
Shrinkage Estimation of High-Dimensional Factor

Models with Structural Instabilities

Xu Cheng∗

University of

Pennsylvania

Zhipeng Liao

University of

California, Los Angeles

Frank Schorfheide

University of

Pennsylvania, NBER,

and Visiting Scholar

Federal Reserve Bank

of Philadelphia

December 2013

Abstract

In high-dimensional factor models, both the factor loadings and the number of

factors may change over time. This paper proposes a shrinkage estimator that detects

and disentangles these instabilities. The new method simultaneously and consistently

estimates the number of pre- and post-break factors, which liberates researchers from

sequential testing and achieves uniform control of the family-wise model selection errors

over an increasing number of variables. The shrinkage estimator only requires the

calculation of principal components and the solution of a convex optimization problem,

which makes its computation efficient and accurate. The finite sample performance of

the new method is investigated in Monte Carlo simulations. In an empirical application,

we study the change in factor loadings and emergence of new factors during the Great

Recession.
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1 Introduction

High-dimensional factor models are widely used to analyze macroeconomic and financial

panel data, where a small number of unobserved factors drive the comovement of a large

number of time series. This paper focuses on the complications in the estimation of factor

models that arise from potential structural breaks. Our leading empirical example of a

potential structural break is the beginning of the 2007-2009 (Great) recession, which, unlike

other post-war U.S. recessions, was characterized by a severe disruption of financial markets,

a slow recovery, and a lasting episode of zero nominal interest rates and unconventional

monetary policies. Throughout this paper, we distinguish between two types of factor model

instabilities: changes in the factor loadings, which alter the response of macroeconomic

variables to a fixed number of underlying factors (type-1 instability), and changes in the

number of factors (type-2 instability). Since only the product of factors and loadings is

identifiable, we use a normalization that attributes changes in this product to changes in

loadings.

The main contribution of this paper is in providing a novel econometric procedure that

allows researchers to consistently estimate the number of pre- and post-break factors simul-

taneously and to consistently detect changes in factor loadings in cases in which the number

of factors remaines unchanged. Our estimation method relies on a penalized least squares

(PLS) criterion function in which adaptive group-LASSO penalties are attached to pre-break

factor loadings, to coefficients that parameterize changes in factor loadings after the break,

and to coefficients that are associated with new post-break factors. The PLS estimator is a

shrinkage estimator because, as compared with the unrestricted least squares estimator, it

sets small coefficient estimates equal to zero. The number of factors is determined based on

the number of nonzero columns in the loading matrices, and we refer to the determination

of the number of factors and the presence of breaks as model selection.

Our procedure substantially differs from existing methods in several dimensions. First, to

detect instabilities in factor loadings, our method does not require knowledge of the factors

before and/or after the break. Second, our procedure automatically determines whether a

structural break belongs to the type-1 or type-2 category. Third, for type-2 instabilities, we

decompose the structural change into the contribution of new factors and the contribution

of changes of loadings for the old factors.

Fourth, the consistency of our procedure is preserved even if the break date is unknown.
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It is known in the literature (e.g., Breitung and Eickmeier (2011)) that the presence of

instabilities leads to the overestimation of the number of factors. In turn, a misspecification

of a break date leads to the overestimation of pre- or post-break factors. Thus, roughly

speaking, we search for break dates that minimize the sum of the number of pre- and post-

break factors. While this procedure itself does not deliver a consistent estimate of the break

date, it does generate consistent estimates of the number of pre- and post-break factors —

even if the “true” break date is unknown to the researcher.

The empirical analysis in this paper revisits a recent study by Stock and Watson (2012),

who investigated whether new factors appeared at the onset of the Great Recession, consid-

ering a large data set of macroeconomic and financial times series. In a nutshell, Stock and

Watson (2012) extended the pre-break factor to the post-break period and examined whether

there was evidence of an un-modeled factor in the residuals of the post-break sample. They

found no such evidence. Our empirical results differ. Using a similar set of time series, but

sampled at a monthly frequency, we find evidence of a type-2 instability at the beginning

of the Great Recession (i.e., the emergence of a new factor, which can be interpreted as

a financial factor). Our estimation results also indicate that the factor loadings changed

drastically during this episode. Because Stock and Watson (2012) normalized the size of the

loadings rather than the variance of the factors in their analysis, the change in loadings in

our analysis mirrors the increase in factor volatility in their analysis.

We are building on a large body of literature on the analysis of factor models. In a seminal

paper, Bai and Ng (2002) provide information criteria to select the number of factors in stable

factor models. We use their assumptions about cross-sectional and temporal dependence

and heteroskedasticity in the idiosyncratic errors as a starting point for our theoretical

analysis. In subsequent work, several authors (e.g., Onatski (2010), Alessi, Barigozzi, and

Capasso (2010), Kapetanios (2010), Caner and Han (2012), Ahn and Horenstein (2013), and

Choi (2013)) proposed alternative methods for estimating the number of factors in a stable

environment.

Stock and Watson (2002) and, more recently, Bates, Plagborg-Møller, Stock, and Watson

(2013), show that in the presence of small structural instabilities of the factor loadings the

principal component estimator of the factors remains consistent. Our paper focuses on large

structural breaks that render the principal component estimator inconsistent. As shown,

for instance, in Breitung and Eickmeier (2011), a factor model with big structural breaks

can always be written as a stable model with a larger number of pseudo-true factors. These
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pseudo-true factors are comparable to the factors that are being estimated with a static

factor model, if the “true” factors are current and lagged values of a lower-dimensional

vector of dynamic factors (e.g., Forni, Hallin, Lippi, and Reichlin (2000), Amengual and

Watson (2007), Bai and Ng (2007), Hallin and Lika (2007), Onatski (2009), and Breitung

and Pigorsch (2013)). The above-mentioned methods for estimating the number of factors

in a stable environment, are only able to determine the number of pseudo-true factors, but

not the actual number of pre- and post-break factors. However, in many applications (e.g.,

forecasting with factor-augmented autoregressive models) the consistent estimation of the

post-break factors is crucial.

Several structural break tests for factor models have been developed in the literature.

Most papers, including Stock and Watson (2009), Breitung and Eickmeier (2011), Chen,

Dolado, and Gonzalo (2011), Han and Inoue (2011), and Corradi and Swanson (2013),

consider the null hypothesis of no change in loadings versus an alternative of a single break

in the loadings, assuming that the number of factors stays constant throughout the sample.

The key challenges are to ensure that the estimation error with the factors is asymptotically

negligible and to control the family-wise error as the number of factor loadings, and hence the

number of parameters on which the null hypothesis is imposed, tends to infinity in the large

sample approximations. Our PLS estimation approach automatically controls the family-

wise error over an increasing number of variables. Furthermore, to achieve consistency, we

only require that the number of the time series variables and the number of time periods

are both large without any restriction on their relative rates, whereas structural break tests

in the literature typically restrict their relative rates to ensure that the generated-regressor

effect is negligible.

If the break point is known one, could study the emergence of new post-break factors

simply by applying one of the existing methods for determining the number of factors in a

stable environment to the pre- and post-break subsamples. Alternatively, Stock and Watson

(2012) test for the presence of a factor in the errors associated with the forecasts of the post-

break observations based on extensions of the pre-break factors. However, these approaches

have not been extended to the unknown-break-date case, and they would be unable to

simultaneously detect type-1 instabilities if the data provide no evidence in favor of a change

in the number of factors.

The model selection mechanism in this paper employs the adaptive group LASSO es-

timator (Tibshirani (1994), Zou (2006), and Yuan and Lin (2006)) of a high-dimensional
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sparse system. This sparse system unifies the factor structures and the specification of

structural changes. Specifically, we consider penalized estimation of the factor loadings and

changes in factor loadings in an augmented auxiliary model where the factors are replaced

by a large number of orthonormal regressors. Consistent model selection is obtained by

combining superefficient estimation of the zero components and consistent estimation of the

nonzero components in the sparse system. Theoretical results in the paper provide bounds

on the penalization tuning parameters for consistent model selection. A practical algorithm

is suggested for empirical applications. In recent work, Bai and Liao (2012), Caner and Han

(2012), and Lu and Su (2013) provide important results on shrinkage estimation of stable

factor models. With observed regressors, Lee, Seo, and Shin (2012) and Qian and Su (2013)

propose using shrinkage estimation to detect structural breaks. The main challenge in our

paper is that the factor structure is both unobserved and unstable.

The remainder of this paper is organized as follows. Section 2 describes the factor model

and the types of instabilities considered in this paper. The proposed shrinkage estimator and

model selection procedure are presented in Section 3 under the assumption that the break

date is known. Section 4 develops the asymptotic theory for our estimator and establishes

the consistency of the model selection procedure. The selection of the tuning parameters as

well as the practical implementation of the shrinkage estimation are addressed in Section 5.

The extension to the case in which the break date is unknown is presented in Section 6.

The Monte Carlo results are reported in Section 7, and Section 8 contains the empirical

application. Finally, Section 9 concludes. All proofs as well as additional simulation and

empirical results are relegated to the Appendix.

2 A Factor Model with Structural Break

We observe panel data {Xit ∈ R : i = 1, . . . , N, t = 1, . . . , T}. Let Xt = (X1t, . . . , XNt)
′ ∈

RN×1 denote the observations at time period t. For t = 1, . . . , T0, the observed N series are

driven by ra unobserved common factors. At time period T0, the number of factors and/or

the magnitude of the factor loadings may change. We assume that there are no further breaks

after T0. Using the break date T0, we split the full sample into two stable subsamples: The

first one contains the first T0 observations of the N series, and the second one contains the

last T1 = T − T0 observations of the N series. In the remainder of this section, we introduce

the (nonidentifiable) data generating process (DGP) and an identifiable version of the DGP.
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Moreover, we distinguish between two types of structural changes, the occurrence of which

we will consistently estimate.

2.1 The (Nonidentifiable) Data Generating Process

The DGP before T0 is

Xt = Λ0F 0
t + et, for t = 1, . . . , T0, (2.1)

where Λ0 ∈ RN×ra denotes the factor loadings and et ∈ RN denotes the idiosyncratic errors.

Using matrix notation, we write

Xa = FaΛ
0′ + ea, (2.2)

where Xa = (X1, . . . , XT0)
′ ∈ RT0×N , Fa = (F 0

1 , . . . , F
0
T0

)′ ∈ RT0×ra , and ea = (e1, . . . , eT0)
′ ∈

RT0×N . The matrices Fa and Λ0 are both unknown and they are not separately identified.

To take into account the potential structural break in period T0, we write the post-break

DGP in matrix form as

Xb = Fb,1(Λ
0 + Γ0

1)
′ + Fb,2Γ

0′
2 + eb, (2.3)

where Xb = (XT0+1, . . . , XT )′, Fb,1 = (F 0
T0+1, . . . , F

0
T )′, Fb,2 = (F ∗

T0+1, . . . , F
∗
T )′, and eb =

(eT0+1, . . . , eT )′. Here the T1× ra matrix Fb,1 extends the pre-break factors to the post-break

period, whereas the T1× (rb− ra) matrix Fb,2 collects the new factors that may emerge after

the break. The matrix Γ0
1 captures possible changes in the loadings of the pre-break factors

F 0
t , whereas the matrix Γ0

2 contains the loadings for the new factors F ∗
t . The changes in

the factor loadings are summarized in Γ0 = (Γ0
1, Γ0

2). If the loadings of the old factors stay

constant, then Γ0
1 = 0. Likewise, in the absence of new factors Γ0

2 = 0. After T0, there are rb

factors Fb = (Fb,1, Fb,2) with factor loadings Ψ0 = (Λ0 + Γ0
1, Γ0

2). Thus, the model in (2.3)

can be equivalently written as

Xb = FbΨ
0′ + eb. (2.4)

Throughout this paper, we use C ∈ R to denote a generic positive constant. For t > T0,

let F
0

t = (F 0′
t , F

∗′
t )

′ ∈ Rrb denote the rb factors after the break. We assume the factors and

their loadings satisfy Assumptions A and B below.

Assumption A. E[ ‖F 0
t ‖

4
] ≤ C, E[||F 0

t ||4] ≤ C and there exist positive definite matrices

ΣF and ΣF such that T−1
0

∑T0

t=1 F
0
t F

0′
t = ΣF + Op(T

−1/2
0 ) and T−1

1

∑T
t=T0+1 F

0

tF
0′
t = ΣF +

Op(T
−1/2
1 ). �



6

Write Λ0 = (λ0
1, . . . , λ

0
N)′, where λ0

i ∈ Rra×1 is the factor loading for series i before the

break. Similarly, write Ψ0 = (ψ0
1, . . . , ψ

0
N)′, where ψ0

i ∈ Rrb×1 is the factor loading for series

i after the break.

Assumption B. (i) ‖λ0
i ‖ ≤ C, ||ψ0

i || ≤ C and there exist matrices ΣΛ, ΣΨ and ΣΛΨ such

that ||Λ0′Λ0/N − ΣΛ|| → 0, ||Ψ0′Ψ0/N − ΣΨ|| → 0, and ||Λ0′Ψ0/N − ΣΛΨ|| → 0 as N →∞,

where ΣΛ and ΣΨ are positive definite. (ii) The matrices ΣΛΣF and ΣΨΣF both have distinct

eigenvalues. �

Assumptions A and B are analogous to Assumptions A and B of Bai and Ng (2002) with

the modification to accommodate additional factors and changes of factor loadings at T0.

They ensure that all ra factors before the break and rb factors after the break make nontrivial

contributions to the variance of the data. Assumption B(ii) is the same as Assumption G of

Bai (2003).1

In the remainder of this paper, we assume rb ≥ ra. If the application suggests that rb ≤ ra,

then labeling the subsample before T0 as Xb and the subsample after T0 as Xa maintains the

validity of the proposed method. We distinguish between two types of instabilities:

type-1 change : rb = ra and Γ0
1 6= 0

type-2 change : rb > ra. (2.5)

Under a type-1 change, the number of factors is constant, but there is a change in the factor

loadings. For a type-2 change, new factors appear in the model after T0, while some of the

loadings of the old factors also may change.

If the break date T0 is known, the number of pre- and post-break factors ra and rb

are identified and can be consistently estimated using existing methods (e.g., the model

selection criteria proposed by Bai and Ng (2002)). The strict inequality rb > ra identifies

type-2 instabilities without further assumptions on the DGP. To identify type-1 instabilities,

further restrictions are necessary. Intuitively, the change is identifiable if either the space

spanned by the factor loadings or the scaling of the factor loadings changes. Formally, for any

square matrix A, we use ρ`(A) to denote its `-th largest eigenvalue. Define a (ra+rb)×(ra+rb)

1Assumption A is sufficient for the identification conditions in Assumption ID below. It is also one of the

sufficient conditions for consistent model selection with a known break date. For consistent model selection

with an unknown break date, Assumption A is strengthened to Assumption A∗ in Section 6.1.
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augmented covariance matrix

Σ+
ΛΨ =

[
ΣΛ ΣΛΨ

Σ′
ΛΨ ΣΨ

]
. (2.6)

The following assumption, stated in terms of the coefficients of the DGP in (2.2) and (2.3),

is sufficient for identifying type-1 structural instabilities.

Assumption ID. One of the following two conditions holds:

(i) rank(Σ+
ΛΨ) > ra;

(ii) ρ`(ΣFΣΛ) 6= ρ`(ΣFΣΨ) for some ` ≤ ra. �

Assumption ID(i) holds if and only if Λ0 and Ψ0 do not span the same column space

asymptotically. Assumption ID(ii) focuses on the scaling of the loadings and provides an

alternative identification condition through the eigenvalues of ΣΛΣF and ΣΨΣF . This con-

dition does not put restrictions on the asymptotic column spaces generated by the factor

loadings.

2.2 An Identifiable Version of the DGP

The factors and their loadings in (2.2) and (2.4) are not separately identified. In order to

develop an estimation theory for the factor model, we have to impose normalization restric-

tions. This normalization also helps to further clarify identifiable type-1 structural changes.

Because our estimation will be based on principal-components analysis, we normalize the fac-

tors to have an identity covariance matrix and the vectors of factor loadings to be orthogonal

and sorted according to length.2

Let Σa = Λ0′Λ0/N ∈ Rra×ra , let Σ
1/2
a be the Cholesky factor of Σa, and let Υa be a

matrix of orthonormal eigenvectors such that

Υ′
a(Σ

1/2
a )′ΣFΣ1/2

a Υa = Va, (2.7)

where Va is a diagonal matrix of eigenvalues, ordered from largest to smallest. Note that by

Assumptions A and B, the matrix (Σ
1/2
a )′ΣFΣ

1/2
a has positive and distinct eigenvalues with

large N , which means that (2.7) holds for large N . Now define the transformation matrix

Ra = Σ1/2
a ΥaV

−1/2
a . (2.8)

2In addition, the signs of the factors and loadings need to be normalized. However, because this sign

normalizaton is immaterial for our analysis, we do not provide further details.
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We can rewrite the DGP before T0 as

Xa = FaRaR
−1
a Λ0′ + ea = FR

a ΛR′ + ea, (2.9)

where FR
a = FaRa and ΛR = Λ0(R−1

a )′. For the post-break DGP, we let Σb = Ψ0′Ψ0/N ∈
Rrb×rb , substitute ΣF in (2.7) by ΣF , and otherwise replace a subscripts by b subscripts. The

second transformation matrix Rb is defined as

Rb = Σ
1/2
b ΥbV

−1/2
b (2.10)

such that the second DGP can be rewritten as3

Xb = FbRbR
−1
b Ψ0′ + eb = FR

b ΨR′ + eb. (2.11)

Assumption ID(i) implies that the column spaces of ΛR and ΨR in (2.9) and (2.11) are

different, whereas Assumption ID(ii) translates into Va 6= Vb. Note that our normalization

interprets changes in the law of motion of the factors Fa and Fb as changes in the loadings

ΛR and ΨR. For example, consider a DGP with ra = rb = 1, constant factor loadings Λ = Ψ,

and a break in the persistence of the factor, which follows an AR(1) process Ft = ρaFt−1 +εt

for t ≤ T0 and Ft = ρbFt−1 + εt for T > T0, where εt ∼ i.i.d.N(0, 1) for all t. The change

of the autocorrelation of Ft from ρa to ρb in our setting translates into a change of the

transformed factor loadings from ΛR = Λ/
√

1− ρ2
a to ΨR = Λ/

√
1− ρ2

b . This leads to

Vb = Va(1− ρ2
b)/(1− ρ2

a).

2.3 A Useful Decomposition of Structural Changes

The (nonidentifiable) DGP in (2.2) and (2.3) provides a natural decomposition of type-2

structural changes into changes resulting from the new factors, Fb,2Γ
0′
2 , and changes associ-

ated with the effect of the extended versions of the old factors, Fb,1Γ
0′
1 . We can mechanically

rewrite the normalized version of the post-break DGP in (2.11) as

Xb = FR
b ΨR′ + eb = FR

b,1(Λ
R + ΓR1 )′ + FR

b,2Γ
R′

2 + eb, (2.12)

3It can be verified that the transformation induces the desired normalization. For the pre-break period,

using Assumption A and the fact that Υa is a finite matrix, we have

T−1
a FR′

a FR
a = V −1/2

a Υ′
aΣ1/2

a ΣF Σ1/2
a ΥaV

−1/2
a +Op(T−1/2

a ) = Ira×ra
+Op(T−1/2

a ).

Moreover, by definition of Σa, N−1ΛR′ΛR = V
1/2
a Υ′

aΣ−1/2
a Σa(Σ−1/2

a )′ΥaV
1/2
a = Va, which is a diagonal

matrix, as desired.
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where FR
b = (FR

b,1, F
R
b,2), and we define ΓR = (ΓR1 ,Γ

R
2 ). However, the components FR

b,1Γ
R′
1 and

FR
b,2Γ

R′
2 are difficult to interpret because after imposing the normalization, there is no sense

in which Fb,1 can be viewed as the post-break extension of Fa.

Nonetheless, in empirical applications, it is interesting and useful to decompose type-2

changes into the contribution of the new factors and changes in the effects of old factors. To

do so, we construct an rb×ra matrix with orthogonal columns by maximizing the correlation

between the old normalized loadings ΛR and the new loadings ΨRΩa:

Ωa = argmaxΩ̃a∈O tr[Λ
R′

ΨRΩ̃a], (2.13)

where O is the class of rb× ra matrices with orthonormal columns. The solution is given by

(see Cliff (1966)) Ωa = V U ′, where V is an rb×ra and U an ra×ra orthogonal matrix obtained

from the singular value decomposition ΛR′
ΨR = UDV ′. Let Ω⊥ be the null space of Ω′

a and

define Ω = (Ωa,Ω⊥). Moreover, define the rotated loadings and factors FRΩ
b = FRΩ and

ΨRΩ = ΨRΩ. This rotation preserves the normalization of the factors, i.e., FRΩ′

b FRΩ
b /Tb = I.

Partitioning FRΩ
b = (FRΩ

b,1 , F
RΩ
b,2 ) and ΨRΩ = (ΨRΩ

1 ,ΨRΩ
2 ), we can decompose Xb as follows:

Xb = FR
b ΩΩ′ΨR′

+ eb = FRΩ
b,1 ΛR′︸ ︷︷ ︸

old loadings

+ FRΩ
b,1 (ΨRΩ

1 − ΛR)′︸ ︷︷ ︸
change in loadings

+ FRΩ
b,2 ΨRΩ′

2︸ ︷︷ ︸
new factor

+eb. (2.14)

2.4 Model Classes

The main contribution of this paper is to develop a procedure that consistently detects the

occurrence of type-1 and type-2 structural changes. Let S0 ∈ {0, 1} be a binary variable

such that S0 = 0 indicates that there is no structural instability (i.e., Γ(0) = 0 in (2.3) and

ra = rb). If S0 = 1 and ra = rb, then the DGP exhibits a type-1 instability. Finally, S0 = 1

and ra < rb corresponds to a type-2 instability. For the remainder of this paper, we refer to

a model as a collection of DGPs that are associated with the triplet

M0 = (ra, rb,S0). (2.15)

We propose a consistent model selection procedure for M0 based on the simultaneous es-

timation of ra, rb, and S0. For the consistent determination of M0, it suffices to estimate

the normalized version of the factor model in (2.9) and (2.11), because Γ0 = 0 if and only if

ΓR = 0, where ΓR1 and ΓR2 are (implicitly) defined in (2.12). Moreover, Γ0
2 = 0 if and only if

ΓR2 = 0.
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Our procedure differs from the existing methods in two very important dimensions. First,

our method not only detects structural instabilities but also automatically determines their

type. Second, to detect instabilities in factor loadings, our method does not require knowl-

edge of the number of factors before and/or after the break. Instead, it determines the pre-

and post-break factors structures simultaneously.

3 Model Selection with Known Break Date

In this section, we assume that the date of the potential structural break, T0, is known. We

divide the full sample into a pre-break and a post-break subsample. Let Ta and Tb denote the

number of periods in the two subsamples, respectively. With a known break date, Ta = T0

and Tb = T1. Since we treat the number of factors as unknown, we define k ≥ rb to be

the number of potential factors. In order to motivate the criterion function in the shrinkage

estimation, we rewrite the normalized DGP in (2.9) and (2.11) as the following augmented

system:

Xa =
[
FR
a FR⊥

a,1 FR⊥
a,2

]
ΛR′

0(rb−ra)×N

0(k−rb)×N

+ ea = FR+
a (ΛR+)′ + ea.

