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1. INTRODUCTION 
 

MULTIDIMENSIONAL POVERTY has captured the attention of researchers and 

policymakers alike due, in part, to the compelling conceptual writings of Amartya Sen4 

and the unprecedented availability of relevant data. A key direction for research has 

been the development of a coherent framework for measuring poverty in the 

multidimensional environment that is analogous to the set of techniques developed in 

unidimensional space. 

Much attention has been paid to the aggregation step in poverty measurement 

through which the data are combined into an overall indicator of multidimensional 

poverty. The major contributions have developed an array of multidimensional poverty 

measures and clarified the axioms they satisfy, primarily by extending well-established 

unidimensional poverty measures and axioms in new and interesting ways. 5 However 

each of the aggregation techniques relies on a prior identification step – namely, ‘who 

is poor?’ Considerably less attention has been given to this important component of a 

poverty methodology.  

Identification is implicit in all poverty measures, although it is mainly discussed in 

measures that first aggregate across dimensions of deprivation at the individual level, 

then aggregate across individuals. At present there are three main approaches to 

identifying the poor in a multidimensional setting. One is the ‘unidimensional’ 

approach, through which the multiple indicators of wellbeing are combined into a 

single aggregate variable, and a person is identified as poor when the variable falls 

below a certain cutoff level. This method of identification takes into account 

dimensional deprivations – but only inasmuch as they affect the aggregate indicator. 

There is minimal scope for valuing dimensional deprivations per se, which is often 

viewed as an essential characteristic of a multidimensional approach. A second is the 

‘union’ approach, which regards someone who is deprived in a single dimension as 

poor in the multidimensional sense. This is generally acknowledged to be overly 

inclusive and may lead to exaggerated estimates of poverty. The third main approach is 
                                                 
4 See for example Sen (1980, 1985a, 1985b, 1987, 1992, 1993) 
5 See Tsui (1999, 2002), Atkinson (2003), Bourguignon and Chakravarty (2003), Duclos, Sahn, and 
Younger (2006), Thorbecke (2008), and Kakwani and Silber (2008b), among others.  For discussions of 
unidimensional poverty measurement, see Sen (1976), Blackorby and Donaldson (1980), Clark, 
Hemming and Ulph (1981), Chakravarty (1983), Foster, Greer and Thorbecke (1984), Atkinson (1987), 
Ravallion (1996), Sen (1997), and the surveys of Foster and Sen (1997), Zheng (1997), and Foster 
(2006). 
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the ‘intersection’ method, which requires a person to be deprived in all dimensions 

before being identified as poor. This is often considered too constricting, and generally 

produces untenably low estimates of poverty. Empirical assessments of 

multidimensional poverty will require a satisfactory solution to the identification 

question, and although the problems with existing approaches are widely 

acknowledged, an acceptable alternative has yet to be found. In what follows we 

provide a first step towards addressing this issue.  

This paper introduces an intuitive approach to identifying the poor that uses two 

forms of cutoffs. The first is the traditional dimension-specific poverty line or cutoff, 

which identifies whether a person is deprived with respect to that dimension. The 

second delineates how widely deprived a person must be in order to be considered 

poor.6 Our benchmark procedure uses a counting methodology7, in which the second 

cutoff is a minimum number of dimensions of deprivation.   

The ‘dual cutoff’ method of identification naturally suggests an approach to 

aggregation that is likewise sensitive to the range of deprivations a poor person 

experiences. We derive a new class of ‘dimension-adjusted’ multidimensional poverty 

measures based on the traditional FGT measures of poverty. The new methodology 

satisfies an array of desirable axioms including ‘decomposability’, a property that 

facilitates targeting, and a new requirement of ‘dimensional monotonicity’, by which an 

expansion in the range of deprivations experienced by a poor person is reflected in the 

overall level of poverty.  

Many capabilities can only be represented by ordinal data, yet virtually all existing 

multidimensional poverty measures require cardinal data. The one exception is the 

multidimensional headcount ratio, which violates dimensional monotonicity. In 

contrast, our dimension-adjusted headcount ratio works with ordinal data, respects 

dimensional monotonicity, and can be undergirded by a neat axiomatic structure on 

individual poverty functions based on the counting result of Pattanaik and Xu (1990) in 

the literature on measuring freedom.  

In some circumstances we may have additional information that allows us to regard 

certain dimensions as meriting greater relative weight than others. In such cases our 

                                                 
6 In this paper we will use the term ‘deprived’ to indicate that a person’s achievement in a given 
dimension falls below the cutoff. If a person meets the multidimensional identification criterion, we refer 
to them as ‘poor’, and their condition as ‘poverty’.  
7 Our approach was motivated in part by Atkinson (2003), who explored the relationship between 
counting and social welfare methods at the aggregation step.  
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identification procedure and the associated additive poverty measures can be easily 

generalised from equal weights across the dimensions to general weights. We do this in 

our final methodological section.  

An important consideration in developing a new methodology for measuring 

poverty is that it can be employed using real data to obtain meaningful results. To show 

this is true for our methodology, we provide illustrative examples using data from 

Indonesia and the US. In sum, the methodology we propose is intuitive, satisfies useful 

properties, and can be applied to good effect with real world data.  

The structure of the paper is as follows. We begin with a brief introduction to 

unidimensional poverty measurement as it provides a foundation for our departure into 

multidimensional space. We present some basic definitions and notation for 

multidimensional poverty, and then introduce our dual cutoff identification strategy. 

The adjusted FGT family of poverty measures is introduced, and we provide a list of 

axioms that are satisfied by the methodology. The next section discusses the case where 

the data are ordinal variables, and observes that one of our measures, the dimension-

adjusted headcount ratio, works well in this context. We present a theorem that 

characterizes both the identification method and the aggregate measure in this 

environment, using the counting approach of Pattanaik and Xu. We show how to extend 

our methods to allow for general weights, and supply two informative illustrations 

using data from Indonesia and the US. A final section offers closing observations.  

2. UNIDIMENSIONAL MEASUREMENT 

Poverty measurement can be broken down into two distinct steps: ‘identification’ 

which defines the criteria for distinguishing poor persons from the non-poor, and 

‘aggregation’ by which data on poor persons are brought together into an overall 

indicator of poverty (Sen 1976). Identification typically makes use of an income cutoff 

called the poverty line and evaluates whether an individual’s income achieves this level. 

Aggregation is typically accomplished by selecting a poverty index or measure.  

The simplest and most widely used poverty measure is the headcount ratio, which 

is the percentage of a given population that is poor. A second index, the (per capita) 

poverty gap, identifies the aggregate by which the poor fall short of the poverty line 

income, measured in poverty line units and averaged across the population. Both 

indices can be seen as a population average, where the non-poor are assigned a value of 

‘0’. The headcount ratio assigns a value of ‘1’ to all poor persons, while the poverty 
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gap assigns the normalised shortfall (the difference between their income and the 

poverty line, divided by the poverty line itself) before taking the population average. 

Unlike the headcount ratio, the poverty gap is sensitive to income decrements among 

the poor and registers an increase when the shortfall of a poor person rises. 

A third method of aggregation suggested by Foster, Greer and Thorbecke (1984) 

proceeds as above for each person who is not poor, but now transforms the normalised 

shortfalls of the poor by raising them to a nonnegative power α to obtain the associated 

Pα or FGT measure. This approach includes both of the foregoing measures: if α = 0, 

the headcount ratio is obtained; if α = 1, we have the poverty gap measure. The value α 

= 2 results in the FGT index P2, which is a simple average of the squared normalized 

shortfalls across society. Squaring the normalised gaps diminishes the relative 

importance of smaller shortfalls and augments the effect of larger ones. Consequently 

P2 emphasises the conditions of the poorest poor in society. 

Every poverty index has different insights and oversights, and one way of 

illuminating them is to identify the properties or axioms the index satisfies. Each 

property captures a basic desideratum for an aggregation method, and usually defines a 

form of stylised change in the distribution that should impact the poverty measure in a 

prescribed way. As is well-known, the FGT measures satisfy a broad array of 

properties, including symmetry, replication invariance, subgroup consistency and 

decomposability; specific members satisfy monotonicity (α > 0) and the transfer axiom 

(α > 1). We will build on this family of measures when we develop our 

multidimensional methodology below. 

3. NOTATION 

Moving from the unidimensional to a multidimensional poverty framework raises a 

set of significant questions: (i) which are the dimensions, and indicators, of interest? (ii) 

where should cutoffs be set for each dimension? (iii) how should dimensions be 

weighted? (iv) how can we identify the multidimensionally poor? (v) what 

multidimensional poverty measure(s) should be used? (vi) which measures can 

accommodate ordinal data? (vii) should multidimensional poverty measures reflect 

interactions between dimensions, and if so, how? Issues (i) through (iii) have been 

substantially discussed in the literature;8 in what follows we will assume that 

                                                 
8 On the selection of capabilities or dimensions see Sen (1992a, 1993, 2004a, 2004b), Alkire (2002, 
2008), Atkinson et al (2002), Qizilbash (2002), Nussbaum (2003), Robeyns (2005), and Ranis, Stewart 
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appropriate judgements have been made. The present paper is concerned with questions 

(iv) – (vi): identification in a multidimensional setting, the construction of an aggregate 

measure, and how to measure poverty when data are only ordinally significant. Issue 

(vii) is still an open question,9 and in the interest of making progress on (iv) through 

(vi), we adopt a neutral position in the present paper. The desirability of accounting for 

‘complements’ and ‘substitutes’ directly in poverty measures is discussed in section 10 

below. 

Let n represent the number of persons and let d > 2 be the number of dimensions 

under consideration. Let y = [yij] denote the n × d matrix of achievements, where the 

typical entry yij > 0 is the achievement of individual i = 1,2,…, n in dimension j = 

1,2,…, d. Each row vector yi lists individual i’s achievements, while each column 

vector y∗j gives the distribution of dimension j achievements across the set of 

individuals. In what follows we assume that d is fixed and given, while n is allowed to 

range across all positive integers; this allows poverty comparisons to be made across 

populations of different sizes. Thus the domain of matrices under consideration is given 

by Y = {y ndR+∈ : n > 1}.10 Let zj > 0 denote the cutoff below which a person is 

considered to be deprived in dimension j, and let z be the row vector of dimension-

specific cutoffs. For any vector or matrix v, the expression |v| denotes the sum of all of 

its elements, while �(v) represents the mean of v, or |v| divided by the total number of 

elements in v.  

