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Abstract

Some technologies save lives — new vaccines, new surgical techniques, safer

highways. Others threaten lives — pollution, nuclear accidents, global warm-

ing, the rapid global transmission of disease, and bioengineered viruses. How

is growth theory altered when technologies involve life and death instead of

just higher consumption? This paper shows that taking life into account has

first-order consequences. Under standard preferences, the value of life may

rise faster than consumption, leading society to value safety over consumption

growth. As a result, the optimal rate of consumption growth may be substan-

tially lower than what is feasible, in some cases falling all the way to zero.
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1. Introduction

Some technologies save lives — new vaccines, new surgical techniques, safer high-

ways. Others threaten lives — pollution, nuclear accidents, global warming, the

rapid global transmission of disease, and bioengineered viruses. How is growth

theory altered when technologies involve life and death instead of just higher con-

sumption?

To begin, consider what might be called a “Russian roulette” theory of economic

growth. Suppose the overwhelming majority of new ideas are beneficial and lead to

growth in consumption. However, there is a small chance that a new idea will be

dangerous and cause substantial loss of life. Do discovery and economic growth

continue forever in such a framework, or should society eventually decide that con-

sumption is high enough and stop playing the game of Russian roulette? How is this

conclusion affected if researchers can also develop life-saving technologies?

This paper shows that taking life and death into account has first-order conse-

quences. The answers to these questions depend crucially on the shape of prefer-

ences. For a large class of conventional specifications, including log utility, the value

of life rises faster than consumption, leading society to value safety over consump-

tion growth. As a result, the optimal rate of consumption growth may be substan-

tially lower than what is feasible, in some cases falling all the way to zero.

This project builds on a diverse collection of papers. Murphy and Topel (2003),

Nordhaus (2003), and Becker, Philipson and Soares (2005) emphasize a range of

economic consequences of the high value attached to life. Murphy and Topel (2006)

extend this work to show that the economic value of future innovations that reduce

mortality is enormous. Weisbrod (1991) early on emphasized that the nature of

health spending surely influences the direction and rate of technical change. Hall

and Jones (2007) — building on Grossman (1972) and Ehrlich and Chuma (1990) —

is a direct precursor to the present paper, in ways that will be discussed in detail

below. Other related papers take these ideas in different directions. Acemoglu and

Johnson (2007) estimate the causal impact of changes in life expectancy on income.

Malani and Philipson (2011) provide a careful analysis of the differences between
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medical research and research in other sectors.

The paper is organized as follows. Section 2 presents a simple version of the

“Russian roulette” model outlined above. The model is interesting in its own right,

but it also serves to introduce the key role that the value of life and the shape of pref-

erences play in the analysis. A limitation of this framework is that it does not recog-

nize that technological change arguably reduces mortality more than it increases it.

Section 3 therefore develops a richer model that features both “standard” ideas that

raise consumption as well as “life-saving” ideas that reduce mortality. This frame-

work allows the growth rate to vary continuously, permitting a careful study of the

mechanisms highlighted in the simple model. Section 4 discusses a range of em-

pirical evidence that is helpful in judging the relevance of these results. Section 5

presents a numerical example illustrating that the asymptotic results of the theory

have similar implications for the transition path, and Section 6 concludes.

2. The Russian Roulette Model

A “Russian roulette” model of growth allows us to see some of the main issues in

this paper in the clearest way. Suppose the overwhelming majority of new ideas are

beneficial and lead to consumption growth. However, there is a small chance that

research will result in a disaster that kills some fraction of the population. What

does growth look like in this setting?

In the economy, a single agent is born at the start of each period and lives for at

most one period. The agent is endowed with some initial stock of knowledge that

generates a consumption level c and has a utility function u(c) = ū + c1−γ

1−γ
. The

parameter ū is a constant that will be discussed in more detail below.

The only decision faced by the agent is whether or not to conduct research. With

some (high) probability 1−π, research leads to a new idea that increases consump-

tion by the growth rate ḡ. With some small probability π, however, the research

results in a disaster that kills the agent. We are free to normalize the utility asso-

ciated with death to any value and therefore choose zero. Finally, if there is no

research, consumption remains constant at the level associated with the original
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stock of knowledge and there is no risk of a disaster.

Expected utility for the two options “Research” and “Stop” is given by:

U Research = (1− π)u(c1) + π · 0 = (1− π)u(c1), c1 = c(1 + ḡ)

U Stop = u(c)

The agent engages in research if U Research > U Stop. This condition is itself amenable

to analysis, but more intuition is available — intuition that sheds light on the richer

model we present later — if we take a first-order Taylor expansion around u(c). Us-

ing the approximation u(c1) ≈ u(c)+u′(c)·(c1−c) = u(c)+u′(c)ḡc, the agent chooses

to undertake research if

(1− π)u′(c)ḡc > πu(c).

This expression has a nice interpretation: the left side is the benefit of engaging in

research and the right side is the cost. For the benefit, with probability 1 − π the

research is successful and increases consumption by the amount ḡ · c, which gets

converted into utility units by the conversion factor u′(c). On the cost side, with

probability π, the research ends in failure and the utility flow u(c) never gets to be

enjoyed.

Rearranging this expression, research occurs as long as

ḡ >
π

1− π
·
u(c)

u′(c)c
. (1)

Because ḡ and π are both parameters, the key variable in this expression is the term

u(c)/u′(c)c. This term has a natural economic interpretion: u(c) is the value of a

period of life in utils, and dividing by u′(c) converts this into consumption units.

Therefore this term is the value of a period of life as a ratio to the level of consump-

tion.

With u(c) = ū+ c1−γ

1−γ
, this value of life expression is

u(c)

u′(c)c
= ūcγ−1 +

1

1− γ
. (2)
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It turns out to be convenient to analyze three cases separately: γ < 1, γ > 1, and log

utility (γ = 1).

2.1. Exponential Growth: 0 < γ < 1

To begin, let’s assume γ < 1 and set ū = 0, as this parameter does not play a cru-

cial role in this case. With these parameter restrictions, the value of life relative to

consumption in (2) is constant and equal to 1/(1 − γ). Substituting back into (1),

research continues forever as long as ḡ is sufficiently large relative to the probability

of a research disaster. In this case, the economy will grow exponentially across gen-

erations, apart from rare disasters. Of course, each generation is also taking a risk,

and occasionally a research disaster kills off a generation before they can enjoy the

utility associated with consumption.1

2.2. The End of Growth: γ > 1

With γ > 1, the constant ū plays an essential role. In particular, recall that we’ve

normalized the utility associated with “death” to be zero: the individual gets u(c) if

she lives and gets zero if she dies. But this means that u(c) must be greater than zero

for life to be worth living. Otherwise, death is preferred to life. With γ > 1, however,

c1−γ

1−γ
is less than zero. For example, this flow is −1/c for γ = 2. An obvious way to

make our problem interesting is to add a positive constant to flow utility, and this

motivates the introduction of ū which represents the upper bound for utility.2

Assuming γ > 1 and ū > 0, notice that the value of life relative to consump-

tion in equation (2) increases with consumption. That is, as each generation gets

richer, life become increasingly valuable relative to consumption. Substituting this

expression back into the research choice in equation (1) then leads to the follow-

ing result: When consumption is small, each generation chooses to engage in re-

1Without using the Taylor series approximation, the exact condition for research to continue is
(1− π)(1 + ḡ)1−γ > 1.

2There exists a value of consumption below which flow utility is still negative. Below this level,
individuals would prefer death to life; see Rosen (1988). This level is very low for plausible parameter
values and can be ignored here. The role of the constant in flow utility is also discussed by Murphy
and Topel (2003), Nordhaus (2003), Becker, Philipson and Soares (2005), and Hall and Jones (2007).
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Figure 1: The Research Decision when γ > 1

Consumption,  c

Utility

0

(1 − π)ū

ū

U research = (1 − π)u(c(1 + ḡ))

U stop = u(c)

c∗

Continue research Stop research

Note: As long as consumption is less than c∗, each generation engages in research. Once
consumption reaches (or exceeds) c∗, even a tiny risk of a research disaster is not worth
taking because life becomes too valuable.

search. However, eventually society becomes sufficiently rich that the gains from

higher consumption growth are outweighed by the risks of a disaster and economic

growth comes to an end.

Without making the Taylor series approximation, this choice can be illustrated

graphically, as in Figure 1, and the same basic conclusion follows: once society

reaches (or exceeds) consumption level c∗, no additional research is undertaken and

growth stops.

2.3. Log Utility

The case of log utility is interesting. Unlike the case of γ > 1, flow utility is un-

bounded in the log case. However, it turns out that growth eventually ceases in this

case as well. The value of life expression in the log case is u(c)/u′(c)c = ū + log c.

So even in this case the value of life rises relative to consumption and the condition
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in (1) for research to continue is eventually violated.3

2.4. Summary of the Russian Roulette Model

The simple model illustrates that a key consideration in the tradeoff between safety

and consumption growth is the value of life relative to consumption. If the value of

life rises more slowly than consumption (γ < 1), then safety considerations fade in

importance and growth continues forever. However, if the value of life rises faster

than consumption, safety considerations become increasingly important over time

and can eventually lead to a cessation of research and consumption growth.

