the model that maximizes

the fraction of times outperformance by the candidate model implies outperformance by

the true model and the fraction of times underperformance by the candidate model implies

underperformance by the true model.

Definition 1 Model c is a better approximation of the true asset pricing model than model

d if and only if:

Pr [φ (εit) = 1 | φ (εcit) = 1] + Pr [φ (εit) = −1 | φ (εcit) = −1]

> Pr
[
φ (εit) = 1 | φ

(
εdit
)

= 1
]

+ Pr
[
φ (εit) = −1 | φ

(
εdit
)

= −1
]
. (8)

With this definition in hand we now show that the models can be ranked by their regression

coefficients.

Proposition 4 Model c is a better approximation of the true asset pricing model than

model d if and only if βFc > βFd.

Proof: See appendix.

The next proposition provides an easy method for empirically distinguishing between

candidate models.

Proposition 5 Consider an OLS regression of φ (Fit) onto
φ(εcit)

var(φ(εcit))
− φ(εdit)

var(φ(εdit))
:

φ (Fit) = γ0 + γ1

(
φ (εcit)

var (φ (εcit))
−

φ
(
εdit
)

var
(
φ
(
εdit
)))+ ξit

The coefficient of this regression is positive, that is, γ1 > 0, if and only if, model c is a

better approximation of the true asset pricing model than model d.

Proof: See appendix
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2 Asset Pricing Models

All asset pricing models assume competitive capital markets and fully rational investors.

Because we assume, under our Null Hypothesis, that the asset pricing model holds we

make the same assumptions. Although these assumptions are clearly restrictive, it is

important to emphasize that they are not part of our testing methodology, but instead

are imposed on us by the models we test. Conceivably our methodology could be applied

to behavioral models in which case these assumptions would not be required.

Our testing methodology can be applied to both reduced-form asset pricing models,

such as the factor models proposed by Fama and French (1993) and Carhart (1997),

as well as to dynamic equilibrium models, such as the consumption CAPM (Breeden

(1979)), habit formation models (Campbell and Cochrane (1999)) and long run risk models

(Bansal and Yaron (2004)). For the CAPM and factor models, RB
it is specified by the beta

relationship. We regress the excess returns to investors, Rn
it, on the risk factors over the

life of the fund to get the model’s betas. We then use the beta relation to calculate RB
it

at each point in time. For example, for the Fama-French-Carhart factor specification, the

risk adjustment RB
it is then given by:

RB
it = βmkti MKTt + βsmli SMLt + βhmli HMLt + βumdi UMDt,

where MKTt, SMLt, HMLt and UMDt are the realized excess returns on the four factor

portfolios defined in Carhart (1997). Using this risk adjusted return, we calculate (4) over

a T -period horizon (T > 1) as follows:

εit =
t∏

s=t−T+1

(1 +Rn
is −RB

it ) − 1. (9)

In any dynamic equilibrium model returns must satisfy the following Euler equation

in equilibrium:

Et[Mt+1R
n
it+1] = 0, (10)

where Mt > 0 is the stochastic discount factor (SDF). When this condition is violated

a positive net present value investment opportunity exists. The dynamic equilibrium

models are all derived under the assumption of a representative investor. Of course, this

assumption does not presume that all investors are identical. When investors are not

identical, it is possible that they do not share the same SDF. Even so, it is important

to appreciate that, in equilibrium, all investors nevertheless agree on the existence of a
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positive net present value investment opportunity. That is, if (10) is violated, it is violated

for every investor’s SDF.8 Because our testing methodology only relies on the existence

of this net present value investment opportunity, it is robust to the existence of investor

heterogeneity.

The outperformance measure for fund i at time t is therefore

αit = Et[Mt+1R
n
it+1]. (11)

Notice that αit > 0 is a buying (selling) opportunity and so capital should flow into

(out of) such opportunities. We calculate the outperformance relative to the equilibrium

models over a T -period horizon as follows:

εit =
1

T

t∑
s=t−T+1

MsR
n
is. (12)

Notice that in this case T must be greater than one because when T = 1, φ(εit) is not

a function of Ms. To compute these outperformance measures, we must compute the

stochastic discount factor for each model at each point in time. For the consumption

CAPM, the stochastic discount factor is:

Mt = β

(
Ct
Ct−1

)−γ
,

where β is the subjective discount rate and γ is the coefficient of relative risk aversion.

The calibrated values we use are given in the top panel of Table 1. We use the standard

data from the Bureau of Economic Analysis (NIPA) to compute consumption growth of

non-durables and services.

For the long-run risk model as proposed by Bansal and Yaron (2004), the stochastic

discount factor is given by:

Mt = δθ
(

Ct
Ct−1

)− θ
ψ

(1 +Ra
t )
−(1−θ) .

where Ra
t is the return on aggregate wealth and where θ is given by:

θ ≡ 1− γ
1− 1

ψ

.

8In an incomplete market equilibrium investors may use different SDFs but the projection of each
investor’s SDF onto the asset space is the same.
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The parameter ψ measures the intertemporal elasticity of substitution (IES). To construct

the realizations of the stochastic discount factor, we use parameter values for risk aversion

and the IES commonly used in the long-run risk literature, as summarized in the middle

panel of Table 1. In addition to these parameter values, we need data on the returns to

the aggregate wealth portfolio. There are two ways to construct these returns. The first

way is to estimate (innovations to) the stochastic volatility of consumption growth as well

as (innovations to) expected consumption growth, which combined with the parameters

of the long-run risk model lead to proxies for the return on wealth. The second way is

to take a stance on the composition of the wealth portfolio, by taking a weighted average

of traded assets. In this paper, we take the latter approach and form a weighted average

of stock returns (as represented by the CRSP value-weighted total market portfolio) and

long-term bond returns (the returns on the Fama-Bliss long-term bond portfolio (60-

120 months)) to compute the returns on the wealth portfolio. Given the calibration in

Table 1, the implied value of θ is large making the SDF very sensitive to the volatility

of the wealth portfolio. Because the volatility of the wealth portfolio is sensitive to the

relative weighting of stocks and bonds, we calculate the SDF over a range of weights

(denoted by w) to assess the robustness with respect to this assumption.9

For the Campbell and Cochrane (1999) habit formation model, the stochastic discount

factor is given by:

Mt = δ

(
Ct
Ct−1

St
St−1

)−γ
,

where St is the consumption surplus ratio. The dynamics of the log consumption surplus

ratio st are given by:

st = (1− φ)s̄+ φst−1 + λ (st−1) (ct − ct−1 − g) ,

where s̄ is the steady state habit, φ is the persistence of the habit stock, ct the natural

logarithm of consumption at time t and g is the average consumption growth rate. We set

all the parameters of the model to the values proposed in Campbell and Cochrane (1999),

but we replace the average consumption growth rate g, as well as the consumption growth

rate volatility σ with their sample estimates over the full available sample (1959-2011),

as summarized in the bottom panel of Table 1. To construct the consumption surplus

ratio data, we need a starting value. As our consumption data starts in 1959, which is

long before the start of our mutual fund data in 1977, we have a sufficiently long period

to initialize the consumption surplus ratio. That is, in 1959, we set the ratio to its steady

9See Lustig, Van Nieuwerburgh, and Verdelhan (2013) for a discussion on the composition of the
wealth portfolio and the importance of including bonds.
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Consumption CAPM
Subj. disc. factor Risk aversion

β γ
0.9989 10

Epstein Zin preferences (LRR)
Subj. disc. factor Risk aversion IES Weight in bonds

δ γ ψ w
0.9989 10 1.5 0%, 70%, 90%

Habit formation preferences
Subj. disc. factor Risk aversion Mean growth Habit persistence Consumption vol

δ γ g φ σ
0.9903 2 0.0020 0.9885 0.0076

Table 1: Parameter Calibration The table shows the calibrated parameters for the
three structural models that we test: power utility over consumption (the consumption
CAPM), external habit formation preferences (as in Campbell and Cochrane (1999)) and
Epstein Zin preferences as in Bansal and Yaron (2004).

state value s̄ and construct the ratio for the subsequent periods using the available data

that we have. Because the annualized value of the persistence coefficient is 0.87, the

weight of the 1959 starting value of the consumption surplus ratio in the 1977 realization

of the stochastic discount factor is small and equal to 0.015.