A methodology � for measuring multidimensional poverty is made up of an 

identification method and an aggregate measure. Following Bourguignon and 

Chakravarty (2003) we represent the former using an identification function �: dR+  × 

dR ++ → {0,1}, which maps from person i’s achievement vector d
i Ry +∈ and cutoff vector 

z in dR ++  to an indicator variable in such a way that �(yi; z) = 1 if person i is poor and 

                                                                                                                                               
and Samman (2006), and Thorbecke (2008). On the setting of poverty lines see Sen (1981), Foster and 
Sen (1997), Foster (1998), Ravallion (1998); on fuzzy set methods see Cerioli and Zani (1990), 
Chiappero-Martinetti (1994, 1996, 2000, 2008), Cheli and Lemmi (1995), Balestrino (1998), Qizilbash 
(2003), and Betti et al (2008). Techniques for applying weights across dimensions include arbitrary 
weights, statistical weights (e.g. factor analysis or multiple correspondence analysis), survey-based 
weights, normative weights or a combination of these techniques. See Sen (1980, 1985, 1987, 1992), 
Brandolini and D’Alessio (1998), Alkire and Clark (2008) and Lugo and Decanq (2008). 
9 See Tsui (2002), Bourguignon and Chakravarty (2003, p. 27-8), Duclos, Sahn and Younger (2006), 
Kakwani and Silber (2008a, 2008b), Maasoumi and Lugo (2008), Thorbecke (2008) among others.  
10 For concreteness, we assume that individual achievements can be any non-negative real; our approach 
can easily accommodate larger or smaller domains when appropriate. 
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�(yi; z) = 0 if person i is not poor.11 Applying � to each individual achievement vector in 

y yields the set Z ⊆ {1,…, n} of persons who are poor in y given z. The aggregation 

step then takes � as given and associates with the matrix y and the cutoff vector z an 

overall level M(y; z) of multidimensional poverty. The resulting functional relationship 

M: Y × dR ++ → R is called an index, or measure, of multidimensional poverty. This paper 

presents a new methodology � = (�, M) for measuring multidimensional poverty, 

explores its properties and provides illustrative examples. 

In what follows, it will prove useful to express the data in terms of deprivations 

rather than achievements. For any given y, let g0 = [ gij
0] denote the 0-1 matrix of 

deprivations associated with y, whose typical element gij
0 is defined by gij

0  = 1 when yij 

< zj, while gij
0 = 0 otherwise. Clearly, g0 is an n × d matrix whose ijth entry is 1 when 

person i is deprived in the jth dimension, and 0 when the person is not. The ith row 

vector of g0, denoted gi
0, is person i’s deprivation vector. From the matrix g0 we can 

construct a column vector c of deprivation counts, whose ith entry ci = | gi
0 | represents 

the number of deprivations suffered by person i. The vector c will be especially helpful 

in describing our method of identification. Notice that even when the variables in y are 

only ordinally significant, g0 and c are still well defined.12  

If the variables in y are cardinal, the associated matrix of (normalised) gaps or 

shortfalls can provide additional information for poverty evaluation. For any y, let g1 be 

the matrix of normalised gaps, where the typical element is defined by gij
1 = (zj-yij)/zj 

whenever yij < zj, while gij
1  = 0 otherwise. Clearly, g1 is an n × d matrix whose entries 

are nonnegative numbers less than or equal to 1, with gij
1  being a measure of the extent 

to which that person i is deprived in dimension j. In general, for any α > 0, define the 

matrix gα by raising each entry of g1 to the power α; e.g. when α = 2, the entry is gij
2  = 

( gij
1 )2. This notation will be useful below in defining our generalisation of the FGT 

measures to the multidimensional environment.  

                                                 
11 Note that this representation assumes that the underlying identification method is individualistic (in 
that i’s poverty status depends on yj) and symmetric (in that it uses the same criterion for all persons). It 
would be interesting to explore a more general identification function which abstracts from these 
assumptions.  
12 In other words, g0 and c are identical for all monotonic transformations of yij and zj. See section 7 
below.  
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4. IDENTIFYING THE POOR 
Who is poor and who is not? A reasonable starting place is to compare each 

individual’s achievements against the respective dimension-specific cutoffs, and we 

follow that general strategy here.13 But dimension specific cutoffs alone do not suffice 

to identify who is poor; we must consider additional criteria that look across 

dimensions to arrive at a complete specification of identification method. We now 

examine some potential candidates for �(yi; z). 

The ‘unidimensional’ method aggregates all achievements into a single cardinal 

variable of ‘well-being’ or ‘income’ and uses an aggregate cutoff to determine who is 

poor. So, for example, if yi is a vector of commodities with market price vector p, one 

might define �p(yi; z) = 1 whenever pyi < pz, and �p(yi; z) = 0 otherwise. In this case, a 

person is poor if the monetary value of the achievement bundle is below the cost of the 

target bundle z. More generally, one might invoke an aggregator function u such that 

�u(yi; z) = 1 whenever u(yi) < u(z), and �u(yi; z) = 0 otherwise. However, the 

unidimensional form of identification entails a host of assumptions that restrict its 

applicability in practice, and its desirability in principle.14 From the perspective of the 

capability approach, a key conceptual drawback of viewing multidimensional poverty 

through a unidimensional lens is the loss of information on dimension-specific 

shortfalls: indeed, aggregation before identification converts dimensional achievements 

into one another without regard to dimension-specific cutoffs. If, as argued above, 

dimensions are independently valued and dimensional deprivations are inherently 

undesirable, then there are good reasons to look beyond a unidimensional approach to 

identification methods that focus on dimensional shortfalls. 

The most commonly used identification criterion of this type is called the union 

method of identification. In this approach, a person i is said to be multidimensionally 

poor if there is at least one dimension in which the person is deprived (i.e., �(yi; z) = 1 if 

                                                 
13 See, for example, Bourguignon and Chakravarty (2003, p 27-8) who contend that “a multidimensional 
approach to poverty defines poverty as a shortfall from a threshold on each dimension of an individual’s 
well being.”  
14 One common assumption is that prices exist and are adequate, normative weights for the dimensions; 
however, as noted by Tsui (2002) this assumption is questionable. Prices may be adjusted to reflect 
externalities, but exchange values do not and ‘indeed cannot give … interpersonal comparisons of 
welfare or advantage’ (Sen (1997, p. 208)). Pradhan and Ravallion (1996) derive subjective poverty lines 
in place of prices, but cannot do so for all attributes. Additional problems can arise when markets are 
missing or imperfect (Bourguignon & Chakravarty (2003), Tsui (2002)). Also, empirical evidence shows 
that income may not be translated into basic needs (Ruggeri-Laderchi, Saith and Stewart (2003), Sen 
(1980)). Aggregating across dimensions for purposes of identification also entails strong assumptions 
regarding cardinality, which are impractical when data are ordinal (Sen (1997)).  
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and only if ci > 1). If sufficiency in every dimension were truly essential for avoiding 

poverty, this approach would be quite intuitive and straightforward to apply. However, 

it might also include persons whom many would not consider to be poor. For example, 

deprivation in certain single dimensions (such as health or education) may be reflective 

of something other than poverty. Moreover, a union based poverty methodology may 

not be helpful for distinguishing and targeting the poorest of the poor, especially when 

the number of dimensions is large. For these reasons the union method, though 

commonly used – for example (implicitly) in well-known measures such as the Human 

Poverty Index (HPI) – is not unambiguously acceptable. 

The other identification method of this type is the intersection approach, which 

identifies person i as being poor only if the person is deprived in all dimensions (i.e., 

�(yi; z) = 1 if and only if ci = d). This criterion would accurately identify the poor if 

sufficiency in any single dimension were enough to prevent poverty; indeed, it 

successfully identifies as poor a group of especially deprived persons. However, it 

inevitably misses many persons who are experiencing extensive, but not universal, 

deprivation (for example, a destitute person who happens to be healthy). Moreover, it 

succeeds in identifying only a narrow slice of the population that shrinks as the number 

of dimensions increases – and disregards the rest. This creates a different tension, that 

of considering persons to be non-poor who evidently suffer considerable deprivation. 

A natural alternative is to use an intermediate cutoff level for ci that lies 

somewhere between the two extremes of 1 and d. For k = 1,…, d, let �k be the 

identification method defined by �k(yi; z) = 1 whenever ci > k, and �k(yi; z) = 0 

whenever ci < k. In other words, �k identifies person i as poor when the number of 

dimensions in which i is deprived is at least k; otherwise, if the number of deprived 

dimensions falls below the cutoff k, then i is not poor according to �k. Since �k is 

dependent on both the within dimension cutoffs zj and the across dimension cutoff k, we 

will refer to �k as the dual cutoff method of identification.15 Notice that �k includes the 

union and intersection methods as special cases where k = 1 and k = d.  

Similar methods of identification can be found in the literature, albeit with different 

motivations. For example, Mack and Lansley Poor Britain (1985) identified people as 

poor if they were poor in 3 or more out of 26 deprivations. The UNICEF Child Poverty 

                                                 
15 We do not provide an algorithm for selecting k here; instead, repeated application and reasoned 
evaluation will likely lead to a range of plausible values for k. A single value can then be selected for the 
main analysis and alternative values used to check robustness. 
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Report 2003 identified any child who was poor with respect to two or more 

deprivations as being in extreme poverty (Gordon, et al., 2003). However, as a general 

methodology for identifying the poor, the dual cutoff approach has not been explicitly 

formulated in the literature, nor have its implications for multidimensional poverty 

measurement been explored.16 

The dual cutoff method has a number of characteristics that deserve mention. First, 

it is ‘poverty focused’ in that an increase in an achievement level yij of a non-poor 

person leaves its value unchanged. Second, it is ‘deprivation focused’ in that an 

increase in any non-deprived achievement yij � zj leaves the value of the identification 

function unchanged; in words, a person’s poverty status is not affected by changes in 

the levels of non-deprived achievements. This latter property separates �k from the 

unidimensional method �u, which allows a higher level of one achievement to 

compensate for other dimensional deprivations in deciding who is poor or non-poor. 

Finally, the dual cutoff identification method can be meaningfully used with ordinal 

data, since a person’s poverty status is unchanged when a monotonic transformation is 

applied to an achievement level and its associated cutoff.17 This clearly rules out �u, 

which aggregates dimensions before identifying the poor, and thus can be altered by 

monotonic transformations.  