3. Life and Growth in a Richer Setting

The Russian roulette model in the previous section is elegant and delivers intuitive

results for the interaction between safety and growth. However, that setup ignores

the important possibility that research can make the world safer rather than more

dangerous. Medical innovations, anti-lock brakes, and autopilots for airplanes are

examples of technologies that save lives rather than endangering them. The simple

model also treats growth as a “black box.”

In this section, we address these concerns by adding safety considerations to a

standard growth model based on the discovery of new ideas. The result deepens

our understanding of the interactions between safety and growth. For example, in

this framework, concerns for safety can slow the rate of consumption growth from

4% to 1%, for example, but will never lead to a steady-state level of consumption.

The model also highlights the distinction between GDP growth and consumption

growth: here, it is only the latter that is affected.

The model below can be viewed as combining the “direction of technical change”

work by Acemoglu (2002) with the health-spending model of Hall and Jones (2007).

That is, we posit a standard idea-based growth model where there are two types of

ideas instead of one: ideas that enhance consumption and ideas that save lives. The

3Without taking the Taylor approximation, we get the same result: the condition for research to
continue is (1− π) log(1 + ḡ) > π(ū+ log c).
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key allocative decisions in the economy are (i) how many scientists to put into the

consumption versus life-saving sectors, and (ii) how many workers to put into using

these ideas to manufacture goods.

3.1. The Economic Environment

The economy features two main sectors, a consumption sector and a life-saving

sector. On the production side, both sectors are quite similar, and each looks very

much like the Jones (1995) version of the Romer (1990) growth model. In fact, we’ll

purposefully make the production side of the two sectors as similar as possible (i.e.

using the same parameters) so it will be clear where the results come from.

Total production of the consumption good Ct and the life-saving good Ht are

given by

Ct =

(∫ At

0
x

1
1+α

it di

)1+α

and Ht =

(∫ Bt

0
z

1
1+α

it di

)1+α

. (3)

Each sector uses a variety of intermediate goods to produce output with the same

basic production function. The main difference is that different varieties — differ-

ent ideas — are used for each sector: At represents the range of technologies avail-

able to produce consumption goods, while Bt represents the range used to produce

life-saving goods. It might be helpful to think of the zit as purchases of different

types of pharmaceuticals and surgical techniques. But we have in mind a broader

category of goods as well, such as pollution scrubbers in coal plants, seatbelts and

airbags, child safety locks, lifeguards at swimming pools, and warning labels on

cigarettes.

Once the blueprint for a variety has been discovered, one unit of labor can be

used to produce one unit of that variety. The number of people working as labor is

denoted Lt, so the resource constraint for this labor is

∫ At

0
xitdi

︸ ︷︷ ︸

≡ Lct

+

∫ Bt

0
zitdi

︸ ︷︷ ︸

≡ Lht

≤ Lt. (4)

People can produce either goods, as above, or ideas. When they produce ideas,
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we call them scientists, and the production functions for new ideas are given by

Ȧt = Sλ
atA

φ
t and Ḃt = Sλ

btB
φ
t , (5)

where we assume φ < 1. Once again, notice that we assume the same parame-

ters for the idea production functions in the two sectors; this assumption could be

relaxed but is useful because it helps to clarify where the main results come from.

The resource constraints on scientists and people more generally are

Sat + Sbt ≤ St (6)

and

St + Lt ≤ Nt. (7)

That is, Nt denotes the total number of people, who can work as scientists or labor.

In turn, scientists and labor can work in either the consumption sector or the life-

saving sector.

Next, consider mortality. Individuals face a time-varying mortality rate δt. The

probability an agent born at date 0 survives to date t is given by

Mt = e−
∫ t

0
δsds.

Equivalently, the law of motion for this survival probability is

Ṁt = −δtMt, M0 = 1. (8)

This mortality rate is endogenous and can be reduced by purchasing life-saving

goods. An individual who purchases ht ≡ Ht/Nt faces a mortality rate

δt = h−β
t . (9)
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Expected lifetime utility, taking mortality into account, is then

U =

∫ ∞

0
e−ρtu(ct)Mtdt. (10)

See Arthur (1981), Rosen (1988), and Murphy and Topel (2006) for similar formula-

tions of expected utility with time-varying mortality.

As discussed earlier, we specify flow utility as

u(ct) = ū+
c1−γ
t

1− γ
, ct ≡ Ct/Nt. (11)

Flow utility takes a standard form, augmented by a constant ū, which is related to

the overall value of life versus death.4

Finally, for population growth, there are two relatively natural ways to proceed.

One can assume exogenous fertility so that reductions in mortality raise population

growth. Alternatively, one can assume that fertility adjusts so that the rate of popu-

lation growth is exogenously constant. It turns out that the main results go through

in either case. We assume the latter here, so that population growth occurs at a

constant positive rate:5

Ṅt = n̄Nt. (12)

3.2. Allocating Resources

This economic environment features 14 unknowns —Ct,Ht, ct, ht, At, Bt, xit, zit, Sat,

Sbt, St, Lt,Mt, δt — and 11 equations — equations (3) through (9), together with the

definitions for ht and ct (we are not counting lifetime utility, flow utility, and the

exogenous population process in this numeration).

There are, not surprisingly then, three key allocative decisions that have to be

made in the economy, summarized by three allocative fractions st, ℓt, and σt:

1. How many scientists make consumption ideas versus life-saving ideas: st ≡

Sat/St.

4As usual, ρ must be sufficiently large given growth so that utility is finite.
5The working paper version in Jones (2011) considers the former case.
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2. How many workers make consumption goods versus life-saving goods: ℓt ≡

Lct/Lt. (Given the symmetry of the setup, it is efficient to allocate the xit and

the zit symmetrically across varieties, so we will just impose this throughout

the paper to simplify things.)

3. How many people are scientists versus workers: σt ≡ St/Nt.

3.3. A Rule of Thumb Allocation

For reasons that will become clear, it is convenient to begin with a simple “rule of

thumb” allocation, analogous to Solow’s assumption of a fixed saving rate in his

version of the neoclassical growth model.

In particular, we consider the following rule of thumb allocation: st = s̄, ℓt = ℓ̄,

and σt = σ̄, where each of these new parameters is between 0 and 1. That is, we con-

sider putting a fixed fraction of our scientists in each research sector, a fixed fraction

of our workers in each goods sector, and let a fixed fraction of the population work

as scientists.

It is straightforward to show the following result:

Proposition 1 (BGP under the Rule of Thumb Allocation): Under the rule of thumb

allocation where st = s̄, ℓt = ℓ̄, and σt = σ̄, all between 0 and 1, there exists a

balanced growth path such that

g∗A = g∗B =
λn̄

1− φ
(13)

g∗c = g∗h = αg∗A = αg∗B = ḡ ≡
αλn̄

1− φ
. (14)

and

g∗δ = −βḡ, δt → 0 (15)

This is basically the expected outcome in a growth model of this flavor. With

labor allocated symmetrically within the consumption and life sectors, the produc-

tion functions are Ct = Aα
t Lct and Ht = Bα

t Lht. Notice that each production func-

tion exhibits increasing returns to scale measured by α, reflecting the nonrivalry of
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both kinds of ideas. The idea production functions are also symmetric in form. For

instance, Ȧt

At
= Sλ

at/A
1−φ
t . So along a balanced growth path, Sλ

at and A1−φ
t must grow

at the same rate. Since the growth rate of scientists is pinned down by the popula-

tion growth rate, this means the growth rate of At (and Bt) will be as well. Therefore

Bt goes to infinity, which means that the mortality rate δt falls to zero. And so on...

The rule of thumb allocation suggests that this model will deliver a balanced

growth path with ever increasing life expectancy. Moreover, growth is balanced in a

particular way: technical change occurs at the same rate in both the consumption

and life sectors, so the relative price of the consumption and life aggregates is con-

stant. And by assumption, a constant fraction of labor and scientists work in each

sector. Of course, we could have altered some of these results simply by making the

elasticity of substitution or the parameters of the idea production function differ

between the two sectors. But that’s not where we wish to go. For the moment, sim-

ply note that everything is nicely behaved and straightforward in the rule of thumb

allocation.

3.4. The Optimal Allocation

Somewhat surprisingly, our rule of thumb allocation turns out not to be a particu-

larly good guide to the dynamics of the economy under the optimal allocation. In-

stead, as suggested by the “Russian roulette” model at the start of this paper, there

is a sense in which consumption growth is slower than what is feasible because of

a shift in the allocation of resources when diminishing returns to consumption are

sufficiently strong.

There are many interesting questions related to welfare theorems in this type

of model: is a decentralized market allocation efficient? One can imagine various

externalities related to safety, particularly when “existential” risks are under con-

sideration. For now, however, we will put these interesting questions aside. Our

concern instead is with how safety considerations affect the economy even when

resources are allocated optimally.