3 Results

We use the mutual fund data set in Berk and van Binsbergen (2013). The data set spans

the period from January 1977 to March 2011. We remove all funds with less than 5 years

of data leaving 4394 funds.10 Berk and van Binsbergen (2013) undertook an extensive

data project to address several shortcomings in the CRSP database by combining it with

Morningstar data, and we refer the reader to the data appendix of that paper for the

details.

To implement the tests derived in Propositions 2 and 5 it is necessary to pick an

observation horizon. For most of the sample, funds report their AUMs monthly, however

in the early part of the sample many funds report their AUMs only quarterly. In order

not to introduce a selection bias by dropping these funds, the shortest horizon we will

10We chose to remove these funds to ensure that incubation flows do not influence our results. Changing
the criterion to 2 years does not change our results. These results are available on request.
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consider is three months. Furthermore, as pointed out above, we need a horizon length of

more than a month to compute the outperformance measure for the dynamic equilibrium

models. If investors react to new information immediately, then flows should immediately

respond to performance and the appropriate horizon to measure the effect would be the

shortest horizon possible. But in reality there is evidence that investors do not respond

immediately. Mamaysky, Spiegel, and Zhang (2008) show that the net alpha of mutual

funds is predictably non-zero for horizons shorter than a year, suggesting that capital

does not move instantaneously. There is also evidence of investor heterogeneity because

some investors appear to update faster than others.11 For these reasons, we also consider

longer horizons (up to four years). The downside of using longer horizons is that longer

horizons tend to put less weight on investors who update immediately, and these investors

are also the investors more likely to be marginal in setting prices.

The flow of funds is important in our empirical specification because it affects the

alpha generating technology as specified by h(·). Consequently, we need to be careful to

ensure that we only use the part of capital flows that affects this technology. For example,

it does not make sense to include as an inflow of funds, increases in fund sizes that result

from inflation because such increases are unlikely to affect the alpha generating process.

Similarly, the fund’s alpha generating process is unlikely to be affected by changes in size

that result from changes in the price level of the market as a whole. Consequently, we

will measure the flow of funds over a horizon of length T as

qit − qit−T (1 +RV
it ),

where RV
it is the cumulative return to investors of the appropriate Vanguard benchmark

fund as defined in Berk and van Binsbergen (2013) over the horizon from t − T to t.

This benchmark fund is constructed by projecting fund i’s return onto the space spanned

by the set of available Vanguard index funds which can be interpreted as the investors

alternative investment opportunity. Thus, in our empirical specification, we only consider

capital flows into and out of funds net of what would have happened had investors not

invested or withdrawn capital and had the fund manager adopted a purely passive strategy.

We begin by examining the correlation structure of performance between mutual funds.

One would not expect mutual fund strategies to be highly correlated because otherwise

the informational rents would be competed away. It is nevertheless important that we

check that this is indeed the case, because otherwise our assumption that h(·) is a function

of the size of the fund (rather than the size of the industry) would be subject to ques-

11See Berk and Tonks (2007).
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Figure 1: Correlation Between Funds
The histogram displays the distribution of the pairwise correlation coefficients between funds of outper-
formance relative to the Vanguard benchmark.

tion. To examine this correlation, we calculate outperformance relative to the Vanguard

benchmark defined in Berk and van Binsbergen (2013), that is, for each fund we calcu-

late εit using the Vanguard benchmark. We then compute the correlation coefficients of

outperformance between every fund in our sample for which the two funds have at least

4 years of overlapping data. Figure 1 is a histogram of the results. It is clear from the

figure that managers are not using the same strategies — the average correlation between

the funds in our sample is 0.03. Furthermore, 43% of funds are negatively correlated and

the fraction of funds that have large positive correlation coefficients is tiny (only 0.55%

of funds have a correlation coefficient over 50%).

We implement our tests as follows. For each model, c, in each fund, i, we compute

monthly outperformance, εcit, as we explained in Section 2. That is, for the factor models

we generate the outperformance measure for the horizon by using (9) and for the dy-

namic equilibrium models, we use (12). At the end of this process we have a fund flow

and outperformance observation for each fund over each measurement horizon. We then

implement the test in Proposition 2 by estimating βFε for each model by running a single

linear regression. Table 2 reports our results. For ease of interpretation, the table reports

βFε + 1

2
=

Pr [φ (Fit) = 1 | φ (εit) = 1] + Pr [φ (Fit) = −1 | φ (εit) = −1]

2
,

that is, the average conditional probability that the sign of outperformance matches the

sign of the fund inflow. If flows and outperformance are unrelated, we would expect this

measure to equal 50%, that is, βFε = 0. The main takeaway from Table 2 is that none of

our candidate models can be rejected based on Proposition 2, that is, βFε is significantly
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Model Horizon
3 month 6 month 1 year 2 year 3 year 4 year

Market Models (CAPM)
CRSP Value Weighted 63.21 63.08 63.07 62.98 62.36 62.34
S&P 500 62.04 61.47 61.25 61.05 59.96 59.65

No Model
Return 58.52 58.72 58.87 59.80 60.64 60.69
Excess Return 58.17 58.49 58.80 60.37 60.98 60.58
Return in Excess of the Market 61.75 61.37 61.18 61.07 60.71 60.43

Multifactor Models
FF 62.94 62.52 62.63 62.96 62.56 61.85
FFC 63.02 62.63 62.81 62.72 62.31 61.98

Dynamic Equilibrium Models
C-CAPM 58.18 58.35 58.68 60.07 60.59 60.54
Habit 58.14 58.23 58.64 60.00 60.67 60.43
Long Run Risk – 0% Bonds 57.30 58.32 59.31 62.07 61.43 58.63
Long Run Risk – 70% Bonds 57.07 57.53 58.56 58.06 58.20 59.33
Long Run Risk – 90% Bonds 57.14 57.70 58.81 59.05 59.59 60.04