In the next section, we introduce multidimensional poverty measures based on the 

Foster Greer Thorbecke (FGT) class that use the �k identification method and its 

associated set Zk = {i : �k(yi; z) = 1} of poor people. Accordingly, we will make use of 

some additional notation that censors the data of non-poor persons. Let g0(k) be the 

matrix obtained from g0 by replacing the ith row with a vector of zeros whenever �k(yi; 

z) = 0, and define gα(k) analogously for α > 0.  The typical entry of gα(k) is thus given 

by gij
α(k) = gij

α  for i satisfying ci > k, while gij
α  = 0 for i with ci < k or, equivalently, by 

gij
α(k) = gij

α
�k(yi; z) As the cutoff k rises from 1 to d, the number of nonzero entries in the 

associated matrix gα(k) falls, reflecting the progressive censoring of data from persons 

who are not meeting the dimensional poverty requirement presented by �k. It is clear 

that the union specification k = 1 does not alter the original matrix at all; consequently, 

                                                 
16 An analogous approach has been used in the measurement of chronic poverty, with duration in that 
context corresponding to breadth in the present case. See Foster (2007). 
17 In other words, �k(yi; z) = �k(yi'; z') where for each j = 1,…,d we have y'ij = fj(yij) and zj' = fj(zj) for some 
increasing function fj. It would be interesting to characterize the identification methods � satisfying the 
above three properties. 
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gα(1) = gα. The intersection specification k = d removes the data of any person who is 

not deprived in all d dimensions; in other words, when the matrix gα(d) is used, a 

person deprived in just a single dimension is indistinguishable from a person deprived 

in d–1 dimensions. When k = 2,…, d–1, the dual cutoff approach provides an 

intermediate option between the union and intersection methods as reflected in the 

matrix gα(k). 

5. MEASURING POVERTY 

We are searching for a multidimensional poverty measure M(y; z) to be used with 

the dual cutoff identification approach. A natural place to begin is with the percentage 

of the population that is poor. The headcount ratio H = H(y; z) is defined by H = q/n, 

where q = q(y; z) is number of persons in the set Zk, and hence the number of the poor 

identified using the dual cutoff approach. This is entirely analogous to the income 

headcount ratio and inherits the virtue of being easy to compute and understand, and the 

weakness of being a crude, or partial, index of poverty.18 Notice, though, that an 

additional problem emerges in the multidimensional setting. If a poor person becomes 

deprived in a dimension in which that person had previously not been deprived, H 

remains unchanged. This violates what we will call ‘dimensional monotonicity’ which 

is defined rigorously below. Intuitively speaking, if poor person i becomes newly 

deprived in an additional dimension, then overall poverty should increase.  

To reflect this concern, we can include additional information on the breadth of 

deprivation experienced by the poor. Let k be an integer between 1 and d. We define 

the censored vector of deprivation counts c(k) as follows: If ci > k, then ci(k) = ci, or 

person i's deprivation count; if ci < k, then ci(k) = 0. Notice that ci(k)/d represents the 

share of possible deprivations experienced by a poor person i, and hence the average 

deprivation share across the poor is given by A = |c(k)|/(qd). This partial index conveys 

relevant information about multidimensional poverty, namely, the fraction of possible 

dimensions d in which the average poor person endures deprivation. Consider the 

following multidimensional poverty measure M0(y;z) which combines information on 

the prevalence of poverty and the average extent of a poor person’s deprivation. 

 

DEFINITION 1: The (dimension) adjusted headcount ratio is given by M0 = HA. 

                                                 
18 A partial index provides information on only one aspect of poverty. See Foster and Sen (1997). 
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As a simple product of the two partial indices H and A, the measure M0 is sensitive 

to the frequency and the breadth of multidimensional poverty. In particular, it clearly 

satisfies dimensional monotonicity, since if a poor person becomes deprived in an 

additional dimension, then A rises and so does M0. The adjusted headcount ratio can be 

used with purely ordinal data, which arises frequently in multidimensional approaches 

based on capabilities. This important characteristic of the measure will be discussed at 

some length in a separate section below. Note that M0 can be defined as M0 = �(g0(k)), 

or the mean of the censored deprivation matrix g0(k). In words, the adjusted headcount 

ratio is the total number of deprivations experienced by the poor, or |c(k)| = |g0(k)|, 

divided by the maximum number of deprivations that could possibly be experienced by 

all people, or nd.  

The adjusted headcount ratio is based on a dichotomisation of the data into 

deprived and non-deprived dimensions, and so it does not make use of dimension 

specific information on the depth of deprivation. Consequently it will not satisfy the 

traditional monotonicity requirement that poverty should increase as a poor person 

becomes more deprived in any given dimension. To develop a measure that is sensitive 

to the depth of deprivation, we return to the matrix g1 of normalised gaps and its 

associated censored version g1(k). Let G be the average poverty gap across all instances 

in which poor persons are deprived, given by G = |g1(k)|/|g0(k)|. Consider the following 

multidimensional poverty measure M1(y; z) which combines information on the 

prevalence of poverty, the average range of deprivations and the average depth of 

deprivations when the poor are deprived.  

 

DEFINITION 2: The (dimension) adjusted poverty gap is given by M1�M�HAG$�

The adjusted poverty gap is thus the product of the adjusted headcount ratio M0 

and the average poverty gap G. It is easily shown that M1 = �(g1(k)); in words, the 

adjusted poverty gap is the sum of the normalised gaps of the poor, or |g1(k)| divided by 

the highest possible sum of normalised gaps, or nd. If the deprivation of a poor person 

deepens in any dimension, then the respective gij
1 (k) will rise and hence so will M1. 

Consequently, M1 satisfies monotonicity. However, it is also true that the increase in a 

deprivation has the same impact no matter whether the person is very slightly deprived 

or acutely deprived in that dimension. One might argue that the impact should be larger 

in the latter case. 
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Consider the matrix g2 of squared normalised shortfalls and its censored version 

gij
2(k). These matrices provide information on the severity of deprivations as measured 

by the square of the normalised shortfalls, with the censored matrix g2(k) including only 

the data on the poor. Rather than using the matrix g1(k) to supplement the information 

of M0 (as was done in M1), we can use the matrix g2(k) which suppresses the smaller 

gaps and emphasises the larger ones. The average severity of deprivations, across all 

instances in which poor persons are deprived, is given by S = |g2(k)|/|g0(k)|. The 

following multidimensional poverty measure M2(y;z) combines information on the 

prevalence of poverty and the range and severity of deprivations. 

 

DEFINITION 3: The (dimension) adjusted P2 measure is given by M2 = HAS. 

M2 is thus the product of the adjusted headcount ratio M0 and the average severity 

index S; it can also be expressed as M2 = �(g2(k)), the mean of the matrix g2(k), which 

in words is the sum of the squared normalised gaps of the poor, or |g2(k)|, divided by the 

highest possible sum of the squared normalised gaps, or nd. For a given sized increase 

in deprivation, the measure registers a greater impact the larger the initial level of 

deprivation. It satisfies a ‘transfer’ property (as noted below), and is sensitive to the 

inequality with which deprivations are distributed among the poor, and not just their 

average level. Indeed, M2 = (M1)2 + V, where V is the variance among all normalised 

gaps.19 

It is straightforward to generalise M0, M1, and M2, to a class Mα of 

multidimensional poverty measures associated with the unidimensional FGT class 

developed by Foster  Greer and Thorbecke (1984). For every α > 0, let gα be the matrix 

whose entries are α powers of the normalised gaps, and let gα(k) be the associated 

censored matrix.20 Consider the following class of measures. 

 

DEFINITION 4: The (dimension) adjusted FGT measures, denoted M�(y;z), are given 

by Mα = �(gα(k)) for α > 0.  

 

                                                 
19 In other words, V = ΣiΣj(µ(g1) - gij

1 )2/(nd). The formula can also be expressed as M2 = (M1)
2[1 + C2], 

where C2 = V/(µ(g1))2 is the squared coefficient of variation inequality measure. This is analogous to a 
well-known formula for the FGT measure P2.  
20 Technically speaking, this definition applies only for α > 0. The matrix g0 (or g0(k)) can be obtained as 
the limit of gα (respectively, gα(k)) as α tends to 0. 
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In other words, Mα is the sum of the α powers of the normalised gaps of the poor, or 

|gα(k)|, divided by the highest possible value for this sum, or nd. The poverty measure 

Mα ranges in value from 0 to 1. We now turn to a discussion of the properties satisfied 

by Mα and H. 

6. PROPERTIES 

The traditional approach to constructing properties for multidimensional poverty 

measures has been to alter their unidimensional counterparts in natural ways.21 

However in the multidimensional context, the identification step is no longer 

elementary, and properties must be viewed as joint restrictions on the identification 

method � and aggregate measure M and, thus, on the overall methodology �. Some 

properties (such as ‘symmetry’ below) only use � in finding poverty levels. Others 

(such as ‘poverty focus’) make explicit use of � to restrict consideration to certain data 

matrices or changes covered by the axiom. In the following discussion, we will assume 

that a specific � has been selected and will use the statement ‘M satisfies axiom A’ as 

shorthand for ‘(�, M) satisfies axiom A’. In particular, �k will be the identification 

method used whenever Mα or H is being discussed.22  

A key property satisfied by Mα and H is ‘decomposability’ which requires overall 

poverty to be the weighted average of subgroup poverty levels, where weights are 

subgroup population shares. In symbols, let x and y be two data matrices and let (x,y) be 

the matrix obtained by merging the two; let n(x) be the number of persons in x (and 

similarly for n(y) and n(x,y)).  

 

DECOMPOSABILITY:  For any two data matrices x and y we have 

  M(x,y; z) = 
��

n�x�

n�x� y�
M�x�z� + n�y�

n�x� y�
M�y�z�. 

Repeated application of this property shows that the decomposition holds for any 

number of subgroups, making this an extremely useful property for generating profiles 

of poverty and targeting high poverty populations.23 If we apply a decomposable 

                                                 
21 Tsui (1999, 2002), Atkinson (2003), Bourguignon & Chakravarty (2003), Duclos Sahn and Younger 
(2006), and Kakwani and Silber (2008b).  
22 Note that the identification method ρk could also be used with other existing multidimensional poverty 
measures such as Tsui (2002), Bourguignon and Chakravarty (2003), or Massoumi and Lugo (2008).  
23 Any decomposable measure also satisfies ‘subgroup consistency’ which requires overall poverty to 
increase when poverty rises in the first subgroup and does not fall in the second (given fixed population 
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measure to a replication x of y, which has the form x = (y,y,…,y), it follows that x has 

the same poverty level as y. The following basic property is thus satisfied by Mα and H. 

 

REPLICATION INVARIANCE: If x is obtained from y by a replication, then M(x; z) = 

M(y; z). 