Xb =
[
FR
b,1 FR

b,2 FR⊥
b

]
ΛR′ + ΓR′1

ΓR′2

0(k−rb)×N

+ eb = FR+
b (ΛR+ + ΓR+)′ + eb. (3.1)

Here, FR⊥
a denotes a T × (k − ra) orthogonal complement of FR

a . We partition FR⊥
a into

T × (rb − ra) and T × (k − rb) submatrices FR⊥
a,1 and FR⊥

a,2 . Likewise, FR⊥
b is an orthogonal

complement of FR
b . Below, we call FR

a and FR
b the “true” and FR⊥

a and FR⊥
b the irrelevant

factors. In the augmented model (3.1), ΛR+ and (ΛR+ + ΓR+) are the factor loadings before

and after the break, respectively. Estimating the number of factors and detecting instability

in factor loadings can be executed simultaneously in (3.1), because they are equivalent to

consistent selection of the zero and and nonzero components in ΛR+ and ΓR+. Hence, for

consistent model selection, it is key to obtain estimators that can consistently distinguish

zeros from nonzeros in ΛR+ and ΓR+. The shrinkage estimator proposed below is designed

to achieve such consistency.
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3.1 Estimation Objective Function

The k potential factors are estimated by the principal component estimator in each subsam-

ple. Specifically, for subsample j ∈ {a, b}, let F̃j ∈ RTj×k be the orthonormalized eigenvectors

of (NTj)
−1XjX

′
j associated with its first k largest eigenvalues. For both subsamples, esti-

mating an overfitted model with k factors gives the unrestricted least square estimators of

the factor loading matrices Λ̃LS = T−1
a X ′

aF̃a, Ψ̃LS = T−1
b X ′

bF̃b and Γ̃LS = Ψ̃LS − Λ̃LS.

Given F̃a and F̃b, we propose shrinkage estimators of ΛR+ and ΓR+ by minimizing a PLS

criterion function:

(Λ̂, Γ̂) = arg min
Λ∈RN×k,Γ∈RN×k

[M(Λ,Γ) + P1(Λ) + P2(Γ)] , (3.2)

where

M(Λ,Γ) = (NT )−1

[∥∥∥Xa − F̃aΛ
′
∥∥∥2

+
∥∥∥Xb − F̃b(Λ + Γ)′

∥∥∥2
]
,

P1(Λ) = αNT

k∑
`=1

ωλ` ‖Λ`‖ and P2(Γ) = βNT

k∑
`=1

ωγ` ‖Γ`‖ , (3.3)

Λ` and Γ` are the `-th column of Λ and Γ, respectively, αNT and βNT are two sequences

of positive constants that depend on N and T , and ωλ` and ωγ` are data-dependent weights

defined as:

ωλ` =
(
N−1||Λ̃`||2I{Λ̃` 6=0N×1} +N−1||Λ̃`,LS||2I{Λ̃`=0N×1}

)−d
,

ωγ` =
(
N−1||Γ̃`||2I{Γ̃` 6=0N×1} +N−1||Γ̃`,LS||2I{Γ̃`=0N×1}

)−d
. (3.4)

Here I{x=a} is the indicator function that is equal to one if x = a and equal to zero otherwise;

d is a positive constant; and Λ̃ ∈ RN×k and Γ̃ ∈ RN×k are some preliminary estimators of

Λ+ and Γ+, where the ` subscript denotes the `-th column of the matrices. The simplest

preliminary estimator available is the unrestricted least square estimator (i.e., Λ̃ = Λ̃LS and

Γ̃LS = Γ̃LS). An alternative preliminary estimator can be a shrinkage estimator that is

based on a rough choice of tuning parameters. Since such a shrinkage estimator may set

some of the columns of Λ̃ and Γ̃ equal to zero, we use the indicator functions to replace zero

columns with the corresponding columns of the unrestricted least square estimators. This

model selection procedure is easy to compute because it is a convex optimization problem

after the principal components are used for dimension reduction.
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In this adaptive estimation, the data-dependent weights ωλ` and ωγ` are designed to dif-

ferentiate the zero columns of ΛR+ and ΓR+ from the nonzero columns. It is easy to obtain

preliminary estimators such that ||Λ̃`|| →p 0 if and only if the `-th column of ΛR+ is zero

and ||Γ̃`|| →p 0 if and only if the `-th column of ΓR+ is zero. The unrestricted least square

estimator is one simple example. If such requirement is satisfied by the preliminary estima-

tor, we expect N−1‖Λ̃`‖ to converge to a positive constant for ` ≤ ra and to converge to zero

for ` > ra. In the latter case, ωλ` diverges to infinity, which delivers strong penalization in

the shrinkage estimation (3.2) to the estimators of the zero columns in Λ0. The weights, ωγ` ,

have similar effects on the estimation of Γ+.

The penalty functions P1(Λ) and P2(Γ), defined in terms of the column norms ‖Λ`‖ and

‖Γ`‖, are group-LASSO penalties (cf., Yuan and Lin (2006)). A group-LASSO estimator

either sets all the elements in a group equal to zero or estimates them as nonzeros altogether.

This feature is particularly useful for large-scale factor models because the irrelevant factors

have zero factor loadings for all series. As such, the group-LASSO estimator automatically

controls the group-wise model-selection error, which is challenging if the model-selection is

performed sequentially.

3.2 Model Selection

Model selection for M0 is based on the column norms of Λ̂ and Γ̂. The estimators of ra and

rb are

r̂a = minJa, where Ja =
{
j : ||Λ̂`||2 = 0 for all ` > j

}
r̂b = max (minJb, r̂a) , where Jb =

{
j : ||Γ̂`||2 = 0 for all ` > j

}
. (3.5)

Note that minJa is the last nonzero column of Λ̂ and minJb is the last nonzero column of

Γ̂. The estimator of S0 is

Ŝ =

{
0 if Γ̂ = 0,

1 otherwise.
(3.6)

The procedure selects a model with no structural instability if Ŝ = 0. When Ŝ 6= 0, the

change is type-1 if r̂b = r̂a and it is type-2 if r̂b > r̂a.
4 In all cases, we not only detect the

4If there is a type-2 change, the first r̂a columns of Γ̂ do not provide any implications on the stability of

the “original factor loadings” in the first subsample, because they involve a rotation of all factor loadings,

including the new ones.
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instabilities and identify their sources but also simultaneously estimate the number of factors

before and after the break. In sum, the model selected by the shrinkage estimator is

M̂ = (r̂a, r̂b, Ŝ). (3.7)

In the following sections, we show that

Pr(M̂ = M0) → 1 as N, T →∞ (3.8)

provided that the tuning parameters αNT and βNT are chosen within the bounds specified

below.

3.3 Estimation of Factor Loadings

In applications such as forecasting both the dimension of the factor space and the values

of the factor loadings are of interest. If Ŝ = 0 (i.e., there is no evidence of a structural

instability), then we recommend to reestimate the factors and their loadings using the full

sample to improve efficiency and reduce the bias introduced by penalization. In this case,

let F̃ ∈ RT×r̂a be the orthonormalized left eigenvectors of (NT )−1XX ′ associated with its

first r̂a largest eigenvalues. The factor loading for the full sample is Ψ̂F = T−1X ′F̃ .

If, on the other hand, there is evidence of a structural break, Ŝ = 1, then one could

either use the pre- and post-break shrinkage estimators Λ̂ and Λ̂ + Γ̂ of the factor loadings

or re-estimate the factor model conditional on the selected number of factors r̂a and r̂b. We

call this latter estimator a post-model-selection (PMS) estimator. It is formally defined as

Λ̂PMS =
(
Λ, 0Λ

)
, Ψ̂PMS =

(
Ψ, 0Ψ

)
and Γ̂PMS = Ψ̂PMS − Λ̂PMS, (3.9)

where Λ denotes the first r̂a columns of Λ̃LS, Ψ denotes the first r̂b columns of Ψ̃LS, 0Λ

is a N × (k − r̂a) zero matrix, and 0Ψ is a N × (k − r̂b) zero matrix. For the first r̂a

columns, the PMS estimator is identical to the unrestricted least square estimator because

the columns of F̃a are orthogonal by construction. The same argument applies to Ψ̂LS. In

finite samples, the penalization on the nonzero columns may further reduce the variance

of the shrinkage estimator, but at the same time, it introduces extra bias. Whether this

feature of the shrinkage estimator is preferable to the PMS estimator depends on the specific

bias-variance trade-off, and we provide some simulation evidence in Section 7. For both

the shrinkage estimators and the PMS estimators of the factor loadings, their corresponding

factor estimators are F̃a for the first subsample and F̃b for the second subsample.
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4 Asymptotic Theory

This section establishes the large sample properties of the shrinkage estimators (Λ̂, Γ̂) and

shows the consistency of the proposed model selection procedure when the break date is

known. We begin by stating additional assumptions.

4.1 Additional Assumptions

Suppose T0/T → τ0 for some constant τ0 ∈ (0, 1) as T → ∞. We assume the following

assumptions in addition to Assumptions A and B. Let e = [e1, . . . , eT ] ∈ RN×T be the

matrix of idiosyncratic errors and eit denote the (i, t) element of e that is associated with

series i in period t.

Assumption C. (i). E[eit] = 0, E[|eit|8] ≤ C;

(ii). E[N−1
∑N

i=1 eiseit] = σN(s, t), |σN(s, s)| ≤ C for all s, T−1
∑T

s=1

∑T
t=1 |σN(s, t)| ≤ C;

(iii). E[eitejt] = τij,t with |τij,t| ≤ |τij| for some τij and for all t, and N−1
∑N

i=1

∑N
j=1 |τij| ≤ C;

(iv). E[eitejs] = τij,ts and (NT )−1
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ C;

(v). For every (t, s), E[|N−1/2
∑N

i=1[eiseit − E[eiseit]]|4] ≤ C;

(vi). ρ1((NT )−1eae
′
a) = Op(max[N−1, T−1]) and ρ1((NT )−1ebe

′
b) = Op(max[N−1, T−1]). �

Assumption D. E[N−1
∑N

i=1 ||T−1/2(
∑T0

t=1 F
0
t eit +

∑T
t=T0+1 F

0

t eit)||2] ≤ C. �

Assumptions C and D are analogous to Assumptions C and D of Bai and Ng (2002).

Assumption C allows for time-series and cross-sectional weak dependence in the idiosyncratic

errors. Assumption C(vi) or a similar condition is needed for the consistent selection of

the number of factors (see Amengual and Watson (2007)). Assumption D allows for weak

dependence between the factors and the idiosyncratic errors.

Define CNT = min(T 1/2, N1/2), where CNT is the convergence rate of the unrestricted

least square estimator in Bai and Ng (2002). Assumptions P1 and P2 below are high-

level conditions on the stochastic order of the preliminary estimators. They are useful in

studying the asymptotic properties of the data-dependent weights ωλ` and ωγ` defined in

(3.4). In practice, we consider the least square estimators Λ̃LS and Γ̃LS, as well as shrinkage

estimators as preliminary estimators (see Section 5 for details).

Assumption P1. The preliminary estimators Λ̃ and Γ̃ satisfy
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(i) Pr(N−1||Λ̃`||2 ≥ C) → 1 for ` = 1, . . . , ra, N
−1||Λ̃`||2 = Op(C

−2
NT ) for ` = ra + 1, . . . , k;

(ii) If Γ0 6= 0, Pr(N−1||Γ̃`||2 ≥ C) → 1 for ` = 1, ..., rb, N
−1||Γ̃`||2 = Op(C

−2
NT ) for ` =

rb + 1, . . . , k;

(iii) If Γ0 = 0, N−1||Γ̃`||2 = Op(C
−2
NT ) for ` = 1, ..., k. �

Assumption P2. Assumption P1 holds with Λ̃ = Λ̃LS and Γ̃ = Γ̃LS. �

Assumption P1 is imposed on any preliminary estimators of ΛR and ΓR. If the preliminary

estimators are different from Λ̃LS and Γ̃LS, Assumption P2 is still necessary because ωλ` and

ωγ` depend on Λ̃LS and Γ̃LS whenever Λ̃ or Γ̃ has zero columns. Note that Λ̃` = 0 is a special

case of N−1||Λ̃`||2 = Op(C
−2
NT ) in Assumption P1, and the same argument applies to Γ̃`.

Under the conditions in Assumption P1, the columns of the preliminary estimators

are divided into two categories. For the first category, Pr(N−1||Λ̃`||2 ≥ C) → 1 and

Pr(N−1||Γ̃`||2 ≥ C) → 1 such that the data-dependent weights, ωλ` and ωγ` , are stochas-

tically bounded. For the second category, N−1||Λ̃`||2 = Op(C
−2
NT ) and N−1||Γ̃`||2 = Op(C

−2
NT ),

which implies that ωλ` and ωγ` diverge in probability faster than C2d
NT . These large penalties

in the second category yield shrinkage estimators that are equal to 0 w.p.a.1.

While the data-dependent weights ωλ` and ωγ` determine the relative penalties of different

columns of factor loadings, the tuning parameters αNT and βNT determine the overall penal-

ization. We make the following assumptions about the rates at which the tuning parameters

vanish asymptotically.

Assumption T. The tuning parameters αNT and βNT satisfy

(i) αNT = O(N−1/2C−1
NT ) and βNT = O(N−1/2C−1

NT );

(ii) N−1/2C
−(2d+1)
NT = o(αNT ) and N−1/2C

−(2d+1)
NT = o(βNT ). �

Assumption T imposes bounds on the tuning parameters αNT and βNT . These bounds

control the magnitudes of penalization on all columns and are designed for consistent model

selection. The upper bound in Assumption T(i) ensures that if the data-dependent weights

ωλ` and ωγ` are stochastically bounded, the penalties on the nonzero columns are small such

that the shrinkage bias is negligible asymptotically. On the other hand, we aim to shrink

the estimators of zero columns to zero. For this purpose, the lower bound in Assumption

T(ii) requires that the tuning parameters αNT and βNT converge to zero not too fast. The

upper bound is larger than the lower bound provided that d is positive. In the simulation
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and empirical application, we use d = 2. Under the theoretical guidance by Assumption T,

we discuss the practical choice of αNT and βNT in Section 5.

4.2 Asymptotic Behavior of the PLS Estimator

We begin by defining the asymptotic limits of the PLS estimators Λ̂ and Γ̂. The estimators

converge to the coefficients of the normalized version of the DGP in (2.9) and (2.11). The

transformation matrices Ra and Rb, defined in (2.8) and (2.10), that were used to normalize

the DGP are related to, but essentially different from, their counterparts considered in the

literature, such as those in Bai and Ng (2002) and Bai (2003). In the definitions of Ra and

Rb, one subtle point is that Σa and Σb are averages that depend on N , whereas ΣF and ΣF

are asymptotic limits as T → ∞. This subtle difference is crucial for deriving asymptotic

limits of the PLS estimators if potential structural change is considered. In the absence of

structural instabilities, Ra = Rb by construction. This immediately implies that ΓR = 0 for

any N , instead of ΓR → 0, as both N and T go to infinity. As previously stated, let the

subscript ` denote the `-th column of a matrix.

Theorem 1 Suppose Assumptions A-D, P1-P2, and T hold. Then,

(a) Pre-break loadings of relevant factors: N−1||Λ̂` − ΛR
` ||2 = Op(C

−2
NT ) for ` = 1, . . . , ra;

(b) Pre-break loadings of irrelevant factors: Pr(||Λ̂`||2 = 0 for ` = ra + 1, . . . , k) → 1;

(c) Post-break changes in loadings of relevant factors: If Γ0 6= 0, N−1||Γ̂`−ΓR` ||2 = Op(C
−2
NT )

for ` = 1, . . . , rb;

(d) No-break: If Γ0 = 0, Pr(||Γ̂`||2 = 0 for 1, . . . , rb) → 1;

(e) Post-break changes in loadings of irrelevant factors: Pr(||Γ̂`||2 = 0 for ` = rb+1, . . . , k) →
1.

Parts (a) and (b) of Theorem 1 characterize the limits of the PLS estimators of the pre-

break factor loadings. Due to the penalization, the factor loadings of the irrelevant factors

are estimated as exactly zero w.p.a.1. This superefficiency result cannot be achieved by the

unrestricted least square estimators. In contrast, for the true factors, the penalization does

not affect the consistency and the convergence rate of their estimators. For ` = 1, . . . , ra,

the PLS estimator Λ̂` converges in probability to the factor loadings ΛR
` of the transformed

DGP.
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Parts (c) to (e) of Theorem 1 characterize asymptotic properties of the PLS estimators

of the changes in the factor loadings, which is essential to detecting structural instabilities.

In the absence of structural instabilities, the PLS estimators of the changes are equal to

0 w.p.a.1. In the presence of a structural instability, the superefficiency in Part (e) of

Theorem 1 only applies to the redundant factors, which pins down the number of factors

after the break.

To obtain results in Parts (a) and (c) of Theorem 1, only the upper bound on the

convergence rate of the tuning parameters in Assumption T(i) is necessary. The lower

bound in Assumption T(ii) is necessary for the superefficiency results stated in Parts (b),

(d), and (e) of Theorem 1. Because the unrestricted least square estimators are special cases

of the PLS estimators with zero penalties, Parts (a) and (c) of Theorem 1 apply to Λ̂` = Λ̃`,LS

and Γ̂` = Γ̃`,LS for ` = 1, . . . , k, regardless of the specification of the model.

4.3 Consistent Model Selection

In the previous subsection, we showed that the factor loadings of the irrelevant factors are

estimated as zeros w.p.a.1. We also showed that the changes in the loadings of the relevant

factors are estimated as zero w.p.a.1, if their loadings are not subjected to any instability.

Hence, to establish the model selection consistency for the PLS estimation, it is sufficient to

show that the asymptotic limits ΛR
` and ΓR` in Parts (a) and (c) of Theorem 1 are bounded

away from zero w.p.a.1.

Lemma 1 Suppose Assumptions A-D hold. Then,

(a) N−1
∥∥ΛR

`

∥∥2
= ρ`(ΣΛΣF ) + o(1) for ` = 1, . . . , ra;

(b) If rb > ra, N
−1||ΓR` ||2 = ρ`(ΣΨΣF ) + o(1) for ` = ra + 1, . . . , rb;

(c) If rb = ra and rank(Σ+
ΛΨ) > ra, N

−1ΓR′ΓR →ΣΓ for some ΣΓ 6= 0 as N →∞;

(d) N−1||ΓR` ||2 ≥ [
√
ρ`(ΣΨΣF )−

√
ρ`(ΣΛΣF )]2 + o(1) for ` = 1, . . . , ra.

Lemma 1(a) follows from the definition of the transformation matrix Ra in (2.8) and,

together with Theorem 1(a) and (c), implies that ||Λ̂`|| 6= 0 for ` ≤ ra and ||Λ̂`|| = 0 for

` > ra w.p.a.1. Therefore, a consistent estimator of ra is the last nonzero column in Λ̂. For

the type-2 instability with rb > ra, the same arguments apply by combining Lemma 1(b)
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with Theorem 1(c) and (e). It follows that a consistent estimator of rb is the last nonzero

column in Γ̂.

To consistently detect a type-1 instability (i.e., ra = rb and Γ0
1 6= 0), it is sufficient to

show that N−1||ΓR||2 is bounded away from 0 asymptotically. Lemma 1(c) focuses on the

change of the space spanned by the factor loadings. One sufficient condition for Lemma 1(c)

is Assumption ID(i), which holds if and only if Λ0 and Ψ0 do not span the same column

space asymptotically. Lemma 1(d) suggests that an alternative sufficient condition for iden-

tification of the structural instability is Assumption ID(ii), which focuses on the change in

the scaling of factor loadings.

Theorem 2 Suppose Assumptions A-D, ID, P1, P2, and T hold. Then the model selection

is consistent:

Pr(M̂ = M0) → 1 as N, T →∞.

Theorem 2 provides asymptotic consistency for any set of preliminary estimators that

satisfy Assumption P1 and P2. If the unrestricted least squares estimators are used as

preliminary estimators, our model selection procedure is consistent under a set of primitive

conditions that do not involve Assumptions P1 and P2.

Corollary 1 If (Λ̃, Γ̃) = (Λ̃LS, Γ̃LS), then Theorem 2 holds under Assumptions A-D, ID,

and T.

If the preliminary estimator is a shrinkage estimator based on a rough choice of the

tuning parameters, then Theorems 1 and 2 can be applied repeatedly to a multistep shrinkage

estimation procedure, which in each step fine-tunes the penalty terms based on the estimation

results of the previous step. Such a multistep estimation procedure is discussed in detail in

Section 5.

5 Practical Guidance for Implementation

We provide a practical procedure for choosing the tuning parameters αNT and βNT in Sec-

tion 5.1. Moreover, in Section 5.2, we propose a two-step shrinkage estimation procedure

that fine-tunes the penalties in the second-stage based on the first-stage shrinkage estimation

results. This procedure improves the finite-sample performance of the PLS estimator, and

we show in Section 5.3 that it also leads to consistent model selection.
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5.1 Choosing the Penalty Weights αNT and βNT

According to Theorem 2, consistent model selection requires αNT and βNT to converge to

0 at least as fast as N−1/2C−1
NT and slower than N−1/2C

−(2d+1)
NT . In practice, we choose αNT

and βNT to balance these two rates. For two scaling constants κ1 and κ2, let

αNT = κ1N
−1/2C−d−1

NTa
and βNT = κ2N

−1/2C−d−1
NTb

, (5.1)

where CNTa = min(N1/2, T
1/2
a ) and CNTb

= min(N1/2, T
1/2
b ). Although CNTa , CNTb

, and

CNT are all of the same asymptotic order, we use CNTa and CNTb
rather than CNT in (5.1)

to improve the finite-sample accuracy. Roughly speaking, αNT is the weight attached to

the penalty on the coefficients related to Xa, whereas βNT is the penalty weight on the

coefficients of Xb.

In choosing the scaling constants κ1 and κ2, we consider the optimality conditions that

lead the PLS estimators to have zero solutions for some columns in Λ and/or Γ. Intuitively,

the criterion function in (3.2) is minimized at 0 if the marginal penalty for deviating from 0

is larger than the marginal gain on the least square criterion function. Translated into our

notation, ||Λ̂`|| = 0 for ` > ra if∥∥∥ea(Λ̂)F̃a,` + eb(Λ̂ + Γ̂)F̃b,`

∥∥∥ < NTαNTω
λ
` /2, (5.2)

where the residual matrices are

ea(Λ) = Xa − F̃aΛ
′ and eb(Λ + Γ) = Xb − F̃b(Λ + Γ)′. (5.3)

The inequality in (5.2) suggests that doubling every element in the residual matrices ea(Λ)

and eb(Λ + Γ) has to be compensated for by doubling κ1 to ensure that the inequality in

(5.2) holds. Therefore, to standardize the left-hand side of (5.2), a reasonable choice of κ1 is

κ1 =
1

ζ

{
(NTa)

−1/2
∥∥∥ea(Λ̃)

∥∥∥+ (NTb)
−1/2

∥∥∥eb(Λ̃ + Γ̃)
∥∥∥} , (5.4)

where ζ = 1 by default.