Table 2: Flow of Funds Outperformance Relationship (1977-2011): The table
reports estimates of (6) for different asset pricing models. For ease of interpretation, the
table reports (βFε + 1)/2 in percent, which by Lemma 2 is equivalent to the average con-
ditional probability that the sign of outperformance matches the sign of the fund inflow:
(Pr [φ (Fit) = 1 | φ (εit) = 1]+Pr [φ (Fit) = −1 | φ (εit) = −1])/2. Each row corresponds to
a different risk model. The first two rows report the results for the market model (CAPM)
using the CRSP value weighted index and the S&P 500 index as the market portfolio. The
next three lines report the results of using as the benchmark return, three rules of thumb:
(1) the fund’s actual return, (2) the fund’s return in excess of the risk free rate, and (3)
the fund’s return in excess of the return on the market as measured by the CRSP value
weighted index. The next two lines are the Fama-French (FF) and Fama-French-Carhart
(FFC) factor models. The final four lines report the results for the dynamic equilibrium
models: the Consumption CAPM (C-CAPM), the habit model derived by Campbell and
Cochrane (1999), and the long run risk model derived by Bansal and Yaron (2004). For
the long run risk model we consider three different versions, depending on the portfolio
weight of bonds in the aggregate wealth portfolio. The maximum number in each column
(the best performing model) is shown in bold face.
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Horizon (months)
3 6 12 24 36 48

CAPM CAPM CAPM CAPM FF CAPM
FFC FFC FFC FF CAPM FFC
FF FF FF FFC FFC FF
CAPM SP500 CAPM SP500 CAPM SP500 LRR 0 LRR 0 Return
Excess Market Excess Market Excess Market Excess Market Excess Return Excess Return
Return Return LRR 0 CAPM SP500 Excess Market C-CAPM
C-CAPM Excess Return Return Excess Return Habit Habit
Excess Return C-CAPM LRR 90 C-CAPM Return Excess Market
Habit LRR 0 Excess Return Habit C-CAPM LRR 90
LRR 0 Habit C-CAPM Return CAPM SP500 CAPM SP500
LRR 90 LRR 90 Habit LRR 90 LRR 90 LRR 70
LRR 70 LRR 70 LRR 70 LRR 70 LRR 70 LRR 0

Table 3: Model Ranking: The table shows the ranking of all the models at each time
horizon. Factor models are shown in red, dynamic equilibrium models in blue, and black
entries are models that have not been formally derived. The CAPM is coded in both red
and blue since it can be interpreted as both a factor model and an equilibrium model.
The number following the long run risk models denotes the percentage of the wealth
portfolio invested in bonds.

greater than zero in all cases,12 implying that regardless of the risk adjustment, a flow-

performance relation exists. On the other hand, none of the models performs better than

64%. It appears that a large fraction of flows remain unexplained. Investors appear to be

using other criteria to make a non-trivial fraction of their investment decisions.

Which model best approximates the true asset pricing model? Table 3 ranks each

model by its βFc. The best performing model, at almost all horizons, is the CAPM with

the CRSP value weighted index as the market proxy. To assess whether this ranking re-

flects statistically significant outperformance, we implement the pairwise linear regression

specified in Proposition 5 and report the double clustered t-statistics of these regressions

in Table 4.

We begin by first focusing on the behavioral model that investors just react to past

returns, the column marked “Ret” in the table. By looking down that column one can

see that the factor models all statistically significantly outperform this model at horizons

of two years or less. For example, the t-statistic that βF,CAPM > βF,Ret at the 3-month

12Table 4 reports the double clustered t-statistics.
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Panel A: 3 Month Horizon

Model βFε Univ CAPM FFC FF CAPM Ex. Ret C- Ex. Habit LRR LRR LRR
t-stat SP500 Mkt CAPM Ret 0 90 70

CAPM 0.264 35.82 0.00 0.81 1.22 6.36 9.08 7.01 8.16 8.25 8.20 9.87 10.02 10.59
FFC 0.260 37.38 -0.81 0.00 0.76 3.14 4.63 6.44 7.47 7.56 7.52 9.13 9.15 9.70
FF 0.259 38.02 -1.22 -0.76 0.00 2.89 4.48 6.28 7.30 7.38 7.34 8.99 9.02 9.55
CAPM SP500 0.241 28.41 -6.36 -3.14 -2.89 0.00 1.06 5.45 6.41 6.49 6.44 7.68 8.34 8.47
Excess Market 0.235 31.17 -9.08 -4.63 -4.48 -1.06 0.00 4.54 5.35 5.41 5.39 6.91 6.93 7.35
Return 0.170 14.92 -7.01 -6.44 -6.28 -5.45 -4.54 0.00 2.22 2.26 2.41 1.86 4.82 3.83
C-CAPM 0.163 13.94 -8.16 -7.47 -7.30 -6.41 -5.35 -2.22 0.00 0.16 1.32 1.43 4.12 3.31
Excess Return 0.163 14.00 -8.25 -7.56 -7.38 -6.49 -5.41 -2.26 -0.16 0.00 0.34 1.45 4.50 3.55
Habit 0.163 13.80 -8.20 -7.52 -7.34 -6.44 -5.39 -2.41 -1.32 -0.34 0.00 1.38 3.91 3.19
LRR 0 0.146 11.14 -9.87 -9.13 -8.99 -7.68 -6.91 -1.86 -1.43 -1.45 -1.38 0.00 0.31 0.54
LRR 90 0.143 11.91 -10.02 -9.15 -9.02 -8.34 -6.93 -4.82 -4.12 -4.50 -3.91 -0.31 0.00 0.29
LRR 70 0.141 11.46 -10.59 -9.70 -9.55 -8.47 -7.35 -3.83 -3.31 -3.55 -3.19 -0.54 -0.29 0.00

Panel B: 6 Month Horizon

Model βFε Univ CAPM FFC FF CAPM Ex Ret Ex C- LRR Habit LRR LRR
t-stat SP500 Mkt Ret CAPM 0 90 70

CAPM 0.262 35.28 0.00 1.71 2.12 8.60 9.10 5.83 6.96 7.06 6.56 7.26 8.60 9.63
FFC 0.253 35.68 -1.71 0.00 0.92 3.42 4.32 5.02 5.94 6.13 5.67 6.34 7.24 8.06
FF 0.250 36.56 -2.12 -0.92 0.00 3.03 4.11 4.83 5.71 5.88 5.46 6.08 7.08 7.92
CAPM SP500 0.229 25.67 -8.60 -3.42 -3.03 0.00 0.35 3.78 4.52 4.70 4.22 4.91 5.87 6.38
Excess Market 0.227 28.45 -9.10 -4.32 -4.11 -0.35 0.00 3.28 3.94 4.06 3.95 4.23 5.12 5.81
Return 0.174 14.39 -5.83 -5.02 -4.83 -3.78 -3.28 0.00 1.10 1.71 0.45 2.24 2.31 2.24
Excess Return 0.170 13.91 -6.96 -5.94 -5.71 -4.52 -3.94 -1.10 0.00 1.40 0.20 2.54 2.15 2.20
C-CAPM 0.167 13.73 -7.06 -6.13 -5.88 -4.70 -4.06 -1.71 -1.40 0.00 0.04 3.01 1.66 1.75
LRR 0 0.166 11.08 -6.56 -5.67 -5.46 -4.22 -3.95 -0.45 -0.20 -0.04 0.00 0.11 0.80 1.32
Habit 0.165 13.52 -7.26 -6.34 -6.08 -4.91 -4.23 -2.24 -2.54 -3.01 -0.11 0.00 1.32 1.49
LRR 90 0.154 11.97 -8.60 -7.24 -7.08 -5.87 -5.12 -2.31 -2.15 -1.66 -0.80 -1.32 0.00 0.45
LRR 70 0.151 11.52 -9.63 -8.06 -7.92 -6.38 -5.81 -2.24 -2.20 -1.75 -1.32 -1.49 -0.45 0.00