 

This property ensures that poverty is measured relative to the population size, so as 

to allow meaningful comparisons across different sized populations. Now let x be 

obtained from y by a permutation, by which it is meant that x = Π y, where Π is some n 

× n permutation matrix.24 This has the effect of reshuffling the vectors of achievements 

across people. It is immediately clear from the definitions of Mα and H that they satisfy 

the following property: 

 

SYMMETRY: If x is obtained from y by a permutation, then M(x; z) = M(y; z). 

 

According to symmetry, if two or more persons switch achievements, measured poverty 

is unaffected. This ensures that the measure does not place greater weight on any 

person or group of persons.  

The traditional focus axiom requires a poverty measure to be independent of the 

data of the non-poor, which in the unidimensional or income poverty case is simply all 

incomes at or above the single poverty line.25 In a multidimensional setting, a non-poor 

person can be deprived in several dimensions while a poor person may well exceed 

several of the deprivation cutoffs. Mα and H satisfy two forms of the focus axiom, one 

concerning the poor, and the other pertaining to deprived dimensions. We say that x is 

obtained from y by a simple increment if xij > yij for some pair (i, j) = (i', j') and xij = yij 

for every other pair (i, j) ≠ (i', j'). We say it is a simple increment among the non-poor if 

i' is not in Z for y (whether i' is deprived or not in j'); it is a simple increment among the 

nondeprived if yij > zj for (i, j) = (i', j'), whether or not i' happens to be poor. 

 

                                                                                                                                               
sizes). As discussed in Foster, Greer and Thorbecke (1984) and Foster and Sen (1997), it is this property 
that allows the coordination of local and national poverty alleviation policies. 
24 A permutation matrix Π is square matrix with a single ‘1’ in each row and each column, and the rest 
‘0’s. 
25 An alternative definition considers persons on or below the cutoff to be poor. 



�	�����
���������� � ���������
�����������

 

������ ������!�� 15 

POVERTY FOCUS: If x is obtained from y by a simple increment among the non-

poor, then M(x; z) = M(y; z). 

 

DEPRIVATION FOCUS: If x is obtained from y by a simple increment among the 

nondeprived, then M(x; z) = M(y; z). 

 

In the poverty focus axiom, the set Z of the poor is identified using �, and M is 

required to be unchanged when anyone outside of Z experiences a simple increment. 

This is a basic requirement that ensures that M measures poverty in a way that is 

consistent with the identification method �. In the case of Mα and H, the poor are 

identified using �k and the achievements of the non-poor are censored prior to 

aggregation. Hence, they satisfy the poverty focus axiom. In the deprivation focus 

axiom, the simple increment is defined independently of the particular identification 

method employed and is applicable to all nondeprived entries in y – poor and non-poor 

alike. For the measures Mα and H, a simple increment to a nondeprived entry leaves 

gα(k) unchanged, and hence they satisfy the deprivation focus axiom as well.  

It is possible for a multidimensional poverty methodology to follow the poverty 

focus axiom without satisfying the deprivation focus axiom. Consider, for example, a 

unidimensional approach that, say, adds the dimensions to create an income variable, 

identifies the poor using an aggregate cutoff and employs a standard income poverty 

measure. Given the assumed tradeoffs across dimensions, it is possible for a poor 

person to be lifted out of poverty as a result of an increment in a nondeprived 

dimension, thus lowering the measured level of poverty and violating deprivation focus. 

Conversely, the deprivation focus axiom may be satisfied without accepting the poverty 

focus axiom: suppose the average gap µ(g1) over all deprivations (poor or non-poor) is 

taken to be the measure and yet take an intersection approach to identification is used.26 

The next set of properties ensures that a multidimensional poverty measure has the 

proper orientation. Consider the following extensions to the definition of a simple 

increment: We say that x is obtained from y by a deprived increment among the poor if 

in addition to being a simple increment we have zj' > yi'j' for i' ∈ Z; it is a dimensional 

                                                 
26 The two forms of focus axioms are related in certain cases. When union identification is used, it can be 
shown that the deprivation focus axiom implies the poverty focus axiom; alternatively, when an 
intersection approach is used, the poverty focus axiom implies the deprivation version. Bourguignon and 
Chakravarty (2003), for example, assume the deprivation focus axiom (their ‘strong focus axiom’) along 
with union identification, and so their methodology automatically satisfies the poverty focus axiom. 
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increment among the poor if it satisfies xi'j' > zj' > yi'j' for i' ∈ Z. In other words, a 

deprived increment among the poor improves a deprived achievement of a poor person, 

while a dimensional increment among the poor completely removes the deprivation. 

Consider the following properties. 

 

WEAK MONOTONICITY: If x is obtained from y by a simple increment, then M(x; z) 

< M(y; z). 

 

MONOTONICITY: M satisfies weak monotonicity and the following: if x is obtained 

from y by a deprived increment among the poor then M(x; z) < M(y; z). 

 

DIMENSIONAL MONOTONICITY: If x is obtained from y by a dimensional increment 

among the poor, then M(x; z) < M(y; z). 

 

Weak monotonicity ensures that poverty does not increase when there is an 

unambiguous improvement in achievements. Monotonicity additionally requires 

poverty to fall if the improvement occurs in a deprived dimension of a poor person. 

Dimensional monotonicity specifies that poverty should fall when the improvement 

removes the deprivation entirely; it is clearly implied by monotonicity. Every Mα and H 

satisfy weak monotonicity; every Mα (and not H) satisfies dimensional monotonicity; 

and every Mα measure with α > 0 satisfies monotonicity, while H and M0 do not.  

The weak monotonicity and focus axioms ensure that a measure M achieves its 

highest value at x0 in which all achievements are 0 (and hence each person is maximally 

deprived), while it achieves its lowest value at any xz in which all achievements reach 

or exceed the respective deprivation cutoffs given in z (and hence no one is deprived). 

‘Nontriviality’ ensures that these maximum and minimum values are distinct, while 

‘normalisation’ goes further and assigns a value of 1 to x0 and a value of 0 to each xz.  

Both are satisfied by every member of the Mα class and H. 

 

NONTRIVIALITY: M achieves at least two distinct values. 

 

NORMALISATION: M achieves a minimum value of 0 and a maximum value of 1. 
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For any multidimensional poverty measure satisfying monotonicity, one can 

explore whether the measure is also sensitive to inequality among the poor. The 

simplest notion of this sort is based on an ‘averaging’ of the achievement vectors of two 

poor persons i and i', in which person i receives λ > 0 of the first vector and 1-λ > 0 of 

the second with the shares reversed for person i'. Following Kolm (1977) these d many 

‘progressive transfers’ between the poor represent an unambiguous decrease in 

inequality, which some would argue should be reflected in a lower or equal value of 

multidimensional poverty. In general, we say that x is obtained from y by an averaging 

of achievements among the poor if x = By for some n × n bistochastic matrix27 B 

satisfying bii = 1 for every non-poor person i in y. Note that the requirement bii = 1 

ensures that all the non-poor columns in y are unaltered in x, while the fact that B is 

bistochastic ensures that the poor columns in x are obtained as a convex combination of 

the poor columns in y, and hence inequality has fallen or remained the same. Consider 

the following property. 

 

WEAK TRANSFER: If x is obtained from y by an averaging of achievements among 

the poor, then M(x; z) < M(y; z). 

 

This axiom ensures that an averaging of achievements among the poor generates a 

poverty level that is less than or equal to the original poverty level.28  

We can show that Mα satisfies the weak transfer axiom for α > 1. Indeed, let x be 

obtained from y by an averaging of achievements among the poor. Then where q is the 

number of poor persons in y, let y' be the matrix obtained from y by replacing each of 

the n-q non-poor rows of y with the vector z. Similarly, let x' be the matrix obtained 

from x by replacing the same n-q rows with z. Clearly Mα(y; z) = Mα(y'; z) and Mα(x; z) 

= Mα(x'; z). For any data matrix v, let gα(v) denote the matrix of α powers of normalised 

gaps (or shortfalls) associated with v, and notice that µ(gα(v)) is a convex function of v 

for α > 1. Since x' = By' for some bistochastic matrix B, it follows that µ(gα(x')) < 

µ(gα(y')). But Mα(y';z) = µ(gα(y')) by the construction of y', and if the number of poor in 

x is q, then Mα(x';z) = µ(gα(x')) and we would be done. However, it is also possible that 

the number of poor in x is less than q; in other words the smoothing process has moved 
                                                 
27 A bistochastic matrix is a nonnegative square matrix having the property that the sum of the elements 
in each row (or column) is 1.  
28 See Tsui (1999) who calls this property the Poverty Non-increasing Minimal Transfer Axiom. 
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at least one person from being poor to being non-poor. Then it follows that the 

associated rows in gα(x') will need to be censored in measuring Mα(x'; z), implying that 

Mα(x'; z) < µ(gα(x')). Either way, it follows that Mα(x; z) < Mα(y; z) and hence Mα 

satisfies the weak transfer axiom for α > 1. 

A second notion of sensitivity to inequality can be defined following the work of 

Atkinson and Bourguignon (1982). The concept is based on a different sort of 

‘averaging’ across two poor persons, whereby one person begins with weakly more of 

each achievement than a second person, but then switches one or more achievement 

levels with the second person so that this ranking no longer holds. Motivated by Boland 

and Proschan (1988), we say x is obtained from y by a simple rearrangement among the 

poor if there are two persons i and i' who are poor in y, such that for each j either  

(xij, x i'j) = (yij, yi'j) or (xij, x i'j) = (yi'j, yij), and for every other person i" ≠ i, i' we have  

xi"j = yi"j. In other words, a simple rearrangement among the poor reallocates the 

achievements of the two poor persons but leaves the achievements of everyone else 

unchanged. We say x is obtained from y by an association decreasing rearrangement 

among the poor if, in addition, the achievement vectors of i and i' are comparable by 

vector dominance in y but are not comparable in x. The following property ensures that 

reducing inequality in this way generates a poverty level that is less than or equal to the 

original level.  

 

WEAK REARRANGEMENT: If x is obtained from y by an association decreasing 

rearrangement among the poor, then M(x; z) < M(y; z). 

 

To see that all Mα and H satisfy the axiom, notice that the rearrangement does not 

change the set of the poor nor the collection of achievements among the poor. Hence, 

both H and Mα are unaffected by the rearrangement and just satisfy the axiom.29  

In sum then, Mα satisfies decomposability, replication invariance, symmetry, 

poverty and deprivation focus, weak and dimensional monotonicity, nontriviality, 

normalisation, and weak rearrangement for α > 0; monotonicity for α > 0; and weak 

transfer for α > 1. H satisfies all but dimensional monotonicity and monotonicity. 