The optimal allocation of resources is a time path for ct, ht, st, ℓt, σt, At, Bt,Mt, δt
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that maximizes the utility of a representative agent, solving the following problem:

max
{st,ℓt,σt}

U =

∫ ∞

0
Mtu(ct)e

−ρtdt s.t. (16)

ct = Aα
t ℓt(1− σt) (17)

ht = Bα
t (1− ℓt)(1 − σt) (18)

Ȧt = sλt σ
λ
t N

λ
t A

φ
t (19)

Ḃt = (1− st)
λσλ

t N
λ
t B

φ
t (20)

Ṁt = −δtMt, δt = h−β
t (21)

Note that other definitions of “optimal” are possible here; for example the represen-

tative agent here does not care about future generations. The results below would

continue to hold even with altruistic individuals or with a social welfare function

that puts weight on future generations. The “selfish” approach here illustrates that

none of the results come from these additional considerations.

To solve for the optimal allocation, we define the Hamiltonian:

H = Mtu(ct) + pats
λ
t σ

λ
t N

λ
t A

φ
t + pbt(1− st)

λσλ
t N

λ
t B

φ
t − vtδtMt, (22)

where ct = Aα
t ℓt(1 − σt) and δt = h−β

t = (Bα
t (1 − ℓt)(1 − σt))

−β . The costate vari-

ables — pat, pbt, and vt — capture the shadow values of an extra consumption idea,

an extra life-saving idea, and an extra lifetime (resetting M to one) to maximized

welfare.

Using the Maximum Principle and solving the first-order necessary conditions

for the optimal allocation, we can derive several results. The most important of

these is given in the next proposition (proofs are relegated to the appendix).6

6The argument that these first-order conditions characterize the solution is more subtle than usual.
The standard very stringent Arrow/Mangasarian conditions for concavity do not hold for this problem
— nor even for Jones (1995) (despite the fact that they hold for Romer (1990)!). However, Romer (1986)
developed a different approach for growth models with increasing returns, and that approach works
here: one can use the arguments in Romer (1986) to show that there exists a solution to this problem
and show that it is interior. Since the first-order conditions characterize any interior solution and they
identify a unique path here, it must indeed be the solution.
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Proposition 2 (Optimal Growth with γ > 1 + β): Assume that the marginal utility

of consumption falls rapidly, in the sense that γ > 1 + β. Then the optimal alloca-

tion features an asymptotic constant growth path such that as t → ∞, the fraction

of labor working in the consumption sector ℓt and the fraction of scientists making

consumption ideas st both fall to zero at constant exponential rates, and asymptotic

growth is given by7

g∗s = g∗ℓ =
−ḡ (γ − 1− β)

1 + (γ − 1)(1 + αλ
1−φ

)
< 0 (23)

g∗A =
λ(n̄+ g∗s)

1− φ
, g∗B =

λn̄

1− φ
> g∗A (24)

g∗δ = −βḡ, g∗h = ḡ (25)

g∗c = αg∗A + g∗ℓ = ḡ ·
1 + β(1 + αλ

1−φ
)

1 + (γ − 1)(1 + αλ
1−φ

)
< ḡ. (26)

This proposition echoes the key result from the “Russian Roulette” model at

the start of the paper: if the marginal utility of consumption runs into sufficiently

sharp diminishing returns, safety considerations alter the essential nature of opti-

mal growth. While in the earlier setup, it was possible for consumption growth to

cease, the model given here displays a more subtle result.

First, the economy optimally settles down to an asymptotic constant growth

path (one in which all variables grow at constant rates). However, along this path,

consumption grows at a rate that is slower than what is feasible. This can be seen

by comparing the consumption growth rates for the rule of thumb allocation in (14)

and the optimal allocation in (26): when γ − 1 > β, g∗c < ḡ.

Second, the proximate cause of this slower growth is an exponential shift in the

allocation of resources. Both the fraction of scientists and the fraction of workers

engaged in the consumption sector — st and ℓt — fall exponentially over time along

the BGP.

To see how this slows growth, recall the production functions for ideas, writing

7These results, and indeed the results throughout the remainder of this paper, are of the following
form: limt→∞ gct = g∗c , and so on.
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them as follows:
Ḃt

Bt
=

(1− st)
λσλ

t N
λ
t

B1−φ
t

and
Ȧt

At
=

sλt σ
λ
t N

λ
t

A1−φ
t

.

The share 1 − st in the life-saving sector converges to one, leading to the expected

result for gB : since σt is also constant asymptotically, a constant value of Ḃt

Bt
requires

Nλ
t and B1−φ

t to grow at the same rate; therefore g∗B = λn̄/(1 − φ). In contrast, the

share st in the consumption ideas production function falls exponentially toward

zero. The exponential shift of scientists out of this sector means that a constant Ȧt

At

occurs if and only if sλtN
λ
t and A1−φ

t grow at the same rates. But in this case, the

shift of scientists out of the consumption sector leads the numerator to grow more

slowly than λn̄, leading to g∗A = λ(g∗s+n̄)
1−φ

. The negative trend in st slows growth in At

relative to what is feasible with a constant allocation of scientists.

A nice feature of this result is that it makes a clear prediction: we should see the

composition of research shifting over time away from consumption ideas and to-

ward life-saving ideas if the model is correct and if the marginal utility of consump-

tion falls sufficiently fast. We will provide empirical evidence on this prediction later

on in the paper.

To understand the fundamental cause for this structural change in the economy,

consider the following equation, which is the first-order condition for allocating la-

bor between the consumption and life sectors:

1− ℓt
ℓt

= β
δtvt

u′(ct)ct
(27)

The left-side of this equation is just the ratio of labor working in the life sector to la-

bor working in the consumption sector. This equation says that the ratio of workers

is proportional to the ratio of what these workers can produce. In the numerator is

the death rate δt multiplied by the value of a life in utils, vt: this is the total value of

what can potentially be gained by making a life-saving good. The denominator, in

contrast, is proportional to what can be gained by making consumption goods: the

level of consumption multiplied by the marginal utility of consumption to put it in

utils, like the numerator.
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In the analysis of this equation, it turns out to be useful to define ṽt ≡ vt
u′(ct)ct

:

the value of a life in consumption units as a ratio to the level of consumption. This

is the analog to u(c)/u′(c)c in the Russian roulette model where lives last for one

period; in fact, one can show — see equation (37) in the appendix — that the two

are proportional here.

The allocation of workers then depends on the product δtṽt. In fact, as shown

in the appendix, the allocation of scientists depends on exactly this same term —

see equation (36). Over time, the number of deaths that can potentially be avoided,

δt, declines. However, the value of each life rises. When γ > 1, the value of life

rises even as a ratio to consumption, so ṽt rises. Then, it is a race: δt falls at a rate

proportional to β, while ṽt rises at a rate proportional to γ−1. Hence the critical role

of γ−1−β. In particular, when γ is large, as in the proposition we’ve just stated, the

value of life rises very rapidly, so that δtṽt rises to infinity. In this case, the optimal

allocation shifts all the labor and scientists into the life sector: the value of the lives

that can be saved rises so fast that it is optimal to devote ever-increasing resources

to saving lives.

3.5. The Optimal Allocation with γ < 1 + β

What happens if the marginal utility of consumption does not fall quite so rapidly?

The intuition is already suggested by the analysis just provided, and the result is

given explicitly in the next proposition.

Proposition 3 (Optimal Growth with γ < 1 + β): Assume that the marginal utility

of consumption falls, but not too rapidly, in the sense that γ < 1 + β. Then the

optimal allocation features an asymptotic constant growth path such that as t → ∞,

the fraction of labor working in the life sector ℓ̃t ≡ 1− ℓt and the fraction of scientists

making life-saving ideas s̃t ≡ 1 − st both fall to zero at constant exponential rates,

and asymptotic growth is given by

g∗A =
λn̄

1− φ
, g∗B =

λ(n̄+ g∗s̃)

1− φ
< g∗A
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g∗c = ḡ, g∗δ = −βg∗h,

and the exact values for g∗s̃ and g∗h depend on whether γ > 1 or γ ≤ 1.

In particular, if 1 < γ < 1 + β:

g∗s̃ = g∗
ℓ̃
=

−ḡ (β + 1− γ)

1 + β(1 + αλ
1−φ

)
< 0 (28)

g∗h = ḡ ·

(

1 + (γ − 1)(1 + αλ
1−φ

)

1 + β(1 + αλ
1−φ

)

)

< ḡ. (29)

While if γ ≤ 1:

g∗s̃ = g∗
ℓ̃
=

−βḡ

1 + β(1 + αλ
1−φ

)
< 0 (30)

g∗h = ḡ ·

(

1

1 + β(1 + αλ
1−φ

)

)

< ḡ. (31)

This proposition shows that when γ < 1 + β, the results flip-flop. That is, there

is still a trend in the allocation of scientists and workers, but the trend is now away

from the health/life sector and towards the consumption sector. In this case, the

death rate falls faster than the value of life rises. Looking back at equation (27), the

denominator u′(ct)ct rises faster than the numerator: the greater gain is in providing

consumption goods rather than in saving lives. We once again get an unbalanced

growth result, but now it is the consumption sector that grows faster.