Panel C: 1 Year Horizon

Model βFε Univ CAPM FFC FF CAPM Ex LRR Ret LRR Ex C- Habit LRR
t-stat SP500 Mkt 0 90 Ret CAPM 70

CAPM 0.261 30.83 0.00 0.98 1.65 8.26 8.86 3.45 4.28 5.24 5.13 5.16 5.19 6.83
FFC 0.256 31.72 -0.98 0.00 1.32 4.45 4.75 3.10 4.04 4.82 4.82 4.93 4.96 6.09
FF 0.253 31.89 -1.65 -1.32 0.00 3.82 4.34 2.94 3.87 4.62 4.61 4.71 4.74 5.80
CAPM SP500 0.225 22.25 -8.26 -4.45 -3.82 0.00 0.21 1.91 2.58 3.07 3.05 3.15 3.19 3.98
Excess Market 0.224 23.54 -8.86 -4.75 -4.34 -0.21 0.00 1.80 2.20 2.61 2.60 2.68 2.72 3.51
LRR 0 0.186 9.65 -3.45 -3.10 -2.94 -1.91 -1.80 0.00 0.34 0.43 0.43 0.52 0.56 0.83
Return 0.177 12.54 -4.28 -4.04 -3.87 -2.58 -2.20 -0.34 0.00 0.07 0.20 0.55 0.66 0.38
LRR 90 0.176 12.14 -5.24 -4.82 -4.62 -3.07 -2.61 -0.43 -0.07 0.00 0.02 0.21 0.27 0.47
Excess Return 0.176 12.65 -5.13 -4.82 -4.61 -3.05 -2.60 -0.43 -0.20 -0.02 0.00 0.92 1.19 0.37
C-CAPM 0.174 12.44 -5.16 -4.93 -4.71 -3.15 -2.68 -0.52 -0.55 -0.21 -0.92 0.00 1.03 0.18
Habit 0.173 12.29 -5.19 -4.96 -4.74 -3.19 -2.72 -0.56 -0.66 -0.27 -1.19 -1.03 0.00 0.11
LRR 70 0.171 12.05 -6.83 -6.09 -5.80 -3.98 -3.51 -0.83 -0.38 -0.47 -0.37 -0.18 -0.11 0.00

Table continues on following page ...
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Panel D: 2 Year Horizon

Model βFε Univ CAPM FF FFC LRR Ex CAPM Ex C- Habit Ret LRR LRR
t-stat 0 Mkt SP500 Ret CAPM 90 70

CAPM 0.260 26.98 0.00 0.04 0.90 0.55 7.70 5.89 2.42 2.63 2.70 2.49 3.64 5.42
FF 0.259 29.76 -0.04 0.00 1.36 0.52 5.54 3.76 2.39 2.59 2.66 2.48 3.63 5.17
FFC 0.254 27.67 -0.90 -1.36 0.00 0.38 5.10 3.41 2.15 2.36 2.43 2.28 3.34 4.91
LRR 0 0.241 12.42 -0.55 -0.52 -0.38 0.00 0.67 0.67 0.88 1.04 1.08 1.14 1.68 2.66
Excess Market 0.221 21.77 -7.70 -5.54 -5.10 -0.67 0.00 0.04 0.63 0.87 0.93 0.96 1.76 3.10
CAPM SP500 0.221 18.21 -5.89 -3.76 -3.41 -0.67 -0.04 0.00 0.67 0.93 1.00 1.02 1.82 3.12
Excess Return 0.207 13.37 -2.42 -2.39 -2.15 -0.88 -0.63 -0.67 0.00 1.64 2.17 1.06 1.67 2.48
C-CAPM 0.201 12.88 -2.63 -2.59 -2.36 -1.04 -0.87 -0.93 -1.64 0.00 0.97 0.54 1.22 2.04
Habit 0.200 12.74 -2.70 -2.66 -2.43 -1.08 -0.93 -1.00 -2.17 -0.97 0.00 0.40 1.14 1.98
Return 0.196 11.97 -2.49 -2.48 -2.28 -1.14 -0.96 -1.02 -1.06 -0.54 -0.40 0.00 0.74 1.56
LRR 90 0.181 10.66 -3.64 -3.63 -3.34 -1.68 -1.76 -1.82 -1.67 -1.22 -1.14 -0.74 0.00 1.24
LRR 70 0.161 8.67 -5.42 -5.17 -4.91 -2.66 -3.10 -3.12 -2.48 -2.04 -1.98 -1.56 -1.24 0.00

Panel E: 3 Year Horizon

Model βFε Univ FF CAPM FFC LRR Ex Ex Habit Return C- CAPM LRR LRR
t-stat 0 Ret Mkt CAPM SP500 90 70

FF 0.251 25.61 0.00 0.56 1.22 0.55 1.40 4.33 1.60 1.39 1.69 4.48 2.35 4.76
CAPM 0.247 22.02 -0.56 0.00 0.15 0.46 1.21 5.80 1.40 1.22 1.48 6.35 2.16 4.58
FFC 0.246 24.88 -1.22 -0.15 0.00 0.44 1.14 3.63 1.35 1.18 1.43 3.87 2.09 4.47
LRR 0 0.229 8.16 -0.55 -0.46 -0.44 0.00 0.19 0.38 0.32 0.32 0.36 0.78 0.81 1.75
Excess Return 0.220 12.05 -1.40 -1.21 -1.14 -0.19 0.00 0.22 1.19 0.57 1.44 0.81 1.15 2.74
Excess Market 0.214 17.37 -4.33 -5.80 -3.63 -0.38 -0.22 0.00 0.03 0.05 0.09 1.70 0.86 2.58
Habit 0.213 11.17 -1.60 -1.40 -1.35 -0.32 -1.19 -0.03 0.00 0.06 0.92 0.52 0.83 2.21
Return 0.213 10.20 -1.39 -1.22 -1.18 -0.32 -0.57 -0.05 -0.06 0.00 0.07 0.45 0.70 1.86
C-CAPM 0.212 11.25 -1.69 -1.48 -1.43 -0.36 -1.44 -0.09 -0.92 -0.07 0.00 0.48 0.78 2.16
CAPM SP500 0.199 13.56 -4.48 -6.35 -3.87 -0.78 -0.81 -1.70 -0.52 -0.45 -0.48 0.00 0.27 1.70
LRR 90 0.192 10.13 -2.35 -2.16 -2.09 -0.81 -1.15 -0.86 -0.83 -0.70 -0.78 -0.27 0.00 1.26
LRR 70 0.164 8.02 -4.76 -4.58 -4.47 -1.75 -2.74 -2.58 -2.21 -1.86 -2.16 -1.70 -1.26 0.00

Panel F: 4 Year Horizon

Model βFε Univ CAPM FFC FF Ret Ex C- Habit Ex LRR CAPM LRR LRR
t-stat Ret CAPM Mkt 90 SP500 70 0

