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Abstract
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1 Introduction

To many, the word “fraternities” brings to mind images of beer, parties and fun. Yet, frater-

nity membership also enters prominently the job seeking process of many students: resumes

often devote scarce space to highlighting a student’s society memberships in addition to the

standard information about education, work experience, awards, etc. This suggests that

fraternity membership helps employers evaluate a person’s productivity. On first impres-

sion it is not clear why fraternity or sorority membership should matter for labor market

outcomes. In particular, while fraternities make significant time demands — members must

spend considerable time picking up trash on highways, raising money for charitable causes,

and so on — these activities appear largely unrelated to skill development for future careers.

Nonetheless, fraternities draw many applicants who eagerly spend money and devote time

to these activities, and employers seem to weigh membership information positively.

We develop a theory of fraternity membership and filtering by firms that makes sense

of these observations. Students are distinguished by a fraternity socializing value and their

productivity as a worker. Fraternities value both the future wages generated by members

and their socializing values. Firms combine information in noisy signals about student pro-

ductivities with fraternity membership status to set wages. To emphasize the key economic

forces, we suppose that fraternity socializing values are not directly valued by firms and also

that they are uncorrelated with worker productivities. We further assume away all stan-

dard club features for fraternities as in Buchanan [1965], so that there are no consumption

spillovers due to the presence of other students. So, too, we assume away any networking

services that a fraternity might provide. As a result, the fraternity membership statuses of

other students only affect job market outcomes for a given student via the equilibrium beliefs

that firms form about the distribution of abilities of fraternity members and non-members.

We first identify sufficient conditions for fraternity membership not to matter for job mar-

ket outcomes. In particular, we show that if the signal that firms receive about a student’s

productivity is either perfectly informative or perfectly noisy, then equilibrium wages do not

depend on a student’s fraternity membership. As a result, whether a student rushes a fra-



ternity depends only on his fraternity socializing value. If signals are perfectly informative,

fraternities trade off between productivity and socializing value in admission, but a student’s

wage will equal his known productivity, rendering membership irrelevant for labor market

outcomes. If, instead, signals are perfectly noisy, a fraternity would like to commit to exclud-

ing low ability students with high socializing value, and to accepting high ability students

with low socializing value. However, with perfectly noisy productivity signals, firms have no

source other than fraternity membership for evaluating a student’s ability, so that fraterni-

ties weigh only socializing values in admission. As a result, fraternity membership conveys

no information to firms about ability, so that wages do not hinge on fraternity membership.

In sum, we show that for fraternity membership to affect job market outcomes, firms

must receive signals about a student productivities that are noisy, but not perfectly so.

Then, because more productive students tend to earn higher wages, fraternities trade off be-

tween productivity and fraternity socializing values when deciding which pledge applicants

to accept. In particular, fraternities accept students with low socializing values who are suf-

ficiently able. Students may face a different type of trade off—more able students may incur

a labor market cost from joining a fraternity, as their fraternity membership may lump them

in with intermediate quality students, making it harder for the able students to distinguish

themselves in the eyes of firms. In such a situation, sufficiently more able students may be

reluctant to pledge fraternities.

We then turn to a three-signal setting in which we can explicitly solve for the multiple

equilibria that emerge in the fraternity game. We identify three types of equilibria: (a) an

“empty fraternity” equilibrium in which no student applies to the fraternity, supported by

beliefs of firms that any student who joins the fraternity is especially lacking in ability; (b) a

“single-peaked” equilibrium in which most fraternity members have intermediate abilities—

less able students apply, but are rejected unless they have high fraternity socializing values,

while very able students who do not have very high fraternity socializing values do not apply;

and (c) an equilibrium in which employer beliefs about the abilities of fraternity members

are more optimistic—so that fraternity membership would increase the expected wage of

each student type. In these latter two equilibria, relatively low ability students expect higher

wages if they gain fraternity membership than if they do not; while in the second equilibrium,

but not the third, higher ability students may anticipate lower wages if they join. That is, fra-

2



ternity membership may taint labor market outcomes for high ability students, but not low.

We return to a more general signal framework, in which we only assume that the con-

ditional distribution of ability signals that firms receive satisfies the monotone likelihood

ratio property—more able students are more likely to generate higher signals. We then pro-

vide gross sufficient conditions for non-trivial equilibria to have the single-peaked feature.

In particular, these sufficient conditions imply that the wage premium due to fraternity

membership declines with ability—the lowest ability fraternity members always receive a

particularly large wage premium, as their membership ensures that they are separated away

from all lower ability types, and are mixed in with relatively higher proportions of more able

types, while high ability types gain less (or lose) from being mixed in with less able fraternity

members. The single-peaked equilibrium then emerges, due to the filtering by fraternities of

low ability students, and, when membership costs are of an appropriate magnitude relative

to socializing values, the reluctance of high ability students to join.

Finally, we investigate whether equilibria of our three-signal model are consistent with

actual practice. To do this, we obtain data on the distributions of cumulative GPAs of

seniors at the University of Illinois for fraternity members and non-members. We find that

the percentage of students with a given GPA who are fraternity members is a sharply single-

peaked function of GPA. This relationship indicates that the data are inconsistent with

both pure signaling and pure screening theories, as well as with basic networking theories in

which ability and networking are either substitutes or complements in the wage-generation

process. Such explanations predict a monotone relationship between GPA and the fraction

of students with that GPA who are fraternity members.

We then show that even with a simple three signal structure, the equilibrium of our model

in which most fraternity members have intermediate abilities—where high ability students

are tainted by membership in fraternities—can generate a distribution over the probability

of membership conditional on ability that closely mirrors the distribution over the probabil-

ity of fraternity membership conditional on GPA found in the data. We back out plausible

estimates of primitives—the time costs of fraternity participation, and the tradeoffs of both

students and fraternity between socializing values and future wages. We use these estimates

to derive how the presence of the fraternity affects the welfare of different student types.
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We next review the literature and then provide a brief overview of fraternities. In section

2 we develop our model and analysis. Section 3 considers a three signal setting. Section 4

returns to a general setting and provides sufficient conditions for all non-trivial equilibria to

exhibit the hump-shaped pattern that we find in the data. Section 5 provides our empirical

analysis of fraternities. Section 6 concludes. Some proofs are in an appendix.

1.1 Related Literature

Our model and analysis is closest to the endogenous statistical discrimination literature,

which focuses on the costly signaling actions that privately-informed individuals may take

to influence the hiring decisions of firms. Moro and Norman [2004] consider a setting in

which individuals choose whether to make a costly investment in education, when firms re-

ceive noisy signals of that investment.1 They show how a productivity-irrelevant aspect such

as racial identity can affect investment choices if firms believe that one population is more

likely to invest. In particular, they show that multiple equilibria can exist, one where beliefs

do not depend on race, and one where they do.2 Austen-Smith and Fryer [2005] consider

a setting in which a “peer group” generates additional utility from leisure for its members,

and this drives members to shift time allocation toward less education, which leads to lower

wages. Those who are rejected by the peer group study more, “acting white”. Fang [2001]

considers a variant in which firms interpret participation in an irrelevant activity as a signal

that the agent has a low investment cost, and assign agents who signal to the job where such

investment is productive (see also Fang [2006]).

In contrast to this literature, our environment features three active strategic players—

students, fraternity and firms—and rather than information being conveyed to firms via

signaling by students, it is conveyed by equilibrium outcome of the application/acceptance

game between students and the fraternity. Thus, the information content of fraternity mem-

bership is determined by the equilibrium of the game played between the fraternity and

different student types, where both the students and the fraternity take into account that

1See Coate and Loury [1993], Fang and Norman [2006] and Norman [2003] for related models.
2Mailath, Samuelson, and Shaked [2000] develop a related search model in which firms choose which

populations to search, and each population makes investments in skills based on beliefs about firm search
intensities. Again, asymmetric search intensities can give rise to asymmetric investment choices in two
otherwise identical populations.
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the fraternity membership outcomes are observed by a third party, the firm. Most crucially,

this means that ours is not a signaling model in the classical sense of Spence [1973]. To see

this, recognize that if the fraternity were not to weigh ability in its admissions, then fraternity

membership would not convey any information about ability, and hence not affect wages.

Moreover, one of our central propositions shows that when the fraternity does weigh ability

in admissions and admits sufficiently few students, then conditional on a given socializing

value, the net benefit of fraternity membership is monotonically decreasing in ability.

Even though, in equilibrium, the unconditional wage of fraternity members exceeds those of

non-members, the standard single-crossing property of signaling could not be more violated.