The structure of Mα can be utilised to construct the following formulas that are 

helpful in empirical applications:  

                                                 
29 This is called Poverty-Nondecreasing Rearrangement by Tsui (1999).  
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(1a)   Mα(y; z) = Σi �( gi
α (k))/n  

(1b)   Mα(y; z) = Σj �( g∗ j
α (k))/d 

where gi
α (k) is the ith row, and g∗ j

α (k) is the jth column, of the censored matrix gα(k). In 

principle, one could apply Mα to the 1 × d ‘matrix’ containing only the achievement 

vector yi of person i, to obtain that person’s level of poverty. It turns out that Mα(yi; z) = 

�( gi
α (k)), and so (1a) becomes Mα(y; z) = Σi Mα(yi; z)/n, or an application of the 

population decomposition axiom to singleton subgroups. While each achievement 

vector yi contains the information necessary to complete the identification step for i, the 

column vector y∗j of jth dimensional achievements does not, since the remaining 

dimensions are needed to identify the persons who are non-poor and hence the rows 

that are censored to obtain gα(k) from gα. It follows, then, that Mα is not, technically 

speaking, fully decomposable by dimension. However, once the identification step has 

been completed and the non-poor rows of gα have been censored to obtain gα(k), the 

above aggregation formula shows that overall poverty is the average of the d many 

dimensional values �( g∗ j
α (k)). Consequently, (1/d)�( g∗ j

α (k))/Mα(y; z) can be interpreted 

as the post-identification contribution of dimension j to overall multidimensional 

poverty.30 

7. THE ORDINAL CASE 

Data that describe capabilities and functionings are often ordinal in nature and 

collectively may lack a strong basis for making comparisons across dimensions. These 

aspects present a central challenge to multidimensional poverty measurement based on 

the capability approach. In this section we consider the problem of ordinal and non-

comparable variables and provide a robust solution in the form of the adjusted 

headcount ratio and related indices. 

Certain variables, like income, are commonly taken to be measureable on a ratio 

scale, which means that they have a natural zero and are unique up to multiplication by 

a positive constant. Let Λ be the d × d diagonal matrix having λj > 0 as its jth diagonal 

element. Matrix multiplying Λ by y and z has the effect of rescaling the dimension j 

achievements and cutoff by λj, which is precisely the transformation allowable for ratio 
                                                 

30 Formula (1b) does not provide a full decomposition by dimensions since it takes the identification 
step as given. The true contribution of a dimension to multidimensional poverty would include its 
potential impact on identification as well. This is a topic for future discussion. 
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scale variables. Indeed, it is an easy matter to show that Mα(yΛ;zΛ) = Mα(y; z) and 

hence the poverty values rendered by the adjusted FGT indices are meaningful when 

achievements are measured as ratio scale variables.31  

In contrast, if achievements are ordinal variables with no common basis for 

comparison, then this means that each variable can be independently transformed by an 

arbitrary increasing function. For j = 1,…, d, let fj: R+→R+ be any strictly increasing 

function on the nonnegative reals R+. Let f(y) denote the matrix whose ijth entry is fj(yij) 

and let f(z) be the vector whose jth entry is fj(zj). Then M0 has the property that M0(f(y); 

f(z)) = M0(y; z), and hence the poverty value determined by the adjusted headcount ratio 

is meaningful even when achievements are ordinal variables.32 However, for α > 0 it is 

clear that Mα does not share this property, and perhaps more importantly, the 

underlying ordering is not invariant to monotonic transformations of this type. Indeed, 

for any given α > 0 it is easy to construct examples for which Mα(x; z) > Mα(y; z) and 

yet Mα(f(y); f(z)) < Mα(f(x); f(z)). The same critique applies to virtually every 

multidimensional poverty measure defined in the literature, and so special care must be 

taken not to use measures whose poverty judgments are meaningless (i.e., reversible 

under monotonic transformations of the variables) when variables are ordinal. While 

the headcount ratio H does survive this test, it does so at the cost of violating 

dimensional monotonicity. In contrast, the adjusted headcount ratio provides both 

meaningful comparisons and favourable axiomatic properties and consequently is 

recommended when data on achievements are ordinal. In addition, M0 has an 

interesting conceptual link to Sen’s (1985b, 1985a, 1987, 1992a, 1993) capability 

framework and the measurement of freedom, which we now pursue in a brief detour. 

7.1 Poverty as Unfreedom 

Sen’s capability approach requires a basis for comparing opportunity sets in terms 

of their levels of ‘freedom’ or the extent of choice that they allow. Many alternative 

bases for comparison may be used. Pattanaik and Xu (1990) focus on what Sen calls the 

intrinsic value of freedom and propose evaluating the freedom of a set in terms of the 

number of options that are present in the set. A significant literature has further 

                                                 
31 Notice that each variable is being transformed independently; meaningful comparisons are being 
obtained without explicitly assuming cross-dimensional comparability of variables. 
32 Note that M0 can also be applied to certain categorical variables (which do not necessarily admit an 
ordering across categories), so long as the cutoff category can be compared to all other categories and 
hence the categories can be dichotomised. 
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explored and critiqued this theme (Pattanaik and Xu, 1990; Klemisch-Alhert, 1993; 

Gravel, 1994, 1998; Pattanaik and Xu, 1998, 2000; Bavetta and Del Seta, 2001; 

Gekker, 2001; Fleurbaey, 2002). In a recent survey of this literature, Foster (2008) used 

a vector representation of opportunity sets to reinterpret the Pattanaik and Xu result as 

an additive representation theorem. We will employ Foster’s characterisation in the 

ensuing discussion of M0 and its identification method. 

Let M be a poverty measure satisfying decomposability, weak monotonicity, 

nontriviality, and a final property of dichotomisation, which requires that M(x; z) = 

M(y; z) for all x and y having the same deprivation matrix g0. The first three properties 

are satisfied by all members of Mα ; however, M0 is the only adjusted FGT measure that 

satisfies dichotomisation, and it is this property that ensures that poverty levels and 

comparisons are meaningful for M0 when the dimensional variables are ordinal. We 

will call a measure that satisfies all four of these properties a standard dichotomised 

measure.  

By decomposability, the structure of M depends entirely on the way that M 

measures poverty over singleton subgroups; and by dichotomisation, this individual 

poverty measure can be expressed as a function F(v) of the individual’s deprivation 

vector v = gi
0 (which is the ith row vector of 0’s and 1’s drawn from g0). In the case of 

M0, we have F(v) = µ(v(k)), where v(k) is the censored distribution defined as v(k) = v if 

|v| � k and v(k) is the zero vector of length d if |v| < k. We will now explore the possible 

forms that F can take for standard dichotomised measures. Note that while the 

definition of M0 is based on the dual cutoff identification ρk, we have not specified the 

identification method ρ employed by the general index M. Hence a second question of 

interest is what forms of identification might be consistent with various properties 

satisfied by M0. 

The individual poverty function F for M0 has two additional properties of interest. 

First, it satisfies anonymity or the requirement that F(v) = F(vΠ), where Π is any d × d 

permutation matrix.33 This property implies that all dimensions are treated 

symmetrically by the poverty measure. Secondly, it satisfies semi-independence, which 

                                                 
33 Anonymity is the analogue of Pattanaik and Xu’s ‘Indifference between No-Choice Situations’ (INS), 
when INS is taken together with their other assumptions. See Foster (2008). 
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states that if vj = uj = 1, and F(v) � F(u), then F(v – ej) � F(u – ej).34 Under this 

assumption, removing the same dimensional deprivation from two deprivation vectors 

should preserve the (weak) ordering of the two. We have the following result: 

 

THEOREM 1: Let F be the individual poverty function associated with a standard 

dichotomised poverty measure. F satisfies anonymity and semi-independence if and 

only if there exists some k = 1,…, d such that for any deprivation vectors v and v' we 

have: F(v') � F(v) if and only if µ(v'(k)) � µ(v(k)).  

 

PROOF: Let S = {v ∈ Rd : vi = 0 or vi = 1 for all i} be the set of all individual 

deprivation vectors, and let F: S → R be an individual poverty function associated with 

a standard dichotomised poverty measure such that F satisfies anonymity and semi-

independence. By anonymity, all vectors v, v' ∈ S with |v| = |v'| must satisfy F(v) = 

F(v'). In other words, the value of F(v) depends entirely on the number of deprivations 

in v. Weak monotonicity implies that F(v) � F(v') for |v| � |v'|, and so the value of F(v) 

is weakly increasing in the number of deprivations in v. By nontriviality and 

decomposability, it follows that F(v) > F(0) for |v| = d. Let k be the lowest deprivation 

count for which F(v) is strictly above F(0); in other words, F(v) = F(0) for |v| < k, and 

F(v) > F(0) for |v| � k. Semi-independence ensures that F must be increasing in the 

deprivation count above k. For suppose that F(u) = F(u') for u, u' ∈ S with k � |u| < |u'|. 

Then by repeated application of anonymity and semi-independence we would have F(v) 

= F(v') for some v, v' ∈ S with |v| < k � |v'|, a contradiction. It follows, then, that F(v) is 

constant in |v| for |v| < k and increasing in |v| for k � |v|. Clearly, this is precisely the 

pattern exhibited by the function µ(v(k)), and hence the proof is complete. 

 

In words, any F satisfying the given assumptions must rank individual deprivation 

vectors in precisely the same way as the poverty methodology (ρk, M0) for some k. This 

result is especially powerful, since it characterises not only a poverty index but also the 

form of identification to be used with it.  

The proof of the result follows quite closely the generalisation of Pattanaik and Xu 

given in Foster (2008). In particular, if full independence were required, so that the 

                                                 
34 The symbol ei refers to the ith usual basis vector (0,…,1,…,0) whose only nonzero entry ‘1’ is in the ith 
coordinate. Note that semi-independence is a weakening of the property of ‘Independence’ found in 
Pattanaik and Xu (1990).  



�	�����
���������� � ���������
�����������

 

������ ������!�� 23 

conditional in semi-independence were converted to full equivalence, then a direct 

analogue of the Pattanaik and Xu result would obtain, namely, F(v') � F(v) if and only 

if µ(v') � µ(v). In this specification, F would make comparisons of individual poverty 

the same way that the union-identified M0 does: by counting all deprivations.  

While the theorem uniquely identifies the poverty ranking over individual 

deprivation vectors, it leaves open a multitude of possibilities for the overall index M – 

one for each specific functional form taken by F. For example, the function F(v) = 

µ(v(k))2 ranks individual vectors as before, but generates a different aggregate measure 

M that places greater emphasis on persons with many deprivations. It would be 

interesting to explore alternative forms for F and their associated poverty indices – each 

of which would be applicable to ordinal data.  