In practice, we also consider ζ = 2, 4, and 6 to check the sensitivity of the estimation

results to the penalty function. Although our asymptotic theory does not apply to the weak

factors considered in Onatski (2012), the adjustment of ζ corresponds to the strength of the

factors in finite samples. Generally speaking, a larger ζ works better on detecting a weak

factor and a small break, while a smaller ζ works better for strong factors and large breaks.
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If the break occurs at the end of the sample, simulation results suggest that a larger ζ, e.g.,

ζ = 4, tends to work better than ζ = 1. By similar arguments, the choice of κ2 is

κ2 =
1

ζ
(NTb)

−1/2
∥∥∥eb(Λ̃ + Γ̃)

∥∥∥ . (5.5)

In sum, the recommended tuning parameters are:

αNT =
1

ζ

(
(NTa)

−1/2
∥∥∥ea(Λ̃)

∥∥∥+ (NTb)
−1/2

∥∥∥eb(Λ̃ + Γ̃)
∥∥∥)N−1/2C−d−1

NTa
,

βNT =
1

ζ

(
(NTb)

−1/2
∥∥∥eb(Λ̃ + Γ̃)

∥∥∥)N−1/2C−d−1
NTb

. (5.6)

5.2 Two-Step Estimation Procedure

We recommend a two-step estimation procedure that uses as preliminary estimators in the

second step the shrinkage estimators from the first step. The two-step procedure improves

the finite sample performance through two channels. First, the tuning parameters are better

calibrated in the second step because the residual matrices in (5.6) are more accurate when

Λ̃ and Γ̃ are based on first-step shrinkage estimators. Second, a better preliminary estimator

Γ̃ is obtained through a rotation of the factor loadings ΛR and ΨR. For i = 1 and 2, let

Λ̃(i), Ψ̃(i), and Γ̃(i) denote the preliminary estimators, Λ̂(i), Ψ̂(i) and Γ̂(i) denote the PLS

estimators, and Λ̂
(i)
PMS, Ψ̂

(i)
PMS and Γ̂

(i)
PMS denote the PMS estimators in step i. The two-step

estimation can be implemented with the following algorithm:

Algorithm 1 (Two-Step Estimation Procedure) Execute the following steps:

1. Construct the first-stage shrinkage estimator as follows:

(a) Compute the unrestricted least squares estimators Λ̃LS and Λ̃LS.

(b) Let Λ̃(1) = Λ̃LS and Γ̃(1) = Γ̃LS. Calculate ωλ` , ω
γ
` , αNT and βNT following (3.4)

and (5.6) with Λ̃ = Λ̃(1) and Γ̃ = Γ̃(1).

(c) Compute the shrinkage estimator Λ̂(1) and Γ̂(1) by minimizing the criterion func-

tion (3.2).

(d) Estimate ra and rb following (3.5) with Λ̂ = Λ̂(1) and Γ̂ = Λ̂(1) and call the

estimators r̂
(1)
a and r̂

(1)
b . Let Λ

(1)
denote the first r̂

(1)
a columns of Λ̃LS and Ψ

(1)
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denote the first r̂
(1)
b columns of Ψ̃LS. Following the definition of the PMS estimator

in (3.9),

Λ̂
(1)
PMS =

(
Λ

(1)
, 0Λ(1)

)
∈ RN×k and Ψ̂

(1)
PMS =

(
Ψ

(1)
, 0Ψ(1)

)
∈ RN×k, (5.7)

where 0Λ(1) is a N×(k− r̂(1)
a ) zero matrix and 0Ψ(1) is a N×(k− r̂(1)

b ) zero matrix.

(e) If r̂
(1)
b = r̂

(1)
a , transform the columns of Ψ

(1)
as follows: Let Λ

(1)′

Ψ
(1)

= UDV
′

be the singular value decomposition of Λ
(1)′

Ψ
(1)

= UDV
′
. Define the transformed

factor loading as

Ψ
(1)

R = Ψ
(1)
Q, (5.8)

where Q = V U ′. Define the modified PMS estimator of Ψ as

Ψ̂
(1)
PMS−R =

(
Ψ

(1)

R , 0Ψ(1)

)
∈ RN×k, (5.9)

which is a modification of Ψ̂
(1)
PMS with Ψ

(1)
replaced by Ψ

(1)

R .

2. Construct the second-stage shrinkage estimator as follows:

(a) Let

Λ̃(2) = Λ̂
(1)
PMS, Ψ̃(2) =

{
Ψ̂

(1)
PMS−R if r̂

(1)
b = r̂

(1)
a

Ψ̂
(1)
PMS if r̂

(1)
b > r̂

(1)
a

, Γ̃(2) = Ψ̃(2) − Λ̃(2) (5.10)

and calculate ωλ` , ω
γ
` , αNT , and βNT following (3.4) and (5.6) with Λ̃ = Λ̃(2) and

Γ̃ = Γ̃(2).

(b) Compute the shrinkage estimators Λ̂(2) and Γ̂(2) by minimizing the criterion func-

tion (3.2).

(c) Estimate ra, rb, and S0 following (3.5)-(3.7) with Λ̂ = Λ̂(2) and Γ̂ = Λ̂(2).

The preliminary estimators in the second step are based on the PMS estimators of the

first step. The rotation in Step 1(e) minimizes the risk of falsely reporting a structural break

when there is no instability in the data. It is designed to match the column spaces of Λ
(1)

and Ψ
(1)

. This leads to a smaller Γ̃ if Γ0 = 0. Formally, the problem is to find an orthogonal

matrix Q such that ||Λ(1)−Ψ
(1)
Q||2 is minimized. This is an orthogonal procrustes problem.

It is equivalent to maximizing the correlation between the columns of Λ
(1)

and Ψ
(1)
Q (see
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Section 2.3). The solution is Q = V U ′ (see Schönemann (1966)), where U and V are obtained

from the singular value decomposition Λ
(1)′

Ψ
(1)

= UDV ′.

In the remainder of this subsection, we show that if there is indeed a type-1 instability,

the Q rotation will not eliminate the difference between ΛR
` and ΨR

` . Moreover, we show

that the asymptotic theory we established in the previous section applies to the two-step

shrinkage estimator.

5.3 Large Sample Behavior of Two-Step Estimation Procedure

Under Assumption ID, Lemma 1(c) and Lemma 1(d) imply that, in the presence of a type-1

change, there exists a set of columns such that

Z = {` : N−1||ΓR` ||2 = N−1||ΨR
` − ΛR

` ||2 ≥ C}. (5.11)

The columns in the set Z are crucial for the identification of a type-1 instability. We now

state the following additional assumption:

Assumption R. If ra = rb, then inf‖w‖=1N
−1||ΨRw − ΛR

` ||2 ≥ C for ` ∈ Z. �

Assumption R is not restrictive. It holds whenever ΛR
` is not in the column space gener-

ated by ΨR. Assumption R is imposed on the loadings ΛR of the normalized version of the

DGP rather than on the loadings Λ0 of the DGP itself. Assumption R allows the loadings

of some of the “structural” factors in the unnormalized DGP to remain constant while the

loadings of other “structural” factors change. In the absence of structural instabilities, Z is

empty and Assumption R is not necessary.

Using Assumption R, the model selection consistency established in Theorem 2 can be

extended to the two-step estimation procedure, as summarized in the following corollary:

Corollary 2 If Λ̃ = Λ̃(2) and Γ̃ = Γ̃(2), then Theorem 2 holds under Assumptions A-D, ID,

R, and T.

Recall that Assumptions A-D, ID, and R are primitive conditions on the factor models.

The recommended tuning parameters αNT and βNT defined in (5.6) are constructed to ensure

that Assumption T is satisfied. As a result, one can continue to use the recommended

formulas of αNT and βNT throughout the two-step estimation procedure.
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6 Model Selection with Unknown Break Date

We now extend the model selection procedure to study a potential one-time abrupt break

at an unknown time T0, allowing for both type-1 and type-2 instabilities. Let π0 = T0/T ,

where T is the number of periods in the sample. For simplicity, we call π0, rather than T0,

the break date. We assume that the exact value of π0 is unknown, but it is known that

π0 ∈ Π, where Π is some closed subset in the interior of [0, 1].

For any π ∈ Π, we split the full sample into two subsamples Xa(π) = (X1, ..., XTa)
′ ∈

RTa×N and Xb(π) = (XTa+1, ..., XT )′ ∈ RTb×N , where Ta = bTπc is the integer part of Tπ and

Tb = T − Ta. In Section 6.1, we study the consequences of misspecifying the break date and

present an identification condition for the unknown break date. To account for the unknown

break date, we slightly modify the penalty terms of the PLS estimator in Section 6.2. Finally,

we show in Section 6.3 that the consistency result of Theorem 2 extends to the case with an

unknown break date.

6.1 Identification of the Change Point

To obtain an identification condition for the unknown break date π0, we now study the

number of factors in Xa(π) and Xb(π) when π 6= π0. In a nutshell, if the break date is

misspecified, then one of the two subsamples contains one or more additional factors. Thus,

the break date can be identified by minimizing the number of estimated pre- and post-break

factors by varying π.

Consider the case of π < π0. For the first subsample Xa(π), the DGP is the same as that

in (2.2), which can be written as

Xa(π) = Fa(π)Λ0′ + ea(π), where

Fa(π) =
(
F 0

1 , . . . , F
0
Ta

)′ ∈ RTa×ra ,

ea(π) = (e1, . . . , eTa)
′ ∈ RTa×N . (6.1)

For the second subsample Xb(π), which includes observations for t = Ta + 1, . . . , T0, . . . , T ,

the DGP corresponds to (2.2) for t ≤ T0 and to (2.3) for t > T0. Thus, the DGP for Xb(π)
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can be written as

Xb(π) = F+
a (π)Λ0′ + Fb(π)Ψ0′ + eb(π), where

F+
a (π) = (F 0

Ta+1, ..., F
0
T0
, 0ra×(T−T0))

′ ∈ RTb×ra ,

Fb(π) = (0rb×(T0−Ta), F
0

T0+1, ..., F
0

T )′ ∈ RTb×rb ,

eb(π) = (eTa+1, ..., eT )′ ∈ RTb×N . (6.2)

Here the ra factors in F+
a (π) with loadings Λ0 are only for observations before the true

break date, and the rb factors in Fb(π) with loadings Ψ0 are only for observations after the

true break. By construction, F+
a (π) and Fb(π) are orthogonal to each other. By definition,

Fa(π0) = Fa, F
+
a (π0) = 0, and Fb(π0) = Fb. The DGPs in (6.1) and (6.2) reduce to (2.2)

and (2.3), respectively, if the break date is known.

We now replace Assumptions A and C with Assumptions A∗ and C∗ such that the weak

dependence and stationarity hold for any subsamples considered.

Assumption A∗. E ‖F 0
t ‖

4 ≤ C, E||F 0

t ||4 ≤ C and there exist some positive definite

matrices ΣF and ΣF such that T−1
∑bTπc

t=1 F 0
t F

0′
t = πΣF + Op(T

−1/2) for π ≤ π0 and

T−1
∑T

t=bTπc+1 F
0

tF
0′
t = (1 − π)ΣF + Op(T

−1/2) for π ≥ π0, where both Op(T
−1/2) terms

are uniform over π ∈ Π. �

Assumption C∗. Assumption C holds with ea and eb replaced by ea(π) and eb(π) and

Assumption C(vi) holds uniformly over π ∈ Π. �

Let ra(π) and rb(π) denote the number of factors in Xa(π) and Xb(π), respectively.

By definition, they are the number of nonvanishing eigenvalues of (NT )−1Xa(π)′Xa(π) and

(NT )−1Xb(π)′Xb(π), respectively, as N, T →∞. Under Assumptions A∗, B, C∗, and D, the

DGP in (6.1) is a factor model with ra factors (i.e., ra(π) = ra for π ≤ π0). To study the

number of factors in (6.2) for the second subsample, note that

T−1(F+
a (π),Fb(π))′(F+

a (π),Fb(π)) →p Σ+
F (π),

N−1
(
Λ0,Ψ0

)′ (
Λ0,Ψ0

)
→p Σ+

ΛΨ, where

Σ+
F (π) =

[
(π0 − π)ΣF 0ra×rb

0rb×ra (1− π0)ΣF

]
(6.3)

and Σ+
ΛΨ is defined in (2.6). Because Σ+

F (π) has full rank by construction, the number

of factors in Xb(π) depends on the rank of Σ+
ΛΨ (i.e., rb(π) = rank(Σ+

ΛΨ) for π < π0). If

Λ0 = Ψ0, we know that rank(Σ+
ΛΨ) = rb. If, on the other hand, the column spaces generated
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by Ψ0 and Λ0 do not overlap, we have rank(Σ+
ΛΨ) = ra + rb. Typically, we would expect

the column spaces generated by Ψ0 and Λ0 to be overlapping but non-nested, which means

rank(Σ+
ΛΨ) > rb ≥ ra and hence rb(π) > rb for π < π0.

Now consider π > π0. For the first subsample, we have ra(π) = rank(Σ+
ΛΨ), which implies

ra(π) ≥ rb ≥ ra, while for the second subsample, we simply get rb(π) = rb. The following

lemma provides a summary:

Lemma 2 Suppose that Assumptions A∗, B, C∗, and D hold. Then,

ra(π) =

{
ra π ≤ π0

rank(Σ+
ΛΨ) π > π0

and rb(π) =

{
rank(Σ+

ΛΨ) π < π0

rb π ≥ π0

, (6.4)

where rank(Σ+
ΛΨ) ≥ rb ≥ ra.

It follows from Lemma 2 that

ra(π) + rb(π) =


ra + rank(Σ+

ΛΨ) π < π0

ra + rb π = π0

rb + rank(Σ+
ΛΨ) π > π0

. (6.5)

Because rank(Σ+
ΛΨ) ≥ rb ≥ ra, we see that ra(π)+rb(π) is minimized at π0, with the minimum

value ra + rb. Define the set of values π such that ra(π) + rb(π) achieve the smallest value

ra + rb as

D = {π ∈ Π : ra(π) + rb(π) = ra + rb}. (6.6)

By definition, we know that π0 ∈ D and hence D is a well-defined nonempty set. If

rank(Σ+
ΛΨ) > rb (which holds if the column space generated by Λ0 is not contained by

that generated by Ψ0 asymptotically), we can deduce that π0 is the unique minimizer. The

result is summarized in the following corollary:

Corollary 3 Suppose that Assumptions A∗, B, C∗, and D hold.

(a) If rank(Σ+
ΛΨ) > rb, then π0 = D;

(b) If rank(Σ+
ΛΨ) = rb > ra, then π0 = max {π : π ∈ D}.
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If the structural break is due to the type-2 instability, Corollary 3 shows that the break

date π0 can always be identified by the maximum value in the set D. π0 can still be identified

under type-1 instability, provided that Assumption ID(i) holds. In that case, we have

rank(Σ+
ΛΨ) > ra = rb, (6.7)

which combined with Corollary 3(a) implies that {π0} = D. The only case in which D does

not identify π0 is if ra = rb and Λ0 and Ψ0 span the same column spaces. However, this

type-1 instability itself can still be identified as long as Assumption ID(ii) holds.

6.2 Estimation with Unknown Break Date

For any π ∈ Π, let F̃a(π) ∈ RTa×k be the orthonormalized eigenvectors of (NTa)
−1Xa(π)Xa(π)′

associated with its first k largest eigenvalues. Similarly, let F̃b ∈ RTb×k be the orthonor-

malized left eigenvectors of (NTb)
−1Xb(π)Xb(π)′ associated with its first k largest eigen-

values. We assume k ≥ ra + rb, the largest possible number of factors in any subsam-

ple. The unrestricted estimators of the factor loadings are Λ̃LS(π) = T−1
a Xa(π)′F̃a(π),

Ψ̃LS(π) = T−1
b Xb(π)′F̃b(π), and Γ̃LS(π) = Ψ̃LS(π)− Λ̃LS(π).

By applying the procedure in Section 5 with π0 replaced by π, we obtain a shrinkage

estimator indexed by π ∈ Π, which yields consistent estimators of ra(π) and rb(π) for any

π ∈ Π. In our empirical application, we found that this simple procedure is undesirable

because the estimators of ra(π) and rb(π) are highly sensitive to π. To improve the finite

sample performance of the PLS estimation with an unknown break date, we propose an

averaging penalty. Based on this averaging penalty, the shrinkage estimator depends on π

only through the least square criterion function. Uniform convergence of the least square

criterion function over π ∈ Π follows from Assumptions A∗ and C∗. In the remainder of this

subsection, we describe the construction of the averaging penalty.

The shrinkage estimator with an averaging penalty is obtained by minimizing a PLS

criterion function indexed by π:

(Λ̂(π), Γ̂(π)) = arg min
Λ∈RN×k,Γ∈RN×k

[M(Λ,Γ;π) + P ∗
1 (Λ) + P ∗

2 (Γ)] , (6.8)

where

M(Λ,Γ;π) = (NT )−1

[∥∥∥Xa(π)− F̃a(π)Λ′
∥∥∥2

+
∥∥∥Xb(π)− F̃b(π)(Λ + Γ)′

∥∥∥2
]
. (6.9)
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The averaging penalty functions P ∗
1 (Λ) and P ∗

2 (Λ) are

P ∗
1 (Λ) =

k∑
`=1

Eξ[αNT (ξ)ωλ∗` (ξ)] ‖Λ`‖ ,

P ∗
2 (Γ) =

k∑
`=1

Eξ[βNT (ξ)ωγ∗` (ξ)] ‖Γ`‖ , (6.10)

where ξ has a uniform distribution on Π and Eξ[·] denotes the expectation with respect to ξ.5

In practice, Π is approximated by a set of equally spaced grid points Πd, and the expectation

in (6.10) is replaced by an average. The tuning parameters αNT (π) and βNT (π) are

αNT (π) = κ1(π)N−1/2C−d−1
NTa

and βNT (π) = κ2(π)N−1/2C−d−1
NTb

, (6.11)

where κ1(π) ∈ [κ1, κ1] and κ2(π) ∈ [κ2, κ2] for some κ1, κ2 > 0 and κ1, κ2 < ∞. They are

analogous to those in (5.1). In practice, we can choose κ1(π) and κ2(π) as in (5.6) but with

Λ̃ and Γ̃ replaced by Λ̃(π) and Γ̃(π), respectively.

For each π ∈ Π, let Λ̃(π), Ψ̃(π), and Γ̃(π) be some preliminary estimators. We define

adaptive weights ωλ∗` (π) and ωγ∗` (π) as

ωλ∗` (π) =
(
N−1||Λ̃`(π)||2I{Λ̃`(π) 6=0N×1} +N−1||Λ̃`,LS(π)||2I{Λ̃`(π)=0N×1}

)−d
,

ωγ∗` (π) =
(
N−1 min{||Γ̃`(π)||2, ||Ψ̃`(π)||2}I{Γ̃`(π) 6=0N×1}

)−d
+
(
N−1 min{||Γ̃`,LS(π)||2, ||Ψ̃`,LS(π)||2}I{Γ̃`(π)=0N×1}

)−d
. (6.12)

Comparing the weights in (6.12) with those in (3.4), we see that ωλ∗` (π0) = ωλ` but ωγ∗` (π0) 6=
ωγ` . If the break date is unknown, it is crucial to use ωγ∗` (π) for consistent estimation

of rb because, for π > π0 and ` > rb, N
−1||Ψ̃`,LS(π)||2 converges (in probability) to 0,

but N−1||Γ̃`,LS(π)||2 may not converge (in probability) to 0. Thus, the modified adaptive

weights can deliver larger penalties, when needed. The modified weights can also be used if

the break date is known, because N−1||Γ̃`(π0)||2 and N−1||Ψ̃`(π0)||2 are either of the same

order of magnitude or the former is smaller than the latter.

5By definition,

Eξ[αNT (ξ)ωλ
` (ξ)] =

∫ π

π

αNT (ξ)ωλ
` (ξ)

1
π − π

dξ and Eξ[βNT (ξ)ωγ
` (ξ)] =

∫ π

π

βNT (ξ)ωγ
` (ξ)

1
π − π

dξ,

where π and π are the lower and upper bounds of Π. Note that the above two terms depend on N and T .
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6.3 Model Selection with Unknown Break Date

If the break date is unknown, the model selection for M0 is based on the zero and nonzero

columns in Λ̂(π) and Γ̂(π) for all π ∈ Π. First, we generalize the estimators r̂a and r̂b in

(3.5) to

r̂a(π) = minJa(π), where Ja(π) =
{
j : ||Λ̂`(π)||2 = 0 for all ` > j

}
,

r̂b(π) = max (minJb, r̂a(π)) , where Jb(π) =
{
j : ||Γ̂`(π)||2 = 0 for all ` > j

}
. (6.13)

With an unknown break date, the estimators of ra and rb are

r̂∗a = min
π∈Π

r̂a(π) and r̂∗b = min
π∈Π

r̂b(π). (6.14)

The estimator of S0 is

Ŝ∗ =

{
0 if supπ∈Π ||Γ̂(π)|| = 0

1 otherwise
. (6.15)

The selected model is

M̂∗ = (r̂∗a, r̂
∗
b , Ŝ∗). (6.16)

As in the known-break-date case, we consider a two-step procedure for model selection.

Follow the steps in Section 5.2 by setting π0 = π, Λ̃(1)(π) = Λ̃LS(π), Ψ̃(1)(π) = Ψ̃LS(π), and

Γ̃(1)(π) = Γ̃LS(π); replacing ωλ` , ω
γ
` , αNT , and βNT with ωλ∗` (π), ωγ∗` (π), αNT (π), and βNT (π),

respectively; replacing the PLS criterion (3.2) with (6.8); and replacing the estimators r̂a

and r̂b in (3.5) with those in (6.14). Note that the first-step estimators r̂
(1)
a and r̂

(1)
b do not

vary with π following the definition in (6.14). Therefore, one should first obtain the first-

step estimator Λ̂(1)(π) and Γ̂(1)(π) for each π ∈ Π and get r̂
(1)
a and r̂

(1)
b , and then obtain the

second-step estimator Λ̂(2)(π) and Γ̂(2)(π) for each π ∈ Π. The selected model M̂∗ is based

on the two-step PLS estimator Λ̂(2)(π) and Γ̂(2)(π).

To show the model selection consistency for the two-step PLS estimator described in the

previous subsection, we strengthen Assumption R to take into account the unknown break

date and the averaging penalty. For any π ∈ Π, we can write the normalized system as

Xa(π) = FR
a (π)ΛR(π)′ + ea(π),

Xb(π) = FR
b (π)ΨR(π)′ + eb(π), (6.17)

where FR
a (π) and ΛR(π) are Ta× ra(π) and N × ra(π) matrices, respectively, and FR

b (π) and

ΨR(π) are Tb × rb(π) and N × rb(π) matrices, respectively.
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Assumption R.∗. (i) If ra = rb, then infπ∈Π inf‖w‖=1N
−1||ΨR(π)w − ΛR

` (π)||2 ≥ C for

` ∈ Z;

(ii) If rb > ra, then infπ>π0 N
−1||ΨR

` (π)− ΛR
` (π)||2 ≥ C for ` = rb. �

Assumption R∗(i) generalizes Assumption R from π = π0 to any π ∈ Π. Assumption

R∗(ii) is not necessary if the break date π0 is known because ΛR
` (π0) = 0 for ` = rb > ra.

Similar to Assumption R, these assumptions are not restrictive because ΛR
` (π) and ΨR

` (π)

are some specific matrices transformed from the structural factors. Assumptions R and R∗

are compatible in applications where the loadings of some structural factors change and some

do not.

Theorem 3 Suppose that Assumptions A∗, B, C∗, D, ID, and R∗ hold. Then the model

selection with an unknown break date is consistent:

Pr(M̂∗ = M0) → 1 as N, T →∞.

The identification result in Section 6.1 is used constructively in the proof of Theorem 3.

Among all the models indexed by π, only the one with the smallest number of factors is not

over-penalized by the averaging penalty. Since the model with the true break date has the

smallest number of factors by Lemma 2, the PLS estimator with the averaging penalty can

consistently select the true model without knowing the break date.

The proof strategy of Theorem 3 is different from that of Theorem 2 due to the averaging

penalty. Theorem 3 is proved by first showing the convergence of Λ̂ra(π) and Γ̂ra(π) uniformly

over π ∈ Π. Provided that Λ̂ra(π) uniformly converges to a nonzero limit for all π ∈ Π, it

follows that Pr(minπ∈Π r̂a(π) ≥ ra) → 1. Because π0 ∈ Π and ra(π0) = ra by definition,

one can show that Pr(r̂a(π0) = ra) → 1 as long as results like those in Theorem 1 hold

for Λ̂(π0). Combining the two results above, we immediately get Pr(minπ∈Π r̂a(π) = ra) →
1. Similar arguments can be applied to Γ̂ra(π) to show that Pr(minπ∈Π r̂b(π) = rb) → 1.