The single-peak nature of the equilibrium in our economy is not just a consequence of the fact

that firms receive two pieces of information (fraternity membership and exogenous signals of

ability), but rather it is due to the filtering out by fraternities of most low ability applicants

(who apply in large numbers), combined with the increasing reluctance of higher ability stu-

dents to apply. Thus, despite the added analytical challenges associated with information

transmission to firms being generated by a game between two active agents, we show how this

strategic interaction matters, and generate sharp predictions about equilibrium behavior.

Our economy also differs from this signaling literature in several other key aspects. Fra-

ternity membership is endogenous and observed, but is not productivity-enhancing; while

in the statistical discrimination literature, race is exogenous, and investment is unobserved,

but productivity-enhancing. Moreover, in contrast to the signaling literature, in our model

for fraternity membership to influence labor market outcomes, firms must also have access

to additional information about a worker’s ability.

1.2 Fraternities and Sororities

To ease presentation, we drop gender differences and refer to both fraternities and sororities

as “fraternities”. The first club-like fraternity with a centralized organization was Kappa

Alpha Society, founded in 1825. For a history and current status of fraternities, see Anson

and Marchesani [1991].

Fraternities require pledge applicants to submit extensive information about themselves:

their school GPA, recommendations, interests and useful skills. Fraternities devote far more
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time to evaluating applicants than do potential employers. In particular, almost all fraternity

applicants are interviewed, and applicants take part in an extensive series of activities during

the evaluation process. For example, Sigma Chi requires a potential member to spend one

year working for the fraternity before the pledge. This suggests that fraternities are well-

situated to evaluate a pledge applicant’s ability, so that fraternity membership can provide

firms with valuable information.

Fraternities rely on membership fees and donations to fund activities. A substantial share

of a fraternity’s income comes from alumni donations. Because high income alumni donate

more, fraternities care about the future job market outcomes of members. An indication of

the value that fraternities place on productive members is that GPA-based stipends to frater-

nity members are widespread. Fraternities frequently reject pledge applicants. Conversely,

many highly-productive students choose not to apply to fraternities. Finally, students almost

never join more than one fraternity. This reflects both secrecy issues (secret handshakes, for

example, allow one member to verify the membership status of others), and because frater-

nity activities are quite time-consuming.

2 The Fraternity Game

Students. There is a measure 1 of students. A student is fully described by his future

employment productivity θ and his fraternity socializing value, µ. Students have separable

preferences over income and fraternity membership: a non-member’s payoff corresponds to

his expected net lifetime income, M , and a fraternity member with socializing value µ derives

utility

M + nµ,

where n > 0 is the weight that students place on socializing values. M equals the student’s

expected lifetime future wage minus the monetary value c of the time costs of fraternity

service activities. Note that to sever all links with the club-good literature, we assume away

any externalities from the socializing values of other fraternity members. So, too, to ensure

that there is no direct link between productivity and membership, we assume that θ and µ

are uncorrelated in the population. That is, the density over θ and µ is

h (θ, µ) = hθ(θ)hµ(µ),
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where the bounded supports of θ and µ are given by[θ, θ̄] and [µ, µ̄], respectively, and θ and µ̄

are both positive. The associated cdf is H, and the measure m, used in some proofs, is based

on H. We emphasize that while we believe that socializing skills and productivity may be

correlated in practice, we assume such correlation away in order to highlight the impact of

application decisions by students and filtering by fraternities on the equilibrium distribution

of abilities in the fraternity.3

Fraternity. There is a single representative fraternity that chooses which “rush” applicants

to admit. The fraternity cares about both the future market wages that its members will ob-

tain, and the socializing values of its members. For simplicity, we assume that the fraternity

has separable linear preferences over wages and socializing values, so that the fraternity’s

payoff from members (θ, µ) in the set C of fraternity members is given by

∫

(θ,µ)∈C

[W1Eθ̃
(wC(θ̃|θ)) +W2µ]h(θ, µ)dθdµ,

where W1 > 0 and W2 ≥ 0 are the weights that the fraternity places on wages and socializing

values of its members.

We assume that the fraternity is limited by space constraints to admitting at most a mea-

sure Γ of students: in practice, a fraternity house has a limited number of bedrooms. This

means that the fraternity trades off between µ and θ in admission—trading off future higher

contributions from more able and hence wealthier alumni against their social contribution.

Our analysis is qualitatively unaffected by alternative model formulations that preserve

the fraternity’s incentive to trade-off between socializing values and ability in admissions.

For example, qualitatively identical outcomes emerge if the fraternity did not face a space

constraint, but instead cared about the average socializing value of its members (say due

to externalities), in addition to the future wages that members earn. So, too, outcomes are

qualitatively unaffected if the fraternity, rather than facing a space constraint, incurred costs

that were a convex function of the measure of members (say due to cramming more students

into each room), or if the fraternity cared about the market value of the time contributions

of its members.

3Obviously, if social skills and productivity are positively correlated in the population, and the fraternity
values social skills, then this exogenous correlation will lead to fraternity members receiving higher wages
than non-members; we wanted to avoid building this result trivially into our model. We assume away any
network services that a fraternity might provide for the same reason.
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Firms. After graduation, students are employed by firms. We assume that several risk-

neutral firms make simultaneous wage offers to students. The firms do not observe an

individual student’s productivity θ or fraternity socializing value µ. However, firms do ob-

serve whether a student is a member of a fraternity. Firms also observe a common signal θ̃

about the student’s productivity θ, where θ̃ is distributed according to Fθ̃ (·|θ). More able

students are more likely to generate higher signals: Fθ̃(θ̃|θ) is strictly decreasing in θ for all

(θ, θ̃) with Fθ̃(θ̃|θ) ∈ (0, 1). Competition drives firms to offer each individual a wage equal

to his expected productivity given his fraternity membership status and ability signal, θ̃.

There are four stages to our “fraternity rush” game. At stage one, each student type (θ, µ)

decides whether to apply for fraternity membership. We let a(θ, µ) be an indicator function

taking on the value 1 if student type (θ, µ) applies, and taking on the value 0 if the student

type does not apply. We sometimes use the set A = {(θ, µ)|a(θ, µ) = 1}. At stage 2, the fra-

ternity chooses which applicants to accept. We let bA(θ, µ) be an indicator function taking on

the value 1 if, given the set of applicants A, the fraternity would admit a student type (θ, µ)

who applied, and taking on the value 0 otherwise. We use BA = {(θ, µ)|bA(θ, µ) = 1} to rep-

resent the set of admitted student types. Then, the set of fraternity member types is CA =

{(θ, µ)|a(θ, µ)bA(θ, µ) = 1}, and the set of nonmembers is C̄A = {(θ, µ)|a(θ, µ)bA(θ, µ) = 0}.

At stage 3, firms see whether an individual is a fraternity member, and they see a noisy

signal of his ability, but do not observe their types—firms must form beliefs about which

student types actually join the fraternity. Let ρF (θ, µ) denote firm beliefs about fraternity

membership for each type (θ, µ), where ρF (θ, µ) = 1 if firms believe type (θ, µ) is a member

of the fraternity, and ρF (θ, µ) = 0 if not. Finally, wC(θ̃) denotes the wage of a fraternity

member who emits the signal θ̃, and wC(θ̃) denotes the wage of a non-member who generates

signal θ̃. At stage 4, a worker with productivity θ produces output with value θ.

Equilibrium. An equilibrium is a collection of functions, {a∗(θ, µ), b∗A(θ, µ), w
∗
C(θ̃), w

∗
C
(θ̃)}

and firm beliefs ρ∗F (θ, µ) such that

i) Students optimize: a∗(θ, µ) = 1 if E[w∗
C(θ̃)|θ] + nµ− c ≥ E[w∗

C
(θ̃)|θ]; 0 otherwise. We

let A∗ be the associated set of fraternity applicants.

ii) For every A the fraternity optimizes: B∗
A solves

8



Problem 1

max
BA

∫

(θ,µ)∈A∩BA

[W1E[w∗
C(θ̃)|θ] +W2µ]h(θ, µ)dθdµ (1)

subject to m(A ∩ BA) ≤ Γ.

iii) wages are competitive given beliefs by firms ρ∗F (θ, µ):

w∗
C(θ̃) =

∫
C
θh(θ, µ)ρ∗F (θ, µ)fθ̃(θ̃|θ)dθdµ∫

C
h (θ, µ) ρ∗F (θ, µ) fθ̃(θ̃|θ)dθdµ

; w∗
C
(θ̃) =

∫
C
θh (θ, µ) (1− ρ∗F (θ, µ))fθ̃(θ̃|θ)dθdµ∫

C
h (θ, µ) (1− ρ∗F (θ, µ)) fθ̃(θ̃|θ)dθdµ

.

iv) Firm beliefs are consistent with choices of student types and fraternity: For a.e. (θ, µ),

ρ∗F (θ, µ) = a∗(θ, µ)b∗A (θ, µ).