CAPM 0.247 18.28 0.00 0.82 1.09 0.93 1.24 1.21 1.30 6.23 1.63 5.51 2.81 1.15
FFC 0.240 19.79 -0.82 0.00 0.55 0.81 1.08 1.08 1.17 3.12 1.36 3.11 2.38 1.05
FF 0.237 19.12 -1.09 -0.55 0.00 0.73 1.00 1.00 1.09 2.85 1.24 2.90 2.21 1.01
Return 0.214 9.60 -0.93 -0.81 -0.73 0.00 0.13 0.20 0.35 0.14 0.33 0.55 0.77 0.60
Excess Return 0.212 10.10 -1.24 -1.08 -1.00 -0.13 0.00 0.14 0.63 0.11 0.31 0.60 0.86 0.59
C-CAPM 0.211 10.19 -1.21 -1.08 -1.00 -0.20 -0.14 0.00 1.09 0.08 0.28 0.56 0.80 0.58
Habit 0.209 10.04 -1.30 -1.17 -1.09 -0.35 -0.63 -1.09 0.00 0.00 0.22 0.49 0.73 0.55
Excess Market 0.209 14.64 -6.23 -3.12 -2.85 -0.14 -0.11 -0.08 0.00 0.00 0.27 1.40 0.94 0.61
LRR 90 0.201 9.18 -1.63 -1.36 -1.24 -0.33 -0.31 -0.28 -0.22 -0.27 0.00 0.26 0.49 0.44
CAPM SP500 0.193 10.81 -5.51 -3.11 -2.90 -0.55 -0.60 -0.56 -0.49 -1.40 -0.26 0.00 0.26 0.35
LRR 70 0.187 7.27 -2.81 -2.38 -2.21 -0.77 -0.86 -0.80 -0.73 -0.94 -0.49 -0.26 0.00 0.24
LRR 0 0.173 4.47 -1.15 -1.05 -1.01 -0.60 -0.59 -0.58 -0.55 -0.61 -0.44 -0.35 -0.24 0.00

Table 4: Tests of Statistical Significance: The first two columns in the table provides
the coefficient estimate and double-clustered t-statistic (see Thompson (2011) and the
discussion in Petersen (2009)) of the univariate regression of signed flows on signed out-
performance. The rest of the columns provide the statistical significance of the pairwise
test, derived in Proposition 5, of whether the models are better approximations of the true
asset pricing model. For each model in a column, the table displays the double-clustered
t-statistic of the test that the model in the row is a better approximation of the true asset
pricing model, that is, that βF row > β

F column. The rows (and columns) are ordered
by βFε, with the best performing model on top. The number following the long run risk
models denotes the percentage of the wealth portfolio invested in bonds.21



horizon is 7.01, indicating that we can reject the hypothesis that the behavioral model

is a better approximation of the true model than the CAPM. Based on these results, we

can reject the hypothesis that investors just react to past returns. The next possibility

is that investors are risk neutral. In an economy with risk neutral investors we would

find that the excess return best explains flows, so the performance of this model can be

assessed by looking at the columns labeled “Ex. Ret.” Notice that all the risk models

nest this model, so to conclude that a risk model better approximates the true model, the

risk model must statistically outperform this model. The factor models all satisfy this

criterion, allowing us to conclude that investors are not risk neutral. Unfortunately, none

of the dynamic asset pricing model satisfy this criterion. Finally, one might hypothesize

that investors benchmark their investments relative to the market portfolio alone, that

is, they do not adjust for any risk differences (beta) between their investment and the

market. The performance of this model is reported in the column labeled “Ex. Mkt.”

Again, all the factor models statistically significantly outperform this model — investors

actions reveal that they adjust for risk using beta.

Our results also allow us to discriminate between the factor models. Recall that both

the FF and FFC factor specifications nest the CAPM, so to conclude that either factor

model better approximates the true model, it must statistically significantly outperform

the CAPM. The test of this hypothesis is in the columns labeled “CAPM.” Neither factor

model statistically outperforms the CAPM at any horizon. Indeed, at all horizons other

than 3 years, the CAPM actually outperforms both factor models. What this implies

is that the additional factors add no more explanatory power for flows. In short, the

additional factors cannot be omitted risk factors.

The relative performance of the dynamic equilibrium models is poor. We can confi-

dently reject the hypothesis that any of these models is a better approximation of the

true model than the CAPM. But this result should be interpreted with caution. These

models rely on variables like consumption that are notoriously difficult for empiricists to

measure, but are observed perfectly by investors.

4 Implication for Cost of Capital Calculations

Ultimately, the reason financial economists are interested in deriving the true risk model

is to provide a method to calculate the cost of capital for an investment opportunity. In

the 50 years since the CAPM was first derived, it has become clear that the model cannot

completely explain the cross-sectional variation of asset returns. In response to this failure,

researchers have attempted to derive new risk models to better explain this cross sectional

22



variation. The main concern with this approach is that it is hard to distinguish between

extensions that represent progress towards finding a better risk model rather than just

better fitting the cross section of asset returns. That is, there is no way to know whether

the new factors are truly risk factors that require compensation, or just common factors

in asset returns. This difference is crucial because the cost of capital is only a function of

the riskiness of the investment opportunity.

By analogy, consider how astronomers reacted to the inability of the Ptolemaic theory

to explain the motion of the planets. In that case each observational inconsistency was

“fixed” by adding an additional epicycle to the theory. By the time Copernicus proposed

the theory that the Earth revolved around the Sun, the Ptolemaic theory had been fixed

so many times it actually better explained the motion of the planets than the Copernican

system.13 Similarly, although the extensions to the CAPM better explain the cross section

of asset returns, it is hard to know, using traditional tests, whether these extensions

represent true progress towards measuring risk or simply the asset pricing equivalent of

an epicycle.

The advantage of our testing methodology is that it can differentiate between whether

current extensions to the CAPM just improve the model’s fit to existing data or whether

they represent true progress towards a better model of risk. The extensions of the CAPM

model were proposed to better fit returns, not flows. As such, flows provide a new set of

moments that those models can be confronted with. Consequently, if the extension of the

original model better explains mutual fund flows, this suggests that the extension does

indeed represent progress towards a superior risk model. Conversely, if the extended model

cannot better explain flows, then the extension is the modern equivalent of an epicycle, an

arbitrary fix designed simply to ensure that the model better explains the cross section

of returns. So, the fact that we find that the CAPM outperforms every extension to

the model, implies that these extensions to the original CAPM do not represent progress

towards the goal of deriving the risk model investors use to price capital assets.

More importantly, the fact that the CAPM does a poor job explaining the cross sec-

tional variation in asset returns does not necessarily imply that a better, yet undiscovered,

method exists to calculate the cost of capital. To conclude that a better risk model exists,

one has to show that the part of the variation in asset returns not explained by the CAPM

can be explained by variation in risk. This is what the flow of funds data allows us to

do. If variation in asset returns that is not explained by the CAPM attracts flows, then

one can conclude that this variation is not compensation for risk, and thus should not be

13Copernicus wrongly assumed that the planets followed circular orbits when in fact their orbits are
ellipses.
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included in the cost of capital calculation.

5 Tests of the Robustness of our Results

In this section we consider two possible alternative explanations for our results. First

we look at the possibility that mutual fund fee changes might be part of the market

equilibrating mechanism. Then we test the hypothesis that investors information sets

contains more than what is in past and present prices.

5.1 Fee Changes

As argued in the introduction, capital flows are not the only mechanism that could equili-

brate the mutual fund market. An alternative mechanism is for fund managers to adjust

their fees to ensure that the fund’s alpha is zero. In fact, fee changes are rare, occurring in

less than 4% of our observations, making it unlikely that fee changes play any role in equi-

librating the mutual fund market. Nevertheless, in this section we will run a robustness

check to make sure that fee changes do not play a role in explaining our results.