After showing consistency of the estimators of the number of factors, we analyze Γ̂(π0) for

consistent detection of type-1 instability, and show that Pr(Γ̂(π) = 0) → 1 uniformly over

π ∈ Π when there are no structural instabilities.

The averaging penalty enables consistent estimation of ra and rb but does not yield

consistent estimation of r̂a(π) and r̂b(π) for π 6= π0. Therefore, the resulting shrinkage

estimation does not simultaneously produce a consistent estimator of the break date. In
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practice, researchers tend to have a conjecture for the break date, which is denoted by πc,

and used to center the set Π in the previous subsection. The shrinkage estimator can be

used to verify whether a conjecture break date πc is a consistent estimator of π0. If the

data provide evidence against this conjecture, πc can be revised accordingly. We denote the

revised break date by πrc, and it is defined as follows: Let D̂ denote the set of π ∈ Π at

which r̂a(π) + r̂b(π) achieves its minimum, which typically is an interval in finite samples.

Corollary 3 suggests that πc is a reasonable conjecture only if πc ∈ D̂. Hence, if πc ∈ D̂,

we do not revise the conjectured break date and we define πrc = πc. On the other hand, if

πc /∈ D̂, we choose πrc ∈ D̂ such that |πrc − πc| = minπ∈D̂ |π − πc|. However, this procedure

does not ensure that πrc is a consistent estimator of the break date.

Once the number of factors ra and rb have been consistently estimated by the shrink-

age estimator, the classical least squares method in Bai (1997) can be applied to obtain a

consistent estimator of the break date. While without knowing the numbers of the pre- and

post-break factors, one can not consistently estimate the break date using the least squares

criterion, our model selection procedure provides a bridge linking the break-date estimation

with observed regressors with break-date estimation in latent factor models.

7 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to illustrate the accuracy of the proposed

model selection procedure, and the mean squared errors (MSEs) of the shrinkage estimators

and the PMS estimators in finite samples. Section 7.1 describes the DGPs used in the

experiment. Section 7.2 discusses various estimators of the empirical factor models. The

simulation results are presented in Section 7.3.

7.1 Design

The design of the DGPs roughly follows that in Bates, Plagborg-Møller, Stock, and Watson

(2013), with the additional flexibility to accommodate both type-1 and type-2 instabilities
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and the shift of focus from small breaks to large breaks. The DGP takes the form

Pre-break: Xit = λ′iFt + eit, Ft,` = ρaFt−1,` + ηaut,`,

t = 1, . . . , bTπ0c, ` = 1, . . . , ra,

Post-break: Xit = ψ′iF t + eit, F t,` = ρbF t−1,` + ηbut,`,

t = bTπ0c+ 1, . . . , T, ` = 1, . . . , rb,

(7.1)

where i = 1, . . . , N , Ft = (Ft,1, . . . , Ft,ra)
′ and F t = (F t,1, . . . , F t,rb)

′. To model the temporal

and cross-sectional dependence of the idiosyncratic errors, we consider

eit = αeit−1 + vit, vt = (v1t, ..., vNt)
′ ∼ N(0,Ω), (7.2)

where the (i, j)-th element of Ω is β|i−j|. The processes {ut,` : ` = 1, ..., rb} and {vit} are

mutually independent and are i.i.d. across t with the standard normal distribution. The

initial values F0 and e0 = (e10, ..., eN0)
′ are drawn from their stationary distribution. When

rb = ra, F T0 = FT0 . When rb > ra, F T0 = (F ′
T0
, F ∗′

T0
)′, where each element of F ∗

T0
is drawn in-

dependently from the distribution of Ft,`. The parameters {N, T, π0, ra, rb, ρa, ρb, ηa, ηb, α, β}
are specified below.

The pre-break factor loadings {λi : i = 1, . . . , N} are independent across i and indepen-

dent of the factors and the idiosyncratic errors. Let λi ∼ N(0,Σi), where Σi is a diagonal

matrix with diagonal elements σ2
i (1), . . . , σ

2
i (ra). These diagonal elements are distinct to

ensure that Assumption ID holds, and their sum controls the population regression R2 of

Xit on the factors. To this end, we set σ2
i (`) = 0.9(`−1)σ2

i (1) and
∑ra

`=1 σ
2
i (`) = σ∗(R2

i ),

where the scalar σ∗(R2
i ) is chosen such that E[(λ′iFt)

2]/E[X2
it] = R2

i for t ≤ T0 and R2
i is the

pre-specified regression R2 of the i-th series.6

We consider two different ways of choosing R2
i for i = 1, . . . , N . One is the homogeneous

case of R2
i = 0.5, which is considered in Bai and Ng (2002) to assess their information criteria

and the benchmark DGP in our simulations. Another is the heterogeneous case in which R2
i

is calibrated to match the distribution of R2 values in the data sets used in the empirical

applications. Taking the data set before December 2007, which is the conjectured break

date of the recent recession, we regress each time series variable on the principal component

estimators of five factors and obtain the empirical distribution of the regression R2. We then

draw R2
i for i = 1, . . . , N independently from this empirical distribution and use the realized

R2
i to construct the pre-break factor loadings λi.

6The choice is σ∗
(
R2

i

)
= 1−ρ2

a

(1−α2)η2
a

R2
i

1−R2
i
.



32

Depending on the type of the instabilities, we consider two different ways of constructing

the post-break factor loadings ψi. For a type-1 instability, we set ψi = (1 − w)λi + wλ∗i ,

where λ∗i and λi are independent and have the same distribution. We vary the scalar w

to control the size of the instability, with w = 0 corresponding to the special case of no

break in the factor loadings. For a type-2 instability, ψi is drawn independently of every-

thing else with a distribution that is similar to that of λi, except that ra is changed to

rb, E[(ψ′iF t)
2]/E[X2

it] = R2
i for t > T0, and the post-December 2007 subsample is used to

calibrate R2
i in the heterogeneous R2 case.

7.2 Estimators

We have described the principal component estimators of the factors in the previous sec-

tions. The time series variables are normalized to have zero means and unit variances before

estimating these factors.7 We set the maximum number of factors k = 8 and standardize

the data before getting the principal component estimators. For the data-dependent weight,

we set d = 2.

For experiments with known break dates, model selection is based on the two-step PLS

estimator following the algorithm described in Section 5. To investigate the model selection

accuracy, we report the probability that the “true” model M0 = (ra, rb,S0) is selected, the

probabilities of r̂a = ra, ra− 1 and ra + 1, and the probabilities of r̂b = rb, rb− 1 and rb + 1,

respectively. In addition, we report MSEs of four different estimators. The first two are the

PMS estimator and the PLS estimator described at the end of Section 3. Both of them switch

from a full-sample estimation to a subsample estimation only if a break is detected and the

number of factors before and after the break are obtained by the shrinkage estimation. In

contrast, the third estimator always uses the full sample, and the fourth estimator always

uses the post-break subsample. The last two estimators are standard principal component

estimators, where the number of factors is selected by the ICp2 information criterion of

Bai and Ng (2002). The third estimator coincides with the infeasible benchmark estimator

when there is no structural instability, and the fourth estimator coincides with the infeasible

benchmark estimator when there is a large change. For the convenience of comparison, the

MSE of the first estimator is normalized to be 1.

7Without normalization, the idiosyncratic errors of each series have the same variance. When standard-

izing the variance of all series, those with low regression R2 receive more weight. Thus, in the present

simulation setup, the procedure performs much better without normalization in the heterogeneous R2 case.
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For simulations in which the break date is not assumed to be known, the model selection

is based on the procedure described in Section 6.3, where Π is approximated by a discrete

set Πd. To make them similar to the empirical example investigated in Section 8, we conduct

simulations with the true break date at π0 = 0.8, and the regression R2 is calibrated. The

grid size in Πd is τ = 0.01, a shift by a quarter for a monthly data set of 300 periods, like the

data set in our empirical application. We consider Πd = {πc − 4τ, πc − 3τ, . . . , πc, . . . , πc +

3τ, πc+4τ}, which spans a two-year interval and is symmetric around the conjectured break

date πc. We consider both the correct specification case in which πc = π0 = 0.8 and the

misspecification case in which πc = 0.78, which is half a year previous to the real break

date in the application. We report model selection probabilities and the MSEs of the four

estimators discussed above. To define a post-break subsample for the first two estimators,

the revised conjectured break date πrc is used because π0 is unknown. However, to define the

post-break subsample for the fourth estimator, we continue to use π0 because this estimator

serves as an infeasible benchmark when there is a large break. For all four estimators, the

reported MSEs are based on the subsample from the upper end of Πd to the end of the full

sample. This subsample ensures the availability of the post-break subsample estimator, no

matter where the break date is specified.

7.3 Monte Carlo Results

The Monte Carlo results are summarized in four tables. Tables 1 and 2 present results

when the break date is known and the regression R2 is homogenous across series. The break

date is in the middle of the sample in Table 1 (π0 = 0.5) and at the end of the sample in

Table 2 (π0 = 0.8). Table 3 also assumes the break date is known, but the regression R2 is

calibrated from the data set in the empirical application and thus is heterogeneous across

series. Table 4 allows the break date to be unknown, and the regression R2 is calibrated.

When the regression R2 is calibrated, we only conduct simulations with the true break date

at the end of the sample, because the potential break occurs around π = 0.8 in the data set of

our empirical application. Each table contains three panels, corresponding to no instability,

type-1 instability, and type-2 instability, respectively. For a type-1 instability, we consider

w = 0.2, 0.5 and 1 in the DGPs for the scenarios of small, medium, and large changes in the

factor loadings, respectively. For a type-2 instability, we consider the changes of the number

of factors from 1 to 2 and 3 to 4. Various values of N and T are considered. For each DGP,
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Table 1: Known Break Date, Homogeneous R2, π0 = 0.5

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 100 0.77 (0.79 0.21 0.00) (0.96 0.04 0.00) 1.00 1.07 0.83 1.35

3 3 150 150 0.99 (0.99 0.01 0.00) (1.00 0.00 0.00) 1.00 1.01 0.99 1.59

3 3 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 1.60

Panel B. Type-1 Change

3 3 0.2 100 100 0.12 (0.88 0.12 0.00) (0.94 0.06 0.00) 1.00 1.17 0.84 1.34

3 3 0.2 150 150 0.13 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.30 0.95 1.30

3 3 0.2 200 200 0.13 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.42 0.97 1.20

3 3 0.5 100 100 0.90 (0.90 0.10 0.00) (0.94 0.06 0.00) 1.00 1.11 1.42 1.15

3 3 0.5 150 150 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.19 2.09 1.01

3 3 0.5 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.15 2.65 1.00

3 3 1.0 100 100 0.61 (0.61 0.38 0.00) (0.99 0.01 0.00) 1.00 0.99 1.47 1.00

3 3 1.0 150 150 0.97 (0.97 0.03 0.00) (1.00 0.00 0.00) 1.00 0.97 1.31 1.00

3 3 1.0 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.30 1.00

Panel C. Type-2 Change

1 2 100 100 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.15 1.00

1 2 150 150 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.13 1.00

1 2 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.13 1.00

3 4 100 100 0.23 (0.61 0.39 0.00) (0.41 0.58 0.00) 1.00 1.11 1.39 0.81

3 4 150 150 0.90 (0.97 0.03 0.00) (0.93 0.07 0.00) 1.00 1.22 1.24 0.95

3 4 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.13 1.23 1.00

Notes: Parameters α = β = 0.2, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 1. The first five columns are parameters in
the DGPs. The next column is the probability that the true model is selected. The next six columns are the
probabilities r̂a = ra, ra − 1, ra + 1, and r̂b = rb, rb − 1, rb + 1. The last four columns are MSE for the PMS
estimator, the PLS estimator, the full-sample estimator, and the post-break subsample estimator.

we report the model selection results and the MSEs of the four estimators introduced above.

All results are based on averages over 5,000 simulation repetitions.

Tables S-1 to S-4 in the Appendix contain supplemental results that serve as benchmarks

or for robustness checks. Table S-1 is similar to Table 1, but with i.i.d. idiosyncratic errors.

Table S-2 is similar to Table 2, but with a different constant ζ that is associated with larger

penalty. Table S-3 is similar to Tables 1 and 2, but the break is in the factor dynamics

instead of the loadings, which confirms our early discussion below Assumption ID. Table S-4

is similar to Table 4, but the conjectured break date is equal to the true break date instead
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Table 2: Known Break Date, Homogeneous R2, π0 = 0.8

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 200 0.99 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.08 0.98 2.75

3 3 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 1.00 2.72

3 3 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 1.00 2.71

Panel B. Type 1 Change

3 3 0.2 100 200 0.12 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.52 0.88 1.84

3 3 0.2 150 300 0.11 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.75 0.93 1.46

3 3 0.2 200 400 0.13 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 2.04 0.96 1.24

3 3 0.5 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.20 1.68 1.18

3 3 0.5 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.15 2.57 1.04

3 3 0.5 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.09 3.46 1.00

3 3 1.0 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.95 2.83 1.01

3 3 1.0 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.97 2.03 1.00

3 3 1.0 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.39 1.00

Panel C. Type 2 Change

1 2 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.96 1.68 1.00

1 2 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.97 1.18 1.00

1 2 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.14 1.00

3 4 100 200 0.60 (1.00 0.00 0.00) (0.60 0.40 0.00) 1.00 1.05 2.83 0.97

3 4 150 300 0.96 (1.00 0.00 0.00) (0.96 0.04 0.00) 1.00 1.08 2.92 0.99

3 4 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.03 2.24 1.00

Notes: Parameters α = β = 0.2, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 4.

of being misspecified as in Table 4.

We now discuss the model selection and estimation results. First, Table 1 shows that our

procedure is quite accurate in estimating ra and rb if the break date is in the middle of the

sample, even if the number of periods in each subsample is as small as 75. To detect a type-1

instability, the method works well except when the magnitude of the break is as small as

w = 0.2. However, the MSE comparison shows that, with a small change of this magnitude,

the full-sample estimator yields the smallest MSE, and the PMS estimator benefits from

not detecting the break. In the same spirit, when the sample size is as small as 50 in each

subsample, our procedure sometimes favors a more parsimonious model by underestimating
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Table 3: Known Break Date, Heterogeneous R2, π0 = 0.8

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 200 0.97 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 0.95 3.70

3 3 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 3.49

3 3 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 3.08

Panel B. Type-1 Change

3 3 0.2 100 200 0.11 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 0.78 2.66

3 3 0.2 150 300 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.04 0.98 3.12

3 3 0.2 200 400 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 2.55

3 3 0.5 100 200 0.98 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.97 0.70 0.99

3 3 0.5 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.39 1.13 1.36

3 3 0.5 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.57 1.50 1.39

3 3 1.0 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.85 2.63 1.39

3 3 1.0 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.91 4.12 1.18

3 3 1.0 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.93 4.74 1.03

Panel C. Type-2 Change

1 2 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.94 2.80 1.02

1 2 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.96 1.60 1.00

1 2 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.18 1.00

3 4 100 200 0.54 (1.00 0.00 0.00) (0.54 0.46 0.00) 1.00 0.97 3.13 1.41

3 4 150 300 0.93 (1.00 0.00 0.00) (0.93 0.07 0.00) 1.00 1.02 3.84 1.15

3 4 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.99 3.53 1.01

Notes: Parameters α = β = 0.2, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 4.

of the number of factors. Results in Table 1 are for idiosyncratic errors with both temporal

and cross-sectional dependence and the default choice of the penalty with ζ = 1. If i.i.d.

idiosyncratic errors are considered in Table S-1, the procedure works quite well even if each

subsample only contains 50 periods and the break is small.

Second, if the break date is at the end of the sample, Table 2 shows a pattern similar

to that in Table 1. In particular, when the true model is not selected for a small break or

a small sample, the misspecified model typically yields a smaller MSE. Comparing Table 2

with Table S-2, it is clear that ζ = 4, which gives a smaller penalty than ζ = 1, is preferred
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Table 4: Unknown Break Date, Heterogeneous R2, π0 = 0.8

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 3.90

3 3 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 3.49

3 3 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 3.08

Panel B. Type-1 Change

3 3 0.2 100 200 0.05 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.06 0.92 3.16

3 3 0.2 150 300 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.03 0.99 3.16

3 3 0.2 200 400 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 2.54

3 3 0.5 100 200 0.78 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.26 0.80 1.14

3 3 0.5 150 300 0.94 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.92 1.19 1.43

3 3 0.5 200 400 0.99 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 2.32 1.57 1.45

3 3 1.0 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.13 2.59 1.36

3 3 1.0 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.12 4.06 1.17

3 3 1.0 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.07 4.69 1.02

Panel C. Type-2 Change

1 2 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.93 2.78 1.01

1 2 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.95 1.58 1.00

1 2 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.97 1.18 1.00

3 4 100 200 0.39 (1.00 0.00 0.00) (0.54 0.46 0.00) 1.00 0.98 3.00 1.36

3 4 150 300 0.86 (1.00 0.00 0.00) (0.93 0.07 0.00) 1.00 1.04 3.71 1.11

3 4 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 3.50 1.00

Notes: Parameters α = β = 0.2, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 4. The conjecture break date πc is
misspecified, πc = 0.78.

if the break date is moved from the middle of the sample to the end of the sample. This is

particularly important to detect a type-2 instability, because the new factors are only in the

post-break subsample, which has a small sample size. If there is no structural break or if

there is a type-1 instability, model selection results are more robust to the choice of ζ.

Third, Table 3 and Table 4 show that heterogeneous regression R2 and unknown break

date make the model selection procedure less accurate than that in Table 2, but it still

works quite well in general. In all cases, ra can be accurately estimated, even if the post-

break subsample is as small as 40. In a factor model with type-2 instability, rb might be
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underestimated if the post-break subsample is 40, but this underestimation issue is minor if

the size of the post-break subsample is larger than 80. As in other cases, type-1 instability

can be detected except when w = 0.2. Table 4 and Table S-4 suggest that the results are

similar with different specifications of the conjectured break date.

Finally, the PMS estimator (the first column) switches between the full-sample estimator

(the third column) and the post-break subsample estimator (the fourth column) and when

evaluated by its MSE, the PMS estimator may have better finite sample performances than

the other two estimators in some scenarios. For example, in Panel B of Table 1 with w = 0.5,

N = 100, and T = 100, the MSEs of the full-sample estimator and the post-break subsample

estimator, respectively, are 42% and 15% larger than that of the PMS estimator. The PLS

estimator (second column) may have a smaller MSE than the PMS estimator. This could

happen for a type-1 instability with a large w or a type-2 instability where the factor loadings

of the new factors are large. On the other hand, when the shrinkage causes much more bias

than desired, the PLS estimator can be worse than the PMS estimator.

8 Structural Changes During the Great Recession

Unlike in other post-war recessions, the disruption of borrowing and lending played an im-

portant role in the 2007-2009 recession. Narratives emphasize a collapse of the U.S. housing

market; massive devaluations of mortgage-backed securities that spilled over to other asset

markets and ultimately led to a large-scale disruption of financial intermediation; a drop in

real activity caused by the crisis in the financial sector; and an extended period of zero nomi-

nal interest rates in combination with unconventional monetary policy interventions. We use

the shrinkage methods developed in the preceding sections to investigate the stability of fac-

tor loadings and the emergence of new factors. Section 8.1 describes the data set. Estimates

of the number of pre-2007 and post-2007 factors are presented in Section 8.2. Finally, we

make some identification assumptions and provide an interpretation of the estimated factors

in Section 8.3.

8.1 Data Set

The data set used for the empirical analysis is based on Stock and Watson (2012), who

compiled a set of 200 macroeconomic and financial indicators. These 200 series contain both
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Table 5: Categories of Time Series

Symbol Description Series

NIPA National Income and Product Accounts 5

IP Industrial Production 9

Emp Employment and Unemployment 30

HSS Housing Starts 6

Ord Orders, Inventories, and Sales 7

Pri Productivity 22

IntL Interest Rates (Level) 2

IntS Interest Rates (Spread) 7

Mon Money and Credit 5

StPr Stock Prices and Wealth 3

ExR Exchange Rates 5

Others Consumer Expectation 1

high-level aggregates and disaggregated components. To avoid double counting, Stock and

Watson retained 132 of the 200 series, and we refer to the resulting data set as SW132. Using

SW132 as starting point, our data set is constructed as follows: (i) We extend the series in

the SW132 data set to 2012:M12, using May 2013 data vintages. (ii) We replace the quarterly

series in SW132 by their monthly counterparts, if available. This is possible for consumption

of nondurables, services, and durables; for nonresidential investment; and for 16 price series.

We remove the remaining quarterly series for which no monthly observations are available.

(iii) We add two GDP components that are available at monthly frequency: change in private

inventory and wage and salary disbursements. (iv) Following Stock and Watson (2012), we

remove local means from all series using a biweight kernel with a bandwidth of 100 months.

The local means are approximately the same as the ones obtained by a centered moving

average of ±70 months. After making these modifications, our data set consists of N = 102

series of monthly macroeconomic and financial indicators, which are grouped into the 12

categories listed in Table 5. The sample begins after the Great Moderation and ranges from

1985:M1 to 2013:M1 (T = 337).
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Table 6: Model Selection, Tc is 2007:12

Penalty Estimates

Scaling ζ Interval Break Trc r̂a (r̂b − r̂a) ‖Γ̂l‖2

Panel A. Known Break Date

1 N/A 2007:M12 1 1 3.66

4 N/A 2007:M12 4 1 5.02

6 N/A 2007:M12 6 0 5.52

Panel B. Unknown Break Date

1 Tc ± 6 2007:M12 1 1 12.98

1 Tc ± 12 2007:M12 1 1 15.38

4 Tc ± 6 2007:M12 3 0 19.20

4 Tc ± 12 2007:M3 3 0 24.31

6 Tc ± 6 2007:M6 5 1 19.86

6 Tc ± 12 2007:M5 5 1 25.19

Notes: The PLS estimator uses the averaging penalty functions P ∗
1 (Λ) and P ∗

2 (Λ) defined in (6.10) where
the average is taken over the interval specified in the second column of this table.

8.2 The Number of Factors Before and After 2007:M12

The empirical analysis is based on the two-step estimation procedure described in Section 5.2.

The starting point is a conjectured break date Tc = 2007:M12, which is the beginning of the

Great Recession, according to the business cycle dating of the National Bureau of Economic

Research (NBER). We use the extensions described in Section 6 to account for the fact that

the “true” break date is unknown. Throughout the empirical analysis, we fix the number

of potential factors to k = 8, and we set the constant that controls the rate of decay (as a

function of the sample size) of the penalty term to d = 2, as we did for the Monte Carlo

analysis in Section 7. To document the sensitivity of the empirical results to the magnitude

of the penalty terms P1(Λ) and P2(Λ) (or P ∗
1 (Λ) and P ∗

2 (Λ) for the case of unknown break

point), we vary the scaling constant ζ that appears in the definition of the penalty weights

αNT and βNT in (5.6).

The model selection results are summarized in Table 6 for different choices of the penalty

scaling factor ζ. We distinguish the case of treating the break date as known (Panel A)

from the case of an unknown break date (Panel B). Following the procedure described in
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Section 6.3, we consider break dates Ta over the range Tc ± τ̄ , where τ̄ is either six or 12

months, and generate estimates of r̂a(Ta/T ) and r̂b(Tb/T ), keeping the overall sample size

T = Ta + Tb fixed. If r̂a(Ta/T ) + r̂b(Tb/T ) achieves its minimum at Tc then we do not revise

the conjectured break date. If the minimum is achieved elsewhere in the interval Tc ± τ̄ , we

use the date closest to the conjectured break date at which the minimum is achieved. For

ζ = 1, the conjectured break date is not revised, whereas for larger values of ζ, in particular

ζ = 6, the break date is shifted several months backward in time to the first half of 2007.