Off-equilibrium path characterizations are not intrinsically interesting, and to ease presen-

tation, we only characterize equilibrium path outcomes. Moreover, measure zero perturba-

tions of the fraternity’s acceptance set BA∗ are uninteresting—any measure zero perturbation

to BA∗ is also part of an equilibrium, so we focus on a best response of the fraternity that is a

good set, i.e., a set BA∗ that is equal to the closure of its own interior. Also observe that it is

almost immediate that equilibria to our single fraternity game are also equilibria to a multi-

fraternity game in which the ability/socializing value composition of applicants to each frater-

nity is the same, and hence the fraternities tradeoff in the same way between µ and θ in admis-

sion.4 Finally, to simplify notation, we omit the A∗ index on the equilibrium acceptance set.

We begin by providing conditions under which fraternity membership has no effect on

labor market outcomes.

Proposition 1 Suppose that firms either receive perfect signals about students, i.e., θ̃ = θ,

a.e., θ, or firms receive perfectly uninformative signals, Fθ̃(·|θ) = Fθ̃(·|θ
′), for all θ, θ′. Then,

in equilibrium, a student’s wage does not depend on whether he is in the fraternity or not,

i.e., wC(θ̃) = wC(θ̃), for all θ̃. Hence, a student type (θ, µ) applies for membership in the

fraternity if and only if nµ− c ≥ 0.

4For example, with 2 fraternities, each with capacity Γ

2
, it is an equilibrium for each fraternity to set the

same acceptance set, and for students who will be admitted to fraternities in equilibrium, to divide their
applications between fraternities in such a way that the distributions of ability and socializing values of
accepted students are the same at both fraternities, and for firms to set wages consistently with such behavior.
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Figure 1: Equilibrium with Completely Informative Signals.

Suppose signaling is perfect. Then wC(θ̃) = wC̄(θ̃) = θ̃ = θ (a.e.). Optimization by stu-

dents then implies that a student type (θ, µ) applies if and only if nµ− c ≥ 0, independently

of θ. In contrast to students, the fraternity selectively admits higher θ applicants who will

earn higher wages. In particular, the fraternity trades off between µ and θ in admission; let-

ting µB(θ) denote the boundary of the admission set, indifference implies that the boundary

has slope dµB(θ)
dθ

= −W1

W2
. Figure 1 illustrates the equilibrium. The solid line is the fraternity’s

equilibrium cutoff rule—all types to the right of the line who apply are accepted, while all

those to the left are rejected. The vertical dashed line represents the accept-or-reject line

of students—student types to the right apply in equilibrium, i.e., are in the set A. Hence,

the equilibrium set C of fraternity members consists of those types to the right of both the

dashed and solid lines, and the measure of the set C is at most Γ.

If, instead, signals are completely uninformative, then all individuals receive the same

wage, wC(θ̃) = wC̄(θ̃) = E[θ]. A fraternity would like to commit to excluding low θ stu-

dents with high socializing values µ, and to accepting high θ students with low socializing

values. However, since firms have no source other than fraternity membership for evaluating

a student’s ability, all fraternity members must receive the same wage. But then, given any
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beliefs that firms hold about the abilities of fraternity members, the fraternity’s optimal

admission policy only depends on µ, admitting a type (θ, µ) if and only if µ exceeds some

critical cutoff. Hence, fraternity membership conveys no information to firms about θ. As a

result, in equilibrium, both fraternity and non-fraternity members receive wage E[θ]. Since

wages do not depend on membership, it follows that only students with nµ ≥ c apply. Figure

2 illustrates this uninformative signal case.
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Figure 2: Equilibrium with Completely Uninformative Signals.

Although we do not explore it further, the case of completely uninformative signals about

abilities highlights the gains that fraternities may achieve from an ability to commit to their

admission policies. In particular, the fraternity would like to commit to excluding low ability

students who have moderately high socializing values, and to accepting high ability students

with lower socializing values. In practice, imperfect commitment devises that fraternities use

include having university officials report the average GPA of members, and having the Greek

council forbid fraternity participation to students with GPAs below some standard. This

commitment induces a fraternity to weigh ability in admission, raising wages of members,

and thereby raising the fraternity’s payoff.
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The central implication of Proposition 1 is that for fraternity membership to affect job

market outcomes, firms must receive signals about student productivities that are noisy, but

not perfectly so. Then, because more productive students tend to earn higher wages, fra-

ternities value both productivity and fraternity socializing value, and will tradeoff between

the two in admission. We now examine the choice problems of students and the fraternity

in more detail.

2.1 Student’s Problem

Students compare the expected payoffs from being a fraternity member and not, taking into

account both the consequences for expected wages, and his fraternity socializing value. Op-

timization implies that a student type (θ, µ) applies for fraternity membership if and only if

Eθ̃

[
wC(θ̃)|θ

]
+ nµ− c ≥ Eθ̃

[
wC(θ̃)|θ

]
. (2)

That is, a student applies to the fraternity either to obtain higher expected wages, or be-

cause his fraternity socializing value µ is sufficiently high.5 The following result follows

straightforwardly.

Proposition 2 If a(θ, µ) = 1, then a(θ, µ′) = 1, for all µ′ > µ.

Proof. The expected wages of individuals (θ, µ) and (θ, µ′) are the same, but a type (θ, µ′)

student gains strictly more utility from joining the membership.

Corollary 1 The equilibrium supply of fraternity applicants is summarized by a continuous

function µA(θ) such that a type (θ, µ) student applies if and only if µ ≥ µA(θ).

Proof. The result follows because expected wages of fraternity and non-fraternity members

are continuous in θ. Therefore, student payoffs and hence choices are continuous in expected

wages.

5If (2) holds, then student type (θ, µ) applies even if he expects to be rejected by the fraternity. If
students face positive costs of applying, then to reconcile the observation that some students apply, but
are not admitted, one must integrate additional uncertainty/noise, so that a student does not always know
whether he or she will be admitted. Such uncertainty complicates presentation and analysis, while providing
limited benefits. Accordingly, we abstract away.
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2.2 Fraternity’s Problem

In any equilibrium, the fraternity offers membership to the set of students B that solves

Problem 1. The sets A and B implicitly define the set of fraternity members C = A∩B and

the set of nonmembers C. Since the fraternity’s payoff is increasing in the socializing values

of its members, we have

Proposition 3 For almost all (µ, θ) in A
⋂

B, almost all types (θ, µ′) with µ′ > µ also

belong to B.

Proof. See the appendix.

We next show that we can extend this characterization to establish that the fraternity

also wants to admit students who are more able as long as expected wages are increasing

in θ; and expected wages are increasing in θ if wC(θ̃) is increasing in θ̃. As a preliminary

step, we present an implication of the MLRP property on signals (see Milgrom [1981]) for

equilibrium wages.

Lemma 1 Assume that f(θ|θ̃) > 0 on [θ, θ̄], and that f(θ|x) satisfies the MLRP property.

Fix a set D ⊂ Θ × Θ̃ with P (θ̃ = k|θ̃ ∈ D) < 1 for all signals k. Let Q(θ̃) = E(θ|θ̃, D) be

a firm’s estimate of ability given signal θ̃ and set D. Then from the perspective of a student

with ability θ, his expected wage Eθ̃[Q(θ̃)|θ,D], increases with his ability θ.

Proof. See the appendix.

Proposition 4 Suppose that the signals that firms receive about student abilities have the

MLRP property. Then for almost all (θ, µ) if b(θ, µ) = 1, we have b(θ′, µ) = 1 for almost all

θ′ > θ.

Proof. By Lemma 1, the expected wage Eθ̃[wC(θ̃)|θ] is an increasing function of θ. The

logical construction of Proposition 3 then applies.

Propositions 3 and 4 pin down the attributes of the set B of student types that the fra-

ternity would admit. For example, if every student whom the fraternity would want to admit

applies, then B is defined by a negatively-sloped curve in (θ, µ) space, µB(θ): The fraternity
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Figure 3: Unconstrained admissions set B.

admits almost every student type above (Proposition 4) and to the right (Proposition 3) of

this curve (see Figure 3), i.e., B = {(θ, µ)|µ ≥ µB(θ)}, and C = A
⋂

B. Both µA(θ) and

µB(θ) are continuous in θ, reflecting the continuity of expected wages in θ.

More generally, for almost all θ where the fraternity’s admission decision is not con-

strained by student application, i.e., for almost all θ with µB(θ) > µA(θ), the fraternity

trades off linearly between expected wage and fraternity socializing value in admission. That

is, for θ1, θ2 with µB(θj) > µA(θj), j = 1, 2, we have

W1E(wC(θ̃)|θ1) +W2µ(θ1) = W1E(wC(θ̃)|θ2) +W2µ(θ2).

That is, marginal contributions of these marginal types, (θ1, µB(θ1)) and (θ2, µB(θ2)) are

equal.6

2.3 Existence of equilibrium

We first characterize when the “empty fraternity” is an equilibrium. In this “Groucho Marx”

equilibrium, the fraternity would accept anyone who applies, but no one applies because firms

6This result extends if we relax the structure on the fraternity’s preferences, so that preferences over aggre-
gate wages and socializing values are non-linear, W (m(EwC(θ̃)),m(µ|C)). Then, the appropriate marginal
derivatives, W1,W2, evaluated at the aggregates, describe the indifference relationship for the fraternity.
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believe that anyone who joins the fraternity has low ability θ and hence would be given wage

wC(θ̃) = θ. If no one joins the fraternity, then someone who generates signal θ̃ receives

wage wC̄(θ̃) = E[θ|θ̃]. Let w = Eθ̃[wC̄(θ̃)|θ] be the wage that a student with lowest ability θ

expects if he does not join the fraternity in this scenario.

Proposition 5 Suppose that the signaling technology has a full support property, f(θ|x) >

0, ∀x. Then an equilibrium exists with A = C = ∅ if and only if nµ̄− c ≤ w − θ.

Proof. See the appendix.

If nµ̄ − c ≤ w − θ, then pessimistic firm beliefs can support the empty fraternity equi-

librium. However, if the inequality does not hold, then sufficiently inept students with high

socializing values would prefer to join the fraternity because they also expect to receive low

enough wages outside the fraternity that the maximum wage cost from joining the fraternity

is more than offset by their high socializing values.

We next prove that an equilibrium always exists to this fraternity game, establishing a

fixed point to a mapping from conjectured optimal student application and fraternity admis-

sion choices by firms to the best responses to those conjectures by students and fraternities.

To do so, we exploit Propositions 2 and 4 and consider continuous student and fraternity

choice functions µA(·) and µB(·), where a student type (θ, µ) is a member of the fraternity

if and only if µ ≥ max{µA(θ), µB(θ)}. Existence of equilibrium then follows from standard

fixed point theorems.

Proposition 6 An equilibrium exists to the fraternity game.

Proof. See the appendix.

3 Three Signal Economy

To provide insight into the possible nature of equilibria to this fraternity game, we next

consider an economy in which student productivities and fraternity socializing values are

uniformly distributed on the unit square, i.e., (θ, µ) are uniformly distributed on [0; 1]×[0; 1],

and students generate one of three possible signals, θ̃ ∈ {H,M,L}. This structure allows
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us to obtain explicit solutions for equilibrium outcomes. We will return to a more general

signal and attribute distribution framework in the next section.

Here, we suppose that more able students with θ > 0.5 generate either medium or high

signals, where the probability of a high signal is linearly increasing in ability; and that less

able students with θ < 0.5 generate either low or medium signals:

Prob (H|θ) = 2θ − 1, θ >
1

2
and 0 otherwise.

Prob (L|θ) = 1− 2θ, θ <
1

2
and 0 otherwise.

Prob (M |θ) = 1− Prob (L|θ)− Prob (H|θ) .

This signal technology obviously satisfies the MLRP property. Its central feature is that

a student with θ < 0.5 hopes to get lucky and receive a medium signal, and thereby be

indistinguishable from a student with θ > 0.5 who unluckily receives a medium signal.

Let wC(θ̃) be the wage that a fraternity member who generates signal θ̃ receives and

wC̄(θ̃) be the wage that a non-member who generates signal θ̃. The expected wage of a

student with ability θ who joins the fraternity is

E
(
wC

(
θ̃
)
|θ
)
= wC (H)Prob (H|θ) + wC (M)Prob (M |θ) + wC (L)Prob (L|θ) .

An analogous expression describes wages of students who are not fraternity members.

The piecewise linear structure of the signaling technology implies that the expected wage

functions are piecewise linear in θ with a single kink at θ = 1
2
. It follows that the boundary

describing the set of students that the fraternity would admit, where not limited by students’

application decisions, is also linear with a kink at θ = 1
2
. Since the difference in wages of

fraternity members and non-members is linear with a kink at θ = 1
2
, the boundary of the set

of applicants to the fraternity, µA (θ), is also linear with a kink at θ = 1
2
. Therefore, the set of

fraternity members, {(µ, θ)|µ ≥ max{µA(θ), µB(θ)}}, is described by a continuous piecewise-

linear function from [0, 1] to [0, 1] that has one or two kinks, where one kink is at θ = 0.5,

and the other (if it exists) is at the intersection of the fraternity and student cutoff rules.

One equilibrium is obviously the “empty fraternity”, but there are also more interesting

equilibria. In particular, given Γ, we search for (i) an equilibrium in which the boundary

µA(θ) of A is everywhere to the left of the boundary µB(θ) of B, i.e., where every student
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that the fraternity would want is admitted and (ii) an equilibrium in which µA(θ) and µB(θ)

intersect, so the piecewise-linear function describing the frontier of the set of fraternity mem-

bers has two kinks. This latter equilibrium is described by a system with thirteen unknowns

(the slope and intercepts of the three lines plus the intersection point of the student and fra-

ternity frontier, plus six wages) and thirteen equations (6 equations from the firm’s problem

— wages equal expected skill given signal realization and membership status, 4 equations

from the fraternity and 3 equations from the students). We solve this system numerically

for the associated equilibrium outcome, when it exists.
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Figure 4: Application-unconstrained equilibrium.

In our base parameterization, student utilities are M + nµ, with n = 0.18, student time

costs of participating in the fraternity are c = 0.09, the fraternity trades off between wages

and socializing value according to W1

W2
= 1.1, and the fraternity’s capacity is Γ = 0.35. Figure

4 illustrates the unique “application-unconstrained” equilibrium. In this equilibrium firms

have optimistic beliefs about the productivities of fraternity members, so that given any

signal emitted by a student, his wage is higher if he is a member of a fraternity than if he

is a non-member. As a result, in this equilibrium every student whom the fraternity would

like to admit chooses to apply—and, indeed, because wC(H) = 0.8480 > wC(H) = 0.8143,

only very productive people with especially low socializing values choose not to apply (and
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Figure 5: Application constrained fraternity game equilibrium.

while less productive students apply, most are rejected).

However, for exactly the same parameterization, there is also an “application constrained”

equilibrium in which some students whom the fraternity would like to admit do not apply.

Figure 5 depicts this equilibrium: the solid line denotes the fraternity’s cutoff rule, and

dashed line denotes locus of students who are indifferent between joining the fraternity and

not. In this equilibrium, firms hold more pessimistic beliefs about the abilities of fraternity

members, so that higher ability students are more reluctant to join the fraternity. Inter-

mediate quality students remain eager to join, and the fraternity’s composition is radically

shifted to reflect this population. Comparing the fraternity’s cutoff line in Figure 4 with that

in Figure 5 reveals that the fraternity is less “picky” when its choice set is constrained by

the reluctance of able students to apply. Because able types θ = 1 expect lower wages inside

the fraternity than out, wC(H) = 0.7940 < wC̄(H) = 0.8555, the fraternity attracts only a

small fraction of able students, and the bulk of its members have intermediate abilities.

Figure 6 presents the expected wage that a student with ability θ would receive as a fra-

ternity member and non-member for these two equilibria. Notice the crossing of wages in the

application-constrained equilibrium. This reflects that while all lower ability student receive

higher wages as fraternity members, higher θ students in the application-constrained equi-
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Figure 6: Equilibrium Wages. The solid line is the expected wage of a fraternity member
(as a function of θ), and the dashed line is the expected wage of a nonmember.

librium accept a direct loss in wage by joining the fraternity, for which they are compensated

by high socializing values.

Note that in the application-unconstrained equilibrium, were we to increase Γ slightly,

then all existing members of the fraternity would still apply, and the fraternity’s payoff would

be increased. This observation implies that were we to replace the fraternity’s capacity con-

straint with a strictly convex cost function of admitting more members, the fraternity would

admit more members when beliefs of firms about member abilities are optimistic, thereby

encouraging able students to apply.