The fees mutual funds charge are stable because they are specified in the fund’s

prospectus, so theoretically, a change to the fund’s fee requires a change to the fund’s

prospectus, a relatively costly endeavor. However, the fee in the prospectus actually spec-

ifies the maximum fee the fund is allowed to charge because funds are allowed to (and

do) rebate some of their fees to investors. Thus, funds can change their fees by giving or

discontinuing rebates. To rule out these rebates as a possible explanation of our results,

we repeat the above analysis by assuming that fee changes are the primary way mutual

fund markets equilibrate.

We define a positive (negative) fee change as an increase (decrease) in the fees charged

from the beginning to the end of the horizon. For each fund, in periods that we observe a

fee change, we assume the fee change is equilibrating the market and so the flow variable

takes the sign of the fee change. In periods without a fee change, we continue to use the

sign of the flows. That is, define F ∗it as:

F ∗it ≡

{
∆it ∆it 6= 0

Fit ∆it = 0

where ∆it is the fee change experienced by fund i at time t.

Table 5 reports the results of estimating (βF ∗ε + 1)/2, that is the average conditional

probability using the flow variable that includes fee changes. The results are qualitatively
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Model Horizon
3 month 6 month 1 year 2 year 3 year 4 year

Market Models (CAPM)
CRSP Value Weighted 62.07 60.78 58.38 56.41 54.02 53.04
S&P 500 61.06 59.52 57.44 55.26 52.54 51.07

No Model
Return 58.27 57.72 55.60 52.16 51.05 50.85
Excess Return 58.02 57.60 55.99 53.10 51.16 51.00
Return in Excess of the Market 60.63 59.22 56.92 55.13 53.51 52.07

Multifactor Models
FF 61.72 60.19 57.99 56.20 53.60 52.71
FFC 61.83 60.29 58.13 55.95 53.62 52.50

Dynamic Equilibrium Models
C-CAPM 58.02 57.45 55.68 53.12 50.93 50.64
Habit 57.99 57.34 55.72 53.07 50.99 50.75
Long Run Risk 0 57.22 57.72 56.88 52.30 47.80 43.72
Long Run Risk 70 57.11 56.90 55.59 51.10 48.15 48.04
Long Run Risk 90 57.18 57.09 56.10 53.16 52.70 52.34

Table 5: Effect of Fee Changes: The table shows the effect of assuming that the market
equilibrates through fee changes if they occur. That is, we use the sign of the fee change
instead of the sign of the flow whenever we have a non-zero fee change observation. In
period when there is no fee change, we use the sign of the flow as before. The table reports
(βF ∗ε+ 1)/2 in percent which is equivalent to the average conditional probability that the
sign of outperformance matches the sign of this new flow viable. Each row corresponds to
a different risk model. The first two rows report the results for the market model (CAPM)
using the CRSP value weighted index and the S&P 500 index as the market portfolio. The
next three lines report the results of using as the benchmark return, three rules of thumb:
(1) the fund’s actual return, (2) the fund’s return in excess of the risk free rate, and (3)
the fund’s return in excess of the return on the market as measured by the CRSP value
weighted index. The next two lines are the Fama-French (FF) and Fama-French-Carhart
(FFC) factor models. The final four lines report the results for the dynamic equilibrium
models: the Consumption CAPM (C-CAPM), the habit model derived by Campbell and
Cochrane (1999), and the long run risk model derived by Bansal and Yaron (2004). For
the long run risk model we consider three different versions, depending on the portfolio
weight of bonds in the aggregate wealth portfolio. The maximum number in each column
(the best performing model) is shown in bold face.
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unchanged — the CAPM outperforms all the other models — and quantitatively very

similar. More importantly, including fee changes in this way reduces the explanatory

power of all the models (the point estimates in Table 5 are lower than in Table 3) so

there is no evidence that fee changes play an important role in equilibrating the market

for mutual funds.

5.2 Other Information Sets

Conceivably, the poor performance of some of the models reported in the last section

could result because the assumption that the information set for most investors does not

include any more information than past and present prices is incorrect. If this assumption

is false and the information set of most investors includes information in addition to what is

communicated by prices, what appears to us as a positive NPV investment might actually

be zero NPV when viewed from the perspective of the actual information available at the

time.

If information is indeed the explanation and if investors are right in their decision to

allocate or withdraw money, the alpha must be zero even when the flow has the opposite

sign to the outperformance. We test this Null hypothesis by double sorting firms into

terciles based on their past alpha as well as their past flows. Going forward, over a

specified measurement horizon, we test to see whether funds in the highest alpha tercile

and the lowest flow tercile outperform funds in the lowest alpha tercile and the highest

flow tercile.14 Put differently, we investigate whether previously outperforming funds that

nevertheless experience an outflow of funds outperform previously underperforming funds

that experience an inflow. Under the Null that the asset pricing model under consideration

holds, these two portfolios should perform equally well going forward (both should have

a zero net alpha in the measurement horizon).

The main difficulty with implementing this test is uncertainty in the estimate of the

fund’s betas for the factor models. When estimation error in the sorting period is pos-

itively correlated to the error in the measurement horizon, as would occur if we would

estimate the betas only once over the full sample, a researcher could falsely conclude that

evidence of persistence exists when there is no persistence. To avoid this bias we do not

use information from the sorting period to estimate the betas in the measurement horizon.

This means that we require a measurement horizon of sufficient length to produce reliable

beta estimates, so the shortest measurement horizon we consider is two years.

14The sorts we do are unconditional sorts, meaning that we independently sort on flows and alpha.
The advantage of this is that our results are not influenced by the ordering of our sorts. The downside
is that the nine “portfolios” do not have the same number of funds in them.
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Horizon (years)
Model 2 3 4

CAPM (b.p./month) 0.00 1.57 -1.66
t-statistic 0.00 0.25 -0.26

Fama-French (b.p./month) 18.06 19.65 20.84
t-statistic 3.32 3.62 3.83

Fama-French-Cahart (b.p./month) 13.50 14.83 16.23
t-statistic 2.81 3.08 3.38

C-CAPM (b.p./month) 9.90 9.90 7.21
t-statistic 1.18 1.18 0.86

Habit (b.p./month) 10.22 9.86 7.96
t-statistic 1.21 1.17 0.95

Long Run Risk – 0% Bonds (%/month) -13.60 -13.49 -13.58
t-statistic -1.20 -1.19 -1.20

Long Run Risk – 70% Bonds (b.p./month) -9.81 -19.43 -20.67
t-statistic -0.65 -1.28 -1.36

Long Run Risk – 90% Bonds (b.p./month) 1.28 3.37 -5.32
t-statistic 0.16 0.43 -0.69

Table 6: Out of Sample Persistence: The table shows by how much the top al-
pha/bottom flow tercile outperforms the bottom alpha/top flow tercile, where outperfor-
mance is the realized alpha under the given model. At time τ , we use all the information
until that point in time to calculate the fund’s information ratio. We also calculate the
fund’s capital flow over the number of years equal to the specified horizon. We then sort
firms into 9 flow performance terciles based on the information ratio and measured capital
flow and then measure outperformance over the specified future measurement horizon. At
the end of the measurement horizon we then sort again and repeat the process as many
times as the data allows. By the end of the process we have a time series of monthly
outperformance measurements for each of the 9 portfolios. We then subtract the bottom
information ratio /top flow from the top information ratio/bottom flow and the table
reports the mean and t-statistic of this time series.
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At time τ , we use all the information until that point in time to calculate the fund’s

information ratio, that is, we estimate the fund’s alpha using all of its return data up

to time τ and divide this by the standard error of the estimate. We then calculate the

fund’s capital flow over the prior h years. We sort firms into 9 flow performance terciles

based on the estimated information ratio and measured capital flow. We require a fund

to have at least three years of historical data to be included in the sort. Because we

need at least 6 months to estimate the fund’s betas in the measurement horizon, we

drop all funds with less than 6 observations in the measurement horizon. To remove the

obvious selection bias, we estimate the betas over the full measurement horizon, but then

calculate εit by dropping the first 6 observations, that is, we only use {εi,τ+6, . . . , εi,τ+h}
when we measure future performance. At the end of the measurement horizon we then

sort again and repeat the process as many times as the data allows. By the end of the

process we have a time series of monthly outperformance measurements for each of the

9 portfolios. We then subtract the bottom information ratio/top flow portfolio from the

top information ratio/bottom flow portfolio. Table 6 reports the mean and t-statistic of

this time series for horizons h = 2, 3 and 4 years.

The main takeaway from the results reported in Table 6 is that outperformance relative

to the CAPM shows no evidence of persistence while outperformance relative to the

other factor models is highly persistent and economically large. Consequently, we can

confidently reject the Null hypothesis that the differential information set explains the

poor performance of the factor models relative to the CAPM.

We find no evidence of predictability for the dynamic equilibrium models. In this case

the likelihood that investors are have better information is higher because they observe

their own consumption. So the lack of predictability is consistent with the possibility

that the poor performance of these models is due to the fact that the empiricist measures

consumption with error.15

6 Conclusion

The field of asset pricing is primarily concerned with the question of how to compute

the cost of capital for investment opportunities. Because the net present value of a

long-dated investment opportunity is very sensitive to assumptions regarding the cost of

15Note that the outperformance point estimate for the long run risk model when the wealth portfolio
consists entirely of stocks is four orders of magnitude higher than all other models, despite the fact that
it is still statistically indistinguishable from zero. As we have already pointed out, given the volatility of
stocks, the SDF of this model is extremely volatile leading to highly volatile estimates of outperformance
for this model.
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capital, computing this cost of capital correctly is of first order importance. Since the

initial development of the Capital Asset Pricing Model, a large number of potential return

anomalies relative to that model have been uncovered. These anomalies have motivated

researchers to develop improved models that “explain” each anomaly as risk factor. As a

consequence, in many (if not most) research studies these factors and their exposures are

included as part of the cost of capital calculation. In this paper we examine the validity

of this approach to calculating the cost of capital.

We propose a new way of testing the validity of an asset pricing model. Instead

of following the common practice in the literature which relies on moment conditions

related to returns, we use mutual fund capital flow data. Our study is motivated by

revealed preference theory: if the asset pricing model under consideration correctly prices

risk, then investors must be using it, and must be allocating their money based on that

risk model. Consistent with this theory, we find that investors’ capital flows in and out

of mutual funds does reliably distinguish between asset pricing models. We find that

the CAPM outperforms all extensions to model, which implies, given our current level

of knowledge, that it is the best method to use to compute the cost of capital of an

investment opportunity.

Perhaps the most important implication of our paper is that it highlights the usefulness

and power of mutual fund data when addressing general asset pricing questions. Mutual

fund data provides insights into questions that stock market data cannot. Because the

market for mutual funds equilibrates through capital flows instead of prices we can directly

observe investors’ investment decisions. That allows us to infer their risk preferences

from their actions. The observability of these choices and what this implies for investor

preferences has remained largely unexplored in the literature.
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Appendix

A Proofs

A.1 Proof of Proposition 2

The denominator of (6) is positive so we need to show that the numerator is positive

as well. Conditioning on the information set at each point in time gives the following

expression for the numerator:

cov(φ(Fit+1), φ(εit+1)) =

E[E[φ(Fit+1)φ(εit+1)) | It]− E[φ(Fit+1) | It]E[φ(εit+1) | It]]. (13)

Taking each term separately,

E[φ(Fit+1)φ(εit+1) | It] = E[φ(εit+1)φ(αit+1(qit)) | It]

= E[φ(εit+1)φ(αit+1(qit)) | θi > θ̄it, It] Pr[θi > θ̄it | It]

+E[φ(εit+1)φ(αit+1(qit)) | θi ≤ θ̄it, It] Pr[θi ≤ θ̄it | It]

= E[φ(εit+1) | θi > θ̄it, It] Pr[θi > θ̄it | It]

−E[φ(εit+1) | θi ≤ θ̄it, It] Pr[θi ≤ θ̄it | It],

where the first equality follows from Lemma 1 and the last equality follows from (2) and

(3) because when θi > θ̄it then αit+1(qit) > 0 and similarly for θi ≤ θ̄it. Using similar logic

E[φ(Fit+1) | It] = E[φ(αit+1(qit)) | θi > θ̄it, It] Pr[θi > θ̄it | It]

+E[φ(αit+1(qit)) | θi ≤ θ̄it, It] Pr[θi ≤ θ̄it | It]

= Pr[θi > θ̄it | It]− Pr[θi ≤ θ̄it | It],

and

E[φ(εit+1) | It] = E[φ(εit+1) | θi > θ̄it, It] Pr[θi > θ̄it | It]

+E[φ(εit+1) | θi ≤ θ̄it, It] Pr[θi ≤ θ̄it | It].
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Using these three expressions we have

E[φ(Fit+1)φ(εit+1)) | It]− E[φ(Fit+1) | It]E[φ(εit+1) | It] =

E[φ(εit+1) | θi > θ̄it, It] Pr[θi > θ̄it | It]− E[φ(εit+1) | θi ≤ θ̄it, It] Pr[θi ≤ θ̄it | It]

−E[φ(εit+1) | θi > θ̄it, It] Pr[θi > θ̄it | It] (Pr[θi > θ̄it | It]− Pr[θi ≤ θ̄it | It])

−E[φ(εit+1) | θi ≤ θ̄it, It] Pr[θi ≤ θ̄it | It] (Pr[θi > θ̄it | It]− Pr[θi ≤ θ̄it | It])

= E[φ(εit+1) | θi > θ̄it, It] Pr[θi > θ̄it | It] (1− Pr[θi > θ̄it | It] + Pr[θi ≤ θ̄it | It])

+E[−φ(εit+1) | θi ≤ θ̄it, It] Pr[θi ≤ θ̄it | It] (1 + Pr[θi > θ̄it | It]− Pr[θi ≤ θ̄it | It])

> 0

because every term in the last equation is positive. Substituting the above expression into

(13) completes the proof.

A.2 Proof of Lemma 2

First, by using Bayes’ law and by rearranging terms we have:

Pr [φ (Fit) = 1 | φ (εit) = −1]

=
Pr [φ (εit) = −1 | φ (Fit) = 1] Pr [φ (Fit) = 1]

Pr [φ (εit) = −1]

=
(1− Pr [φ (εit) = 1 | φ (Fit) = 1]) Pr [φ (Fit) = 1]

1− Pr [φ (εit) = 1]

=
Pr [φ (Fit) = 1]− Pr [φ (Fit) = 1 | φ (εit) = 1] Pr [φ (εit) = 1]

1− Pr [φ (εit) = 1]
.