3.6. “Interior” Growth when γ = 1 + β

Proposition 4 (Optimal Growth with γ = 1 + β): Assume the following knife-edge

condition relating preferences and technology: γ = 1+β. Then the optimal allocation

features an asymptotic balanced growth path such that as t → ∞, the key allocation

variables ℓt and st settle down to constants strictly between 0 and 1, and asymptotic

growth is given by

g∗A = g∗B =
λn̄

1− φ

g∗c = g∗h =
αλn̄

1− φ
= ḡ, g∗δ = −βḡ.
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This is the one case where growth is “balanced” in the sense that the consump-

tion and life sectors grow at the same rate and labor and scientists do not all end up

in one sector. But, as stated above, this requires a somewhat arbitrary knife-edge

condition relating technology and preferences. The intuition for this knife edge is

that the model features two goods: consumption, whose marginal utility falls at

rate 1−γ, and h, whose marginal utility falls at rate β. Unless these two rates are the

same, the allocation will tilt in one direction or the other.

3.7. Discussion

Several points now merit discussion. First, the results suggest that growth in one

sector is slower than what is feasible. What about overall GDP growth? To answer

this question, one needs to construct a measure of GDP for this two-sector econ-

omy. Per capita GDP is pcc+phh. We choose consumption as our numeraire (pc ≡ 1).

The relative price of h is then easy to obtain in this economy: given that one unit of

labor can produce either Aα units of consumption or Bα units of the life-saving

good, the relative price of h is the marginal rate of transformation (A/B)α.

The growth rate of per capita GDP can then be calculated using the Divisia method,

as a weighted average of the growth rates of c and h, where the weights are the nom-

inal shares of c and h in GDP. Perhaps not surprisingly, it turns out that the share

of consumption in GDP pcc/(pcc + phh) is equal to ℓ, the share of labor working in

the consumption sector. Per capita GDP growth is then ℓgc + (1 − ℓ)gh. But this

means that GDP growth is asymptotically equal to ḡ in all of the three cases above.

Our key result is about the composition of growth, and especially about the growth

rate of consumption relative to what is feasible, rather than being a statement about

overall GDP growth.

Next, notice another important point: the Russian roulette model at the start

of the paper and the richer model developed subsequently lead to slightly different

conclusions. In the Russian roulette model, consumption growth falls to zero when

the marginal utility of consumption diminishes rapidly, while in the richer model

consumption growth is only slowed by some proportion. Why the difference?
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The answer turns on functional forms and modeling choices about which we

have relatively little information. In the Russian roulette model, the mortality rate

depends on the growth rate of the economy rather than on the level of technol-

ogy, and this difference is evidently important. Preserving life there requires the

growth rate to fall all the way to zero. One could enrich the Russian roulette model,

for example by embedding it in a Schumpeterian quality-ladder model like Aghion

and Howitt (1992) where each idea increases consumption by a constant percentage

while having a small risk of a disaster. One could even add a second life-saving tech-

nology to this framework. Nevertheless, since the mortality rate and the growth rate

of consumption would be linked, the logic just provided suggests that consumption

growth would still optimally fall to zero in the case where marginal utility declines

rapidly.

In this sense, the Russian roulette model and the richer model of Section 3 are

complements rather than substitutes. The general result is that concerns for safety

can slow consumption growth, with the precise nature of the slowdown depending

on modeling details.

4. Empirical Evidence

A useful feature of the main model in this paper is that it makes stark predictions

regarding the composition of research. Depending on the relative magnitudes of

γ − 1 and β, the direction of technical change should shift either toward or away

from life-saving technologies. In particular, if γ is large — so that the marginal util-

ity of consumption declines rapidly — one would expect to see the composition

of research shifting toward life-saving technologies, thereby slowing consumption

growth.

In this section, we discuss a range of evidence on β, γ, and the composition of

research. While not entirely decisive, the bulk of the evidence is consistent with the

first case we considered, where there is an income effect for live-saving technologies

and consumption growth is slowed.

Some general caveats should be noted before turning to the evidence. The anal-
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ysis so far has considered an allocation chosen by a social planner. The evidence

below, however, comes from real-world economies that feature a range of institu-

tions, taxes, and imperfections. One can show that simple equilibrium allocations

in our model (e.g. a Romer-style equilibrium with imperfect competition) would

also display trends in allocations in the same cases, but this distinction is still worth

noting. Second, the “life-saving” sector in the model and the “health” sector in the

data are not the same thing. The former includes goods like fences around swim-

ming pools and safer highways, while the latter includes cosmetic surgery and knee

replacements. The overall point of the evidence below is not to test the model but

rather to suggest that the case in which consumption growth is slowed may be em-

pirically relevant.

4.1. The Composition of Research

One might think the main prediction on the composition of research would be an

easy prediction to test: surely there must be readily-available statistics on research

spending by the health sector of the economy. Unfortunately, this is not the case.

The main reason appears to be because both the spending and performance of

health research is done in several different organizations in the economy: indus-

try, government, non-profits, and academia. Thus, the construction of such num-

bers requires merging the results of different surveys, being careful to avoid double

counting, considering changes in the surveys over time, and so on. Between the

1970s and the early 1990s, the NIH undertook this calculation and reported a health

research number. But, unfortunately, I have not been able to find any other source

that does this for the last twenty years.

Figure 2 shows the original NIH numbers for the United States, along with sev-

eral attempts to extend this series to more recent years. Details are discussed in the

Appendix B.8 In addition to the original NIH estimates, Figure 2 shows three other

series. The longest is non-commercial health research from the National Health

Expenditure Accounts of the Centers for Medicare and Medicaid Services (CMMS).

8I am grateful to Raymond Wolfe for guidance and suggestions with these data.

app:data
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Figure 2: The Changing Composition of U.S. R&D Spending
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Note: The graph shows the rise in the share of R&D spending in the United States
that is devoted to health, according to several different measures. See the Data
Appendix for sources and methodology.
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Figure 3: The Changing Composition of OECD R&D Spending
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Note: The trend toward health is apparent in OECD measures of R&D expendi-
tures as well. The OECD estimate reported here includes data from the United
States, Canada, France, Germany, Italy, Japan, Spain, and the United Kingdom.
See the Data Appendix for sources and methodology.

The remaining two series add estimates of commercial research to the CMMS esti-

mate, using two different collections of surveys by the National Science Foundation.

The fact that the NIH series and the CMMS+NSF series coincide during overlapping

years is somewhat reassuring.

Figure 2 indicates that whether we look at non-commericial research or the broader

estimates for total research, the composition of R&D appears to be shifting dis-

tinctly toward health over time. For example, the earliest estimates from 1960 sug-

gest that the health sector accounted for only about 7 percent of all R&D, while the

most recent estimates from 2007 are around 25 percent.

Life-saving technologies are invented around the world, not just in the United

States. Figure 3 uses OECD sources to study how the composition of R&D is chang-

ing internationally. This data is only available since 1991 but tells the same basic

story: the composition of research is shifting distinctly toward health. In 1991,
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around 9 percent of OECD research spending was on health, and this share rose

to 16 percent by 2006. The figure also shows the corresponding share for the United

States (estimated using slightly different assumptions with these OECD sources),

confirming the sharp rise that we saw earlier in Figure 2.

Of course, there are other possible explanations for the changing composition

of research. For example, perhaps the rise in the share of health spending in the

economy is due to other factors, and health research is simply responding to these

factors as well.

4.2. Patents

As an alternative to looking at the inputs to idea production, one can consider the

output. Figure 4 shows the fraction of all patents granted by the U.S. Patent Office

between 1963 and 1999 for medical equipment and pharmaceuticals.9 There are

well-known limitations to using the patent data as a measure of idea production

(e.g. the distribution of patent values is very skewed; see Griliches (1990) for a de-

tailed discussion). However, as one of many pieces of evidence, patents are useful.

The share of patents for medical equipment and pharmaceuticals rises from around

4 percent in 1963 to more than 13 percent in 1999. The dashed line in the figure

shows one alternative cut of the data, restricting the universe to patents by U.S. in-

novators. Similar strong upward trends can be found in other cuts of the data: just

restricting to foreign innovators, or for medical equipment and patents separately.

4.3. Empirical Evidence on β

The parameter β is readily interpreted as the elasticity of the mortality rate with

respect to real health expenditures. A rough estimate for this parameter can be ob-

tained by considering the relative trends in mortality and health spending: this cal-

culation attributes all the decline in mortality to health spending, which is probably

an overestimate given the contribution of other factors to declining mortality.