We subsequently focus on the case of an unknown break date. The estimates of the

number of factors is robust to the choice of τ̄ ∈ {6, 12}. The overall number of factors is

increasing in the scaling factor ζ, because the larger ζ the smaller the penalty for nonzero

coefficients. By choosing different values for ζ, we are essentially setting different thresholds

for the increase in goodness-of-fit that an additional factor must generate to justify its

inclusion. For the pre-2007 sample, the number of factors ranges from r̂a = 1 for ζ = 1

to r̂a = 5 for ζ = 6. For comparison, we also estimated the number of pre-break factors

using the Bai and Ng (2002) criteria: IC1 and IC2 deliver the estimate r̃a = 1, whereas IC3

generates either r̃a = 6 (sample ending in 2007:M5 or 2007:M6) or r̃a = 7 (sample ending in

2007:M3 or 2007:M12).

While the estimation of the overall number of factors is fairly sensitive to the choice of

ζ, the estimate of the change in the number of factors, r̂b − r̂a is quite stable. For ζ = 1

and ζ = 6, we detect a type-2 instability and find that the number of factors post-2007 has

increased by one. For ζ = 4, our procedure detects a type-1 instability, meaning that the

loadings change but the estimated number of factors stays constant.

Using the estimates for ζ = 6 and Tc± 12, we now decompose the effect of the structural

change into the effect of the change in loadings on the old factors and the effect of the new

factor. The decomposition is based on (2.14). As a baseline, we compute R2 values for

each individual series based on the variation explained by FRΩ
b,1 ΛR′

+ FRΩ
b,1 (ΨRΩ

1 − ΛR)′ (new

loadings only). We compare the baseline R2s to R2s associated with FRΩ
b,1 ΛR′

(old loadings)

and R2s associated with all three terms in (2.14) (i.e., new loadings and factor). The results

are plotted in Figure 1. Bars below the zero baseline indicate the R2 loss due to ignoring

the change in loadings. Bars above the zero line indicate the R2 gain from also accounting

for the effect of the new factor. Each set of bars corresponds to an individual series, and the

vertical lines delimit the time series categories listed in Table 5.
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Figure 1: R2 Gains from New Loadings and Factor: (r̂1, r̂2) = (5, 6)

Notes: Base line case new loadings only. Dark bars (above zero) indicate R2 gain due to new factor relative
to new loadings only. Light grey bars (below zero) indicate R2 losses from using the old loading matrices.
The procedure with ζ = 6 and interval 2007 : M12± 12 selects the break date 2007:M5.

Two observations stand out. First, our estimates attribute most of the structural change

to a change in the loadings of the existing factors, in the sense that the contribution of

FRΩ
b,1 (ΨRΩ

1 − ΛR)′ to the overall R2 exceeds the contribution of FRΩ
b,2 ΨRΩ′

2 . This is consistent

with the fact that for ζ = 4, our estimate of the change in the number of factors is equal

to zero. The effect of the loadings change dominates. Second, the new factor mainly affects

financial variables, namely those series in the two interest rate categories (IntL, IntS), the

money and credit group (Mon), and the stock price and wealth group (StPr). While there

are some spillovers to the real side (i.e., industrial production (IP), employment (EMP), and

housing starts (HSS) variables), these spillovers are relatively small and affect only a fraction

of the series.

Figure 2 depicts the fitted time path of four series: the spread between commercial paper

and Treasury bills, housing starts in the southern Census district, capital utilization, and

employment in durable goods manufacturing. We overlay the actual sample paths with three

(in-sample) predicted paths, which, as before, we refer to as old loadings, new loadings only,

new loadings and factor. The spread starts to rise toward the end of 2007. This rise is not

captured by the path predicted under the pre-break loadings, which stays fairly constant
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Figure 2: In-sample Prediction: Individual series

Spread (CP-Tbill) Housing Starts (South)

Capital Utilization (Total) Employment (Durable Goods)

Notes: Gray line: actual; black dashed: old loadings; thick dashed red: new loadings only; thick blue: new
loadings and factor. Break date is 2007:M5 and (r1, r2) = (5, 6). Our procedure with ζ = 6 and interval
2007M12± 12 selects (r1, r2,dates) = (5, 6, 2007:M5).

throughout 2008. As suggested by Figure 1, the discrepancy between the old loadings and

the new loadings only paths is substantial during the Great Recession period. Once the

loadings are allowed to change, the predicted spread rises drastically throughout 2008, and

even more so once the new factor is accounted for. Capital utilization and employment drop

drastically in the second half of 2008 and only start recovering in 2010. The old loadings

path is unable to capture the large drop in real activity. With the new loadings only, on the

other hand, the model is able to track both capital utilization and employment quite well
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during and after the recession, and the additional factor has not altered the predicted paths

of these series. However, there are real series that show a noticeable effect of the new factor,

one of them being the housing starts series in the top right panel of Figure 2.

At first glance, the results in Figure 2 look very different from those presented in Figure 2

of Stock and Watson (2012). Part of the discrepancy is due to the different normalization

schemes. We are normalizing the variance of the factors to one, whereas Stock and Watson

(2012) normalized the length of the loading vectors to one (i.e., Λ′Λ/N = Ir). To be able to

explain the macroeconomic dynamics during and after the Great Recession with factors that

have unit variance, a big change in the loadings is required. This is evident from our Figures 1

and 2. If we normalize the length of the loadings before and after the break to one, then the

increase in the volatility after 2007 is absorbed in an increase in the factor volatility. The

ratio of pre- to post-break factor variance under this alternative normalization ranges from

1.26 to 1.93 for the five factors that were active prior to the break. Stock and Watson (2012)

interpret this phenomenon as an unchanged response to “old” factors combined with large

innovations to the “old” factors in the post-2007 sample. In the absence of the emergence

of a new factor, we would interpret this phenomenon as a type-1 instability of the factor

model.

To summarize, our model selection procedure provides strong evidence that the loadings

in the normalized factor model changed drastically, generally implying a stronger comove-

ment of the series after 2007. There is also some evidence of the emergence of a new factor,

which to a large extent seems to capture important co-movements among financial series but

also spills over into the real activity variables. While the estimate of the total number of

factors is sensitive to the scaling of the penalty terms in the objective function of the PLS

estimator, the estimate of the number of new factors, which is either one or zero, is much

more robust to the tuning of the penalty terms.

8.3 Interpreting the Old and New Factors

Previously, our analysis focused on determining the number of factors pre- and post 2007:M12

and the type of the structural instability. Moreover, for the detected type-2 structural

changes we decomposed the overall break effect into the contribution of breaks in the load-

ings and the emergence of a new factor. Due to the normalization imposed on the DGP,

the estimated pre- and post-break factors have identity covariance matrices and no specific
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economic interpretation. We will now use a nonsingular ra × ra matrix B (rb × rb matrix

B) to transform the estimated pre-break factors F̃a (post-break factors F̃b) into factors F̃ †
a

(F̃ †
b ) that resemble the first principal components of the variable groups listed in Table 5

and therefore can be interpreted as NIPA, IP, EMP, etc.8

To simplify the notation, we drop the “hats” and “tildes” from matrices associated with

sample estimates. Without loss of generality, we assume that the columns of Xa are arranged

according to the J = 11 categories listed in Table 5, such that we can partition Xa =

[Xa,1, . . . , Xa,J ], where Xa,j contains the series associated with the j’th category of variables,

e.g., Xa,1 comprises the five NIPA series. For each Xa,j we calculate the first principal

component, denoted by the T × 1 vector xa,j, which can be interpreted as a group-specific

factor. We then project each group-specific factor on the space spanned by Fa:

ξa,j = FaBj + resid, j = 1, . . . , J (8.1)

and refer to the T × 1 vector of predicted values FaB̂j as the NIPA factor for j = 1, the IP

factor for j = 2, and so forth. For each regression j in (8.1), we compute the associated R2

and then select the ra categories that deliver the highest R2 values. The associated coefficient

estimates are B̂(1), . . . , B̂(ra), where each B̂(j) is a ra × 1 vector. In turn, we define

B = (B̂(1), . . . , B̂(ra)), F †
a = FaB, and Λ†′ = B−1Λ′. (8.2)

The transformed factors are labeled according to the associated ξa,(j) vectors.

For the post-break period, we have a T × rb matrix of estimated factors Fb, which we will

now transform into a set of economically interpretable factors F †
b = FbC using a nonsingular

rb× rb matrix C. First, we extend the transformed pre-break factors F †
a into the post-break

period. Note that F †
a consists of linear combinations of Xa, say, F †

a = XaΥ
†
a. Thus, we can

define F †
b|a = XbΥ

†
a. The extended factors F †

b|a need not fall into the space spanned by the

post-break factors Fb. Thus, we project the extended factors on the space spanned by Fb

using the following regression:

F †
b|a = FbC0 + resid. (8.3)

Here the matrix C0 is of dimension rb × ra. If rb > ra, we proceed by computing post-break

group-specific factors ξb,j based on the first principal components. Focusing on the variable

8An alternative method of constructing interpretable factors is developed in Dobrev and Schaumburg

(2013).
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Table 7: Rotated Factors, Unknown Break Date, Tc is 2007:12

Penalty Pre-Break Factors New Post-Break

Scaling ζ Interval F1 F2 F3 F4 F5 F ∗
1

1 Tc ± 12 Emp IntS

6 Tc ± 12 Emp IP IntS ExR Pri Mon

groups j that were not used in the construction of the rotated pre-break factors, we estimate

ξb,j = FbCj + resid (8.4)

and compute the R2 associated with this regression. Let (ra +1), . . . , (rb) denote the indices

that generate the highest R2 values. We define the post-break transformation and the

associated transformed factors and loadings as

C = (Ĉ0, Ĉ(ra+1), . . . , Ĉ(rb)), F †
b = FbC, and Ψ†′ = C−1Ψ′. (8.5)

Table 7 summarizes the labels for the transformed pre-break factors and the additional

post-break factors for the two choices of ζ under which a new factor was detected. Since

the results were identical for Tc ± 6 and Tc ± 12, we only report the latter. For ζ = 1,

we identify the pre-break factor as an employment factor. By assumption, the employment

factor continues to be active from 2008:M1 onward but a second factor, namely an interest

rate spread factor, emerges. This is consistent with the narrative of a financial crisis in which

drastic increases in spreads coincide with substantial drops in real activity.

For ζ = 6, our identification scheme labels the five pre-break factors as employment,

industrial production, interest rates, exchange rates, and prices. We verified that the trans-

formed factors track the group-specific factors well. For the categories employment, industrial

production, and money and credit, the correlation with the group-specific factors is above

0.9. The new post-break factor is money and credit, which is also broadly consistent with

the narrative of the Great Recession. Overall, our analysis suggests that one can construct

a plausible identification scheme for the factors under which the new factor that emerged

during the Great Recession can be broadly interpreted as a financial factor. This conclusion

is consistent with the findings in Figure 1, in which the financial variables are associated

with the largest R2 gains from the new factor.
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9 Conclusion

We develop a shrinkage estimation procedure for high-dimensional factor models that gen-

erates consistent estimates of the number of pre- and post-break factors. In situations in

which the number of factors is constant throughout the sample, the procedure can con-

sistently detect changes in the matrix of factor loadings. Our model selection procedure

remains consistent even if the break date is unknown; however, it does not generate a consis-

tent estimate of the break date itself. Nevertheless, once the number of pre- and post-break

factors is known, conventional methods can be used to estimate the break date consistently.

Our Monte Carlo analysis shows that the procedure has good finite sample properties. In

an application to U.S. data, we show that the procedure detects an increase in the num-

ber of factors for a large macroeconomic and financial data set at the onset of the Great

Recession. After imposing some identification conditions, we show that the new factor can

be interpreted as a financial factor, which is consistent with the narratives of the 2007-2009

recession.
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A Supplemental Tables

Tables S-1, S-2, S-3, and S-4 provide some additional Monte Carlo results.

Tables S-5 to S-7 provide a list of variables used in the empirical application.
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Table S-1: Known Break Date, Homogeneous R2, π0 = 0.5, i.i.d. errors

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 100 0.88 (0.88 0.12 0.00) (0.98 0.02 0.00) 1.00 1.04 0.90 1.42

3 3 150 150 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 1.56

3 3 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 1.55

Panel B. Type-1 Change

3 3 0.2 100 100 0.03 (0.94 0.06 0.00) (0.97 0.03 0.00) 1.00 1.06 0.94 1.37

3 3 0.2 150 150 0.02 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.06 0.99 1.26

3 3 0.2 200 200 0.02 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.08 1.00 1.14

3 3 0.5 100 100 0.96 (0.96 0.04 0.00) (0.97 0.03 0.00) 1.00 1.31 1.67 1.17

3 3 0.5 150 150 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.34 2.44 1.01

3 3 0.5 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.25 3.14 1.00

3 3 1.0 100 100 0.71 (0.71 0.29 0.00) (1.00 0.00 0.00) 1.00 0.98 1.45 1.00

3 3 1.0 150 150 0.99 (0.99 0.01 0.00) (1.00 0.00 0.00) 1.00 0.97 1.34 1.00

3 3 1.0 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.33 1.00

Panel C. Type-2 Change

1 2 100 100 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.99 1.16 1.00

1 2 150 150 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.15 1.00

1 2 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.15 1.00

3 4 100 100 0.36 (0.71 0.29 0.00) (0.53 0.47 0.00) 1.00 1.17 1.43 0.79

3 4 150 150 0.96 (0.99 0.01 0.00) (0.98 0.03 0.00) 1.00 1.26 1.26 0.98

3 4 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.13 1.25 1.00

Notes: Parameters α = β = 0, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 1.
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Table S-2: Known Break Date, Homogeneous R2, π0 = 0.8, ζ = 1

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 2.80

3 3 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 2.73

3 3 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 2.72

Panel B. Type-1 Change

3 3 0.2 100 200 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 2.08

3 3 0.2 150 300 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 1.57

3 3 0.2 200 400 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 1.30

3 3 0.5 100 200 0.50 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.80 1.26 0.90

3 3 0.5 150 300 0.90 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 3.61 2.25 0.91

3 3 0.5 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 4.49 3.41 0.99

3 3 1.0 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.06 2.84 1.01

3 3 1.0 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 2.03 1.00

3 3 1.0 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.38 1.00

Panel C. Type-2 Change

1 2 100 200 0.97 (1.00 0.00 0.00) (0.97 0.03 0.00) 1.00 1.27 1.61 0.95

1 2 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.10 1.19 1.00

1 2 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 1.14 1.00

3 4 100 200 0.00 (1.00 0.00 0.00) (0.00 1.00 0.00) 1.00 1.05 2.22 0.75

3 4 150 300 0.07 (1.00 0.00 0.00) (0.07 0.93 0.00) 1.00 1.04 1.63 0.55

3 4 200 400 0.40 (1.00 0.00 0.00) (0.40 0.60 0.00) 1.00 1.22 1.29 0.57

Notes: Parameters α = β = 0.2, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 1.
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Table S-3: Known Break Date, Homogeneous R2, Change in Factor Dynamics

DGP Configuration r̂a − ra r̂b − rb MSE

ρa ρb ηa ηb N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. π0 − 0.5.

0 0 1 2 100 100 0.95 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.13 0.86 1.01

0 0 1 2 150 150 0.99 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.06 0.85 1.00

0 0 1 2 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 0.85 1.00

0 0.8 1 1 100 100 0.53 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.18 0.90 1.16

0 0.8 1 1 150 150 0.62 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.22 0.88 1.12

0 0.8 1 1 200 200 0.72 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.23 0.86 1.09

0 0.8 1 0.6 100 100 0.02 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 0.99 1.64

0 0.8 1 0.6 150 150 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 1.63

0 0.8 1 0.6 200 200 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 0.99 1.61

Panel B. π0 = 0.8

0 0 1 2 100 200 0.90 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.54 0.63 1.06

0 0 1 2 150 300 0.98 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.35 0.61 1.01

0 0 1 2 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.17 0.61 1.00

0 0.8 1 1 100 200 0.38 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.49 0.78 1.53

0 0.8 1 1 150 300 0.49 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.70 0.72 1.39

0 0.8 1 1 200 400 0.58 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.79 0.68 1.30

0 0.8 1 0.6 100 200 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.04 0.99 2.79

0 0.8 1 0.6 150 300 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 1.00 2.74

0 0.8 1 0.6 200 400 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 2.72

Notes: Parameters: ψi = λi, ra = rb = 1, α = β = 0, ζ = 1. In the last three rows of each panel, the change
from (ρa, ηa) to (ρb, ηb) does not result in a change in the factor variance, and such a change cannot be
identified.



Supplemental Appendix A.5

Table S-4: Unknown Break Date, Heterogeneous R2, π0 = 0.8

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.01 3.91

3 3 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 3.49

3 3 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 3.10

Panel B. Type-1 Change

3 3 0.2 100 200 0.02 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.03 0.97 3.29

3 3 0.2 150 300 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 0.99 3.15

3 3 0.2 200 400 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 2.54

3 3 0.5 100 200 0.70 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.24 0.79 1.11

3 3 0.5 150 300 0.93 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.93 1.13 1.36

3 3 0.5 200 400 0.99 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 2.35 1.50 1.39

3 3 1.0 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.19 2.63 1.40

3 3 1.0 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.14 4.13 1.18

3 3 1.0 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.09 4.71 1.03

Panel C. Type-2 Change

1 2 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.94 2.78 1.01

1 2 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.96 1.57 1.00

1 2 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.97 1.18 1.00

3 4 100 200 0.21 (1.00 0.00 0.00) (0.21 0.79 0.00) 1.00 0.98 2.88 1.31

3 4 150 300 0.71 (1.00 0.00 0.00) (0.71 0.29 0.00) 1.00 1.05 3.47 1.04

3 4 200 400 0.97 (1.00 0.00 0.00) (0.97 0.03 0.00) 1.00 1.03 3.45 1.00

Notes: Parameters α = β = 0.2, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 4. The conjecture break date πc is correctly
specified.
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Table S-5: List of Variables - Part 1

Name Category TC Long Description

Cons: Dur NIPA 5 Real Personal Consumption Expenditures: Durable Goods

Cons: Svc NIPA 5 Real Personal Consumption Expenditures: Services

Cons: NonDur NIPA 5 Real Personal Consumption Expenditures: Nondurable Goods

Real InvtCh NIPA 1 Component for Change in Private Inventories, deflated by JCXFE

Real WageG NIPA 5 Component for Government GDP: Wage and Salary Disbursements by Industry, Government,

NIPA Tables 2.7A and 2.7B, deflated by JCXFE

IP: DurGds materials IP 5 Industrial Production: Durable Materials

IP: NondurGds materials IP 5 Industrial Production: Nondurable Materials

IP: DurConsGoods IP 5 Industrial Production: Durable Consumer Goods

IP: Auto IP 5 IP: Automotive products

IP: NonDurConsGoods IP 5 Industrial Production: Nondurable Consumer Goods

IP: BusEquip IP 5 Industrial Production: Business Equipment

IP: EnergyProds IP 5 IP: Consumer Energy Products

CapU Tot IP 1 Capacity Utilization: Total Industry

CapU Man IP 1 Capacity Utilization: Manufacturing (FRED past 1972)

Emp: DurGoods Emp 5 All Employees: Durable Goods Manufacturing

Emp: Const Emp 5 All Employees: Construction

Emp: Edu&Health Emp 5 All Employees: Education & Health Services

Emp: Finance Emp 5 All Employees: Financial Activities

Emp: Infor Emp 5 All Employees: Information Services

Emp: Bus Serv Emp 5 All Employees: Professional & Business Services

Emp: Leisure Emp 5 All Employees: Leisure & Hospitality

Emp: OtherSvcs Emp 5 All Employees: Other Services

Emp: Mining/NatRes Emp 5 All Employees: Natural Resources & Mining

Emp: Trade&Trans Emp 5 All Employees: Trade, Transportation & Utilities

Emp: Retail Emp 5 All Employees: Retail Trade

Emp: Wholesal Emp 5 All Employees: Wholesale Trade

Emp: Gov(Fed) Emp 5 All Employees: Government: Federal

Emp: Gov (State) Emp 5 All Employees: Government: State Government

Emp: Gov (Local) Emp 5 All Employees: Government: Local Government

URate: Age16-19 Emp 2 Unemployment Rate - 16-19 yrs

URate: Age > 20 Men Emp 2 Unemployment Rate - 20 yrs. & over, Men

URate: Age > 20 Women Emp 2 Unemployment Rate - 20 yrs. & over, Women

U: Dur < 5wks Emp 5 Number Unemployed for Less than 5 Weeks

U: Dur 5-14wks Emp 5 Number Unemployed for 5-14 Weeks

U: Dur > 15-26wks Emp 5 Civilians Unemployed for 15-26 Weeks

U: Dur > 27wks Emp 5 Number Unemployed for 27 Weeks & over

U: Job Losers Emp 5 Unemployment Level - Job Losers

U: LF Reentry Emp 5 Unemployment Level - Reentrants to Labor Force

U: Job Leavers Emp 5 Unemployment Level - Job Leavers

U: New Entrants Emp 5 Unemployment Level - New Entrants

Notes: TC is transformation code; see Stock and Watson (2012).
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Table S-6: List of Variables - Part 2

Name Category TC Long Description

Emp: SlackWk Emp 5 Employment Level - Part-Time for Economic Reasons, All Industries

AWH Man Emp 1 Average Weekly Hours: Manufacturing

AWH Privat Emp 2 Average Weekly Hours: Total Private Industrie

AWH Overtime Emp 2 Average Weekly Hours: Overtime: Manufacturing

HPermits HSS 5 New Private Housing Units Authorized by Building Permit

Hstarts: MW HSS 5 Housing Starts in Midwest Census Region

Hstarts: NE HSS 5 Housing Starts in Northeast Census Region

Hstarts: S HSS 5 Housing Starts in South Census Region

Hstarts: W HSS 5 Housing Starts in West Census Region

Constr. Contracts HSS 4 Construction contracts (mil. sq. ft.) (Copyright, McGraw-Hill)

Ret. Sale Ord 5 Sales of retail stores (mil. Chain 2000 $)

Orders (DurMfg) Ord 5 Mfrs’ new orders durable goods industries (bil. chain 2000 $)

Orders (ConsumerGoods/Mat.) Ord 5 Mfrs’ new orders, consumer goods and materials (mil. 1982 $)

UnfOrders (DurGds) Ord 5 Mfrs’ unfilled orders durable goods indus. (bil. chain 2000 $)

Orders (NonDefCap) Ord 5 Mfrs’ new orders, nondefense capital goods (mil. 1982 $)

VendPerf Ord 1 Index of supplier deliveries – vendor performance (pct.)