Figure 7 reveals how the fraternity’s capacity affects equilibrium outcomes. Interest-

ingly, raising capacity can raise the wages of able fraternity members. Essentially, when

Γ is increased, the mix of students that the fraternity admits shifts slightly toward more

able students with lower socializing values, i.e., toward students with higher θs and lower

values of µ. But this raises the expected wages of able students who join the fraternity. But

then, able students are more willing to join—there is a significant increase in the measure of

able students who apply to the fraternity. Notice also that as Γ increases, the slope of the

boundary characterizing the application decision of less able students with θ ∈ [0, 1
2
] changes.

This result reflects a change in the relative slope of wage functions: when, among students

with θ ∈ [0, 1
2
], most of those with relatively high productivities are in the fraternity, then

receiving the signal M and being outside the fraternity has a smaller premium than being
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Figure 7: Application-constrained equilibrium for different capacities; arrows denote the
intersection of fraternity’s and students’ choices in corresponding equilibrium.

in the fraternity and getting signal M (relative to receiving signal L in both cases).

4 Single-peaked Equilibria

Our three-signal setting shows that one possible equilibrium fraternity composition (see e.g.,

Figure 5) is where membership is a single-peaked function of student ability. Empirically (see

Figure 8), we will see that conditioning on student ability, among sufficiently able students,

the percentage who are members is a declining function of ability. This makes it important to

understand when and how the single-peaked equilibrium emerges in a more general setting,

and, in particular, to ensure that it is not the three-signal setting that underlies the single-

peaked characteristic. Accordingly, we now identify sufficient conditions for membership to

be a single-peaked function of student ability in every non-trivial equilibrium.

We say that an equilibrium set of fraternity members is single-peaked if:

1. A ∩ B 6= B and A ∩ B 6= ∅.

2. The students’ acceptance threshold µA(θ) is increasing in θ for (θ, µA(θ)) ∈ B.
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The first condition says that there are students who would be accepted by the fraternity,

(θ, µ) ∈ B, but choose not to apply. When the fraternity only values the future wages of its

members, the first condition always holds as long as the costs c of joining are neither too

small (possibly negative) that even the students with the lowest socializing values want to

join, nor so large that even the students with the highest socializing values do not want to

join. When the fraternity also values the socializing values of its members by enough that

it does not accept the most able student with the least socializing value, then the necessary

lower bound on c is higher.

We begin by showing that if the wage premium from membership in the fraternity falls

with higher signals (recall, for example, Figure 6), then more able students are more reluctant

to join the fraternity.

Lemma 2 If wC(θ̃) − wC̄(θ̃) is a decreasing function of θ̃ then the students’ acceptance

threshold µA(θ) is an increasing function of θ.

Proof. See the Appendix.

We next establish conditions under which the single-peaked equilibrium emerges even

when the fraternity only cares about the wages of its members, and not their socializing

values. Then, it follows that the fraternity admits every students whose ability exceeds some

cutoff, θ0, and further that as capacity Γ falls, θ0 rises. We make two weak assumptions. The

first technical assumption says that the support for signals is non-degenerate, and the second

simply says that the cost of membership is such that students with the highest socializing

value want to join, but those with the lowest socializing value do not.

Assumption 1 Either the support for signals θ̃ is finite, or the support of fθ̃(θ̃|θ̄) is non-

trivial.

Assumption 2 The cost c of joining the fraternity satisfies

nµ+ θ̄ − E[θ] < c < nµ̄+ θ̄ − E[θ].

Proposition 7 Suppose that Assumptions 1 and 2 hold and the fraternity does not care

about the socializing values of its members. Then when the fraternity is small enough, the
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equilibrium is single-peaked. That is, there exists a Γ > 0, such that for all Γ < Γ, in every

non-trivial equilibrium, fraternity membership is a single-peaked function of student ability.

Proof. See the appendix.

The role of Γ̄ is to provide a gross sufficient condition for a declining wage premium for

fraternity membership—it ensures that the fraternity is sufficiently picky. The lowest ability

fraternity members always receive a large wage premium, as their membership ensures that

they are separated away from all lower ability types, and are mixed in with relatively higher

proportions of more able types. The smaller is Γ, the higher is the wage premium for a given

low ability type, due to the increased filtering out of lower ability students by the fraternity.

High ability types gain less, because they only benefit from separation from low ability non-

members, whom they may be unlikely to be confused with (as they are unlikely to generate

the signals sent by low ability students), and fraternity membership lumps them in with inter-

mediate ability students. When costs of membership are of an appropriate magnitude, they

cause higher ability students to become increasingly reluctant to join, giving rise to the single-

peaked equilibrium. That is, the fraternity’s filtering eliminates higher proportions of lower

ability students, while on the high ability end, increasing proportions of higher and higher

ability students choose not to join to avoid the increasing wage “penalty” for membership.

The logic of the proof of Proposition 7 extends immediately to settings where the fra-

ternity cares about socializing values, so that µB(θ) is a decreasing function of θ, but not

so much that µB(θ̄) < µ. As the weight W2 that the fraternity places on socializing values

increases, the analysis follows directly, albeit inelegantly, if we replace Assumption 2 with

an assumption that we write implicitly in terms of equilibrium values:

Assumption 3 Suppose that the cost c of joining the fraternity satisfies

nµB(θ̄) + θ̄ − E[θ] < c < nµ̄+ θ̄ − E[θ].

In essence, if the fraternity places a sufficient weight on socializing values, it will not

admit high ability students who have low socializing values, so it may already be filtering

out the set of high ability students who are reluctant to join. As a result, a higher cost of

membership may be required to support a single-peaked equilibrium.
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Proposition 8 Suppose that the fraternity places a positive weight on both socializing values

and wages (W1,W2 > 0). Then when Assumptions 1 and 3 hold and the fraternity is small

enough, the equilibrium is single-peaked. That is, there exists a Γ > 0, such that for all

Γ < Γ, fraternity membership is a single-peaked function of student ability in any non-trivial

equilibrium.

Proof. The argument follows directly along the lines of the proof of Proposition 7, with

the added structure on c guaranteeing that µ̄ > µA(θ̄) > µB(θ̄).

Summing up, the single-peaked nature of the equilibrium is generated not by any partic-

ular specification of the signal structure that must be imposed to solve explicitly for equi-

librium. Rather, the single-peakedness derives only from the monotone likelihood property

of the distribution of signals that firms receive about students combined with the conflicting

interests of students and the fraternity that necessarily emerges whenever the fraternity is

sufficiently selective and membership is costly.

• The monotone likelihood ratio property means that when the fraternity filters out low

ability students, it is lower ability student types who gain more from fraternity mem-

bership, as most people who would generate low signals are rejected by the fraternity.

• The filtering out of low ability students by the fraternity, combined with the frater-

nity’s trade off between future earnings and socializing values, initially leads to student

participation in the fraternity being an increasing function of ability (for low θ types).

• The MLRP signal structure implies that higher and higher ability students gain less

and less, or are even hurt in terms of wages by fraternity membership due to mixing in

with less able students; and a cost-benefit calculation eventually causes higher ability

students to become increasingly reluctant to join. This implies that when Γ is small,

student participation in the fraternity eventually declines in ability.

5 Empirical Analysis

To see whether our model can reconcile the actual application and selection process of fra-

ternities, we obtained data on the cumulative GPAs of the 8634 seniors at the University of
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Notes: The dashed line is the conditional probability that a student is a fraternity member
given his or her GPA (rounded to the nearest 0.2). The thin line graphs the distribution of GPAs
for 701 seniors who are fraternity members (fall 2007), and the thick line graphs the probability
distribution for all 8634 seniors at the University of Illinois (fall 2007). The bars indicate 2
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Illinois in the fall semester of 2007 (excluding international students on temporary visas),

and a random sampling of 701 seniors who were fraternity or sorority members. GPAs only

reflect courses taken at the University of Illinois (i.e., omitting transferred courses), but the

senior classification is based on all hours accumulated prior to the end of the fall, 2007 term.

Figure 8 presents the conditional probability that a student is a member of a fraternity

given his or her GPA. This figure reveals that the conditional probability that a student with

a low GPA of 2.0 is a fraternity member is less than 0.05, but that this probability more

than triples for intermediate GPAs between 3 and 3.4, before falling by more than a third for

students with high GPAs. Provided that the true distribution of ability is some monotone

function of the GPA distribution, this relationship alone indicates that the data are incon-
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sistent with pure signaling or pure screening models of fraternity formation. In particular, if

fraternity membership has the properties of a signal, so that the benefit-cost tradeoff tends

to be higher for more able students, then the fraction of students who are fraternity members

would be monotonically increasing in GPA; and a similar relationship would emerge if fra-

ternity membership is determined solely by the filtering out by fraternities of students with

low abilities and socializing values. Moreover, the monotonic prediction of these signaling

and screening theories would be reinforced if socializing values and ability were positively

correlated in the population of students, rather than independently distributed as we have

assumed. In addition, this single-peaked relationship is inconsistent with networking driving

fraternity membership as long as ability and networking are either substitutes or comple-

ments in the wage determination process: if ability and networking are substitutes, then the

fraction of students who are fraternity members should decline with GPA, as the expected

networking benefit would be less for more able students; and if ability and networking are

complements, then the fraction should increase with GPA.

In sharp contrast, this single-peaked pattern is precisely what emerges in the equilibrium

to our fraternity game where able students are reluctant to join fraternities to avoid being

tainted in labor market outcomes, while intermediate and less able students are eager to

join, and the fraternity screens out most of the less able students, i.e., those who do not

have high socializing values. This suggests that it is plausible to estimate our three-signal

model of fraternity formation formally. That is, if we make the additional assumption that

the distribution of GPAs corresponds to the distribution of abilities in the population of stu-

dents (rather than the distribution of abilities just being a monotone transformation of that

of GPAs), then we can structurally estimate our model using this very limited dataset on

grades and fraternity membership. Obviously, this assumption is a bit of a leap. However,

it allows us to obtain estimates of primitive parameters that one can assess introspectively

for plausibility, and, via these structural parameters, we can derive the estimated welfare

impacts of the fraternity on students with different abilities and socializing values.

To be consistent with the premises of our three-signal model, we assume that θ corre-

sponds to the quantile of the GPA distribution so that θ is distributed uniformly; and that

fraternity-socializing values, µ, are independently and uniformly distributed.7

7Relaxing these functional form assumptions, in the absence of other restrictions, can only allow us to
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Step 1: Extracting observations of membership proportions from data. Fixing

ability, our model indicates that fraternities admit higher µ types. This allows us to esti-

mate 1 − µ(θ) directly: letting Φ be the event that a randomly-selected person is in the

fraternity, the fraction of students with ability θ who are in the fraternity is

1−max(µA(θ), µB(θ)) = P (Φ|θ) = Pr(Φ)
fθ(θ|Φ)

fθ(θ)
,

where µA(θ) and µB(θ) are the cutoff rules of students and fraternity, fθ(·) is the density of

θ, and Pr(Φ) is the probability that a randomly-selected senior is a member of the fraternity.

Our estimate of Pr(Φ) is simply the number of senior fraternity members divided by the

number of seniors, Pr(Φ) = 1345
8634

. To estimate fθ(·), we use the sample of all senior students

with GPAs of at least 2,8 and we use the sample of fraternity members’ GPAs exceeding 2

to estimate fθ(·|Φ). We use the kernel estimates of the densities to smooth the conditional

probability of being in the fraternity conditional on GPA (the dashed line in Figure 8). We

then take 20 equally spaced θs between 0.05 and 0.95 as our pseudosample, and evaluate

µ̂(θ) = max(µA(θ), µB(θ)) from our smoothed conditional probability estimator at these

points. This pseudo-sample is represented by the dots in Figure 9.

Step 2: Structural Estimation. In our three signal setting, given (a) the relative benefit

of fraternity participation n, (b) membership cost c, (c) preference weighting of wages vs. µ

by the fraternity, W1

W2
, and (d) fraternity capacity Γ, there is a nonempty fraternity member-

ship equilibrium that is described by a piecewise-linear function of θ that has three parts.

Call these three linear segments the lower, middle and upper segments. Each segment is

characterized by two parameters, the slope and the intercept. The lower and middle seg-

ments intersect at θ = 0.5, and the middle and upper segments intersect at θ = k for some

k > 0.5. The fraternity trades off linearly between expected wages and socializing values µ

in admission, in particular for students with abilities above and below θ = 0.5. Due to this

fraternity optimization, the slopes of the lower and middle segments are linearly dependent

with a coefficient that depends on wages, i.e., W1

W2
= b1

2(wC(M)−wC(L))
= b2

2(wC(H)−wC(M))
, where

b1 is the slope of the club’s cutoff rule below θ = 0.5, and b2 is the slope for θ > 0.5. This

means that four parameters describe the frontier of the fraternity, and there are four prim-

better match the data.
8We drop the few students with GPAs below 2, as they are subject to screening by the University (and,

indeed, only students with GPAs of at least 2 can graduate).
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itive parameters that determine this frontier in equilibrium. In practice, we estimate the

frontier, and then back out the primitive parameters.

Because the fraternity optimization restriction is a non-linear function of wages, and

wages are non-linear functions of the segment slopes and intercepts, we do not substitute

this relationship into our objective function directly, but rather penalize deviations from this

restriction, minimizing the residual sum of squares plus a quadratic measure of the distance

from this restriction, where the penalty function is

10 [b1(wC(H)− wC(M))− b2(wC(M)− wC(L))]
2 .

That is, we estimate the three line segment slopes, k, and the intercept of the lower segment,

imposing a sharp penalty for violations of the fraternity optimization restriction. That is,

we have 5 parameters that define the fraternity frontier, 4 parameters to estimate and the

fraternity optimization restriction. In our estimation:

• For a fixed k, we solve for the frontier that minimizes lasso-adjusted minimal sum of

squares of deviations of the frontier from the data;

• Choose k to minimize the sum of squares;

• Verify that the penalty associated with the fraternity optimization restriction is small.

In fact, our estimates yield a penalty value that is less than 10−10, indicating that the

estimated model is very close to being an equilibrium model.

Given any fraternity frontier, we can integrate to solve for the equilibrium wages for mem-

bers and non-members, wC(L), wC(M), wC(H), wC̄(L), wC̄(M) and wC̄(H). Integrating over

the set of students inside the fraternity frontier pins down Γ. The upper line segment is deter-

mined by student indifference to membership. In particular, we can calculate the indifference

conditions for students with abilities θ = 0.5 and θ = 1, who receive medium and high signals

with certainty: wC(H)+n(a3+b3)−c = wC̄(H) and wC(M)+n(a3+b3/2)−c = wC̄(M), where

a3 is the intercept of upper segment and b3 is the slope. Solving these linear equations yields

n and c. Finally, we recover W1

W2
from lower line segment, exploiting W1

W2
= b1

2(wC(M)−wC(L)
.

Step 3: Non-structural Estimates. We contrast estimates from this structural model

with those from a non-structural model that identifies the slopes and intercepts of the three
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Parameter OLS Structural
Estimate 95% Conf. Int. Estimate 95% Conf. Int.

Constant 0.8815 (0.8564, 0.9135) 0.8825 (0.8505, 0.9067)
Slope bot. line 0.1383 (0.0521, 0.2459) 0.1435 (0.0376, 0.2131)
Slope mid. line -0.1020 (-5.1359, 0.6049) 0.1422 (0.0353, 0.2072)
Slope top line -0.2342 (-0.3973, -0.0243) -0.1201 (-0.3178, -0.0640)
Intersection point 0.8461 (0.5023, 0.8673) 0.5000 (0.5018, 0.7754)
n 0.2771 (0.1193, 0.5312)
c 0.2281 (0.0895, 0.4449)
c/n 0.8234 (0.7141, 0.8147)
W1/W2 0.2227 (0.0565, 0.3346)
Γ 0.1563 (0.1546, 0.1577)
Discrepancy from equil. 0.1410 (0.0012, 65.7960) 8× 10−11 (3× 10−11, 2× 10−05)

Table 1: Estimates

line segments and second kink that best describe the fraternity membership data (i.e., our

non-structural estimates minimize the sum of squared errors). We obtain our non-structural

estimates using a two-step estimation procedure in Matlab. For a given kink location, the

procedure finds the slopes of the cut-off rules that minimize the sum of squared errors. The

procedure then identifies the kink location that minimizes the SSE.
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Figure 9: Estimated Unconstrained Model and Structural Model Fits

The first panel of Figure 9 presents the estimated cut-off rules of the unconstrained model,

where we do not impose consistency of wages with the implied estimates of the ability distri-

butions of members and non-members. This fit is far from an equilibrium: most obviously,

the fraternity’s “cut-off rule” is not a monotonically decreasing function of θ. The panel on
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the right presents our structural estimates of the frontier describing fraternity membership.

An F-test9 indicates that the differences between the structural and non-structural fits are

only marginally statistically significant. However, the estimate of the intersection point k

is at the boundary, 0.5. suggests that the particular form of the three signal structure is

misspecified. The confidence interval from bootstrapped samples however suggests that the

signal structure is not violently inconsistent with the data.

Our structural estimates can be used to back out estimates of the primitives for students:

the cost c is 0.23, or about 46% of the unconditional expected wage, and the fraternity social-

izing parameter is n = 0.28. We bootstrap the estimator to obtain 95% confidence intervals.

While the confidence intervals for n and c are wide, the fraction c
n
= 0.82 has a tight 95%

confidence interval of [0.71, 0.82]; and it is this ratio that determines whether a student gains

a net utility benefit from joining the fraternity in a full information setting where firms know

a student’s ability. Figure 9 shows that most fraternity members are above this threshold,

i.e., most fraternity members have socializing values of µ > c
n
≈ 0.82. Thus, relative to

a full information setting, the wage-setting mechanism impedes the efficiency of fraternity

participation: there are too many fraternity members with intermediate abilities and too

few low and high ability students with high socializing values. Our estimate of the frater-

nity’s relative weighting on member wages versus socializing values, W1

W2
of 0.22 has a wide

confidence interval, but the fraternity’s capacity is precisely estimated.

Our estimates allow us to explore how the presence of the fraternity affects the welfare of

different student types. Figure 10 presents welfare gains and losses of different student types

relative to a setting in which there is no fraternity [or equivalently relative to the “empty”

fraternity equilibrium]. The solid line divides the population of student types into those who

benefit and those who are hurt, and the darker is the shade in the figure, the more the frater-

nity’s presence hurts/benefits less a student. The figure reveals that all fraternity members

actually are made better off by the presence of the fraternity, gaining from the socializing

values of fraternity membership. In addition, able types, θ > 0.61 who are not members

gain because they receive higher market wages—firms believe that most highly productive

9The F-value is 2.93, (1,13) degrees of freedom, p-value of 0.11; this statistic, however, presumes the
normality of errors, but given the nonlinearity of both the model and the equilibrium restrictions, this
presumption is likely to be violated. The asymptotic distribution of this test, which does not depend on
normality of errors, is χ2(1), with a p-value of 0.08.
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Figure 10: Impact of Fraternity on Student Welfare

types do not join the fraternity.

Figure 11 contrasts student welfare in the equilibrium with that which obtains when firms

ignore the information in fraternity membership, or equivalently where the fraternity does

not have better information about θ than firms, and hence only weighs socializing values in

admission. Two groups of student types benefit when the fraternity weighs both expected

wage/ability and socializing values in admission: (i) low ability types with high enough so-

cializing values that they are admitted benefit from wage gain associated with being mixed

in with more able types; and (ii) high ability types with lower socializing values who do

not join benefit from the higher wages due to the partial separation from mediocre ability

types generated by the fraternity admission process. Low ability types with moderately high

socializing values are hurt the most, as they both would gain socializing values were the

fraternity not to weigh ability, and they are punished by lower wages due to their exclu-

sion. The other group hurt consists of high ability/high socializing value students who join

in both environments, but are tarred by association with lesser types when the fraternity

weighs ability in admission, and therefore receive lower wages.

We conclude our empirical analysis by re-emphasizing caveats and limitations of this
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Figure 11: Impact of Fraternity’s Wage Redistribution on Student Welfare

analysis. First, as we highlighted earlier, while the estimated model and welfare impacts

seem plausible, the GPA distributions may differ from those for abilities, and our estimates

hinge on their equivalence. Indeed, one could contemplate the possibility that fraternity

membership in and of itself alters the distribution of GPAs. For example, it could be that

not only does ability influence GPAs, but so does fraternity membership—fraternity cheat

sheets may help low ability students, while a fraternity party environment may make it dif-

ficult for high ability students to study. Ideally, one would obtain measures of ability such

as high school grade or ACT scores that are not affected by fraternity membership. We also

note that to show that the ability distribution in the fraternity that we obtain theoretically is

not driven by direct factors, we assume that firms do not value fraternity socializing values

and that socializing values are uncorrelated with ability. Still, our empirical finding that

high GPA students are reluctant to join fraternities indicates that, in practice, firms cannot

value those skills by too much, and that the correlation between ability and socializing value

cannot be too high.
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6 Conclusion

On first impression, it is not clear why fraternity or sorority membership should matter for

labor market outcomes—fraternity activities seem to have little to do with skill development

for future careers. Nonetheless, resumes regularly highlight fraternity membership, suggest-

ing that membership augments the other signals that employers use to evaluate a person’s

productivity. Our paper provides insights into when fraternity membership matters for la-

bor market outcomes. We first show that if firms can either evaluate student productivities

perfectly, or are completely incapable of screening job applicants, then fraternity member-

ship has no impact on labor market outcomes. Otherwise, fraternity membership matters.

In particular, we identify two equilibria in which fraternity membership is valued by some

students for labor market outcomes. In one equilibrium, optimistic beliefs by firms about

the abilities of fraternity members lead to higher wages for fraternity members than non-

members. As a result, everyone whom the fraternity would like to admit chooses to pledge.

We also identify an equilibrium in which able students are harmed in the labor market by

fraternity membership, but less able students benefit. In this equilibrium, most fraternity

members have intermediate abilities: less able students apply, hoping to be mixed in with

better students, but are rejected unless they have high fraternity socializing values, while

very able students who lack high socializing values do not apply to avoid being tainted in

labor market outcomes due to being mixed in with less able fraternity members. We find

that this latter equilibrium can reconcile the qualitative features of the ability distributions

of fraternity members and non-members at the University of Illinois.

While we pose our analysis in the context of fraternities, the central economic story ex-

tends with some variations to filtering by other organizations. For example, ROTC (reserve

officer training corps) may value both intellectual ability and leadership skills that firms

value, but also physical fitness that does not contribute productively in many occupations.

As a result, even were ROTC not to directly build skills of its officers, our model indicates that

firms may rationally weigh ROTC membership positively in their evaluations of job-seekers.
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7 Appendix

Proof of Proposition 3: First observe that in light of Proposition 2, if (θ, µ) applies to

the fraternity in equilibrium, then so does (θ, µ′). Suppose the proposition were false. Then

for ε > 0, sufficiently small, the set

Θε = {θ|∃zθ :

∫ zθ

−∞

a(θ, x)b(θ, x)hµ(x)dx > ε,

∫ +∞

zθ

(1− b(θ, x))hµ(x)dx > ε}

has positive measure, i.e., there exists δ > 0 such that
∫
Θε

hθ(x)dx > δ. For every θ in Θε

pick a set of K = {(θ, µ)|µ < zθ, a(µ, θ)b(µ, θ) = 1} and L = {(θ, µ)|µ > zθ, b(µ, θ) = 0} such

that
∫
K
a(θ, µ)b(θ, µ)hµ(x)dx =

∫
L
a(θ, µ)(1 − b(θ, µ))hµ(x)dx = ε. But then the fraternity

decision rule

b̂(θ, µ) = b(θ, µ)(1− I((θ, µ) ∈ K)) + I((θ, µ) ∈ L)

strictly raises the fraternity’s payoff as E(µ|K) < E(µ|L) and the expected wages gener-

ated by members and fraternity size are unchanged. Therefore, b could not have been an

equilibrium strategy for the fraternity. �

Proof of Lemma 1: Consider two signals, x > y ∈ Θ̃, and two productivities, θ2 > θ1 ∈ Θ,

such that (x, θ1), (x, θ2) and (y, θ2) ∈ D. By the MLRP property,

f(θ2|x)

f(θ1|x)
>

f(θ2|y)

f(θ1|y)
.

Notice that for every (j, k) ∈ D, f(j|k,D) = f(j|k)I((j,k)∈D)∫
Θ
I((θ,θ̃)∈D)dF (θ|θ̃)

= f(j|k) I((j,k)∈D)
P (D)

. Rewrite

the MLRP condition:

f(θ2|x,D)

f(θ1|x,D)
=

f(θ2|x)I((θ2,x)∈D)
P (D)

f(θ1|x)I((θ1,x)∈D)
P (D)

=

f(θ2|x)1
P (D)

f(θ1|x)1
P (D)

>

f(θ2|y)1
P (D)

f(θ1|y)1
P (D)

≥

f(θ2|y)I((θ2,y)∈D)
P (D)

f(θ1|y)I((θ1,y)∈D)
P (D)

=
f(θ2|y,D)

f(θ1|y,D)
.

Therefore, if the MLRP condition holds for the entire support, it holds for a subset D of

that support. This condition ensures that E(θ|θ̃, D) is an increasing function of θ̃. By

F (x|θ2, D) � F (x|θ1, D),

Eθ̃[E(θ|θ̃, D)|θ2, D] =

∫

Θ̃

E(θ|θ̃, D)dF (θ̃|θ2, D)

>

∫

Θ̃

E(θ|θ̃, D)dF (θ̃|θ1, D) = Eθ̃[E(θ|θ̃, D)|θ1, D]. �
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Proof of Proposition 5: We first show that if nµ̄− c ≥ w − θ, then the empty fraternity

cannot be an equilibrium. If no one joins the fraternity, then equilibrium demands that θ

expect wage w if he does not join; and the expected wages of students with ability greater

than θ who do not join exceed w. With the full support assumption, following any signal

realization θ̃, firms can hold equilibrium beliefs that the anyone who joins the fraternity

and generated that signal has ability θ. These beliefs minimize the wage of any student

who joins the fraternity. Given these beliefs, since expected wages are continuous in θ, if

nµ̄− c+ θ > w, then all students in a sufficiently small neighborhood of (θ, µ̄) would apply

for fraternity membership, and since their measure is less than Γ, the fraternity would accept

them. Hence, the empty fraternity cannot be an equilibrium.

Conversely, if nµ̄ − c ≤ w − θ, then given the pessimistic beliefs by firms, wC(θ̃) = θ so

that (θ, µ̄) at least weakly prefers not to apply to the fraternity; and all other types strictly

prefer not to apply. Hence, no one applying to the fraternity is an equilibrium. �

Proof of Proposition 6: To prove existence, it suffices to characterize student and frater-

nity choices via the continuous functions µA(·) and µB(·) (see Propositions 2 and 4), proving

the existence of an equilibrium in which a student type (θ, µ) is a member of the fraternity if

and only if µ ≥ max{µA(θ), µB(θ)}. In particular, given wC(·) and wC̄(·), µA(θ) solves equa-

tion (2) at equality, for µA(θ) ∈ (µ, µ̄). Since µA(·) is uniquely defined, it follows that µB(·) is

uniquely defined. We have established that µj : [θ, θ̄] → [µ, µ̄], j = A,B, is continuous. The

space of such functions, endowed with the weak∗ topology, is compact. So, too, we can focus

on beliefs by firms about which student types are fraternity members that are summarized

by continuous functions µ̂A(·) and µ̂B(·) about which student types apply and which ones are

accepted by the fraternity, where (θ, µ) is a conjectured fraternity member if and only if µ ≥

max{µ̂A(θ), µ̂B(θ)}. These beliefs, µ̂A(·), µ̂B(·) then determine competitive wage functions,

(ŵC(θ̃), ŵC(θ̃)) = (E[θ|θ̃, µ ≥ max{µ̂A(θ), µ̂B(θ)}}], E[θ|θ̃, µ < max{µ̂A(θ), µ̂B(θ)}]),

and these wage functions, in turn, imply optimal student and fraternity best response choices,

µA(·), µB(·). Hence, we have a mapping from (µ̂A(θ), µ̂B(θ)) to (µA(θ), µB(θ)). Equilibrium

is given by a fixed point to this mapping from [conjectured by firms] optimal student and fra-

ternity choices to the best response optimal student and fraternity choices; and we have just

established that this mapping satisfies the conditions of Kakutani’s fixed point theorem. �
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Proof of Lemma 2: µA(θ) solves

E(wC(θ̃)|θ) + nµA(θ)− c = E(wC̄(θ̃)|θ) ⇔ E(wC(θ̃)|θ)− E(wC̄(θ̃)|θ) = c− nµA(θ).

Then µA(θ) is increasing in θ if and only if

∂

∂θ
E(wC(θ̃)− wC̄(θ̃)|θ) =

∂

∂θ

∫ ∞

−∞

wC(θ̃)− wC̄(θ̃)fθ̃(θ̃|θ)dθ̃ < 0.

Consider g(θ̃|θ) ≡ ∂
∂θ
fθ̃(θ̃|θ). As g(θ̃|θ) is the change in the distribution of signal θ̃ due to a

change in θ, the integral of g over the support of θ̃ is zero. The MLRP assumption implies

that g(θ̃|θ) is increasing in θ̃:

MLRP:
fθ̃(t2|θ +∆θ)

fθ̃(t2|θ)
>

fθ̃(t1|θ +∆θ)

fθ̃(t1|θ1)
∀t2 > t1, ∆θ > 0 implies

1

fθ̃(t2|θ)

∆fθ̃(t2|θ)

∆θ

>
1

fθ̃(t1|θ1)

∆fθ̃(t1|θ)

∆θ

Therefore,
∂

∂θ
ln fθ̃(t2|θ) ≥

∂

∂θ
ln fθ̃(t1|θ)

implying that g(θ̃|θ) is nondecreasing in θ̃; and since g integrates to zero, there exists a K

such that g(θ̃|θ) ≤ 0 for θ̃ ≤ K, and g(θ̃|θ) ≥ 0 for θ̃ > K.

Remember, we want to establish when

∂

∂θ

∫ ∞

−∞

[
wC(θ̃)− wC̄(θ̃)

]
fθ̃(θ̃|θ)dθ̃ =

∫ ∞

−∞

[
wC(θ̃)− wC̄(θ̃)

] ∂fθ̃(θ̃|θ)
∂θ

dθ̃ < 0

Subtracting [wC(K)− wC̄(K)]
∫∞

−∞

∂f
θ̃
(θ̃|θ)

∂θ
dθ̃ = 0 from the integral and breaking the multi-

plicands under the integral into two parts yields

∫ ∞

−∞

((
wC(θ̃)− wC̄(θ̃)

)
− (wC(K)− wC̄(K))

) ∂fθ̃(θ̃|θ)

∂θ
dθ̃

=

∫ K

−∞

((
wC(θ̃)− wC̄(θ̃)

)
− (wC(K)− wC̄(K))

)
g(θ̃|θ)dθ̃

+

∫ ∞

K

((
wC(θ̃)− wC̄(θ̃)

)
− (wC(K)− wC̄(K))

)
g(θ̃|θ)dθ̃.

From the premise that wC(x) − wC̄(x) is decreasing, the difference in the w terms in the

first integral is positive, and negative in the second; by construction, the g term in the first
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integral is negative, and positive in the second integral. Therefore, the integral is the sum

of two negative values.

Finally, inspection reveals that an analogous argument holds if there are a finite number

of signals, θ̃, interpreting the signal density fθ̃(θ̃|θ) as the probability mass on signal θ̃. �

Proof of Proposition 7: Denote the set of students with θ < θ0 as P , the set of students

in fraternity as P2, and the rest P1; and let m(·) be the measure of students in the argument

set. Then

wC(θ̃) = E(θ|θ̃, P2) and wC̄(θ̃) = E(θ|θ̃, P ∪ P1).

Rewrite wC̄ as

wC̄(θ̃) =
m(P )

m(P ) +m(P1)
E(θ|θ̃, P ) +

m(P1)

m(P ) +m(P1)
E(θ|θ̃, P1).

Take two signals, H and L, with H > L. Then the expected wage premium is decreasing if

E(θ|H,P2)−

[
m(P )

m(P ) +m(P1)
E(θ|H,P ) +

m(P1)

m(P ) +m(P1)
E(θ|H,P1)

]

< E(θ|L, P2)−

[
m(P )

m(P ) +m(P1)
E(θ|L, P ) +

m(P1)

m(P ) +m(P1)
E(θ|L, P1)

]
. (3)

Observe that θ0 → θ̄ implies:

E(θ|H,P2) → θ̄ and E(θ|L, P2) → θ̄

m(P )

m(P ) +m(P1)
E(θ|H,P ) +

m(P1)

m(P ) +m(P1)
E(θ|H,P1) → E(θ|H)

m(P )

m(P ) +m(P1)
E(θ|L, P ) +

m(P1)

m(P ) +m(P1)
E(θ|L, P1) → E(θ|L).

Therefore, as θ0 → θ̄, (3) approaches

θ̄ − E(θ|H) < θ̄ − E(θ|L),

which holds as by the MLRP assumption, E(θ|H) > E(θ|L). As the distribution of θ has full

support, and there are no atoms in the distribution, E(θ|H, θ > θ0) and E(θ|H, θ < θ0) are

continuous in θ0. Therefore, there exists a θ̂0(H,L) < θ̄ such that for all θ0 ≥ θ̂0(H,L), the

expected wage premium of fraternity members is decreasing in θ̃. This bound on θ0 depends

on the signals H and L; however, Assumption 1 ensures the existence of a uniform bound. In

particular, if the support θ̃ is finite, then the uniform bound is the maximum of the bounds for
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each signal pair; and if the support of θ̃ is not finite, but the support of fθ̃(θ̃|θ̄) is non-trivial,

then the expected wage difference that θ̄ expects places strictly positive probability on sig-

nals bounded away from θ̂. Hence, there exists a small enough Γ > 0 such that for Γ < Γ, the

equilibrium expected wage premium from fraternity membership is declining in ability. �
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