According to Health, United States 2009, age-adjusted mortality rates fell at an

9These data have been provided by Jeffrey Clemens and are discussed in detail in Clemens (2013).
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Figure 4: The Fraction of Patents for Medical Equipment or Pharmaceuticals
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Note: “Total” refers to all patent grants in the NBER Patent Database. “U.S. only”
restricts the sample to patents granted to U.S. innovators. See Clemens (2013).

average annual rate of 1.2% between 1960 and 2007, while CPI-deflated health spend-

ing rose at an average annual rate of 4.1%.10 The ratio of these two growth rates

gives an estimate for β of 0.291. Hall and Jones (2007) conduct a more formal analy-

sis along these lines using age-specific mortality rates, age-specific health spending,

and allowing for other factors to enter. For people between the ages of 20 and 80,

they find estimates for this elasticity ranging from 0.10 to 0.25. These different esti-

mates suggest that values of β substantially below one are plausible.

4.4. Estimates of γ

Given the estimates for β just reported, life considerations may dominate in the

model if γ is larger than about 1.3. In the most common way of specifying pref-

erences for macro applications, the coefficient of relative risk aversion, γ in our

notation, equals the inverse of the elasticity of intertemporal substitution. Large

10See Tables 26 and 122 of that publication, available at http://www.cdc.gov/nchs/hus.htm.

http://www.cdc.gov/nchs/hus.htm
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literatures on asset pricing (Lucas 1994) and labor supply (Chetty 2006) suggest that

γ > 1 is a reasonable value, and values above 1.5 are quite common in this literature.

Evidence on the elasticity of intertemporal substitution, 1/γ in our notation, is

more mixed. The traditional view, such as Hall (1988), is that this elasticity is well

below one, consistent with the case of γ > 1.3. This view is supported by a range

of careful microeconometric work, including Attanasio and Weber (1995), Barsky,

Juster, Kimball and Shapiro (1997), and Guvenen (2006); see Hall (2009) for a sur-

vey of this evidence. On the other hand, Vissing-Jorgensen and Attanasio (2003)

and Gruber (2006) find evidence that the elasticity of intertemporal substitution is

greater than one, suggesting that γ < 1 could be appropriate.

4.5. Empirical Evidence on the Value of Life

Direct evidence on how the value of life changes with income — another way to

gauge the magnitude of γ — is surprisingly difficult to come by. Most of the em-

pirical work in this literature is cross-sectional in nature and focuses on getting a

single measure of the value of life (or perhaps a value by age); see Ashenfelter and

Greenstone (2004), for example. There are a few studies that contain important

information on the income elasticity, however. Viscusi and Aldy (2003) conduct a

meta-analysis and find that across studies, the value of life exhibits an income elas-

ticity below one. On the other hand, Costa and Kahn (2004) and Hammitt, Liu and

Liu (2000) consider explicitly how the value of life changes over time. These stud-

ies find that the value of life rises roughly twice as fast as income, consistent with a

value of γ around 2.

4.6. Evidence from Health Spending

The key mechanism at work in this paper is that the marginal utility of consump-

tion falls quickly if γ > 1, leading the value of life to rise faster than consumption.

This tilts the allocation in the economy away from consumption growth and toward

preserving lives. Exactly this same mechanism is at work in Hall and Jones (2007),

which studies health spending. In that paper, γ > 1 leads to an income effect: as
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the economy gets richer over time (exogenously), it is optimal to spend an increas-

ing fraction of income on health care in an effort to reduce mortality. The same

force is at work here in a very different context. Economic growth combines with

sharply diminishing marginal utility to make the preservation of life a luxury good.

The novel finding is that this force has first-order effects on the determination of

economic growth itself.

Figure 5 shows international evidence on health spending as a share of GDP. This

share is rising in many countries of the world, not only in the United States. Indeed,

for the 16 OECD countries reporting data in both 1971 and 2010 (many not shown),

all experienced a rising health share.11

4.7. Growth in Health and Non-Health Consumption

The results from our model suggest that, apart from a knife-edge case, the compo-

sition of research will shift toward either the consumption sector or the life-saving

sector. Moreover, at least insofar as the parameters of the idea production function

are similar in those two sectors (and we have no real evidence pushing us one way

or the other on this), the sector that sheds its researchers will grow more slowly in

the long run.

This prediction prompts us to look at the historical evidence on the growth of per

capita consumption for both the health and non-health sectors, respectively. Fig-

ure 6 shows this evidence, taken from the National Income and Product Accounts

for the United States.

The figure shows two lines for each sector, differing according to which price de-

flators are used. The “official” lines report the results using the official BEA deflators

for health and non-health consumption. These results already suggest faster growth

11Acemoglu, Finkelstein and Notowidigdo (2009) estimate an elasticity of hospital spending with re-
spect to transitory income of 0.7, less than one, using oil price movements to instrument local income
changes at the county level in the southern part of the United States. (The instrument helps control
for reverse causality, where poor health may cause lower incomes or where a third factor moves both
health and income.) While useful, it is not entirely clear that this bears on the key parameter here, as
that paper considers income changes that are temporary (and hence might reasonably be smoothed
and not have a large effect on health spending) and local (and hence might not alter the limited selec-
tion of health insurance contracts that are available).
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Figure 5: International Evidence on the Income Effect in Health Spending
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Note: Data are from OECD Health Data 2012 and are reported every 10 years.

in health than in consumption, consistent with the evidence on the composition of

research.

There is ample evidence, however, that serious measurement problems asso-

ciated with quality change plague the construction of these deflators. Triplett and

Bosworth (2000), for example, show that they imply negative labor productivity growth

in the health sector, a finding that rings hollow given the rapid technological ad-

vances in that sector. Many case studies of particular health treatments find that

quality-adjusted prices are actually falling rather than rising relative to the CPI.12

12Cutler, McClellan, Newhouse and Remler (1998) find that the real quality-adjusted price for treat-
ing heart attacks declines at a rate of 1.1 percent per year between 1983 and 1994. Shapiro, Shapiro

and Wilcox (1999) examine the treatment price for cataracts between 1969 and 1994. While a CPI-like
price index for cataracts increased at an annual rate of 9.2 percent over this period, their alternative
price index, only partially incorporating quality improvements, grew only 4.1 percent per year, falling
relative to the total CPI at a rate of about 1.5 percent per year. Berndt, Bir, Busch, Frank and Normand
(2000) estimate that the price of treating incidents of acute phase major depression declined in nomi-
nal terms by between 1.7 percent and 2.1 percent per year between 1991 and 1996, corresponding to a
real rate of decline of more than 3 percent (though over a relatively short time period). Lawver (2011)
obtain similar results using a structural model and more aggregate data.
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Figure 6: Health and Consumption
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Note: The plot shows real per capita consumption expenditures for health and non-health
in the United States. Two different methods are used to deflate nominal expenditures.
The “official” lines are deflated by the price indices constructed by the BEA, which show
more rapid price increases in the health sector. The “pce” lines are both deflated by the
overall deflator for personal consumption expenditures, implicitly assuming that techni-
cal change in the two sectors occurs at the same rate (a conservative assumption given the
general empirical evidence reported in this paper).

The “pce” measures in Figure 6 therefore deflate both nominal health spending and

nominal consumption spending by the overall NIPA deflator for personal consump-

tion expenditures, implicitly assuming rates of technological change are the same

in the two sectors. Of course, given the changing composition of research, even this

correction arguably falls short. Nevertheless, one can see that it suggests a large dif-

ference in growth between the two sectors, with growth in health averaging 4.67%

per year between 1950 and 2009, versus only 1.84% for per capita consumption.

If the economy were already in steady state, the growth rates reported in Fig-

ure 6 would be direct evidence on the magnitude of the “growth drag” — the extent

to which consumption growth is reduced by life considerations relative to what is

feasible. This estimate is substantial: 1.84/4.67 ≈ 0.4, for example, suggesting that
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consumption growth is reduced to only 40% of its feasible rate because of the rising

importance of life.

However, the evidence on the composition of research suggests the economy is

far from its steady state, since the research share is well below one. This evidence

on the growth drag, then, is only suggestive. As the next section shows, one can

calibrate the model to get an estimate of the growth drag that is in the same ballpark

as this historical evidence.

4.8. Calibrating the Growth Drag

We have discussed a range of evidence in this section — the shift in the composition

of research and patenting toward health, empirical estimates of β and γ, how the

value of life changes with income, the rise in health spending as a share of GDP, and

the historical evidence on the growth rates of health spending versus non-health

consumption. While none is entirely decisive, the evidence suggests that the pos-

sibility of an income effect favoring life-saving technologies should be considered

carefully. The case studied in Proposition 2 where γ > 1 + β may be the relevant

one.

Here, we follow this logic and, using a range of parameter values consistent

with the evidence just discussed, report the magnitude of the consumption “growth

drag” that is implied. More precisely, recall that according to Proposition 2, long-

run growth rates in the two sectors are given by

g∗h =
αλn̄

1− φ
= ḡ (32)

g∗c = ḡ ·
1 + β(1 + αλ

1−φ
)

1 + (γ − 1)(1 + αλ
1−φ

)
< ḡ. (33)

That is, when γ − 1 > β, the consumption sector grows more slowly than the health

sector — and more slowly than what is feasible — by a factor that is given in the last

equation.

To estimate this factor, we require estimates of γ, β, and αλ
1−φ

. We’ve already dis-
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Table 1: The Consumption Growth Drag

β = .25 β = .10

αλ
1−φ

γ = 1.5 γ = 2 γ = 1.5 γ = 2

0.50 0.79 0.55 0.66 0.46

1.00 0.75 0.50 0.60 0.40

2.00 0.70 0.44 0.52 0.33

Note: The table reports the ratio of gc to gh in steady state according to Proposition 2
for various values of the parameters. That is, it reports the factor by which consump-
tion growth gets reduced because of the trend in the research share. The factor is

1+β(1+ αλ
1−φ

)

1+(γ−1)(1+ αλ
1−φ

)
. The mean across the various estimates is 0.56.

cussed evidence on the first two of these above. Notice from equation (32) that the

last is just given by the factor by which the long-run growth rate of the health sector

is “marked up” over the rate of population growth. Estimates of this factor for the

economy as a whole are discussed in Jones and Romer (2010); a broad but plausi-

ble range for this factor is [1/2, 2]; larger values would simply make the growth drag

even more dramatic.

Table 1 reports estimates of the “growth drag” factor in equation (33). These

factors range from a low of 0.33 to a high of 0.79, with the mean value equal to 0.56.

That is, according to the mean value, long-run growth in the consumption sector is

only 56% of its feasible rate in the optimal allocation. It would be feasible to keep

the research shares constant and let consumption grow much faster, but the rising

value of life means this is not optimal.13

This growth drag calculation illustrates a deeper conceptual point about the

model. The standard interpretation of semi-endogenous growth models (like this

13Stokey (1998) and Brock and Taylor (2005) document a related “growth drag” associated with en-
vironmental considerations. In these papers, pollution enters the utility function as a cost in an addi-
tively separable fashion from consumption. These models feature an income effect for γ > 1 because
the utility from growing consumption is bounded. This leads to a “growth drag” from the environ-
ment: consumption growth is slower than it would otherwise be because of environmental concerns.
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one) is that conventional policies cannot affect the long-run growth rate. However,

that is incorrect in this case. Policies that alter the rate at which the consumption

sector sheds researchers can change the magnitude of the growth drag and hence

affect the long-run growth rate of consumption.

5. Numerical Results for Transition Dynamics

The analysis so far suggests that consumption growth in the long-run may be sub-

stantially less than what is feasible. However, this is an asymptotic result. To see

how relevant this is to an economy away from the steady state, we solve the model

numerically.

We choose parameter values, including β and γ, to target several stylized facts

for the U.S. economy. In particular, we seek to find a year t0 in which the value of

a year of life as a ratio to per capita consumption is 3.5 (e.g. a value of a life year of

$125,000 and per capita consumption of $36,000), in which per capita GDP growth

is 2 percent, and in which 25 percent of research scientists work in the life sector.

This leads to β = 0.6006 and γ = 2.6953; details of the solution method and other

parameter values are given in Appendix C.

This exercise should not be viewed as a formal calibration designed to replicate

the U.S. data. There are many reasons for this. First, the model is based on the opti-

mal allocation, but there are ample reasons to doubt that the U.S. allocation — with

various institutions such as Medicare and the National Institutes for Health, with

market failures in the health system — is optimal. Second, there are too many pa-

rameters of the model, such as the parameters of the two idea production functions,

that we do not have good information about. Finally, the mapping between the data

and the model is imprecise. What counts as research according to the NSF is much

narrower than what an economist would count as research, and the health sector in

the data is only a rough match to the life sector in the model. Instead, it is best to

view the numerical exercise as an illustration of the basic transition dynamics that

are possible in this framework.

Figure 7 show the key allocation variables, and Figure 8 shows various growth
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Figure 7: The Allocation along the Transition Path
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Note: t0 = 66 corresponds to “today.” Key parameter values are γ = 2.6953, β = 0.6006,
ū = .001, λ = .5377, δT = .0002, and φ = 5/6. See Appendix C for the details of the
numerical solution.

rates along the transition path. In these figures, the date t0 = 66 corresponds to the

U.S. economy today, and a period represents a year.

Consider first the allocation variables shown in Figure 7. The fraction of re-

search scientists working in the consumption sector, s, starts extremely close to 100

percent, as does the fraction of workers in the consumption sector, ℓ. Recall that

this latter variable also equals the consumption share of GDP. Both s and ℓ decline

steadily in this calibration, asymptoting to zero. In the year t0 = 66, we have s = .79

and ℓ = .64, corresponding to a 21 percent share of researchers in the life sector and

an optimal “life” share of GDP of 36 percent.

The other allocation shown in the figure is σ, the fraction of the population op-

timally engaged in research. From an intial value of around 10 percent, this fraction

rises to its steady state value of 28 percent.

Figure 8 shows various growth rates along the transition path, including the

growth rate of per capita GDP. Several key features of the growth figure stand out.
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Figure 8: Growth Rates along the Transition Path
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Note: See Figure 7.

First, the growth rate of per capita GDP in year t0 is 1.9 percent per year. This rate

is in turn an average of a consumption growth rate of 1.6 percent and a life-sector

growth rate of 2.2 percent.

While the growth rate of h substantially exceeds the growth rate of c in the early

years of the simulation, it is interesting to notice that the reverse is true for the rates

of technological change. That is, gAt is much faster than gBt initially. The life sector

grows rapidly at first because more and more people are shifting to work in that

sector, not because of faster technological change. The relative price of h is therefore

actually rising for the first 130 years of the numerical example, much like it is in the

official U.S. data.

Turning now to the long run, notice that the long-run feasible growth rate of

both sectors is ḡ = 3.2 percent. The life sector achieves this growth rate in the long-

run, as does per capita GDP since the life share goes to one. In contrast, the long-run

growth rate of the consumption sector is just 1.3 percent. So this numerical example

features a rising growth rate of per capita GDP as the economy shifts toward the life
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sector, but a declining growth rate of (non-health) consumption per person.

As discussed in the appendix, other qualitatively different transition dynamics

are possible in this model, depending on parameter choices. What this numerical

example shows is one possibility in which the parameter values are chosen to target

a few key moments in the data.

6. Conclusion

Technological progress involves life and death, and augmenting standard growth

models to take this into account leads potentially to first-order changes in the the-

ory of economic growth. This paper explores these possibilities, first in a simple

“Russian roulette” style model in which new ideas can rarely cause disasters and

then in a richer model that features two kinds of ideas, those that increase con-

sumption and those that save lives. The results depend somewhat on the details

of the model and, crucially, on how rapidly the marginal utility of consumption de-

clines. It may be optimal for consumption growth to continue exponentially despite

the presence of life-and-death considerations. Or it may be optimal for consump-

tion growth to slow substantially relative to what is feasible, even potentially leading

to a steady-state level of consumption.

The intuition for these results turns out to be straightforward. For a large class of

standard preferences, safety is a luxury good. The marginal utility associated with

more consumption on a given day runs into sharp diminishing returns, and en-

suring additional days of life on which to consume is a natural, welfare-enhancing

response. When the value of life rises faster than consumption, economic growth

leads to a disproportionate concern for safety. This concern can be so strong that it

is desirable that consumption growth be restrained.

This paper suggests a number of different directions for future research on the

economics of safety. It would clearly be desirable to have precise estimates of the

value of life and how this has changed over time; in particular, does it indeed rise

faster than consumption? More empirical work on how safety standards have changed

over time — and estimates of their impacts on economic growth — would also be



LIFE AND GROWTH 35

valuable. Finally, the basic mechanism at work in this paper over time also applies

across countries. Countries at different levels of income may have very different

values of life and therefore different safety standards. This may have interesting im-

plications for international trade, standards for pollution and global warming, and

international relations more generally.

A Appendix: Derivations and Proofs

This appendix contains outlines of the proofs of the propositions reported in the

paper.

As a prelude to these propositions, we first consider the optimal allocation prob-

lem in equations (16) through (21). Using the Hamiltonian in (22) and applying the

Maximum Principle, the first-order necessary conditions for a solution are

1− st
st

=
pbtḂt

patȦt

(FOC: s)

1− ℓt
ℓt

= βδt ·
vt

u′(ct)ct
(FOC: ℓ)

σt
1− σt

=
λ(patȦt + pbtḂt)

Mt(u′(ct)ct + βδtvt)
(FOC: σ)

ρ =
v̇t
vt

+
1

vt
[u(ct)− vtδt] (FOC: M )

ρ =
ṗat
pat

+
1

pat

[

Mtu
′(ct)α

ct
At

+ patφ
Ȧt

At

]

(FOC: A)

ρ =
ṗbt
pbt

+
1

pbt

[

pbtφ
Ḃt

Bt
+ αβvtMt

δt
Bt

]

(FOC: B)

plus the three standard transversality conditions.

It will be convenient, for reasons discussed in the main text, to define

ṽt ≡
vt

u′(ct)ct
.
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This variable denotes the ratio of the value of life to consumption per person.

Proof of Proposition 2. Optimal Growth with γ > 1 + β

The essence of the result is that the key allocation variables st and ℓt decline

exponentially to zero at a constant rate. This exponential shift of scientists toward

the life sector slows the growth rate of consumption ideas. To derive the result, we

use the various first order conditions for the optimal allocation.

1. Look back at the first-order condition characterizing the allocation of scien-

tists, equation (FOC: s). To solve for this allocation, we need to solve for the

relative price of ideas, pb/pa. From equations (FOC: A) and (FOC: B), we have

pat =
αMtu

′(ct)ct/At

ρ− gpat − φgAt
and pbt =

αβMtvtδt/Bt

ρ− gpbt − φgBt
. (34)

A condition on the parameter values (basically that ρ is sufficiently large) keeps

the denominators of these expressions positive.

This means that the relative price satisfies

pbtBt

patAt
= βδtṽt ·

ρ− gpat − φgAt

ρ− gpbt − φgBt
. (35)

2. Substituting this expression into (FOC: s) yields

1− st
st

= βδtṽt ·
ρ− gpat − φgAt

ρ− gpbt − φgBt
·
gBt

gAt
. (36)

Recall from (FOC: ℓ) that 1−ℓt
ℓt

= βδtṽt, so both of these key allocation variables

depend on δtṽt, that is, on the race between the decline in the mortality rate

and the possible rise in the value of life relative to consumption. The next

several steps characterize the behavior of δtṽt, which we will then plug back

into this expression.
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3. First, consider ṽt. Using (FOC: M ), we obtain

ṽt =

u(ct)
u′(ct)ct

ρ+ δt − gvt
. (37)

This is a key expression: the value of life in the economy (as a ratio to con-

sumption) depends crucially on the extra utility that person enjoys. The de-

nominator essentially converts this flow dividend into a present discounted

value.

4. Now recall that given our CRRA form for flow utility,

u(ct)

u′(ct)ct
= ūcγ−1

t +
1

1− γ
.

Since γ > 1, along an asymptotic balanced growth path where ct → ∞,

gṽ = (γ − 1)gc (38)

as long as δt converges to some constant.

5. Now let’s guess that the solution for the asymptotic balanced growth path

takes the following form: st and ℓt fall toward zero at a constant exponential

rate, while σt → σ∗ and nt → n̄. We’ll see that the key condition delivering this

result will be γ > 1 + β.

6. Under this proposed solution, consumption growth is

gc = αgA + gℓ = αgA + gs (39)

where the last equality comes from observing that along our proposed asymp-

totic BGP, gℓ = gs since both st and ℓt are inversely proportional to δtṽt —

see (36) above.

7. A number of other growth rates follow in a straightforward way from the var-

ious production functions. Most important of these is the growth rate of At.
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Recall Ȧt = sλt σ
λ
t N

λ
t A

φ
t and Ḃt = (1− st)

λσλ
t N

λ
t B

φ
t . The exponential decline in

st will then crucially distinguish the growth rates of At and Bt, since 1− st → 1

will be asymptotically constant, while st falls exponentially. Therefore, taking

logs and derivatives of these equations, their asymptotic growth rates must

satisfy

gA =
λ(n̄+ gs)

1− φ
and gB =

λn̄

1− φ
. (40)

8. Combining (38), (39), and (40), gives

gṽ = (γ − 1)

(
αλ(n̄ + gs)

1− φ
+ gs

)

. (41)

9. So to get the growth rate of δtṽt, we now need an expression for gδ. Recall

δt = (Bα
t (1− ℓt)(1 − σt))

−β . Since 1− ℓt converges to one while σt → σ∗,

gδ = −αβgB . (42)

10. Now, finally, look back at (36) and consider the asymptotic growth rate of each

side of the equation. Along our proposed balanced growth path, 1 − st con-

verges to one, so its growth rate converges to zero. The share st falls exponen-

tially, leading the left side to grow, while the right side of the equation grows

as δtṽt. Using our last two results in (41) and (42), taking growth rates of (36)

gives

−gs = −αβgB + (γ − 1)

(
αλ(n̄+ gs)

1− φ
+ gs

)

. (43)

Solving for gs then gives

gs =
−αgB(γ − 1− β)

1 + (γ − 1)(1 + αλ
1−φ

)
. (44)

Under our key assumption that γ > 1+β, this solution for gs is negative, as we

conjectured earlier.

11. For completeness, one can also solve for σ∗, the share of the population that

becomes scientists. Using (FOC: σ) and making some natural substitutions,
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we find
σ∗

1− σ∗
=

αλgB
ρ− gpb − φgB

where, from (34), gpb = −(1 + αβ)gB . This means that

σ∗

1− σ∗
=

αλgB
ρ+ (1− φ+ αβ)gB

. (45)

Proof of Proposition 3. Optimal Growth with γ < 1 + β

The first part of the proof follows exactly what we did earlier in proving Proposi-

tion 2. In particular, steps 1 through 3 are identical.

4. Here things start to change, depending on whether γ ≤ 1 or 1 < γ < 1 + β.

Notice that
u(ct)

u′(ct)ct
= ūcγ−1

t +
1

1− γ
.

If γ ≤ 1, this ratio (the value of a year of life relative to consumption) will

converge to a constant as ct → ∞, whereas if γ > 1, the ratio will grow to

infinity. This turns out not to matter very much in what follows. In particular,

we will focus on the γ > 1 case below, so that

gṽ = (γ − 1)gc. (46)

(To consider the case where γ < 1, simply replace the (γ−1) terms below with

a zero, reflecting the appropriate value of gṽ.)

5. Now we guess that the solution for the asymptotic balanced growth path takes

the following form: s̃t ≡ 1 − st and ℓ̃t ≡ 1 − ℓt fall toward zero at a constant

exponential rate, while σt → σ∗ and nt → n̄. That is, the allocation of scientists

and workers shifts away from life and toward the consumption sector.

6. Under this proposed solution, consumption growth is

gc = αgA (47)
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while growth of the life-saving aggregate is

gh = αgB + gℓ̃ = αgB + gs̃. (48)

The last inequality comes from noting that gℓ̃ = gs̃ from step 2 in the proof of

Proposition 2; see the discussion surrounding equation (36) above. In fact, it

is helpful to repeat that equation here, written in terms of the tilde variables:

s̃t
1− s̃t

= βδtṽt ·
ρ− gpat − φgAt

ρ− gpbt − φgBt
·
gBt

gAt
. (49)

7. A number of other growth rates follow in a straightforward way from the var-

ious production functions. Most important of these is the growth rate of Bt.

Recall Ȧt = (1− s̃t)
λσλ

t N
λ
t A

φ
t and Ḃt = s̃λt σ

λ
t N

λ
t B

φ
t . The exponential decline in

s̃t will then crucially distinguish the growth rates of At and Bt, since 1− s̃t → 1

will be asymptotically constant, while s̃t falls exponentially. Therefore, taking

logs and derivatives of these equations, their asymptotic growth rates must

satisfy

gA =
λn̄

1− φ
and gB =

λ(n̄+ gs̃)

1− φ
. (50)

8. Combining (46), (47), and (50), gives

gṽ = (γ − 1)ḡ. (51)

9. So to get the growth rate of δtṽt, we now need an expression for gδ. Recall

δt = (Bα
t ℓ̃t(1 − σt))

−β . Therefore, gδ = −β(αgB + g
ℓ̃
). Using this and the fact

that g
ℓ̃
= gs̃ gives

gδ = −β

(
αλ(n̄+ gs̃)

1− φ
+ gs̃

)

. (52)

Combining (51) and (52) leads to

gδ + gṽ = −(1 + β − γ)ḡ − βgs̃

(

1 +
αλ

1− φ

)

. (53)
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10. Now, look back at (49) and consider the asymptotic growth rate of each side of

the equation. Along our proposed balanced growth path, 1 − s̃t converges to

one, so its growth rate converges to zero. The share s̃t falls exponentially, while

the right side of the equation grows with δtṽt. Using our last several results

in (51), (52), and (53) gives

gs̃ = −(β + 1− γ)ḡ − βgs̃

(

1 +
αλ

1− φ

)

. (54)

Solving for gs̃ then gives

gs̃ =
−ḡ (β + 1− γ)

1 + β(1 + αλ
1−φ

)
. (55)

Under our key assumption that γ < 1+β, this solution for gs̃ is negative, as we

conjectured earlier.

11. Substituting this result into (48) then gives the growth rate of the life-saving

aggregate:

g∗h = ḡ ·

(

1 + (γ − 1)(1 + αλ
1−φ

)

1 + β(1 + αλ
1−φ

)

)

< ḡ. (56)

Proof of Proposition 4. Optimal Growth with γ = 1 + β

The proof here is straightforward and follows from the earlier proofs. For exam-

ple, since γ = 1 + β, one can see from equation (44) that gs = 0. The key growth

rates of the economy are then equal to ḡ immediately.