7.2 Ordinal and Cardinal Data 

Data available for multidimensional poverty assessment may be ordinal for some 

dimensions and cardinal for others. Income, for example, is commonly regarded as a 

cardinal variable while self reported health is generally taken to be purely ordinal.35 

The mixed case poses no problems for the dual cutoff identification method �k nor for 

the adjusted headcount measure M0, which dichotomises all variables before 

aggregating. However, for M1 and the other monotonic Mα measures, a tension arises 

across dimensions: they cannot be applied to ordinal dimensions and yet 

dichotomisation of cardinal dimensions loses valuable information. In such situations, 

there may be grounds for creating a hybrid deprivation matrix in which entries are 

normalised gaps for the cardinal dimensions and 0-1 deprivations for the rest. The 

monotonic Mα measures can then be computed from this matrix to obtain measures that 

reflect the depth of deprivation in each cardinal dimension, but follow the ordinal 

measurement restrictions for the remaining dimensions. In practice, though, this process 

may also increase the effective weight on ordinal dimensions – especially as α rises – 

since all deprived persons will appear to have the most severe degree of deprivation 

possible. As a correction, differential weights across dimensions may need to be 

contemplated, a possibility that will now be discussed in full generality. 

                                                 
35 See Allison and Foster (2004) for an extended discussion of the measurement properties of self 
reported health. 
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8. GENERAL WEIGHTS 

By using a poverty measurement methodology based on deprivation counts and 

simple averages, we have thus far implicitly assigned an equal weight wj = 1 to each 

dimension j. This is appropriate when there are no compelling reasons to consider one 

dimension to be more important than another, or when the dimensions have been 

intentionally chosen such that they are of relatively equal importance. As Atkinson et al 

observe, “the interpretation of the set of indicators is greatly eased where the individual 

components have degrees of importance that, while not necessarily exactly equal, are 

not grossly different” (2002, p. 25; see also Atkinson 2003 p. 58).  

Yet sometimes there are reasonably convincing arguments for according 

dimensions variable weights. It could be argued that the choice of relative weights of 

dimensions is a normative value judgement, and should be open to public debate and 

scrutiny: “It is not so much a question of holding a referendum on the values to be used, 

but the need to make sure that the weights – or ranges of weights – used remain open to 

criticism and chastisement, and nevertheless enjoy reasonable public acceptance” 

(Foster and Sen (1997)). In what follows, we will not discuss how the weights might be 

chosen, but only how they might be applied within the identification strategy and 

aggregate measures developed in this paper. Clearly, in practical applications, it is also 

desirable to run robustness tests on any weights that are used (Foster McGillivray and 

Seth, 2007). 

Let w be a d dimensional row vector of positive numbers summing to d, whose jth 

coordinate wj is the weight associated with dimension j. Define gα = [ gij
α ] to be the n × d 

matrix whose typical element is gij
α = wj((zj-yij)/zj)α whenever yij < zj, while gij

α  = 0 

otherwise. From the rows gi
0  of the weighted deprivation matrix g0, construct the vector 

c of weighted deprivation counts, whose ith entry ci = | gi
0 | is the sum of weights for the 

dimensions in which i is deprived. Each ci varies between 0 and d, and so the associated 

dimensional cutoff is taken to be a real number k satisfying 0 < k � d. The generalised 

dual cutoff identification method �k is defined by �k (yi; z) = 1 whenever ci > k, and 

�k(yi; z) = 0 whenever ci < k; in other words, if the deprivation indicator ci satisfies ci � 

k, then person i is identified as being poor; otherwise, i is not poor. As before, the 

censored versions c(k) and gα(k) replace the data of the non-poor persons with 0. If k = 

min{wj}, we obtain the union identification case, while if k = d, the intersection; thus 
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the �k method of identification includes both of these methods. Notice that the 

specification wj = 1 for j = 1,…, d corresponds to the previous case where each 

dimension has equal weight and the dimensional cutoff k is an integer. The 

specification w1 = d/2 and w2 = … = wd = d/{2(d-1)} is an example of a nested weighting 

structure, in which the overall weight is first split equally between dimension 1 and the 

remaining (d-1) dimensions, and then the weight accorded the second group is allocated 

equally across the (d-1) dimensions. A cutoff of k = d/2, for example, would then 

identify as poor anyone who is either deprived in dimension 1 or in all the remaining 

dimensions. 

We can revise the definition of each of our multidimensional poverty indices to 

accommodate general weights. The headcount ratio is H = q/n, where q is the number 

of poor persons identified by �k. For the adjusted headcount, we define the average 

deprivation share by A = |c(k)|/(qd), so that M0 = HA = �(g0(k)), analogous to the 

equally weighted definition above. The adjusted poverty gap can be expressed in terms 

of the average gap G = |g1(k)|/|g0(k)| or directly in terms of the matrix g1(k) as follows: 

M1 = HAG = �(g1(k)).  Analogous definitions for the adjusted M2 measure are S = 

|g2(k)|/|g0(k)| and hence M2 = HAS = �(g2(k)). In general the definition for the family of 

adjusted FGT measures is given by Mα = �(gα(k)) for α > 0. It is an easy matter to 

verify that each of these indices satisfies the same properties in the present context as 

they did with equal weights.36  

9. ILLUSTRATIVE EXAMPLES 
We now illustrate the measurement methodology and its variations, using data 

from Indonesia and the United States. 

9.1 United States  

To estimate multidimensional poverty in the US we use data from the 2004 

National Health Interview Survey37 on adults aged 19 and above (n = 45,884). We draw 

on four variables: (1) income measured in poverty line increments and grouped into 15 

categories, (2) self-reported health, (3) health insurance, and (4) years of schooling. For 

this illustration, we assume that all variables are ordinal and therefore restrict 

                                                 
36 Note that, in principle, a different set of weights could be used for identification and aggregation. It is 
also clear that when general weights are used, individual poverty measures may no longer satisfy 
anonymity. 
37 US National Center for Health Statistics (2004b) 
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consideration to H and M0. The dimensional cutoffs are as follows: if a person (1) lives 

in a household falling below the standard income poverty line, (2) reports ‘fair’ or 

‘poor’ health, (3) lacks health insurance, or (4) lacks a high school diploma, then the 

person is considered to be deprived in the respective dimension.38 The population is 

partitioned into four groups: Hispanic/Latino, (Non-Hispanic) White, (Non-Hispanic) 

Black/African American and Other. Table 1 shows the percentages of the population 

deprived in each of the dimensions while Table 2 presents the distribution of 

deprivation counts. 

Table 1: Incidence of Deprivations in US 
 

Deprivation  
Percentage 
of 
Population 

Number of 
People 

Income 12.1% 5552 
Health 12.8% 5855 
H. Insurance 18.3% 8405 
Schooling 18.6% 8510 

 
Table 2: Distribution of Deprivation Counts in US 

 

Number of 
Deprivations 

Percentage 
of 
Population 

Number 
of People 

1 23.82% 10928 
2 11.67% 5353 
3 4.27% 1960 
4 0.44% 203 

 
Table 3 presents the traditional income poverty headcount (the share of the 

population below the income cutoff), and the multidimensional measures H and M0, 

where the latter are evaluated using k = 2 and equal weights. Column 3 gives the 

population share in each group while Column 5 presents the share of all income poor 

people found in each group. Comparing these two columns, we see that the incidence of 

income poverty is disproportionately high for the Hispanic and African-American 

populations. Moving now to the multidimensional headcount ratio H, column 7 gives 

the percentage of all multidimensionally poor people who fall within each group. The 

percentage of the multidimensionally poor who are Hispanic is much higher than the 

respective figure in column 5, while the percentage who are African-American is 

significantly lower, illustrating how our multidimensional approach to identifying the 

poor can alter the traditional, income-based poverty profile. Whereas column 7 gives 

                                                 
38 Precise definitions of the indicators and their respective cutoffs appear in the Appendix. 
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the distribution of poor people across the groups, column 9 lists the distribution of 

deprivations experienced by the poor people in each group. The resulting figures for M0 

further reveal the disproportionate Hispanic contribution to poverty that is evident in 

this dataset. 

Table 3: Profile of US Poverty by Ethnic/Racial Group 
 

1 2 3 4 5 6 7 8 9 

Group Population Percentage 
Contrib. 

Income 
Poverty 

Headcount 

Percentage 
Contrib. H Percentage 

Contrib. M0 
Percentage 

Contrib. 

Hispanic 9100 19.8% 0.23 37.5% 0.39 46.6% 0.23 47.8% 
White 29184 63.6% 0.07 39.1% 0.09 34.4% 0.05 33.3% 
Black 5742 12.5% 0.19 20.0% 0.21 16.0% 0.12 16.1% 

Others 1858 4.1% 0.10 3.5% 0.12 3.0% 0.07 2.8% 
Total 45884 100.0% 0.12 100.0% 0.16 100.0% 0.09 100.0% 

 
 

Why does multidimensional poverty paint such a different picture? In Table 4, we 

use our methodology to identify the dimension-specific changes driving the variations 

in M0. The final column of Table 4 reproduces the group poverty levels found in 

Column 8 of Table 3, while the rows break these poverty levels down by dimension. 

We use formula (1b), which in the present case becomes M0 = Σj Hj /d, where Hj is the 

share of the respective population that is both poor and deprived in dimension j. The 

first row gives the decomposition for the Hispanic population, with column 2 reporting 

that 20% of Hispanics are both multidimensionally poor and deprived in income. 

Column 6 has the overall M0 for Hispanics, which is simply the average of H1 through 

H4. The second row expresses the same data in percentage terms, with column 2 

providing the percent contribution of the income dimension to the Hispanic level of M0 

or, alternatively, the percentage of all deprivations experienced by the Hispanic poor 

population that are income deprivations. Notice that for Hispanics, the contribution 

from health insurance and schooling is quite high, whereas the contribution of income 

is relatively low. In contrast, the contribution of income for African-Americans is 

relatively high. This explains why, in comparison to traditional income based poverty, 

the percentage of overall multidimensional poverty originating in the Hispanic 

population rises, while the contribution for African-Americans is lower. The example 

shows how the measure M0 can be readily broken down by population subgroup and 

dimension to help explain its aggregate level. 
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Table 4: Contribution of Dimensions to Group M0 
 

1 2 3 4 5 6 

Group H1 
Income 

H2 
Health 

H3 
H. Insurance 

H4 
Schooling M0 

Hispanic 0.200 0.116 0.274 0.324 0.229 
Percentage Contrib.  21.8%  12.7%  30.0%  35.5%   100% 
White 0.045 0.053 0.043 0.057 0.050 
Percentage Contrib.  22.9%  26.9%  21.5%  28.7%   100% 
African-American 0.142 0.112 0.095 0.138 0.122 
Percentage Contrib.  29.1%  23.0%  19.5%  28.4%   100% 
Others 0.065 0.053 0.071 0.078 0.067 
Percentage Contrib. 24.2% 20.0% 26.5% 29.3% 100% 
Overall 0.089 0.073 0.096 0.121 0.095 
Percentage Contribution 23.4% 19.3% 25.4% 31.9% 100% 

 

9.2 Indonesia 

The data for this example are drawn from the Rand Corporation’s 2000 Indonesian 

Family Life Survey (Strauss, et. al., 2004). Our sample consists of all adults aged 19 

years and above (n = 19,752). We use d = 5 dimensions: (1) expenditure measured in 

Rupiah, (2) health measured as body mass index or BMI, in kg/m2, (3) years of 

schooling, (4) drinking water, and (5) sanitation. For purposes of illustration, we make 

assumptions regarding the measurement properties of the dimensional variables, 

namely, that the first three are cardinal and the remaining two are ordinal.39 The 

dimensional cutoffs are as follows: if a person (1) lives in a household with 

expenditures below 150,000 Rupiah, (2) has a BMI of less than 18.5 kg/m2, (3) has 

fewer than five years of schooling40 (4) lacks access to piped water or protected wells, 

or (5) lacks access to private latrines, then the person is deprived in the respective 

dimension.41  

 

                                                 
39 Strictly speaking the remaining variables are categorical variables with 10 to 11 categories each, and 
for illustrative purposes a plausible ordering has been selected for every dimension (Alkire and Foster 
2007), Note, that as long as the categories below and above the poverty cutoff are unchanged, any 
alternative orderings would yield the same results for any measure that ‘dichotomises’ these variables.  
40 For simplification, we are ignoring the fact that at higher levels, body mass index is not positively 
associated with health. In the sample 610 individuals had BMI > 30 (obese); of these 214 did not 
experience any of the 7 remaining deprivations, 133 experienced one deprivation, and 162 obese persons 
(0.8% of the population) experienced 3 or more deprivations.  
41 Precise definitions and justifications of variables and cutoffs are presented in the Appendix. 
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Table 5: Incidence of Deprivations 
 

Deprivation  
Percentage 
of 
Population 

Number 
of 
People 

Expenditure 30.1% 5952 
Health (BMI) 17.5% 3458 
Schooling 36.4% 7188 
Drinking Water 43.9% 8676 
Sanitation 33.8% 6681 

 
Table 6: Distribution of Deprivation Counts 
 

Number of 
Deprivations 

Percentage 
of 
Population 

Number 
of People 

One 26% 5079 

Two 23% 4488 

Three 17% 3306 

Four 8% 1588 

Five 2% 326 

Summary statistics presented in Table 5 show that the percentage of people 

deprived in each dimension ranges from 17% to 44%. Table 6 shows the percentage of 

the population who experience only one deprivation (26%), exactly two deprivations 

(23%), and so on up to five deprivations (2%) giving quite a bit of variation.  

Moving to identification, Table 7 provides the number and percentage of people 

who would be identified as poor for each value k = 1,…,5. When k = 1 (union 

identification), 74.7% of the population is identified as poor. When k = 5 (intersection 

identification), only 1.6% of the population is considered to be poor. Intervening values 

of k enable us to identify people as poor who are deprived in some but not all 

dimensions. The number of people identified as poor declines as the required number of 

deprivations increases, but at a decreasing rate.  

Table 7: Identification as Cutoff k Is Varied 
 

Cutoff k 
Percentage 
of 
Population 

Number 
of People 

1 74.9% 14787 
2 49.2% 9708 

3 26.4% 5220 
4 9.7% 1914 

5 1.7% 326 
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In order to illustrate M� for � = 0,1, and 2, we first reduce consideration to the three 

cardinal dimensions, namely, expenditure, health, and schooling. Table 8 presents 

poverty levels for all values of k. Recall that each of the M� is derived from a 

combination of the partial indices H, A, G, and S.  

Table 8: Multidimensional Poverty Measures: 
Cardinal Variables and Equal Weights 

 

Measure 
 
k = 1 
(Union) 

k = 2 
 
k = 3 
(Intersection) 

H 0.577 0.225 0.039 

M0   0.280 0.163 0.039 

M1  0.123 0.071 0.016 

M2  0.088 0.051 0.011 

 

We see from Table 8 that when k = 2, the value of the headcount ratio is 0.225, and 

the value of M0 = HA is 0.163; M0 departs from H according to the level of A. In the 

present case, A = M0 /H = 0.72, which indicates that 83% of the poor are deprived in 

exactly two dimensions, while the remaining 17% are deprived in all three. Note that 

M0 and H coincide when all poor persons are deprived in d dimensions, as always 

occurs with the intersection method. Moving from M0 to M1 = HAG, the relevant factor 

is the average gap, which is G = M1 / M0 = 0.44 in the present case. This indicates that 

the average achievement of a poor person in a deprived state is 56% of the respective 

cutoff; if all deprived achievements were 0 and hence G were 1, then M1 and M0 would 

have the same value. M2 = HAS shows a further decrease from M1 (0.051 rather than 

0.071), and reflects the severity of poverty S. If all normalized gaps greater than zero 

were identical, we would expect S to equal G2 (or 0.19 in this case). Instead, S = 0.31, 

and this larger value reflects the inequality among deprived states of the poor.     

Table 9 presents a regional profile of poverty in Indonesia made possible by the 

fact that each of the poverty measures satisfies decomposability. We evaluate poverty 

for five regions using cardinal variables and choosing the intermediate level k = 2 as the 

cutoff. To begin with, comparison of columns 3 and 5 reveals that there is a 

disproportionately higher incidence of poverty in Bali and Sulawesi, and a 

correspondingly lower incidence in Sumatra. The average deprivation share A (column 

12) varies only slightly across regions in this specific example and consequently the 

regional percentage contributions for H are nearly identical to the respective 

contributions for M0 (columns 5 and 7). M1 reflects the increased depth of deprivations 
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in Bali and Sulawesi as compared with Sumatra and Kalimantan, due to variations in G 

(column 13). In Bali and Sulawesi, G is 0.49; for Sumatra and Kalimantan, 0.40 and 

0.41 respectively. Similarly M2 reflects the increased severity S of deprivations in Bali 

and Sulawesi, due to the unequal distribution of deprivations (beyond the depth of 

deprivations, that was already captured in M1), while Sumatra and Kalimantan have 

correspondingly decreased levels of S and M2.  

 

Table 9: Profile of Poverty by Region: Cardinal Variables, Equal Weights, and k = 2 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Region Popu-
lation 

% 
Contri- 
Bution 

H 

% 
Contri-
bution  
 

M0 
(HA) 

% 
Contri-
bution 

M1  
(HAG) 

% 
Contri-
bution  

M2 
(HAS) 

% 
Contri-
bution  

A G S 

Sumatra 3798 19.2 0.19 16.5 0.14 16.4 0.056 15.1 0.037 14.0 0.74 0.40 0.26 

Java 11928 60.4 0.22 58.9 0.16 58.9 0.068 58.2 0.049 58.3 0.73 0.43 0.31 

Bali 2087 10.6 0.29 13.6 0.21 13.6 0.102 15.2 0.078 16.1 0.72 0.49 0.37 

Kalimantan 827 4.2 0.22 4.2 0.16 4.1 0.065 3.8 0.045 3.6 0.73 0.41 0.28 

Sulawesi 1112 5.6 0.28 7.0 0.20 7.0 0.097 7.7 0.073 8.0 0.71 0.49 0.37 

All 19752 100 0.22 100.00 0.16 100.00 0.071 100.00 0.051 100.00 0.73 0.44 0.32 

 
Let us now include the remaining variables. This creates a ‘mixed’ case with three 

cardinal and two ordinal variables as presented in Table 10. The first two columns 

report the values of H and M0 for cutoff k = 3 with adjacent cutoffs presented for 

purposes of comparison. The last two columns present the values of M1 and M2 

calculated using the procedure given above in section 7.2, with normalized gaps for the 

cardinal data and 0-1 ‘dichotomized’ values otherwise. Note that it would make no 

difference to M0 (or H) whether the variables were interpreted as ordinal, cardinal, or a 

mix of the two: the poverty levels would be unchanged, emphasizing the special 

versatility of M0 in different measurement contexts.  

Table 10: Multidimensional Poverty Measures: 
Mixed Variables, Equal and General Weights 

 

Cutoff H M0 M1 M2 

Equal Weights     
k = 2 0.49 0.27 0.19 0.18 

k = 3 0.26 0.18 0.13 0.12 
k = 4 0.10 0.08 0.06 0.05 

General Weights     
k = 2 0.31 0.20 0.12 0.10 

k = 3 0.18 0.13 0.08 0.06 
k = 4 0.03 0.03 0.02 0.01 
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The upper half of Table 10 uses equal weights across dimensions, and the lower 

half employs general weights. We apply a ‘nested’ weighting structure which partitions 

the five variables into four equally weighted groups of variables, namely, expenditure, 

health, schooling and ‘infrastructure’, where weights within the final category are 

equally divided between the dichotomised drinking water and sanitation variables. This 

results in weights of wj = 1.25 for the first three variables and wj = 0.625 for the last 

two, where |w| = d = 5. The new weighting structure clearly affects identification and 

the meaning of k, but for simplicity we present the same three values of k. The new 

structure shifts weight from ordinal to cardinal variables, resulting in slightly more 

differentiation between the M1 and M2 values. The example illustrates how the measure 

M� can be used with cardinal variables, with mixed cardinal and ordinal variables, and 

with general weights. 

10. CONCLUDING REMARKS 

This paper has proposed a new methodology for multidimensional poverty 

measurement consisting of: (i) an identification method �k that extends the traditional 

intersection and union approaches, and (ii) a class of poverty measures M� that satisfies 

a range of desirable properties including decomposability. Our identification step 

makes use of two forms of cutoffs: first, a cutoff within each dimension to determine 

whether a person is deprived in that dimension; second, a cutoff across dimensions that 

identifies the poor using a (weighted) count of the dimensions in which a person is 

deprived. The aggregation step employs the FGT measures, appropriately adjusted to 

account for multidimensionality. The identification method is particularly well suited 

for use with ordinal data, as is the first of our measures, the adjusted headcount ratio 

M0. We have also provided empirical examples to show how our methodology might be 

used in practice. 

While we have emphasized the advantages of our approach, there are several other 

aspects that deserve further study. First, since the identification method is based on 

cutoffs, it is sensitive to certain changes, but insensitive to others. For example, small 

changes in individual achievements around a cutoff can lead to a change in the poverty 

status of an individual, and can cause the poverty level to vary discontinuously in 

achievements.42 It would be interesting to see whether a fuzzy approach to 

                                                 
42 For example, using the intersection method of identification, if an achievement level of a poor person 
rises above the cutoff in that dimension, then the person will no longer be poor. This in turn will lead to a 
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identification might remove the discontinuity, or whether there are other modifications 

that might address this directly. Moreover, the poverty status of a person will be 

unaffected by certain large changes in achievements. Indeed, a poor person can never 

rise out of poverty by increasing the level of a non-deprived achievement, while a non-

poor person will never become poor as a result of decrease in the level of a deprived 

achievement. This is perhaps not unexpected, given our interest in applying the method 

to ordinal data and in avoiding aggregation before identification. However, there are 

tensions here that should be evaluated as part of a more systematic investigation of 

identification methods. It would also be interesting to characterize the identification 

methods � that can be used with ordinal data, and to explore identification methods that 

regard group as well as individual characteristics. 

Second, unlike other recent contributions, our presentation has not emphasized the 

potential interrelationships among dimensions that can exist when variables are 

cardinal. To be sure, the identification method �k takes into account a rather crude form 

of linkage across dimensions, since a person must be deprived in k dimensions in order 

to be considered as poor. However, for � > 0, the aggregation method M� is ‘neutral’ in 

that individual i’s poverty level M�(yi; z) has a vanishing cross partial derivative for any 

pair of dimensions in which i is deprived. It is sometimes argued that this cross partial 

should be positive, reflecting a form of complementarity across dimensions; 

alternatively, it might be negative so as to yield a form of substitutability. While M� 

itself is neutral, it is a trivial matter to convert M� into a measure that satisfies one or 

the other requirement:  replace the individual poverty function M�(yi; z) with [M�(yi; z)]� 

for some � > 0 and average across persons.43 The resulting poverty index regards all 

pairs of dimensions as substitutes when � < 1, and as complements when � > 1, with � = 

1 being our basic neutral case. Should interrelationships among dimensions be 

represented in this way? When there are more than two dimensions, it might be natural 

to expect some pairs of dimensions to be complements and others to be substitutes, and 

with varying degrees and strengths. However, the � transformation requires dimensions 

to be all substitutes or all complements, and with a strength that is uniform across all 

pairs and for all people. This seems unduly restrictive.  

                                                                                                                                               
discontinuous drop in virtually all multidimensional poverty indices. In the present case, as an individual 
rises out of poverty, the headcount will fall by 1/n. The change in M� is no larger than the change in H, 
and is weakly decreasing in �. 
43 Bourguignon and Chakarvarty (2003) present poverty indices of this kind.  
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Additional problems need to be faced when considering interrelationships among 

dimensions.  There are multiple definitions of substitutes and complements, and the 

leading candidate – the Auspitz-Lieben-Edgeworth-Pareto (ALEP) definition – has 

certain difficulties (Kannai 1980). Moreover, there do not seem to be any convincing 

empirical procedures for determining the extent of substitutability and complementarity 

across dimensions of poverty. Nor has it even been established that the potential 

interrelationships must be reflected in an overarching methodology for evaluating 

multidimensional poverty. Instead, the interconnections might be the subject of separate 

empirical investigations that supplement, but are not necessarily part of, poverty 

measurement. Our methodology provides a neutral foundation upon which more refined 

accounts of the interconnection between dimensions can be built.   

This paper leaves a number of questions for subsequent studies to address. For 

example it would be interesting to see whether the adjusted FGT measures M� and the 

dual cutoff identification method �k can be fully characterized. It would likewise be 

natural to investigate dominance conditions that would allow poverty comparisons to be 

robust to the choice of cutoffs or weights. Another unresolved question is whether a 

measure can be crafted for ordinal data that reflects the depth of dimensional 

deprivations. We hope that the methodology developed in this paper will be a useful 

touchstone for future research efforts. 
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This section presents the precise definition of the variables, and the poverty cutoffs and 

their justification for each dimension. The dimensions in both countries were chosen 

because the data are arguably related to current research on poverty, and have the 

requisite technical characteristics. To obtain policy relevant conclusions, the selection 

of dimensions would need to satisfy additional normative criteria (Robeyns, 2005; 

Alkire, 2008).  

United States 

US data were used from the 2004 National Health Interview Survey on adults aged 19 

and above (n = 45,884). 

 

1. Income 

The definition of estimated earnings is described in Center for Disease Control (2005, 

p. 36f). The poverty cutoffs vary by household composition; the formula used are 

presented on http://www.census.gov/hhes/www/poverty/threshld/thresh04.html 

(accessed 30 Dec 2007). The data are the ratio of family income to the poverty 

threshold, and comprise 15 categories, 3 below the poverty line and 12 above.  

 

2. Health:  

Definition: The question had five categories and read: “Would you say your health in 

general is (5) excellent, (4) very good, (3) good, (2) fair, or (1) poor?” We considered 

those who responded ‘fair’ or ‘poor’ to be deprived in terms of self-reported health, and 

others to be non-poor.  

 

3. Health Insurance:  

Definition: the question read: ‘What kind of health care or health insurance does this 

person have?’ We considered those who responded, ‘No coverage of any type’ to be 

deprived in terms of health insurance, and others to be non-poor. Note that the data had 

been corrected, and regarded as uninsured, ‘persons who did not report having health 
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insurance at the time of the interview under private health insurance, Medicare, 

Medicaid, State Children's Health Insurance Program (SCHIP), a State-sponsored 

health plan, other government programs, or military health plan (includes TRICARE, 

VA, and CHAMP-VA).’ This definition of uninsured matches that used in US National 

Center for Health Statistics (2004a).  

 

4. Schooling:  

Definition: Education is measured by years of schooling completed. Following 

convention, the poverty cutoff classified those who had not completed a GED or 

received a high school diploma to be deprived and others to be non-poor. When 

conducting Spearman’s rank correlations, we used the number of years of schooling 

through 12, but ranking a person with 12 years of schooling and no diploma as 11. 

Other data were coded as followed: GED=12, College no degree=13, Associate degree 

(occupational, technical or academic) = 14 Bachelor’s degree=15, Master’s degree = 

16, Professional Degree (MD) or PhD = 17.  

 

Table A1: Spearman's Rank Correlation (non-censored 
data), USA 
 Income Health Schooling Insurance 
Income 1.00       
Health 0.26 1.00     
Health 
Insurance 0.31 0.03 1.00  
Schooling 0.47 0.28 0.24 1.00 

 

Indonesia 

The data derive from individual and household level questionnaires for adults 19 years 

and above.44 Years of Schooling and Body Mass Index pertain to the individual and per 

capita household expenditure is calculated. The individual is ascribed the values 

satisfied by their household for drinking water and sanitation.  

 

In variables 4 and 5, a plausible ordering chosen is for illustrative purposes. There are 

serious issues with categorical variables of how to order correctly.45 Alternative 

                                                 
44 All data and documentation can be downloaded from http://www.rand.org/labor/FLS/IFLS/ifls3.html.  
45 The category ‘other’ is particularly difficult; we have arbitrarily ascribed it the lowest value in all 
variables.  
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orderings could have been used, but so long as the sets below and above the poverty 

line remain the same, an alternative ordering will yield the same results for H and M0 as 

these are based on dichotomised data.  

 

1. Expenditure 

The variable is monthly real per capita household expenditure as defined in (Strauss, et 

al., 2004) and presents. The poverty cutoff is z1 = 150,000 (in current 2000 Rupiah) per 

capita. This poverty line was adopted for the same dataset by Massoumi and Lugo, and 

is roughly equivalent to $0.5 per day per person. Note that the Indonesian government 

uses different poverty lines for rural and urban areas.  

 

2. Health: Low Body Mass Index (BMI) 

Definition: Body Mass Index (BMI) is the weight in kilograms divided by the square of 

the height in metres (kg/m2). The poverty cutoff z2 = 18.5 kg/m2. This is the standard 

international classification for underweight adults taken from the World Health 

Organisation Guidelines found on 

http://www.who.int/bmi/index.jsp?introPage=intro_3.html  

 

3. Schooling 

Definition: Education is measured by years of schooling completed. The poverty cutoff 

z3 = 6 years of schooling, as in India primary school is completed in 6 years. This is an 

imperfect indicator for primary education as it does not consider those who have 

repeated a year of schooling.  

 

4. Drinking water 

Definition: This is based on responses to the question, “What is the main water source 

for drinking for this household?” The poverty cutoff used is taken from the cutoff for 

MDG indicator 30 (United Nations Development Group, 2003) p 64-6.46 Note that the 

data do not specify whether wells and springs are protected, and so certain assumptions 

had to be made. There are 10 categories. We set z4 = 9, thus have regarded as non-poor 

all persons obtaining piped or pumped well water, and the remainder as deprived.  

 

                                                 
46 This approach does not regard bottled water such as Aqua/Air Mineral as clean drinking water hence 
we follow the convention, but acknowledge that adjustments may be required in some situations.  



�	�����
���������� � ���������
�����������

 

������ ������!�� 41 

10. Pipe Water  
9. Well/Pump (electric, hand) 
8. Aqua/Air Mineral, etc 
7. Well Water 
6. Spring Water 
5. Rain Water  
4. River/Creek Water  
3. Pond/Fishpond 
2. Water Collection Basin 
1. Other  

 

5. Sanitation 

Definition: This is based on responses to the question, “Where do the majority of 

householders go to the toilet?” The poverty cutoff used is taken from the cutoff for 

MDG indicator 31 (United Nations Development Group, 2003) p 66-8. There are 11 

categories. We set z5 = 10 so regard as non-poor those persons who use their own toilet 

(with or without a septic tank) and regard all others as deprived.  

 

11. Own toilet with septic tank   
10. Own toilet without septic tank   
9. Shared toilet     
8. Public toilet     
7. Creek/river/ditch (without toilet)   
6. Yard/field (without toilet)    
5. Sewer      
4. Pond/fishpond      
3. Animal stable      
2. Sea/lake     
1. Other   

 

Table A2: Indonesian Spearman’s Rank correlation (non-censored data), 

Indonesia 

 

 

Expe
nditu
re 

Heal
th 
(BM
I) 

Schooli
ng 

Drink. 
Water 

Sanita
-tion 

Expenditure 1.00      
Health (BMI) 0.19 1.00    
Schooling 0.35 0.14 1.00   
Drinking Water 0.26 0.15 0.26 1.00  
Sanitation 0.29 0.14 0.31 0.27 1.00 

 