Hence,

Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1 | φ (εit) = −1]

=
Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1]

1− Pr [φ (εit) = 1]
. (14)

Now note that without loss of generality, we can rescale the sign variables to take values

of 0 and 1 by dividing by 2 and adding 1. Because rescaling both the left and right hand

side variables does not change the slope coefficient in a linear regression, we can simply

31



write out the OLS regression coefficient as if the variables are rescaled:

βFε =
cov (φ (Fit) , φ (εit))

var (φ (εit))

=
Pr [φ (Fit) = 1 | φ (εit) = 1] Pr [φ (εit) = 1]− Pr [φ (Fit) = 1] Pr [φ (εit) = 1]

Pr [φ (εit) = 1] (1− Pr [φ (εit) = 1])

=
Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1]

1− Pr [φ (εit) = 1]
,

which is (14).

A.3 Proof of Proposition 3

From Lemma 2, all we need to prove is that:

Pr [φ (Fit) = 1 | φ (εit) = 1] + Pr [φ (Fit) = −1 | φ (εit) = −1]

> Pr [φ (Fit) = 1 | φ (εcit) = 1] + Pr [φ (Fit) = −1 | φ (εcit) = −1]

Taking each term separately,

Pr [φ (Fit) = 1 | φ (εcit) = 1]

= Pr [φ (Fit) = 1 | φ (εcit) = 1, φ (εit) = 1] Pr [φ (εit) = 1 | φ (εcit) = 1] +

Pr [φ (Fit) = 1 | φ (εcit) = 1, φ (εit) = −1] Pr [φ (εit) = −1 | φ (εcit) = 1]

= Pr [φ (Fit) = 1 | φ (εit) = 1] Pr [φ (εit) = 1 | φ (εcit) = 1] +

Pr [φ (Fit) = 1 | φ (εit) = −1] Pr [φ (εit) = −1 | φ (εcit) = 1]

= Pr [φ (Fit) = 1 | φ (εit) = 1] Pr [φ (εit) = 1 | φ (εcit) = 1] +

Pr [φ (Fit) = 1 | φ (εit) = −1] (1− Pr [φ (εit) = 1 | φ (εcit) = 1])

< Pr [φ (Fit) = 1 | φ (εit) = 1] Pr [φ (εit) = 1 | φ (εcit) = 1] +

Pr [φ (Fit) = 1 | φ (εit) = 1] (1− Pr [φ (εit) = 1 | φ (εcit) = 1])

= Pr [φ (Fit) = 1 | φ (εit) = 1] . (15)
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where the second equality follows from (7) and the inequality follows from Lemma 2 and

βFε > 0 (from Proposition 2). Similarly,

Pr [φ (Fit) = −1 | φ (εcit) = −1]

= Pr [φ (Fit) = −1 | φ (εcit) = −1, φ (εit) = 1] Pr [φ (εit) = 1 | φ (εcit) = −1] +

Pr [φ (Fit) = −1 | φ (εcit) = −1, φ (εit) = −1] Pr [φ (εit) = −1 | φ (εcit) = −1]

= Pr [φ (Fit) = −1 | φ (εit) = 1] Pr [φ (εit) = 1 | φ (εcit) = −1] +

Pr [φ (Fit) = −1 | φ (εit) = −1] Pr [φ (εit) = −1 | φ (εcit) = −1]

< Pr [φ (Fit) = −1 | φ (εit) = −1]

which completes the proof.

A.4 Lemma 3

Lemma 3 Condition (8) is equivalent to

Pr [φ (εit) = 1 | φ (εcit) = 1]− Pr [φ (εit) = 1 | φ (εcit) = −1]

> Pr
[
φ (εit) = 1 | φ

(
εdit
)

= 1
]
− Pr

[
φ (εit) = 1 | φ

(
εdit
)

= −1
]

which is also equivalent to

cov (φ (εit) , φ (εcit))

var (φ (εcit))
>
cov
(
φ (εit) , φ

(
εdit
))

var
(
φ
(
εdit
))

Proof: The proof follows identical logic as the proof of Lemma 2.

A.5 Proof of Proposition 4

First define

πc = Pr [φ (εit) = 1 | φ (εcit) = 1]− Pr [φ (εit) = 1 | φ (εcit) = −1]

πd = Pr
[
φ (εit) = 1 | φ

(
εdit
)

= 1
]
− Pr

[
φ (εit) = 1 | φ

(
εdit
)

= −1
]
.
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Using Lemma 2 and (7), βFc can be rewritten in terms of πc:

βFc = Pr [φ (Fit) = 1 | φ (εcit) = 1]− Pr [φ (Fit) = 1 | φ (εcit) = −1]

= Pr [φ (Fit) = 1 | φ (εit) = 1] Pr [φ (εit) = 1 | φ (εcit) = 1] +

Pr [φ (Fit) = 1 | φ (εit) = −1] Pr [φ (εit) = −1 | φ (εcit) = 1]−

Pr [φ (Fit) = 1 | φ (εit) = 1] Pr [φ (εit) = 1 | φ (εcit) = −1]−

Pr [φ (Fit) = 1 | φ (εit) = −1] Pr [φ (εit) = −1 | φ (εcit) = −1]

= Pr [φ (Fit) = 1 | φ (εit) = 1] (Pr [φ (εit) = 1 | φ (εcit) = 1]− Pr [φ (εit) = 1 | φ (εcit) = −1]) +

Pr [φ (Fit) = 1 | φ (εit) = −1] (Pr [φ (εit) = −1 | φ (εcit) = 1]− Pr [φ (εit) = −1 | φ (εcit) = −1])

= πc (Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1 | φ (εit) = −1])

Note that, from Proposition 2 and Lemma 2, the term in parenthesis is positive, that is,

Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1 | φ (εit) = −1] > 0. (16)

Assume that model c is a better approximation of the true asset pricing model than

model d, that is,
cov (φ (εit) , φ (εcit))

var (φ (εcit))
>
cov
(
φ (εit) , φ

(
εdit
))

var
(
φ
(
εdit
)) .

By Lemma 3, this relation implies that

πc > πd,

which means that

πc (Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1 | φ (εit) = −1])

> πd (Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1 | φ (εit) = −1]) ,

so

βFc > βFd.

Let us now prove the reverse. Assume that βFc > βFd. This means that

πc (Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1 | φ (εit) = −1])

> πd (Pr [φ (Fit) = 1 | φ (εit) = 1]− Pr [φ (Fit) = 1 | φ (εit) = −1]) ,

which by (16) implies that πc > πd.
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A.6 Proof of Proposition 5

γ1 =

cov

(
φ (Fit) ,

φ(εcit)
var(φ(εcit))

− φ(εdit)
var(φ(εdit))

)
var

(
φ(εcit)

var(φ(εcit))
− φ(εdit)

var(φ(εdit))

)
=

βFc − βFd

var

(
φ(εcit)

var(φ(εcit))
− φ(εdit)

var(φ(εdit))

)
.

By Proposition 4, βFc > βFd if and only if model c is better than model d. It then follows

immediately that γ1 > 0 because the strict inequality βFc > βFd rules out the possibility

that the denominator is zero.
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