MT Invent Ord 5 Manufacturing and trade inventories (bil. Chain 2005 $)

PCED-MotorVec Pri 6 Motor vehicles and parts

PCED-DurHousehold Pri 6 Furnishings and durable household equipment

PCED-Recreation Pri 6 Recreational goods and vehicles

PCED-OthDurGds Pri 6 Other durable goods

PCED-Food-Bev Pri 6 Food and beverages purchased for off-premises consumption

PCED-Clothing Pri 6 Clothing and footwear

PCED-Gas-Enrgy Pri 6 Gasoline and other energy goods

PCED-OthNDurGds Pri 6 Other nondurable goods

PCED-Housing-Utilities Pri 6 Housing and utilities

PCED-HealthCare Pri 6 Health care

PCED-TransSvg Pri 6 Transportation services

PCED-RecServices Pri 6 Recreation services

PCED-FoodServ-Acc. Pri 6 Food services and accommodations

PCED-FIRE Pri 6 Financial services and insurance

PCED-OtherServices Pri 6 Other services

PPI: FinConsGds Pri 6 Producer Price Index: Finished Consumer Goods

PPI: FinConsGds(Food) Pri 6 Producer Price Index: Finished Consumer Foods

PPI: IndCom Pri 6 Producer Price Index: Industrial Commodities

PPI: IntMat Pri 6 Producer Price Index: Intermediate Materials: Supplies & Components

NAPM ComPrice Pri 1 NAPM COMMODITY PRICES INDEX (PERCENT)

Real Price: NatGas Pri 5 PPI: Natural Gas, deflated by PCEPILFE

Real Price: Oil Pri 5 PPI: Crude Petroleum, deflated by PCEPILFE

Notes: TC is transformation code; see Stock and Watson (2012).
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Table S-7: List of Variables - Part 3

Name Category TC Long Description

FedFunds IntL 2 Effective Federal Funds Rate

TB-3Mth IntL 2 3-Month Treasury Bill: Secondary Market Rate

BAA-GS10 IntS 1 BAA-GS10 Spread

MRTG-GS10 IntS 1 Mortg-GS10 Spread

TB6m-TB3m IntS 1 tb6m-tb3m

GS1-TB3m IntS 1 GS1-Tb3m

GS10-TB3m IntS 1 GS10-Tb3m

CP-TB Spread IntS 1 CP-Tbill Spread: CP3FM-TB3MS

Ted-Spread IntS 1 MED3-TB3MS (Version of TED Spread)

Real C&I Loan Mon 5 Commercial and Industrial Loans at All Commercial BanksDefl by PCEPILFE

Real ConsLoans Mon 5 Consumer (Individual) Loans at All Commercial Banks

Outlier Code because of change in data in April 2010 see FRB H8 ReleasDefl by PCEPILFE

Real NonRevCredit Mon 5 Total Nonrevolving Credit Owned and Securitized, OutstandingDefl by PCEPILFE

Real LoansRealEst Mon 5 Real Estate Loans at All Commercial BanksDefl by PCEPILFE

Real RevolvCredit Mon 5 Total Revolving Credit OutstandingDefl by PCEPILFE

S&P500 StPr 5 S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)

DJIA StPr 5 COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE

VXO StPr 1 VXO (Linked by N. Bloom) .. Average daily VIX from 2009

Ex rate: Major ExR 5 FRB Nominal Major Currencies Dollar Index (Linked to EXRUS in 1973:1)

Ex rate: Switz ExR 5 FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER USD)

Ex rate: Japan ExR 5 FOREIGN EXCHANGE RATE: JAPAN (YEN PER USD)

Ex rate: UK ExR 5 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)

EX rate: Canada ExR 5 FOREIGN EXCHANGE RATE: CANADA (CAD PER USD)

Cons. Expectations Others 1 Consumer expectations NSA (Copyright, University of Michigan)

Notes: TC is transformation code; see Stock and Watson (2012).
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B Some Auxiliary Results

We first present a lemma on the transformation matrices Ra and Rb defined in (2.8) and

(2.10) of the main text. This lemma is used in the proof of Theorem 1. Let F̃ r
a ∈ RT0×ra

and F̃ r
b ∈ R(T−T0)×rb denote the first ra and rb columns of F̃a and F̃b, respectively. The

ra × ra diagonal matrix Ṽa consists of the first ra largest eigenvalues of (T0N)−1XaX
′
a in a

decreasing order, and the rb×rb diagonal matrix Ṽb consists of the first rb largest eigenvalues

of (T1N)−1XbX
′
b in a decreasing order. Under Assumptions A-D, Theorem 1 of Bai and Ng

(2002) shows that

T−1
0 ||F̃ r

a − FaHa||2 = Op(C
−2
NT0

) and T−1
1 ||F̃ r

b − FbHb||2 = Op(C
−2
NT1

), (B.1)

where

Ha = Σa
F ′
aF̃

r
a

T0

Ṽ −1
a and Hb = Σb

F ′
bF̃

r
b

T1

Ṽ −1
b . (B.2)

Lemma 3 Suppose that Assumptions A-D hold. Then,

Ha −Ra = Op(C
−1
NT ) and Hb −Rb = Op(C

−1
NT ).

Proof of Lemma 3. Note that Ra is invertible w.p.a.1. Hence, we can write

FaΛ
0′ = FaRaR

−1
a Λ0′ = FR

a ΛR′, where FR
a = FaRa and ΛR′ = R−1

a Λ0′. (B.3)

The transformed factors satisfy

FR′
a F

R
a

T0

= V −1/2
a Υ′

aΣ
1/2
a

F ′
aFa
T0

Σ1/2
a ΥaV

−1/2
a

= V −1/2
a

(
Υ′
aΣ

1/2
a ΣFΣ1/2

a Υa

)
V −1/2
a +Op(T

−1/2
0 )

= V −1/2
a (Va)V

−1/2
a +Op(T

−1/2
0 ) = Ira +Op(T

−1/2
0 ), (B.4)

where the first equality follows from FR
a = FaRa and Ra = Σ

1/2
a ΥaV

−1/2
a , the second equality

follows from F ′
aFa/T0 − ΣF = Op(T

−1/2
0 ) in Assumption A, and the third equality follows

from (2.7). The transformed loadings satisfy

ΛR′ΛR

N
= V 1/2

a Υ−1
a Σ−1/2

a

Λ0′Λ0

N
Σ−1/2
a Υ′−1

a V 1/2
a = V 1/2

a Υ−1
a Υ′−1

a V 1/2
a = Va, (B.5)

where the first equality follows from ΛR′ = R−1
a Λ0′ and Ra = Σ

1/2
a ΥaV

−1/2
a , the second

equality follows from Σa = Λ0′Λ0/N by definition, the third equality holds because Υ′
aΥa =

Ira .
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Let La be a ra × ra matrix defined as

La =
ΛR′ΛR

N

FR′
a F̃

r
a

T0

Ṽ −1
a , (B.6)

which is a transformation matrix analogous to Ha but with Fa and Λ0 replaced by FR
a and

ΛR, respectively. Stock and Watson (2002) and Bai and Ng (2002) show that La is invertible

w.p.a.1 and F̃ r
a is a consistent estimator of FR

a La. The transformation matrix Ha and the

new transformation matrix La satisfy

Ha = Ra
R−1
a Λ0′Λ0R′−1

a

N

R′
aF

′
aF̃

r
a

T0

Ṽ −1
a

= Ra
ΛR′ΛR

N

FR′
a F̃

r
a

T0

Ṽ −1
a = RaLa, (B.7)

where the first equality follows from the definition of Ha in (B.2), the second equality follows

from FR
a = FaRa and ΛR′ = R−1

a Λ0′, the third equality follows from the definition of La in

(B.6).

Equation (2) of Bai and Ng (2013) shows that La = Ira if the underlying factor matrix

FR
a satisfies FR′

a F
R
a /T0 = Ir, and the underlying loading matrix ΛR satisfies that ΛR′ΛR is

a diagonal matrix with distinct elements. By (B.4) and (B.5), we know that these condi-

tions are satisfied asymptotically by the transformation above. Following the arguments for

equation (2) of Bai and Ng (2013), we obtain

La = Ira +Op(C
−1
NT0

), (B.8)

with two modifications to the proof in Bai and Ng (2013): (i) T−1
0 (F̃ r

a − FR
a La)

′FR
a =

Op(C
−2
NT0

) in Bai and Ng (2013) is changed to T−1
0 (F̃ r

a−FR
a La)

′FR
a = Op(C

−1
NT0

), which follows

from FR
a La = FaHa, (B.1), and the Cauchy-Schwarz inequality, and (ii) FR′

a F
R
a /T0 = Ira is

changed to FR′
a F

R
a /T0 = Ira +Op(T

−1/2
0 ) and the Op(T

−1/2
0 ) term is absorbed in Op(C

−1
NT0

) in

(B.8). The reason for the first change is that Assumptions A-D in this paper are comparable

to Assumptions A – D of Bai and Ng (2002), which are weaker than similar assumptions in

Bai and Ng (2013). The Assumptions in Bai and Ng (2013) are needed to obtain asymptotic

distributions of the estimated factors and loadings, which is not the purpose here. After

making these two modifications above, the rest of the arguments for equation (2) of Bai and

Ng (2013) follow directly to yield the result in (B.8).

Combining the results in (B.7) and (B.8), we obtain Ha−Ra = Op(C
−1
NT ) because T0/T →

π0 ∈ (0, 1). Similar arguments give Hb −Rb = Op(C
−1
NT ). �
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C Proof of Results in Section 4

Recall that we have defined

ΛR = Λ0(R−1
a )′ ∈ RN×ra , ΨR = Ψ0(R−1

b )′ ∈ RN×rb and ΓR =
(
ΨR

1 − ΛR, ΨR
2

)
(C.1)

in (2.9), (2.11), and (2.12), respectively. For the ease of notation, we also define

Λ∗ =
(
ΛR, 0N×(k−ra)

)
, Ψ∗ =

(
ΨR, 0N×(k−rb)

)
and Γ∗ = Ψ∗ − Λ∗. (C.2)

If N−1||ΨR
` −ΛR

` ||2 → 0 as N →∞ for some `, we replace the definition of ΓR` and Γ∗` above

with 0. The augmented matrices Λ∗ and Ψ∗ are transformed from Λ+ and Ψ+ = Λ+ + Γ+

defined in (3.1). Generally speaking, for the rest of the proof, the superscript 0 represents

the true factor loadings, the superscript R represents transformed factor loadings, and the

superscript asterisk represents augmented transformed factor loadings.

Following the definition of Z in (5.11) and the definition of Γ∗,

Z = {` = 1, ..., k : Γ∗` 6= 0} and ZC = {` = 1, ..., k : Γ∗` = 0}. (C.3)

By the definition of Γ∗, {rb + 1, ..., k} ⊆ ZC and Z ⊆ {1, ..., rb}. We allow ` ∈ ZC for some

` ≤ rb in the proofs below.

Recall Λ̂ and Γ̂ are the PLS estimators. Write Ψ̂ = Λ̂ + Γ̂. Define

Z2
λ = N−1

∥∥∥Λ̂− Λ∗
∥∥∥2

, Z2
ψ = N−1

∥∥∥Ψ̂−Ψ∗
∥∥∥2

, Z2
γ = N−1

∥∥∥Γ̂− Γ∗
∥∥∥2

. (C.4)

Proof of Theorem 1. The criterion function for the shrinkage estimator can be written as

Q(Λ,Γ) = Ma(Λ, F̃a) +Mb(Ψ, F̃b) + P1(Λ) + P2(Γ), where

Ma(Λ, Fa) = (NT )−1 ‖Xa − FaΛ
′‖2

,

Mb(Ψ, Fb) = (NT )−1 ‖Xb − Fb(Λ + Γ)′‖2
,

P1(Λ) = αNT

k∑
`=1

ωλ` ||Λ`|| and P1(Γ) = βNT

k∑
`=1

ωγ` ||Γ`||, (C.5)

with Ψ = Λ + Γ. For notational simplicity, the dependence on N and T is suppressed.

Because the shrinkage estimators Λ̂ and Γ̂ minimize the criterion function Q(Λ,Γ), we have

Q(Λ̂, Γ̂) ≤ Q(Λ∗,Γ∗), i.e.,[
Ma(Λ̂, F̃a)−Ma(Λ

∗, F̃a)
]

+
[
Mb(Ψ̂, F̃b)−Mb(Ψ

∗, F̃b)
]

≤
[
P1(Λ

∗)− P1(Λ̂)
]

+
[
P2(Γ

∗)− P2(Γ̂)
]
, (C.6)
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where Ψ̂ = Λ̂ + Γ̂.

We start with the right-hand side of (C.6). Define

p1 = P1(Λ
∗)− P r

1 (Λ̂) and p2 =

{
P2(Γ

∗)− P r
2 (Γ̂) if Γ0 6= 0

0 if Γ0 = 0
, where

P r
1 (Λ̂) = αNT

ra∑
`=1

ωλ` ||Λ̂`|| ≤ αNT

k∑
`=1

ωλ` ||Λ̂`|| = P1(Λ̂),

P r
2 (Γ̂) = βNT

∑
`∈Z

ωγ` ||Γ̂`|| ≤ βNT

k∑
`=1

ωγ` ||Γ̂`|| = P2(Γ̂). (C.7)

If Γ0 = 0, we have Γ∗ = 0 and P2(Γ
∗)− P r

2 (Γ̂) ≤ 0 because P2(Γ
∗) = 0 and P r

2 (Γ) ≥ 0. The

penalty terms on the right-hand side of (C.6) satisfy

P1(Λ
∗)− P1(Λ̂) ≤ p1 and P2(Γ

∗)− P2(Γ̂) ≤ p2 (C.8)

following the inequalities in (C.7).

We have Λ∗
` = 0 for ` = ra + 1, . . . , k and Γ∗` = 0 for ` ∈ ZC , which implies that

P1(Λ
∗) = αNT

ra∑
`=1

ωλ` ||Λ∗
` || and P2(Γ

∗) = βNT
∑
`∈Z

ωγ` ||Γ
∗
` ||. (C.9)

Following (C.7), (C.9), the triangle inequality, and the Cauchy-Schwarz inequality, we have

p1 ≤ αNT

ra∑
`=1

ωλ`

∥∥∥Λ̂` − Λ∗
`

∥∥∥ ≤ bΛZλ, where bΛ = N1/2αNT

[
ra∑
`=1

(ωλ` )
2

]1/2

(C.10)

and Zλ is defined in (C.4). By the same arguments,

p2 ≤ bΓZγ, where bΓ =

{
N1/2βNT

[∑
`∈Z(ωγ` )

2
]1/2

if Γ0 6= 0

0 if Γ0 = 0
(C.11)

and Zγ is in (C.4). Combining (C.6) and (C.8)-(C.11), we obtain[
Ma(Λ̂, F̃a)−Ma(Λ

∗, F̃a)
]

+
[
Mb(Ψ̂, F̃b)−Mb(Ψ

∗, F̃b)
]
≤ bΛZλ + bΓZγ. (C.12)

Next, we consider the left-hand side of (C.12). To this end, we first show some useful

equalities. Write F̃a = (F̃ r
a , F̃

⊥
a ) ∈ RT0×k, where F̃a is partitioned into a T0 × ra submatrix

F̃ r
a and a T0 × (k − ra) submatrix F̃⊥

a . Replacing F̃ r
a with FR

a = FaRa, we define

F ∗
a = (FR

a , F̃⊥
a ) = (FaRa, F̃

⊥
a ) ∈ RT0×k. (C.13)
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Some equivalent relationships are useful in the calculation below

F ∗
aΛ∗′ = FR

a ΛR′ = FaΛ
0′ and F̃aΛ

∗′ = F̃ r
aΛ

R′, (C.14)

because Λ∗ = (ΛR,0N×(k−ra)). It follows that

FaΛ
0′ − F̃aΛ̂

′ = F ∗
aΛ∗′ − F̃aΛ̂

′

= (F ∗
a − F̃a)Λ

∗′ − F̃a(Λ̂− Λ∗)′

= (FaRa − F̃ r
a )Λ

R′ − F̃a(Λ̂− Λ∗)′, (C.15)

where the first equality follows from (C.14), the second equality follows from adding and

subtracting F̃aΛ
∗′, and the third equality follows from (C.14). The difference between the

true common component FaΛ
0′ and the estimated common component F̃aΛ̂

′ are decomposed

into two pieces by the calculation in (C.15), where the first piece focuses on the factor

estimation error and the second piece focuses on the factor loading estimation error.

The first term on the left-hand side of (C.12) satisfies

Ma(Λ̂, F̃a) = (NT )−1
∥∥∥Xa − F̃aΛ̂

′
∥∥∥2

= (NT )−1
∥∥∥ea + (FaΛ

0′ − F̃aΛ̂
′)
∥∥∥2

= (NT )−1
∥∥∥(ea + (FaRa − F̃ r

a )Λ
R′
)
− F̃a(Λ̂− Λ∗)′

∥∥∥2

= M1 +M2 +M3 +M4, (C.16)

where the first equality follows from the definition of Ma(Λ, Fa) in (C.5), the second equality

follows from Xa = ea + FaΛ
0′, the third equality holds by the decomposition in (C.15), and

M1, M2, M3 and M4 are defined as follows. The first term M1 is

M1 = (NT )−1
∥∥∥ea + (FaRa − F̃ r

a )Λ
R′
∥∥∥2

= (NT )−1
∥∥∥Xa − F̃aΛ

∗′
∥∥∥2

= Ma(Λ
∗, F̃a), (C.17)

following Xa = ea + FR′
a ΛR′, F̃ r

aΛ
R′ = F̃aΛ

∗′ in (C.14) and the definition of Ma(Λ, F ) in

(C.5). The second term M2 is

M2 = (NT )−1
∥∥∥F̃a(Λ̂− Λ∗)′

∥∥∥2

= (NT )−1tr
(
(Λ̂− Λ∗)F̃ ′

aF̃a(Λ̂− Λ∗)′
)

=
T0

T
N−1

∥∥∥Λ̂− Λ∗
∥∥∥2

=
T0

T
Z2
λ, (C.18)
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following F̃ ′
aF̃a/T0 = Ira and the definition of Zλ. The third term M3 is

M3 = −2(NT )−1tr
(
e′aF̃a(Λ̂− Λ∗)′

)
. (C.19)

By the Cauchy-Schwarz inequality,

(NT )−1
∣∣∣tr(e′aF̃a(Λ̂− Λ∗)′

)∣∣∣ ≤ (NT )−1
∣∣∣tr(e′aF̃aF̃ ′

aea

)∣∣∣1/2 ∥∥∥Λ̂− Λ∗
∥∥∥

= N−1/2T−1
∣∣T0tr

(
PF̃a

eae
′
a

)∣∣1/2 Zλ
≤ N−1/2T−1

∣∣NT 2
0 kρ1((NT0)

−1eae
′
a)
∣∣1/2 Zλ

=
C3,nZλ

2
. (C.20)

The first equality holds because PF̃a
= T0

−1F̃aF̃
′
a, tr(AB) = tr(BA) for two matrices, and

because of the definition of Zλ. The second inequality follows from von Neumann’s trace

inequality and the fact that the eigenvalues of PF̃a
consist of k ones and T − k zeros. By

Assumption C(vi) and simple calculations,

C3,n = 2N−1/2T−1
∣∣NT 2

0 kρ1((NT0)
−1eae

′
a)
∣∣1/2

= 2N−1/2T−1
∣∣NT 2

0Op(C
−2
NT )
∣∣1/2

=
T0

T
Op(C

−1
NT ) = Op(C

−1
NT ), (C.21)

which together with (C.19) and (C.20) implies

|M3| ≤ C3,nZλ, where C3,n = Op(C
−1
NT ). (C.22)

The fourth term M4 is

M4 = −2(NT )−1tr
(
ΛR(FaRa − F̃ r

a )
′F̃a(Λ̂− Λ∗)′

)
. (C.23)

To investigate M4, we note that

(FaRa − F̃ r
a )
′F̃a

T0

=
(FaHa − F̃ r

a )
′F̃a

T0

+
(Fa(Ra −Ha))

′ F̃a
T0

= Op(C
−1
NT ) (C.24)

by the Cauchy-Schwarz inequality, (B.1), and Lemma 3. Applying the Cauchy-Schwarz

inequality, we have

(NT )−1
∣∣∣tr(ΛR(FaRa − F̃ r

a )
′F̃a(Λ̂− Λ∗)′

)∣∣∣
≤ (NT )−1

∥∥ΛR
∥∥∥∥∥(FaRa − F̃ r

a )
′F̃a

∥∥∥∥∥∥Λ̂− Λ∗
∥∥∥

=
T0

T

(
N−1

∥∥ΛR
∥∥2
)1/2

∥∥∥∥∥(FaRa − F̃ r
a )
′F̃a

T0

∥∥∥∥∥
(
N−1

∥∥∥Λ̂− Λ∗
∥∥∥2
)1/2

=
C4,nZλ

2
. (C.25)



Supplemental Appendix A.15

Using ΛR′ = R−1
a Λ′, R−1

a = Op(1), ||N−1Λ′Λ− ΣΛ|| → 0 and (C.24), we deduce that

C4,n =
2T0

T

(
N−1

∥∥ΛR
∥∥2
)1/2

∥∥∥∥∥(FaRa − F̃ r
a )
′F̃a

T0

∥∥∥∥∥ =
T0

T
Op(C

−1
NT ) = Op(C

−1
NT ), (C.26)

which together with (C.23) and (C.25) yields

|M4| ≤ C4,nZλ, where C4,n = Op(C
−1
NT ). (C.27)

Putting the four terms in (C.17), (C.18), (C.22), and (C.27) into (C.16), we obtain

Ma(Λ̂, F̃a)−Ma(Λ
∗, F̃a) ≥

T0

T
Z2
λ − Ca,nZλ, where Ca,n = C3,n + C4,n = Op(C

−1
NT ). (C.28)

Replacing the first subsample with the second subsample and the factor loadings Λ with Ψ,

we also have

Mb(Ψ̂, F̃b)−Mb(Ψ
∗, F̃b) ≥

T1

T
Z2
ψ − Cb,nZψ, where Cb,n = Op(C

−1
NT ). (C.29)

Plugging (C.28) and (C.29) into the left-hand side of (C.12), we obtain

T0

T
Z2
λ − Ca,nZλ +

T1

T
Z2
ψ − Cb,nZψ ≤ bΛZλ + bΓZγ ≤ (bΛ + bΓ)Zλ + bΓZψ, (C.30)

following the triangle inequality. Rearranging (C.30) gives

π0

(
Zλ −

Ca,n + bΛ + bΓ
2π0

)2

+ π1

(
Zψ −

Cb,n + bΓ
2π1

)2

≤ π0

(
Ca,n + bΛ + bΓ

2π0

)2

+ π1

(
Cb,n + bΓ

2π1

)2

, (C.31)

where π0 = T0/T ∈ (0, 1) and π1 = 1 − π0. It follows from (C.31), Ca,n = Op(C
−1
NT ),

Cb,n = Op(C
−1
NT ), and the triangle inequality that

Zλ = Op(bΛ + bΓ + C−1
NT ),

Zψ = Op(bΛ + bΓ + C−1
NT ),

Zγ = Op(bΛ + bΓ + C−1
NT ). (C.32)

Assumptions P1 and P2 imply that

ωλ` = Op(1) for ` = 1, . . . , ra, ω
γ
` = Op(1) for ` ∈ Z. (C.33)
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Assumption T(i) implies that bΛ = Op(C
−1
NT ) and bΓ = Op(C

−1
NT ), following (C.33). It follows

from (C.32) that

Zλ = Op(C
−1
NT ) and Zγ = Op(C

−1
NT ). (C.34)

Theorems 1(a) and 1(c) follow from the definitions of Zλ and Zγ in (C.4) and the results in

(C.34).