B Data Appendix

This appendix describes the construction of the data on the fraction of R&D expen-

ditures associated with health. Two separate efforts are made, one using U.S. data

and the other using OECD data. These are discussed in turn.
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B1. United States

Several main sources are used to construct the US data underlying Figure 2. A

spreadsheet available from the data section of my web page called NSF-AllYears-IndustrialRND.xls

contains the detailed calculations.

First, for the years 1971 to 1993, various issues of the NIH Data Book report a

time series for the key variable in which we are interested: the fraction of R&D re-

lated to health. In particular, we use the NIH Data Books for 1982, 1989, and 1994,

splicing together these series during overlapping years to construct our first mea-

sure of health R&D. Unfortunately, these data do not appear to be available online,

so I used physical copies of the data books.

Our other measures are obtained from a more involved calculation using the

following sources:

• Centers for Medicare and Medicaid Services, National Health Expenditure Ac-

counts, 1960–2009. This data source provides an extensive account of health

expenditures, including a “research” category. However, because the purpose

is to provide an accounting of health expenditures, the research category only

includes non-commercial research. As stated on page 26 of National Health

Expenditure Accounts: Definitions, Sources, and Methods 2009,

Research shown separately in the NHEA is that of non-profit or gov-

ernment entities. Research and development expenditures by drug

and medical supply and equipment manufacturers are not shown

in this line, as those expenditures are treated as intermediate pur-

chases under the definitions of national income accounting; that is,

the value of that research is deemed to be recouped through product

sales.

• National Science Foundation IRIS data, 1953–1998, Table H-25. From this

source, we obtain “Company and other (except Federal) funds for industrial

R&D performance, by industry” for 1953–1998. In particular, we sum three in-

dustries to get commercial health research: “drugs and medicines” (SIC 283),

http://www.stanford.edu/~chadj/NSF-AllYears-IndustrialRND.xls
https://www.cms.gov/nationalhealthexpenddata/02_nationalhealthaccountshistorical.asp
http://www.nsf.gov/statistics/iris/start.cfm
http://www.nsf.gov/statistics/iris/excel-files/historical_tables/h-25.xls
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“health services” (SIC 80), and then a fraction of “optical, surgical, photo-

graphic, and other instruments” (SIC 384-387). This fraction is equal to 0.569,

which is obtained by using the average ratio of health R&D on “medical equip-

ment and supplies” for 1997 and 1998 (the two overlapping years) from our

next source.

• National Science Foundation, Research and Development in Industry, vari-

ous issues (2000, 2002, 2003, 2004, 2005). This source reports “Company and

other nonfederal funds for industrial R&D performance” for various years us-

ing the NAICS industry classification. We sum three industries to get commer-

cial health research: Pharmaceuticals and medicines (3254), Medical equip-

ment and supplies (3391), and Health care services (621-623). Raymond Wolfe

kindly provided the 2006 and 2007 versions of this data.

• Finally, total spending on R&D is obtained from the National Science Founda-

tions, National Patterns of R&D Resources: 2008 Data Update, which reports

data for 1953–2008.

Notice that our measures of commericial/industry R&D exclude federal funds

but do include non-profit or state and local funding for R&D. This may result in

some double counting. The comparison of the NIH Data Book numbers to those

that I construct from the NSF sources suggests that this is not a large problem —

see Figure 2 in the paper.

B2. OECD

The OECD (and US) data underlying Figure 3 are taken from the OECD iLibrary. A

spreadsheet available from the data section of my web page called STAN-HealthRND.xls

contains the detailed calculations.

Two sets of data from the OECD iLibrary are used:

• Government budget appropriations or outlays for RD: This source provides

government spending on R&D for health and overall from 1981 to 2007 in cur-

rent PPP-adjusted US dollars.

http://www.nsf.gov/statistics/industry/
http://www.nsf.gov/statistics/natlpatterns/
http://www.stanford.edu/~chadj/STAN-HealthRND.xls
http://dx.doi.org/10.1787/strd-data-en
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• STAN R&D Expenditure in Industry (ISIC Rev. 3) ANBERD ed2009: This source

provides spending on R&D by industry. Because of a relatively limited industry

breakdown, our health measure is the sum of spending in the pharmaceutical

industry (C2423) and 0.5 times the spending in the “medical, precision and

optical instruments” industry (C33); this weight of 0.5 is obviously arbitary

but was suggested by calculations using the U.S. sources discussed earlier.

From this data, we calculate the health share of R&D for both the United States

and for a set of OECD countries. For government R&D, our OECD aggregate in-

cludes the United States, the United Kingdom, France, Germany, Italy, Japan, and

Canada. For some reason, the industry data for France and the United Kingdom are

not available, so these countries are not included in the industry component.

C Appendix: Solving the Model Numerically

The transition dynamics of the optimal allocation can be studied as a system of six

differential equations in six “state-like” variables that converge to constant values:

st, ℓt, σt, δt, yt, and zt. These variables, their meaning, and their steady-state values

are displayed in Table 2.

Letting a “hat” denote a growth rate, the laws of motion for these state-like vari-

ables are

ŝ = αz(1− ℓ) λ
1−λ

· 1−σ
σ

(

1− ℓ
1−ℓ

· 1−s
s

· y
z

)

ℓ̂ = θℓ(➀+θσω)
1−ωγθσ

σ̂ = θσ(➁ + γℓ̂)

δ̂ = −αβz + βℓ̂ · ℓ
1−ℓ

+ βσ̂ · σ
1−σ

ŷ = λ(n̄+ ŝ+ σ̂)− (1− φ)y

ẑ = λ(n̄− ŝ · s
1−s

+ σ̂)− (1 − φ)y

http://stats.oecd.org/Index.aspx?DataSetCode=ANBERD_REV3
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Table 2: Key Variables for Studying Transition Dynamics

Variable Meaning Steady-State Value

st Share of scientists in the

consumption sector

s∗ = 0

ℓt Share of workers in the

consumption sector

ℓ∗ = 0

σt Scientists’ share of the

population

σ∗ = αλgB
ρ+(1−φ+αβ)gB

δt Mortality rate δ∗ = 0

yt ≡ gAt Growth rate of At y∗ = gA

zt ≡ gBt Growth rate of Bt z∗ = gB

where the following definitions have been used

θℓ = 1−ℓ
γ−(γ−1−β)ℓ

θσ = 1
1−λ+ γσ

1−σ

➀ = αβz + βδũ · ℓ
1−ℓ

− ρ− δ − (γ − 1)y

➁ = ρ+ δ + (1− λ)ŝ · s
1−sλ

n̄+ (γ − 1)y − αλz(1−ℓ)
1−s

· 1−σ
σ

We solve the system of differential equations using “reverse shooting”; see Judd

(1998, p. 355). That is, we start from the steady state, consider a small deviation, and

then run time backwards. To determine parameter values, we proceeded as follows

1. To get the deviation from steady state, we first select a mortality rate δT (we

end up choosing δT = .0002).

2. Next, we find the values of sT and ℓT that minimize the distance between ŝT ,

ℓ̂T , and σ̂T from their balanced growth path values — gs for the first two, and

zero for σ̂.

3. Given choices for the parameter values, we can then use the reverse shooting
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method to get a candidate path.

4. We use “fminsearch” in matlab to find values for ū, β, γ, and λ that minimize

the weighted sum of squared deviations between a selection of moments and

a set of preferred values. These moments and values are given below:

(a) Given a candidate path, we first find the year t∗ such that ũ(t∗) is the clos-

est to 3.5. That is, we find the year in which the value of a year of life as

a ratio to consumption is closest to 3.5. This corresponds, for example,

to a value of a year of life of 125 thousand dollars and a consumption per

person of 36 thousand dollars, roughly consistent with the U.S. today.

(b) Our first moment is ũ(t∗) compared to 3.5.

(c) Our second moment is s(t∗) compared to 75 percent, motivated by Fig-

ure 2 suggesting that around 25 percent of research is for health.

(d) Our final moment is the growth rate of GDP in the year t∗, for which the

target value is 2 percent.

5. Depending on the initial guess for these parameter values, this process finds

different “local” optima, in part because the year t∗ is free to move around.

I changed the weights on the various moments and also considered differ-

ent values of φ from the set {1/4, 1/2, 3/4, 5/6} to hunt for the best overall

fit. The results reported in the main text use the following parameter values:

γ = 2.6953, β = 0.6006, ū = .001, λ = .5377, δT = .0002, φ = 5/6, ρ = .02, α = 1.

6. In general, two kinds of results emerged from this exercise. The first is what is

shown in the main text, where the growth rate of A falls while the growth rate

of B rises. For values of φ other than 5/6, one often finds values of s(t∗) that

were very close to 1 rather than close to 0.75. The other main dynamic that I

found featured growth rates of A and B that started near zero and then rose

over time. In these results, it was easy to get s(t∗) ≈ 0.75 but was hard to get

GDP growth around 2 percent in the same year.
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