Next, we show the superefficiency results in Theorems 1(b), 1(d), and 1(e). To this end,

first define

La = {` : (ωλ` )
−1 = Op(C

−2d
NT )} and Lb = {` : (ωγ` )

−1 = Op(C
−2d
NT )}. (C.35)

Under Assumptions P1 and P2,

{ra + 1, . . . , k} ⊆ La, {rb + 1, . . . , k} ⊆ Lb, and if Γ0 = 0, {1, . . . , k} = Lb. (C.36)

Define the residual matrices

ea(Λ̂) = Xa − F̃aΛ̂
′ ∈ RT0×N and eb(Λ̂ + Γ̂) = Xb − F̃b(Λ̂ + Γ̂)′ ∈ RT1×N . (C.37)

Let eat (Λ̂) for t = 1, . . . , T0 be the rows of ea(Λ̂) and ebt(Λ̂ + Γ̂) for t = T0 + 1, . . . , T be the

rows of eb(Λ̂ + Γ̂). Let F̃` = (F̃ ′
a,`, F̃

′
b,`)

′ ∈ RT×1, where F̃a,` and F̃b,` are the `-th columns of

F̃a and F̃b, respectively, and let F̃t,` denote the t-th row of F̃`. By Lemma 4.2 of Bühlmann

and van de Geer (2011), a sufficient condition for Λ̂` = 0 is

2 (NT )−1

∥∥∥∥∥
T0∑
t=1

eat (Λ̂)F̃t,` +
T∑

t=T0+1

ebt(Λ̂ + Γ̂)F̃t,`

∥∥∥∥∥ < αNTω
λ
` , (C.38)

where the left-hand side is associated with the partial derivative of Ma(Λ, F̃a) +Mb(Ψ, F̃b),

with respect to Λ` evaluated at the PLS estimators, and the right-hand side is the marginal

penalty once Λ̂` deviates from 0. Intuitively, the optimal solution is Λ̂` = 0 when the marginal

penalty on the right-hand side of (C.38) is larger than the marginal gain on the left-hand

side of (C.38). The inequality in (C.38) can be equivalently written as∥∥∥ea(Λ̂)′F̃a,` + eb(Λ̂ + Γ̂)′F̃b,`

∥∥∥ < NT

2
αNTω

λ
` , (C.39)

which holds provided that∥∥∥ea(Λ̂)′F̃a,`

∥∥∥+
∥∥∥eb(Λ̂ + Γ̂)′F̃b,`

∥∥∥ < NT

2
αNTω

λ
` . (C.40)
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Next, we study the two terms on the left-hand side of (C.40). The first term satisfies∥∥∥ea(Λ̂)′F̃a,`

∥∥∥ =
∥∥∥(ea + FaΛ

0′ − F̃aΛ̂
′)′F̃a,`

∥∥∥
=
∥∥∥e′aF̃a,` + (FaRa − F̃ r

a )Λ
R′F̃a,` − F̃a(Λ̂− Λ∗)′F̃a,`

∥∥∥
≤
∥∥∥e′aF̃a,`∥∥∥+

∥∥∥FaRa − F̃ r
a

∥∥∥∥∥ΛR
∥∥∥∥∥F̃a,`∥∥∥+

∥∥∥F̃a∥∥∥∥∥∥Λ̂− Λ∗
∥∥∥∥∥∥F̃a,`∥∥∥ (C.41)

where the second equality follows from (C.15) and the inequality follows from the Cauchy-

Schwarz inequality and the triangle inequality. The terms in the last line of (C.41) are:

(i)

||e′aF̃a,`|| = (NT )1/2

√
F̃ ′
a,`

eae′a
NT

F̃a,`

≤ (NT )1/2T
1/2
0

√
ρ1 ((NT )−1eae′a)

√
F̃ ′
a,`F̃a,`

T0

= (NT )1/2T
1/2
0 Op(C

−1
NT ) = Op(N

1/2TC−1
NT ), (C.42)

where the second equality is by T−1
0 F̃ ′

a,`F̃a,` = 1 and Assumption C(vi); (ii) ||FaRa − F̃ r
a || =

Op(T
1/2C−1

NT ) by (B.1); (iii)
∥∥ΛR

∥∥ = Op(N
1/2) because Ra = Op(1) and ||Λ′Λ/N −ΣΛ|| → 0;

(iv) ||F̃a,`|| = O(T 1/2) and ||F̃a|| = O(T 1/2) because T−1
0 F̃ ′

aF̃a = Ira ; (v) ||Λ̂ − Λ∗|| =

Op(N
1/2C−1

NT ) by the definition of Zλ and (C.34). Putting them together with (C.41), we

have ∥∥∥ea(Λ̂)′F̃a,`

∥∥∥ = Op(N
1/2TC−1

NT ). (C.43)

By the same arguments, we have∥∥∥eb(Λ̂ + Γ̂)′F̃b,`

∥∥∥ = Op(N
1/2TC−1

NT ). (C.44)

Equations (C.43) and (C.44) imply that for the inequality in (C.40) to hold, it suffices

to have

N−1/2C−1
NT = op(αNTω

λ
` ), (C.45)

which is satisfied for all ` ∈ La under Assumption T(ii).

To prove Theorems 1(d) and 1(e), note that a sufficient condition for Γ̂` = 0 is

2 (NT )−1

∥∥∥∥∥
T∑

t=T0+1

ebt(Λ̂ + Γ̂)F̃t,`

∥∥∥∥∥ < βNTω
γ
` . (C.46)



Supplemental Appendix A.18

Following (C.44), the inequality in (C.46) holds provided that

N−1/2C−1
NT = op(βNTω

γ
` ), (C.47)

which is satisfied for all ` ∈ Lb under Assumption T(ii). Therefore, Theorems 1(b), 1(d),

and 1(e) follow from (C.36).

Some remarks on the proof of Theorem 1 and its relationship to the proofs of Corollaries

1 and 2 below are in order. First, in the proof of Theorem 1, we give general definition

of Z, La and Lb without imposing Assumptions P1 and P2 so that the the proof can be

recycled when these assumptions are relaxed. Specifically, Theorem 1 can be proved as above

without Assumptions P1 and P2 as long as (C.33) and (C.36) can be verified for a given

preliminary estimator, as we shall do in the proofs below. Second, Assumptions P1 and P2

are slightly stronger than needed to prove Theorem 1, however, we present them as is for

the simplicity of the presentation to convey the idea. These assumptions can be relaxed as

follows: Assumption P1(ii) assumes that Pr(N−1||Γ̃`||2 ≥ C) → 1 for ` = 1, . . . , rb, while we

only need this to hold for ` ∈ Z rather than for all ` = 1, . . . , rb in order to verify (C.33).

The set Z, associated with the nonzero columns of ΓR, could be a subset of {1, . . . , rb} to

identify a type-1 or type-2 change. For this reason, the proofs of Corollaries 1 and 2 do not

verify Assumptions P1 and P2 but rather show Theorem 1 directly. �

Proof of Lemma 1. Because ΛR = Λ0R−1′
a and ΨR = Ψ0R−1′

b with Ra = Σ
1/2
a ΥaV

−1/2
a and

Rb = Σ
1/2
b ΥbV

−1/2
b , we have

ΛR′ΛR

N
= V 1/2

a Υ′
aΣ

−1/2
a

Λ0′Λ0

N
Σ−1/2
a ΥaV

1/2
a = Va and

ΨR′ΨR

N
= Vb. (C.48)

By definition, Va is a diagonal matrix and its `-th diagonal element is the `-th largest

eigenvalue of Σ
1/2
a ΣFΣ

1/2
a , which is the same as the `-th largest eigenvalue of ΣaΣF . Following

Assumption B and the continuity of the eigenvalue (with respect to the matrix), it converges

to the `-th largest eigenvalue of ΣΛΣF , denoted by ρ`(ΣΛΣF ). Similarly, the `-th diagonal

element of Vb converges to the `-th largest eigenvalue of ΣΨΣF , denoted by ρ`(ΣΨΣF ).

Let a` be a selection vector that selects the `-th column of a matrix. Part (a) holds

because

N−1
∥∥ΛR

`

∥∥2
= a′`

(
N−1ΛR′ΛR

)
a` = a′`Vaa` = ρ`(ΣΛΣF ) + o(1). (C.49)
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To prove part (b), note that for ra < ` ≤ rb, the `-th column of ΓR is equivalent to the `-th

column of ΨR. Hence,

N−1||ΓR` ||2 = a′`
(
N−1ΨR′ΨR

)
a` = a′`Vba` = ρ`(ΣΨΣF ) + o(1). (C.50)

To show part (c), first note that if ra = rb, we have

N−1ΓR′ΓR = N−1(ΨR − ΛR)′(ΨR − ΛR) = e′Σ+
ΛΨe + o(1), (C.51)

where e = limN→∞
(
R−1
b , −R−1

a

)′
has full rank following Assumptions A and B and Σ+

ΛΨ

is defined in (2.6). By a Cholesky decomposition, write Σ+
ΛΨ = (Σ+

ΛΨ)1/2(Σ+
ΛΨ)1/2 with

rank((Σ+
ΛΨ)1/2) = rank(Σ+

ΛΨ) > ra. For a 2ra × 2ra matrix (Σ+
ΛΨ)1/2, the rank of the null

space of (Σ+
ΛΨ)1/2 is smaller than ra. It follows that (Σ+

ΛΨ)1/2e 6= 0 because rank(e) = ra,

and this immediately implies that part (c) holds with ΣΓ = e′Σ+
ΛΨe 6= 0.

To prove part (d), write

N−1||ΓR` ||2 = N−1
∥∥ΓRa`∥∥2

= N−1
∥∥ΨRa` − ΛRa`

∥∥2

≥
(
N−1/2

∥∥ΨRa`
∥∥−N−1/2

∥∥ΛRa`
∥∥)2

= [(ρ`(ΣΨΣF ))1/2 − (ρ`(ΣΛΣF ))1/2]2 + o(1), (C.52)

where the first two equalities follow from the definition of a` and ΓR, the inequality follows

from the triangle inequality, and the last equality holds by (C.48). �

Proof of Theorem 2. First, Theorem 1(a) for ` = ra and Lemma 1(a) imply that

Pr(||Λ̂`|| > 0) → 1 for ` = ra and thus Pr(r̂a ≥ ra) → 1. Theorem 1(b) implies that

Pr(r̂a ≤ ra) → 1. Thus, Pr(r̂a = ra) → 1.

Second, for a type-2 change where rb > ra, Theorem 1(c) for ` = rb and Lemma 1(b)

imply that Pr(||Γ̂`|| > 0) → 1 for ` = rb and thus Pr(r̂b ≥ rb) → 1. Theorem 1(e) implies

that Pr(r̂b ≤ rb) → 1. Hence, Pr(r̂b = rb) → 1 for a type-2 change, which, together with part

(a), also implies Pr(Ŝ = 1) → 1 for a type-2 change because by definition, Ŝ = 1 if r̂b > r̂a.

Third, for a type-1 change where rb = ra and S0 = 1, Theorem 1(c), Lemmas 1(c)

and 1(d), and Assumption ID imply that Pr(||Γ̂`|| > 0) → 1 for some ` ≤ ra and thus

Pr(Ŝ = 1) → 1. Note that by definition in (3.5), we have r̂b ≥ r̂a. Thus, part (a) and ra = rb

imply that Pr(r̂b ≥ rb) → 1. On the other hand, Theorem 1(e) implies that Pr(r̂b ≤ rb) → 1.

Hence, Pr(r̂b = rb) → 1 for a type-1 change.
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Finally, for the case where there is no change, i.e., ra = rb and S0 = 0, Theorems 1(d)

and 1(e) imply that Pr(Γ̂ = 0) → 1. Thus, Pr(Ŝ = 0) → 1 by (3.6) and Pr(r̂b = rb) → 1 by

(3.5) and part (a). �

Proof of Corollary 1. We first study the properties of the unrestricted least square

estimator Λ̃LS and Γ̃LS. Note that the unrestricted least squares estimator is a special case

of the PLS estimator when αNT = βNT = 0. Therefore, following (C.32),

N−1||Λ̃LS − Λ∗||2 = Op(C
−2
NT ) and N−1||Γ̃LS − Γ∗||2 = Op(C

−2
NT ), (C.53)

which combined with the definitions of Λ∗ and Γ∗ and Lemma 1 imply that

Pr(N−1||Λ̃LS,`||2 ≥ C) → 1 for ` = 1, . . . , ra, Pr(N−1||Γ̃LS,`||2 ≥ C) → 1 for ` ∈ Z (C.54)

and

N−1||Λ̃LS,`||2 = Op(C
−2
NT ) for ` > ra and N−1||Γ̃LS,`||2 = Op(C

−2
NT ) for ` ∈ ZC . (C.55)

Next, we show that (C.33) and (C.36) hold without imposing Assumptions P1 and P2,

so that the proof of Theorem 1 follows without these two assumptions. The definition of

weights in (3.4) and (C.54) imply that (C.33) holds for the case Λ̃ = Λ̃LS and Γ̃ = Γ̃LS.

The definition of La and Lb together with (C.55) imply that La = {ra + 1, . . . , k} and

Lb = ZC . By definition, {rb + 1, . . . , k} ⊆ ZC and, if Γ0 = 0, then {1, . . . , k} = ZC , which

implies that (C.36) holds for the case Λ̃ = Λ̃LS and Γ̃ = Γ̃LS. Therefore, Theorem 1 holds

without imposing Assumptions P1 and P2 for the one-step estimator Λ̃ = Λ̃LS and Γ̃ = Γ̃LS.

Applying Theorem 1, model selection consistency follows from the proof for Theorem 2. �

Proof of Corollary 2. We first study the preliminary estimators Λ̃(2), Ψ̃(2), and Γ̃(2), and

the weights ωλ` and ωγ` in the second step. Because Λ̃(2) = Λ̂
(1)
PMS, whose first r̂

(1)
a columns

are the same as those of Λ̃LS and whose last k− r̂
(1)
a columns are zeros, it follows from (3.4)

that

ωλ` = (N−1||Λ̃LS,`||2)−d for ` = 1, . . . , k, (C.56)

which is the same for the first- and second-step estimators. If there is a type-2 change,

r̂
(1)
b > r̂

(1)
a w.p.a.1 by Corollary 1, and

ωγ` = (N−1||Γ̃LS,`||2)−d for ` = 1, . . . , k, (C.57)
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which is the same for the first and second step estimations.

If there are no structural instabilities or there is a type-1 change, r̂
(1)
b = r̂

(1)
a = rb = ra

w.p.a.1 by Corollary 1. Let Ψ̃−
LS and Λ̃−

LS denote the first ra columns of Ψ̃LS and Λ̃LS,

respectively. Given r̂
(1)
b = r̂

(1)
a = ra = rb, we have Ψ

(1)
= Ψ̃−

LS, Λ
(1)

= Λ̃−
LS, and the

second-step preliminary estimator Γ̃(2) can be written as

Γ̃(2) =
(
Ψ̃−
LSQ− Λ̃−

LS, 0N×(k−ra)

)
, (C.58)

following from Γ̃(2) = Ψ̃(2) − Λ̃(2) and steps 1d, 1e, and 2a in the algorithm to construct the

two-step estimator.

Define

ΓQ =
(
ΨRQ− ΛR, 0N×(k−ra)

)
. (C.59)

Recall that ΨR and ΛR are the transformed factor loadings. In addition, ΓR and ΛR are the

first ra columns of Γ∗ and Λ∗, respectively, given ra = rb. By (C.58) and (C.59), w.p.a.1,

N−1||Γ̃(2) − ΓQ||2 = N−1
∥∥∥(Ψ̃−

LS −ΨR)Q− (Λ̃−
LS − ΛR)

∥∥∥2

= N−1
∥∥∥(Γ̃−LS − ΓR

)
Q+

(
Λ̃−
LS − ΛR

)
(Q− Ira)

∥∥∥2

= Op(C
−2
NT ), (C.60)

where the last equality follows from the triangle inequality and (C.53). To analyze Γ̃(2) for

the second-step estimation, we first discuss the centering term ΓQ when there is a type-1

change. Assumption R implies that

N−1||ΓQ` ||
2 ≥ C if ` ∈ Z (C.61)

because ΓQ` = ΨRQ` − ΛR
` and ||Q`|| = 1. Therefore, (C.60) and (C.61) imply that

ωγ` = Op(1) for ` ∈ Z when there is a type-1 change. (C.62)

If there is no structural change, by (C.53), N−1||Λ̃−
LS−ΛR||2 = Op(C

−2
NT ) and N−1||Ψ̃−

LS−
ΨR||2 = Op(C

−2
NT ). Because ΛR = ΨR in this case, we have N−1||Λ̃−

LS − Ψ̃−
LS||2 = Op(C

−2
NT ),

which further implies that

N−1
∥∥∥Ψ̃−

LSQ− Λ̃−
LS

∥∥∥2

≤ N−1
∥∥∥Ψ̃−

LS − Λ̃−
LS

∥∥∥2

= Op(C
−2
NT ), (C.63)
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where the inequality holds because the choice of Q solves the orthogonal procrustes prob-

lem by minimizing ||Ψ̃−
LSQ − Λ̃−

LS||2 among all orthogonal matrices (Schönemann (1966)).

Combining (C.58) and (C.63), we obtain

N−1||Γ̃(2)||2 = Op(C
−2
NT ) when Γ0 = 0, (C.64)

which together with (C.53) and Γ∗ = 0 implies that

(ωγ` )
−1 = Op(C

−2d
NT ) for ` = 1, . . . , k when there is no structural change. (C.65)

Next, we show that (C.33) and (C.36) hold without imposing Assumptions P1 and P2,

so that the proof of Theorem 1 follows without these two assumptions. To show (C.33), note

that ωλ` = Op(1) for ` = 1, . . . , ra is implied by (C.54) and (C.56), ωγ` = Op(1) for ` ∈ Z is

implied by (C.54) and (C.57) for a type-2 change, and ωγ` = Op(1) for ` ∈ Z is proved in

(C.62) for a type-1 change.

To show (C.36), note that: (i) {ra + 1, . . . , k} ⊆ La holds by (C.55) and (C.56); (ii)

{rb + 1, . . . , k} ⊆ Lb holds by (C.55) and (C.57); and (iii) if Γ0 = 0, {1, . . . , k} = Lb follows

from (C.53) and (C.65).

Because (C.33) and (C.36) hold without imposing Assumptions P1 and P2, Theorem

1 holds without imposing Assumptions P1 and P2 for the two-step estimator. Applying

Theorem 1, model selection consistency follows from the proof for Theorem 2. �

D Proof of Results in Section 6

Proof of Lemma 2. For π ≤ π0, the result follows from the representation in (6.3) and

Assumptions A-D. Analogous arguments yield results for π > π0. �

Proof of Corollary 3. This corollary is implied by Lemma 2.

Proof of Theorem 3. In the proof below, we use opπ(·) and Opπ(·) to represent op(·) and

Op(·) that hold uniformly over π ∈ Π.

Define r+ = rank(Σ+
ΛΨ), Ta = bTπc, and Tb = T − Ta. First, consider the second

subsample Xb(π). When π < π0, following the model in (6.2), the variance of the factor

loadings is

Σ+
ab = N−1

(
Λ0, Ψ0

)′ (
Λ0, Ψ0

)
. (D.1)
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By Assumption B and the continuous mapping theorem, we know that Σ+
ab has rank r+

w.p.a.1, which implies that the rank of (Λ0, Ψ0) is r+ w.p.a.1. Thus, there is a (ra + rb) ×
(ra+ rb) orthogonal matrix S such that the first r+ columns of (Λ0, Ψ0)S have full rank and

the last (ra + rb − r+) columns are 0 w.p.a.1. As such, the model in (6.2) can be written as

an approximate factor model with r+ factors, and the factors and their loadings both have

full ranks asymptotically. With a transformation analogous to that in (2.10) to standardize

the factors and diagonalize the loadings, the DGP in (6.2) can be written as

Xb(π) = FR
b (π)ΨR(π)′ + eb(π), (D.2)

where FR
b (π) is Tb × r+, ΨR(π) is N × r+, and

T−1
b FR

b (π)′FR
b (π) = Ir+ +Opπ(T

−1/2),

N−1ΨR(π)′ΨR(π) = Λb(π), (D.3)

where Λb(π) is a r+×r+ diagonal matrix whose diagonal elements are the positive eigenvalues

of Σ+
F (π)Σ+

ab in a decreasing order. This is analogous to the transformation considered in

(B.3)-(B.5) in the proof of Lemma 3 except π < π0 rather than π = π0. When π ≥ π0, the

DGP in (6.2) can be written as in (D.2) and (D.3) but with r+ = rb and ΨR(π) = ΨR, where

ΨR = Ψ0(R−1
b )′.

Next, we consider the first subsample Xa(π). Following the transformation discussed

above, when π > π0, the DGP in (6.1) can be written as

Xa(π) = FR
a (π)ΛR(π)′ + ea(π), (D.4)

where FR
a (π) is Ta × r+, ΛR(π) is N × r+, and

T−1
a FR

a (π)′FR
a (π) = Ir+ +Opπ(T

−1/2),

N−1ΛR(π)′ΛR(π) = Λa(π), (D.5)

where Λa(π) is a r+×r+ diagonal matrix with positive eigenvalues. When π ≤ π0, the DGP in

(6.1) can be written as that in (D.4) and (D.5) but with r+ = ra and ΛR(π) = ΛR = Λ0(R−1
a )′.

For any π ∈ Π, Xa(π) contains at least the ra factors in Xa(π0) and Xb(π) contains at

least the rb factors in Xb(π0). Therefore,

N−1||ΛR
` (π)||2 ≥ C for ` = 1, . . . , ra, N

−1||ΨR
` (π)||2 ≥ C for ` = 1, . . . , rb. (D.6)
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Note that in the proof of Theorem 1 above, the magnitudes of the approximation er-

rors are developed under Assumptions A-D. After Assumptions A and C are replaced by

Assumptions A∗ and C∗, Assumptions A∗, B, C∗, and D are all uniform over π ∈ Π. As a

result, replacing π0 with π, asymptotic results as those in Theorem 1 hold uniformly over

π ∈ Π. We use such uniform convergence in the analysis below.

Below we analyze model selection based on the two-step procedure. Recall that r̂
(i)
a (π)

for i = 1 and 2 denotes the estimator of ra(π) by the first- and second-step PLS estimator.

Let ω
λ∗(i)
` (π) and ω

γ∗(i)
` (π) denote the weights in step i. Let Ψ̃−

LS(π) denote the first r̂
(1)
a

columns of Ψ̃LS(π). By construction, the adaptive weights in (6.12) satisfy

ω
λ∗(i)
` (π) =

(
N−1||Λ̃`,LS(π)||2

)−d
for i = 1 and 2,

ω
γ∗(1)
` (π) = max

{(
N−1||Γ̃`,LS(π)||2

)−d
,
(
N−1||Ψ̃`,LS(π)||2

)−d}
,

ω
γ∗(2)
` (π) = ω

γ∗(1)
` (π) if (i) r̂(1)

a < r̂
(1)
b or (ii) r̂(1)

a = r̂
(1)
b and ` > r̂(1)

a , (D.7)

ω
γ∗(2)
` (π) = max

{(
N−1||Ψ̃−

`,LS(π)w(π)− Λ̃`,LS(π)||2
)−d

,
(
N−1||Ψ̃`,LS(π)||2

)−d}
otherwise,

where the vector w(π) satisfies ‖w(π)‖ = 1 and is obtained by the orthogonal transformation

to minimize the difference between the first r̂
(1)
a columns of Λ̃LS(π) and Ψ̃LS(π).

In the proof below, if notations and results are not specified to be the first step or

the second step, they apply to both. We typically do not distinguish between them until

discussing the penalties.

Step 1. We show

Pr(min
π∈Π

r̂(i)
a (π) ≥ ra) → 1 for i = 1 and 2. (D.8)

To this end, it is sufficient to show N−1||Λ̂`(π)− ΛR
` (π)||2 = opπ(1) for ` = ra in both steps.

The proof strategy is different from that in Theorem 1 because here we do not require the

convergence of Λ̂`(π) to ΛR
` (π) for ` > ra. Let Xa:b denote a submatrix of X that contains

the columns from a to b. For any π ∈ Π, define

Λ†(π) =
(
ΛR

1:ra(π), Λ̂(π)ra+1:k

)
, Γ†(π) = Γ̂(π), and Ψ†(π) = Λ†(π) + Γ†(π). (D.9)

For notational simplicity, define Λr(π) = ΛR
1:ra(π). Note that the definition of Λ†(π) is

different from that of Λ∗ used in the proof of Theorem 1 even when π = π0, because the
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former involves the PLS estimator but the latter does not. Define

Z2
λ(π) = N−1

∥∥∥Λ̂(π)− Λ†(π)
∥∥∥2

, Z2
ψ(π) = N−1

∥∥∥Ψ̂(π)−Ψ†(π)
∥∥∥2

, Z2
γ(π) = N−1

∥∥∥Γ̂(π)− Γ†(π)
∥∥∥2

.

(D.10)

The criterion function for the shrinkage estimator can be written as

Q(Λ,Γ;π) = Ma(Λ, F̃a(π)) +Mb(Ψ, F̃b(π)) + P ∗
1 (Λ) + P ∗

2 (Γ), (D.11)

where Ψ = Λ + Γ,

Ma(Λ, Fa) = (NT )−1 ‖Xa(π)− FaΛ
′‖2

, and

Mb(Ψ, Fb) = (NT )−1 ‖Xb(π)− Fb(Λ + Γ)′‖2
. (D.12)

For notational simplicity, we do not write Ma(Λ, Fa) and Mb(Ψ, Fb) indexed by π, although

they are by definition. Define

φλ` = Eξ[αNT (ξ)ωλ∗` (ξ)] and φγ` = Eξ[βNT (ξ)ωγ∗` (ξ)], (D.13)

where ξ has a uniform distribution on Π and Eξ [·] is taken w.r.t. ξ. As such, P ∗
1 (Λ) =∑k

`=1 φ
λ
` ‖Λ`‖ and P ∗

2 (Γ) =
∑k

`=1 φ
γ
` ‖Γ`‖.

Because the shrinkage estimators Λ̂(π) and Γ̂(π) minimize the criterion functionQ(Λ,Γ; π),

we have Q(Λ̂(π), Γ̂(π)) ≤ Q(Λ†(π),Γ†(π)), i.e.,[
Ma(Λ̂(π), F̃a(π))−Ma(Λ

†(π), F̃a(π))
]

+
[
Mb(Ψ̂(π), F̃b(π))−Mb(Ψ

†(π), F̃b(π))
]

≤
[
P ∗

1 (Λ†(π))− P ∗
1 (Λ̂(π))

]
+
[
P ∗

2 (Γ†(π))− P ∗
2 (Γ̂(π))

]
, (D.14)

where Ψ̂(π) = Λ̂(π) + Γ̂(π). We start with the right-hand side of (D.14). Because the

last (k − ra) columns of Λ†(π) and Λ̂(π) are the same, by the triangle inequality and the

Cauchy-Schwarz inequality, we have

P ∗
1 (Λ†(π))−P ∗

1 (Λ̂(π)) =
ra∑
`=1

φλ`

(
|Λ†

`(π)| − |Λ̂`(π)|
)
≤ bΛZλ(π), where bΛ = N1/2

(
ra∑
`=1

(φλ` )
2

)1/2

.

(D.15)

Because Γ†(π) = Γ̂(π), the second term on the right-hand side of (D.14) is 0.

Next, we consider the left-hand side of (D.14). Write F̃a(π) = (F̃ r
a (π), F̃⊥

a (π)) ∈ RTa×k,

where F̃a(π) is partitioned into the Ta× ra and Ta× (k− ra) submatrices F̃ r
a (π) and F̃⊥

a (π).

Similarly, write Λ̂ (π) = (Λ̂r (π), Λ̂⊥ (π)), where Λ̂ (π) is partitioned into the N × ra and
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N×(k−ra) submatrices Λ̂r (π) and Λ̂⊥ (π). With this partition, we can write Λ†(π) = (Λr(π),

Λ̂⊥ (π)). Define ea(Λ(π), F (π)) = Xa(π) − F (π)Λ(π)′. For the calculation below, we first

show two expansions. The first is

ea(Λ̂ (π) , F̃a(π)) = Xa(π)− F̃a(π)Λ̂ (π)′

= Xa(π)− F̃ r
a (π)Λ̂r(π)′ − F̃⊥

a (π)Λ̂⊥(π)′

=
(
Xa(π)− F̃ r

a (π)Λr(π)′ − F̃⊥
a (π)Λ̂⊥(π)′

)
− F̃ r

a (π)
(
Λ̂r(π)− Λr(π)

)′
= ea(Λ

†(π), F̃a(π))− F̃ r
a (π)

(
Λ̂r(π)− Λr(π)

)′
, (D.16)

where the first and last equalities hold by definition, the second equality follows from the

partition of F̃a(π) and Λ̂ (π), and the third equality follows from subtracting and adding

F̃ r
a (π)Λr(π)′. Because ra(π) ≥ ra, we write FR

a (π) = (F r
a (π), F r+

a (π)), where FR
a (π) is

partitioned into the Ta× ra and Ta× (ra(π)− ra) submatrices F r
a (π) and F r+

a (π). Similarly,

write ΛR(π) = (Λr(π), Λr+(π)), where ΛR(π) is partitioned into the N×ra and N× (ra(π)−
ra) submatrices Λr(π) and Λr+(π). Following the partition, we can write

Xa(π) = ea(π) + F r
a (π)Λr(π)′ + F r+

a (π)Λr+(π)
′
. (D.17)

The second expansion is

ea(Λ
†(π), F̃a(π)) = Xa(π)− F̃ r

a (π)Λr(π)′ − F̃⊥
a (π)Λ̂⊥(π)′ (D.18)

= ea(π) +
(
F r
a (π)− F̃ r

a (π)
)

Λr(π)′ + F r+
a (π)Λr+(π)

′ − F̃⊥
a (π)Λ̂⊥(π)′,

where first equality holds by definition and the second equality follows from (D.17). With

the first expansion in (D.16), we have

Ma(Λ̂(π), F̃a(π)) = (NT )−1
∥∥∥ea(Λ̂ (π) , F̃a(π))

∥∥∥2

= (NT )−1
∥∥∥ea(Λ†(π), F̃a(π))

∥∥∥2

+ (NT )−1

∥∥∥∥F̃ r
a

(
Λ̂r(π)− Λr(π)

)′∥∥∥∥2

−2(NT )−1tr
[
ea(Λ

†(π), F̃a(π))′F̃ r
a (π)

(
Λ̂r(π)− Λr(π)

)]
= Ma(Λ

†(π), F̃a(π)) +K0 +K1 +K2 +K3 +K4, (D.19)

where

K0 = (NT )−1

∥∥∥∥F̃ r
a

(
Λ̂r(π)− Λr(π)

)′∥∥∥∥2

=
Ta
T

1

N
tr

[(
Λ̂r(π)− Λr(π)

) F̃ r′
a F̃

r
a

Ta

(
Λ̂r(π)− Λr(π)

)′]
=
Ta
T
Z2
λ(π) (D.20)
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by definition and the fact that T−1
a (F̃ r′

a F̃
r
a ) = Ira×ra . The terms K1 to K4 follow from the

second expansion in (D.18), and they are specified below. The first term is

K1 = −2(NT )−1tr
[
ea(π)′F̃ r

a (π)
(
Λ̂r(π)− Λr(π)

)]
=
Ta
T
Opπ(C

−1
NT )Zλ(π), (D.21)

following calculations analogous to those in (C.20) and (C.21). The second term is

K2 = −2(NT )−1tr
(
Λr(π)(F r

a (π)− F̃ r
a (π))′F̃ r

a (π)(Λ̂r(π)− Λr(π))′
)

=
Ta
T
Opπ(C

−1
NT )Zλ(π) (D.22)

following calculations analogous to those in (C.25) and (C.26). The third term is

K3 = −2(NT )−1tr
(
Λr+(π)F r+

a (π)′F̃ r
a (π)(Λ̂r(π)− Λr(π))′

)
= −2(NT )−1tr

(
Λr+(π)

(
F r+
a (π)− F̃ r+

a (π)
)′
F̃ r
a (π)(Λ̂r(π)− Λr(π))′

)
=
Ta
T
Opπ(C

−1
NT )Zλ(π), (D.23)

where F̃ r+
a (π) is a submatrix of F̃a(π) with columns associated with those in F r+

a (π), the

second equality holds because F̃ r+
a (π) and F̃ r

a (π) are orthogonal by construction, and the

third equality holds by arguments analogous to those in (C.25) and (C.26). The forth term

is

K4 = 2(NT )−1tr
[
Λ̂⊥(π)F̃⊥

a (π)′F̃ r
a (π)

(
Λ̂r(π)− Λr(π)

)]
= 0 (D.24)

because F̃⊥
a (π)′F̃ r

a (π) = 0 by construction. Combining (D.19)-(D.24), we obtain

Ma(Λ̂(π), F̃a(π))−Ma(Λ
†(π), F̃a(π)) =

Ta
T
Z2
λ(π) +Opπ(C

−1
NT )Zλ(π). (D.25)

Replacing the first subsample with the second subsample and applying similar arguments,

we also have

Mb(Ψ̂(π), F̃b(π))−Mb(Ψ
†(π), F̃b(π)) =

Tb
T
Z2
ψ(π) +Opπ(C

−1
NT )Zψ(π). (D.26)

Plugging (D.25) and (D.26) into the left-hand side of (D.14), we obtain

Ta
T
Z2
λ(π) +Opπ(C

−1
NT )Zλ(π) +

Tb
T
Z2
ψ(π) +Opπ(C

−1
NT )Zψ ≤ bΛZλ(π), (D.27)

which further implies that

Zλ(π) = Opπ(bΛ + C−1
NT ). (D.28)
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The unrestricted least square estimator for any π ∈ Π can be viewed as a PLS estimator

with 0 penalty. Therefore, N−1||Λ̃LS,`(π)−ΛR
` (π)||2 = Opπ(C

−2
NT ) for ` = 1, . . . , ra by (D.28),

which together with (D.6) implies that N−1||Λ̃LS,`(π)||2 ≥ C−1 w.p.a.1. for ` = 1, . . . , ra.

For i = 1 and 2, we have ω
λ∗(i)
` (π) = (N−1||Λ̃LS,`(π)||2)−d ≤ Cd w.p.a.1 for ` = 1, . . . , ra.

Following the specification in (6.11), αNT (π) = κ1(π)N−1/2C−d−1
NTa

, where κ1(π) ≤ κ1. Thus,

we have

N1/2φλ` = N1/2Eξ[αNT (ξ)ωλ∗` (ξ)] = Op(C
−1
NT ) (D.29)

for ` = 1, . . . , ra, which implies

bΛ = Op(C
−1
NT ) (D.30)

for both the first- and second-step PLS estimation. It follows from (D.28) that Zλ(π) =

Opπ(C
−1
NT ). This completes the proof of Pr(minπ∈Π r̂

(i)
a (π) ≥ ra) → 1 for i = 1, 2.

Step 2. We show for i = 1 and 2,

Pr(min
π∈Π

r̂
(i)
b (π) ≥ rb) → 1 if rb > ra. (D.31)

In this case, N−1||ΓR` (π)||2 ≥ C by Assumption R∗(ii) and N−1||ΨR
` (π)||2 ≥ C by (D.6) for

` = rb. To show (D.31), it is sufficient to prove N−1||Γ̂`(π)−ΓR` (π)||2 = opπ(1) for ` = rb for

both the first and second step estimators. To this end, we redefine Λ†(π) and Γ†(π) in (D.9)

as

Λ†(π) = Λ̂(π), Γ†(π) =
(
Γ̂(π)1:rb−1, ΓRrb(π), Γ̂(π)rb+1:k

)
and Ψ†(π) = Λ†(π) + Γ†(π) (D.32)

and keep the definitions of Zλ(π), Zψ(π), Zγ(π) in (D.10) unchanged. Now consider the

inequality in (D.14). Because Λ†(π) = Λ̂(π), the right-hand side of (D.14) becomes for

` = rb,

P ∗
2 (Γ†(π))− P ∗

2 (Γ̂(π)) = φγ`

(
|ΓR` (π)| − |Γ̂`(π)|

)
≤ bΓbZγ(π), where bΓb = N1/2φγ` . (D.33)

By arguments analogous to those used to show (D.25) and (D.26), the left-hand side of

(D.14) becomes

Mb(Ψ̂(π), F̃b(π))−Mb(Ψ
†(π), F̃b(π)) =

Tb
T
Z2
ψ(π) +Opπ(C

−1
NT )Zψ(π). (D.34)

Putting (D.33) and (D.34) together with (D.14), we get

Zψ(π) = Opπ(bΓb + C−1
NT ). (D.35)
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Note that we can show the consistency of Λ̂(π) and Ψ̂(π) column by column because F̃a(π)

and F̃b(π) both have orthogonal regressors by construction. Now following the arguments

used to show (D.29), we have bΓb = Op(C
−1
NT ) for the first-step estimator, which immediately

implies that Zψ(π) = Opπ(C
−1
NT ) and

N−1||Γ̂`(π)− ΓR` (π)||2 = Opπ(C
−2
NT ) for ` = rb. (D.36)

This proof (D.31) holds for i = 1 and also implies that r̂
(1)
b = minπ∈Π r̂

(1)
b (π) ≥ rb > ra

w.p.a.1. Thus, for the second-step estimator, ω
γ∗(2)
` (π) takes the form in (D.7) with rb > ra

w.p.a.1, which is the same as that for the first-step estimator. Hence, bΓb = Op(C
−1
NT ) for the

second-step estimator and it follows that (D.31) holds for i = 2 as well.

Step 3. We prove

Pr(r̂(1)
a = ra) → 1 (D.37)

by showing that the inequalities in (D.8) become equalities when π = π0. To this end, it is

sufficient to show Pr(Λ̂`(π0) = 0) → 1 for ` > ra in the first-step estimation. (We use generic

notation below without superscript (1) for notational simplicity.) By the proof of Theorem

1, to obtain Pr(Λ̂`(π0) = 0) → 1, it is sufficient to show∥∥∥ea(Λ̂(π0))
′F̃a,`(π0)

∥∥∥+
∥∥∥eb(Λ̂(π0) + Γ̂(π0))

′F̃b,`(π0)
∥∥∥ < NT

2
φλ` , (D.38)

which is similar to (C.40). Replacing Λ̂ and Γ̂ in the proof of Theorem 1 with Λ̂(π0) and

Γ̂(π0), respectively, we have

N−1/2||Λ̂(π0)−Λ∗|| = Op(bΛ+bΓ+C−1
NT ) and N−1/2||Γ̂(π0)−Γ∗|| = Op(bΛ+bΓ+C−1

NT ), (D.39)

where

bΛ = N1/2(
ra∑
`=1

(φλ` )
2)1/2 and bΓ = N1/2(

∑
`∈Z

(φγ` )
2)1/2. (D.40)

We have shown bΛ = Op(C
−1
NT ) in (D.30) for both the first- and second-step estimators. By

similar arguments under Assumption R∗(i) and (D.6), we also have bΓ = Op(C
−1
NT ) for the

first step estimator. Because bΛ = Op(C
−1
NT ) and bΓ = Op(C

−1
NT ),

N−1/2||Λ̂(1)(π0)− Λ∗|| = Op(C
−1
NT ) and N−1/2||Γ̂(1)(π0)− Γ∗|| = Op(C

−1
NT ). (D.41)

Following the arguments used to show (C.43) and (C.44), (D.38) holds provided that

N−1/2C−1
NT = op(φ

λ
` ), (D.42)
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where φλ` = Eξ[αNT (ξ)ω
λ∗(1)
` (ξ)]. Using αNT (π) = κ1(π)N−1/2C−d−1

NTa
, we have

φλ` = Eξ[αNT (ξ)ω
λ∗(1)
` (ξ)] ≥ κ1N

−1/2C−d−1
NT Eξ[ω

λ∗(1)
` (ξ)I{ξ≤π0}], (D.43)

where κ1 is the lower bound of κ1(π). For π ≤ π0,Xa(π) has ra factors. Thus, the unrestricted

least square estimator N−1||Λ̃LS,`(π)||2 = Opπ(C
−2
NT ) for ` > ra, by arguments analogous to

(C.55). Therefore,

sup
π≤π0

(
ω
λ∗(1)
` (π)

)−1

= sup
π≤π0

[N−1||Λ̃LS,`(π)||2]d = Op(C
−2d
NT ) for ` > ra. (D.44)

Thus, for ` > ra,

N−1/2C−1
NT (φλ` )

−1 ≤ κ−1
1 Cd

NT

(
Eξ[ω

λ∗(1)
` (ξ)I{ξ≤π0}]

)−1

≤ κ−1
1 Cd

NT

(
inf
π≤π0

[ω
λ∗(1)
` (π)]Eξ[I{ξ≤π0}]

)−1

=
Cd
NT supπ≤π0

(
ω
λ∗(1)
` (π)

)−1

κ1Eξ[I{ξ≤π0}]
= Op(C

−d
NT ), (D.45)

where the last equality is by (D.44) and κ1Eξ[I{ξ≤π0}] > C > 0 for some fixed constant C.

It follows that Pr(Λ̂
(1)
` (π0) = 0) → 1 for ` > ra, which implies that

Pr(r̂(1)
a (π0) ≤ ra) → 1. (D.46)

Combining (D.8) with the result above, we obtain Pr(minπ∈Π r̂
(1)
a (π) = r̂

(1)
a (π0) = ra) → 1.

This proves (D.37).

Step 4. We prove

Pr(r̂
(1)
b = rb) → 1 (D.47)

by showing that the inequalities in (D.31) become equalities when π = π0. To this end,

it is sufficient to show Pr(Γ̂
(1)
` (π0) = 0) → 1 for ` > rb. (We use generic notation below

without superscript (1) for notational simplicity.) By the proof of Theorem 1, to obtain

Pr(Γ̂`(π0) = 0) → 1, it is sufficient to show∥∥∥eb(Λ̂(π0) + Γ̂(π0))
′F̃b,`(π0)

∥∥∥ < NT

2
φγ` . (D.48)

To this end, it is sufficient to show N−1/2C−1
NT = op(φ

γ
` ). Using βNT (π) = κ2(π)N−1/2C−d−1

NTb
,

we have

φγ` = Eξ[βNT (ξ)ω
γ∗(1)
` (ξ)] ≥ κ2N

−1/2C−d−1
NT Eξ[ω

γ∗(1)
` (ξ)I{ξ≥π0}], (D.49)
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where κ2 is the lower bound of κ2(π). For π ≥ π0,Xb(π) has rb factors, thusN−1||Ψ̃LS,`(π)||2 =

Opπ(C
−2
NT ) for ` > rb by arguments analogous to (C.55). Therefore,

sup
π>π0

(
ω
γ∗(1)
` (π)

)−1

≤ sup
π>π0

[N−1||Ψ̃LS,`(π)||2]d = Op(C
−2d
NT ) for ` > rb. (D.50)

Thus, for ` > rb,

N−1/2C−1
NT (φγ` )

−1 ≤ κ−1
2 Cd

NT

(
Eξ[ω

γ∗(1)
` (ξ)I{ξ≥π0}]

)−1

≤ κ−1
2 Cd

NT

(
inf
π>π0

(
ω
γ∗(1)
` (π)

)
Eξ[I{ξ≥π0}]

)−1

=
Cd
NT supπ>π0

(
ω
γ∗(1)
` (π)

)−1

κ2Eξ[I{ξ≥π0}]
= Op(C

−d
NT ), (D.51)

following from (D.50) and κ2Eξ[I{ξ≥π0}] > C > 0 for some fixed constant C. It follows that

Pr(Γ̂
(1)
` (π0) = 0) → 1 for ` > rb, which implies

Pr(r̂
(1)
b (π0) ≤ rb) → 1. (D.52)

When rb > ra, (D.31) and (D.52) imply that

Pr(r̂
(1)
b = min

π∈Π
r̂
(1)
b (π) = rb) → 1. (D.53)

On the other hand, if rb = ra, we can use (D.52) to deduce that

Pr(min
π∈Π

r̂
(1)
b (π) ≤ ra) → 1, (D.54)

which together with the definition of r̂
(1)
b and (D.37) implies that

Pr(r̂
(1)
b = r̂(1)

a = rb) → 1. (D.55)

This completes the proof of Step 4.

Step 5. We show

Pr(r̂(2)
a = ra) → 1 and Pr(r̂

(2)
b = rb) → 1. (D.56)

Following Steps 3 and 4, we know that the event {r̂(1)
a = ra and r̂

(1)
b = rb} has probability

approaching 1. If rb > ra, ω
λ∗(i)
` and ω

γ∗(i)
` are the same for i = 1, 2 following (D.7). Hence,

all arguments in Steps 3 and 4 apply to the second-step estimator, which completes the proof

immediately.
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Next, we consider ra = rb. Conditioning on the event {r̂(1)
a = ra and r̂

(1)
b = rb}, the

proofs in Step 3 and Step 4 apply to the second-step estimator as well, and this gives the

desired results.

Step 6. We show that when there is a type-1 change,

Pr(Γ̂(2)(π0) 6= 0) → 1. (D.57)

To this end, it is sufficient to show N−1||Γ̂(2)
` (π0) − ΓR` (π0)||2 →p 0 for some ` ∈ Z. This

follows from (D.39) for the second-step estimator, which holds by the same arguments as in

Step 3 conditioning on the event {r̂(1)
a = ra and r̂

(1)
b = rb}. Following Steps 3 and 4, this

event occurs w.p.a.1.

The result in (D.57) and Step 5 together imply that Pr(Ŝ = 1) → 1 if S0 = 1.

Step 7. When there is no structural instability, i.e., Γ0 = 0, we show

Pr(sup
π∈Π

||Γ̂(2)(π)|| = 0) → 1. (D.58)

Replacing Λ̂ and Γ̂ in the proof of Theorem 1 with Λ̂(2)(π) and Γ̂(2)(π), we have uniform

consistency

N−1/2||Λ̂(2)(π)−Λ∗|| = Opπ(bΛ +C−1
NT ) and N−1/2||Γ̂(2)(π)− Γ∗|| = Opπ(bΛ +C−1

NT ), (D.59)

where bΛ = N1/2(
∑ra

`=1(φ
λ
` )

2)1/2. We have shown bΛ = Op(C
−1
NT ) in (D.30). Revoking the

proof of Theorem 1 with π0 replaced by π, a sufficient condition for (D.58) is

N−1/2C−1
NT = op(φ

γ
` ) for ` = 1, . . . , k, (D.60)

where the left-hand side follows from uniform convergence rate of the criterion function and

the right-hand side is based on the averaging penalty. Following Steps 3 and 4, we know

that the event {r̂(1)
a = ra and r̂

(2)
b = rb} has probability approaching 1. Using βNT (π) =

κ2(π)N−1/2C−d−1
NTb

, we have

φγ` = Eξ[βNT (ξ)ω
γ∗(2)
` (ξ)] ≥ κ2N

−1/2C−d−1
NT Eξ[ω

γ∗(2)
` (ξ)]. (D.61)

Using the formula of ω
γ∗(2)
` (π) in (D.7), for ` > ra,(

ω
γ∗(2)
` (π)

)−1

=
(
ω
γ∗(1)
` (π)

)−1

≤
(
N−1||Γ̃`,LS(π)||2

)d
= Opπ(C

−2d
NT ) (D.62)
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w.p.a.1, where the last equality holds by arguments analogous to (C.55). On the other hand,

for ` ≤ ra,(
ω
γ∗(2)
` (π)

)−1

≤
(
N−1||Ψ̃−

`,LS(π)w(π)− Λ̃`,LS(π)||2
)d

= Opπ(C
−2d
NT ) (D.63)

w.p.a.1, where the equality follows from arguments analogous to (C.63) under Assumption

R∗(i). Combining the results in (D.62) and (D.63), we deduce that

sup
π∈Π

(
ω
γ∗(2)
` (π)

)−1

= Op(C
−2d
NT ) for ` = 1, . . . , k. (D.64)

Thus, for ` = 1, . . . , k,

N−1/2C−1
NT (φγ` )

−1 ≤ κ−1
2 Cd

NT

(
Eξ[ω

γ∗(2)
` (ξ)]

)−1

≤ κ−1
2 Cd

NT

(
inf
π∈Π

(
ω
γ∗(2)
` (π)

))−1

= κ−1
2 Cd

NT sup
π∈Π

(
ω
γ∗(2)
` (π)

)−1

= Op(C
−d
NT ), (D.65)

following from (D.61) and (D.64). The condition in (D.60) follows from (D.65), and it is

sufficient for the desired result. Therefore, if S0 = 0, we have Pr(Ŝ0 = 0) → 1. This completes

the proof. �


