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Abstract 
 
This study assesses matching estimators with fixed effects that first removes space and 
time effects before proceeding to apply standard matching based on participant 
characteristics. I use data from a novel profiling unemployment insurance program that 
allows the identification of both experimental and nonexperimental samples within the 
same local offices and with comparable measures from common administrative data 
sources. The results show that matching methods perform consistently well. The 
estimated bias increases dramatically when the comparison groups are drawn from 
different local offices within the same state. Kernel-based propensity score models show 
significant better predictive performance than their counterpart parametric logit models. 
This feature, however, does not translate into lower bias estimates.  
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1. Introduction 

Conflicting evidence on the performance of econometric estimators that are frequently 

used in the evaluation of social programs has produced a long-standing debate in the 

applied labor literature over the last two decades. This research literature is motivated by 

question of whether social programs can be reliably evaluated without randomized 

experimental data (Lalonde 1986). The basic finding is that the failure to compare 

“comparable” individuals, as well as the lack of good data, can explain the lack of 

reliability of nonexperimental methods in replicating experimental determined treatment 

impacts (e.g., Lalonde 1986; Friedlander and Robins 1995; Heckman, Ichimura, Smith, 

and Todd 1998; Dehejia and Wahba 1999, 2002; and Smith and Todd 2005a, b). 

 While most of this literature is based on data from prototypical job training 

programs, this paper extends this research to a new evaluation area: profiling 

unemployment insurance programs. I use experimental data combined with 

nonexperimental data from the Kentucky Working Profiling and Reemployment Services 

(hereafter WPRS) to learn which combinations of data and institutions lead particular 

econometric estimators to work well or poorly. The primary goal of this unemployment 

insurance (UI) program is to shorten the unemployment spells of those with higher 

probabilities of exhausting their unemployment insurance benefits by means of low-

intensity reemployment services. Black, Smith, Berger, and Noel (2003) provide 

experimental evidence that this program has had a large impact that led to substantial 

increases in quarterly earnings ($525), as well as reductions in the amount (-$143) and 

duration (2.24 weeks) of the UI benefits. 
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This study focuses on a class of estimators called ‘propensity scores matching’ 

that aim to balance distributions of individual characteristics across groups, so that 

groups are similar except for the treatment they receive. There are three main advantages 

to this program design and data. First, the data satisfies all the criteria needed for reliable 

implementation of matching estimators (Heckman et al. 1998). Specifically, the 

Kentucky WPRS program identifies both experimental and nonexperimental comparison 

samples within the same local office and with comparable measures from common 

administrative data sources. Second, where most of the previous analyses have examined 

voluntary programs in which individuals self-select into the programs, the Kentucky 

WPRS program is a mandatory one. This feature minimizes the role of selection on 

unobservables that requires stronger identification assumptions. Third, selection into the 

program is solely based on observable variables (i.e., profiling scores, local offices and 

weeks), and thus, the implementation of evaluation strategies that assume “selection on 

observables” is fully justified.  

This favorable assessment of the Kentucky WPRS data differs markedly from 

widely used out-of-state comparisons where the procedures for bringing the individuals 

into the samples – along with strong variations in labor-market conditions – causes the 

failure of the identifying conditions for the identification of the treatment impacts. 

Lalonde’s (1986) famous data sets, for instance, vividly illustrate the case in which the 

disparate distribution of covariates between the experimental and nonexperimental 

samples is so severe that an overwhelming number of comparison individuals have 

virtually no use in an evaluation, leading to a high level of sensitivity to the estimates 



 3

along many dimensions.1  The Kentucky WPRS data also improves over within-state 

evaluations of welfare programs in which the nonexperimental comparison samples are 

drawn from earlier cohorts of welfare recipients from the same local welfare offices or 

welfare recipients from other local offices in the same state (e.g., Friedlander and Robins 

1995; Lee 2001; Michalopoulos et al. 2004). A potential problem with these refined 

comparisons is the difficulty of controlling for local labor market conditions between 

treated and comparison offices (i.e., counties) or for changes in these conditions over 

time.2   

 From a methodological standpoint, this study formulates and implements a new 

variant of matching with fixed effects that first removes space and time effects before 

proceeding to apply matching based on participant characteristics. The motivation for this 

approach comes from the observation that matching requires X covariates that are good 

enough to obtain conditional independence between the counterfactual outcomes and the 

treatment indicator, but that are not “too good” i.e. that predict participation perfectly 

(Heckman, Ichimura, and Todd 1997).  This paradoxical behavior of matching estimators 

clearly emerges in the Kentucky WPRS data as the full interaction of profiling scores, 

local offices, and weeks can perfectly predict participation, making standard matching 

impossible because of the violation of the support and balancing conditions. 

This study carefully compares matching estimates with fixed effects to the 

experimental estimates and conducts a large number of sensitivity analyses. In the course 

                                                 
1 LaLonde (1986) (along with many others) compares experimental and nonexperimental estimates of the 
impact of the U.S. National Supported Work (NSW) Demonstration program by combining the 
experimental data with two comparison groups drawn from two major survey data sets – the current 
population survey (CPS) and the Panel Study of Income Dynamics (PSID).  Smith and Todd (2005a, b) 
conclude that the identifying conditions for the matching methods do not hold in this context, contrary to 
the claims of widely cited research by Dahejia and Wahba (1999, 2002).  
2 Hollister and Hill (1995) address in detail the difficulties of controlling for differences in local conditions.  
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of this analysis, this paper implements the ridge estimator (Seifert and Gasser 1996, 

2000) and compares its performance to that of the widely used local linear estimator 

(Heckman et al. 1998). The ridge estimator shares all asymptotic advantages with the 

local linear one but also has better finite sample properties. For instance, whenever the 

design becomes sparse or clustered (a common issue in program evaluation), the ridge 

estimator leads to more reliable estimation of the regression curve (Frölich 2004). 

Despite this strong evidence from the broader statistical literature, the ridge estimator 

does not yet form part of the standard toolkit in the applied treatment effects literature.  

This paper also compares matching methods based on multivariate kernels to 

traditional logit propensity score models to assess the issue of misspecification of the 

propensity score model. To the best of my knowledge, the study by Li, Racine, and 

Wooldridge (2005) is the only one to implement kernel-based propensity scores within a 

class of weighting estimators proposed by Hirano, Imbens, and Ridder (2003). This 

aspect of the analysis contributes to the small econometric literature on the importance of 

various details in the implementation of matching estimators. 

Four main results emerge from this analysis. First, this study finds strong support 

for matching models with fixed effects. The estimated treatment effects show low bias for 

all outcomes of interest independently of which local polynomial estimator, bandwidth-

selection method, and empirical overlapping region are used. These results suggest that 

when matching methods are applied to high-quality data, they perform consistently well. 

Second, the ability of matching estimators to solve the evaluation problem worsens 

dramatically when the comparison groups are drawn from different local offices within 

the same state. This result might explain why matching estimators do not consistently 
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reduce bias substantially in carefully executed in-state evaluations. Third, kernel-based 

propensity scores models show significant better predictive performance than their 

counterpart parametric logit models. This nice feature, however, does not translate into 

lower bias estimates. This result shows the trade-off between the ability of the models to 

maximize the probability of successful prediction into treatment and their ability to 

balance the distribution of covariates. Fourth, the performance of the matching estimators 

is largely dependent on the outcome of interest. Overall, quarterly earnings – the variable 

with the highest variance – show the largest bias and the highest sensitivity across 

different dimensions.  

The remainder of this paper is organized as follows. Section 2 describes the 

program and data. Section 3 discusses the methods used to generate and assess the 

nonexperimental estimates. Section 4 discusses the empirical findings. Section 5 explores 

the sensitivity of the estimates to certain robustness specifications. Section 6 offers some 

conclusions.  

 

2. Research Design, Program Description, and Data 

The potentially distortionary incentives that the UI system provides for workers are well 

known. The incentives motivate UI claimants to extend their unemployment spells 

beyond what they would be in the absence of UI benefits, either by subsidizing additional 

job searching or by subsidizing the consumption of leisure.3 In the 1980s and early 1990s, 

demonstration projects conducted in New Jersey, Nevada, Minnesota, and Washington 

showed the efficacy of using statistical methods and administrative data to identify those 

                                                 
3 See Mortensen (1970) for earlier work on job search models and UI as well as Ashenfelter (1978) and 
Moffitt and Nicholson (1982) for labor supply models and UI. Meyer (1995) documents spikes in the 
empirical hazard function as claimants approach the exhaustion of their UI benefits.  
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who are more likely to exhaust their UI benefits. Further evaluations from these 

demonstration projects showed that providing more intensive job search assistance to 

these individuals leads to reductions in the amount and duration of the UI benefits 

(Eberts, O’Leary, and Wandner 2002). In response to these events, President Clinton 

signed into law the Unemployment Compensation Amendments in November of 1993, 

which require that states establish and utilize a system of profiling to identify those 

claimants that would be likely to exhaust regular UI benefits and refer them to 

reemployment services.  

In June 1994, the Commonwealth of Kentucky was selected as a prototype state 

for implementing the WPRS program. After identifying potential exhaustees of the UI 

benefits among new initial claimants, this program offers them mandatory reemployment 

services, such as job-training and job-search workshops, early in their spell. The services 

themselves can be viewed either as a valuable opportunity to learn new employment-

related skills, or as an in-kind tax on the leisure of the UI claimants (see Black et al. 

2003). Hence, the Kentucky WPRS program combines aspects of two prototypical UI 

reforms that aim to reduce the incentives for excess benefit receipt without either 

punishing workers for whom a longer search is optimal (e.g., Illinois bonus experiment) 

or by enforcing job search requirements (e.g., Connecticut experiment).4  

 The Center for Business and Economic Research (CBER) at the University of 

Kentucky took responsibility for developing and predicting the fraction of their 26 weeks 

of UI benefits that claimants would use up. The model was estimated by employing five 

years of claimant data obtained from the Kentucky unemployment insurance mainframe 

                                                 
4 See Woodbury and Spiegelman (1987) for a detailed analysis of the Illinois Bonus experiment as well as 
Ashenfelter, Ashmore, and Deschenes (1999) for evidence about work search enforcement programs.  
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computer databases, supplemented with data from other administrative data sources.5 

Two main features distinguish the Kentucky model from prior prototypical profiling 

models implemented in other states (see Eberts et al. 2002). First, the dependent variable 

is not represented by a dichotomous variable indicating whether the claimant exhausted 

UI benefits but rather uses the fraction of benefits received as a continuous variable. 

Second, the Kentucky WPRS model relies on more than 140 covariates, including past 

earnings, schooling, past job characteristics, prior UI benefit receipt, prior welfare 

receipt, industry and occupation, and local economic and labor market conditions.6 With 

these data, a double-limit tobit model was implemented resulting in monotonic increases 

in the weekly benefit amount, months of job experience, and the previous year’s earnings 

as the fraction of benefits exhausted increases. Most important, the richness of the data 

yields significant gains in predictive power with respect to profiling models from other 

states (Berger, Black, Chandra, and Allen 1997).  

 This profiling score is collapsed into a discrete score ranging from 1 to 20. 

Claimants predicted by the model to exhaust between 95 and 100 percent of their 

unemployment benefits receive a score of 20; those predicted to exhaust between 90 and 

95 percent of their unemployment benefits receive 19; and so on. For each local 

employment office in each week, claimants starting new spells are ranked by their 

assigned scores. Those individuals with the highest scores are the first to be selected for 

reemployment services, and this process continues until the number of slots available for 

each office in each week is reached. Those claimants selected to receive reemployment 

services are contacted via mail to inform them about their rights and responsibilities 

                                                 
5 Enhanced National Data System (ENDS), U.S. Department of Labor ES-202 database, U.S. 1990 Census.   
6 It is against the law to profile based on ethnicity, age, sex, or veteran status.  
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under the program. Due to the fact that many selected claimants may leave the UI system 

before receiving services but after being required to receive services, the Kentucky 

WPRS treatment can be thought of as the requirement to receive reemployment services 

(see Black et al. 2003 for further discussion).   

 If the maximum number of claimants who will receive reemployment in a given 

local office and in a given week is reached, and if there are two or more claimants with 

the same discrete profiling score, then a random number generator assigns the appropriate 

number of claimants to treatment. Therefore, only claimants with marginal profiling 

scores – the one at which the capacity constraint is reached in a given week and in a 

given local office – are randomly assigned into experimental treated and control groups. 

Black et al. (2003) call these marginal sets of claimants “profiling tie groups”, or PTGs. 

This design differs from typical experimental evaluations wherein all eligible program 

applicants are randomly assigned. Those claimants with scores below the marginal scores 

are, by design, denied treatment, and they represent the nonexperimental comparison 

group.   

 From June 1994 to October 1996, the period for which we currently have data, 

1,236 and 745 claimants are in the experimental treated and control groups, representing 

286 PTGs ranging in size from 2 to 54.7  For the same period, 9,032 claimants fell into 

the nonexperimental comparison group. I then combine the treated individuals from the 

PTGs to untreated individuals from the nonexperimental comparison group to form the 

nonexperimental data.    

                                                 
7 The combination of 87 weeks and 32 local offices give 2,742 potential PTGs. Empty cells, however, for 
many weeks and local offices give a final number of 286.    
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 It is important to highlight that this program allows us to identify both 

experimental and nonexperimental samples without the need for resorting to “external” 

comparable groups. In this sense, one of the contributions of this paper is its reliance on 

high-quality data that put all individuals in the same local labor market; moreover, all 

socioeconomic, demographic, and labor information comes from comparable measures 

from common (administrative) data sources. Furthermore, the availability of 

administrative data minimizes the risk of randomization bias and attrition bias. These 

features of the data overcome one of the main criticisms of matching incomparable 

nonexperimental samples to experimentally determined samples (Smith and Todd 2005a).       

 Table 1 presents descriptive statistics for key pre-treatment covariates for each one 

of the samples after discarding individuals with missing information for any covariate of 

interest. The continuous profiling scores are 0.83 and 0.80 for the experimental treated 

and control individuals respectively and 0.58 for nonexperimental comparison ones. 

These results show the ability of the profiling model to select UI claimants into treatment. 

The large difference in quarterly earnings between the experimental and nonexperimental 

samples is remarkable. In particular, the nonexperimental comparison group individuals 

present lower quarterly earnings with respect to the other groups. This result seems 

counterintuitive since individuals with lower predicted probabilities of benefit exhaustion 

are supposedly individuals with relatively better labor market attachment. A plausible 

explanation is that poor individuals who work enough to qualify for UI do not stay 

unemployed very long. In terms of schooling and age, all groups are similar, having on 

average 12 years of schooling and an average age of 37. In addition, the table indicates 
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some variation in the percentage of females and blacks among the groups, although we 

do not observe statistically significant differences.  

In order to determine whether the individuals from the experimental sample were 

drawn from the same population, we present in columns 4 and 5 the p-values for test of 

differences in means. Since there are as many experiments as PTGs, the test is based on a 

linear regression that includes a treatment dummy variable and PTGs. The p-values do 

not reject the null for all covariates. On the other hand, when the test is applied to the 

nonexperimental sample after conditioning on local office and week variables instead of 

PTGs, the null hypothesis is rejected for almost all covariates. Looking at the 

standardized differences in the last column, which show systematic differences in 

covariate distributions between treatment and comparison units, reinforces this result.  

 

3. The Econometric Framework 

3.1 Identification 

Let {1,0}iT ∈  denote the treatment indicator that takes the value one when the individual 

is treated and is otherwise zero. Let 1iY  denote the potential outcome in the treated state 

and 0iY  the potential outcome in the untreated state. For the ith individual, one wishes to 

know the treatment effect 1 0i i iY Y∆ = − .  The fundamental problem of evaluation is one of 

missing data because 0iY  is not observed for the treated individual. Alternatively, one 

might focus on the average treatment effect on the treated (ATT), 1 0( | 1)TT i iE Y Y T∆ = − = . 

Data on program participants identify 1( | 1)iE Y T = . The mean counterfactual outcome 

0( | 1)iE Y T = , however, is missing and cannot be directly identified without invoking 
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further assumptions. Somehow, one has to rely on a comparison group to obtain 

information about the counterfactual outcome of the treated in the untreated state. A 

simple replacement of 0( | 1)iE Y T =  by 0( | 0)iE Y T = does not solve the evaluation 

problem in an observational study because T may not be independent of 0iY . This is 

where one needs to present a statistical model.  

Let the potential outcomes model be written in an additively separable structure: 

1 1 1( )i i iY g X U= +  and 0 0 0( ) ,i i iY g X U= +  where iX  is a vector of observed random 

variables and 1 0( , )i iU U  are not observed (by the analyst) random variables. The functions 

1(.)g  and 0 (.)g are assumed to be sufficiently well-behaved in that the first two 

moments exist.  Additive separability is not strictly required in conventional matching, 

but it plays an important role in the variant of matching with fixed effects later. I now 

suppress the subscript i except where necessary for clarity.  

The decision rule for program participation follows the index function framework, 

,TT Z Uγ∗ = +  where 1[ 0],T T ∗= >  1[.]  is the indicator function, Z is a set of observable 

random variables, and TU  is an unobserved random variable. The decision to participate 

in the program may be determined by a prospective participant, by a program 

administrator, or by both. No distinction between Z  and X is needed in standard 

matching.8 It is also assumed that 1 0( , , )TU U U  is unobserved i.i.d. with zero conditional 

means, and the random variable TU  may be a function of 1U  and 0U .  

                                                 
8 The information set may include covariates that are normally considered “endogenous” when 
implementing other estimators. Heckman et al. (1998), for instance, uses labor force transitions when 
estimating the probability of participation in a training program. These covariates are considered 
endogenous in the regression framework.  
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For the average treatment effect on the treated, matching proceeds by invoking 

the conditional independence assumption, 0 |{ , }Y T Z X⊥ , which assumes that selection 

into treatment is “on observables” (Rubin 1973) and can therefore be eliminated by 

conditioning on a rich set of observed covariates ( , )Z X . Matching also needs to invoke 

the common support condition, Pr( 1|{ , }) 1,T Z X= < which guarantees the existence (at 

least in the population) of non-participants with the same values of ( , )Z X as all of the 

participants. The inclusion of a high dimensional covariate set, however, can be 

impractical and lead to extremely slow convergence rates for any nonparametric 

estimator of 0( | , )E Y Z X  (Pagan and Ullah 1999).  

Rosenbaum and Rubin (1983) show that if the information sets justify matching 

on ( , )Z X , then they also justify matching on the propensity score Pr( 1| , ),T X Zρ = =  

the probability of exposure to treatment conditional on observed covariates. Thus, the 

identifying assumption becomes 0 |Y T ρ⊥  that states that treatment exposure is 

unrelated to the counterfactual outcome for individuals sharing the same propensity 

score. This implies that ( , ) |Z X T ρ⊥ , so individuals from either treatment group with 

the same propensity score are ‘balanced’ in that the distribution of ( , )Z X is the same 

regardless of the treatment status. 

 Standard matching methods do not apply in the Kentucky WPRS context because 

the nature of the profiling system leads to the breakdown of support and balancing 

conditions. In this program, the treatment assignment is solely based on profiling scores, 

time (weeks), and space (local offices). Because there is no random overlap in the 

distribution of profiling scores for the experimental and nonexperimental samples for a 

given week in a given local office, the inclusion of these three variables along with a full 
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set of interactions among them in the estimation of the propensity score would predict T 

perfectly. Therefore, implementing standard matching methods would be possible only if 

the specification of the propensity scores model does not follow a flexible approach (e.g., 

omitting time-space variables or interactions between them). Heckman et al. (1997) as 

well as Dehejia and Wahba (1999) show that omitting important variables can 

significantly increase bias in resulting estimates.  

 Introducing the distinction between X and Z makes it possible to overcome the 

problem arising from perfect classification of treatment assignment for some values of 

(X, Z) if there are some variables Z not in X. The idea is to first remove space and time 

effects before proceeding to apply standard matching based on participants’ 

characteristics.  Let the potential outcomes be rewritten as partially linear regressions,  

1 1 1 1 1( ) ,      jt jt j t jtY g Uρ δ β= + + +   

0 0 0 0 0( ) ,     jt jt j t jtY g Uρ δ β= + + +   

where ( , , )ρ δ β  is the information set that satisfies the conditional  independence 

assumption, ( 1| )P T Xρ = =  is the propensity score based only on individuals’ 

characteristics, jδ ( 1,2,...j m= ) is the local office and tβ  ( 1, 2,...,t n= ) is the specific 

week in which each individual is selected into treatment. The model is inspired by the 

idea of differencing the effect of some variables, under the premise that ρ ’s that are 

close will have corresponding values of the regression function that are also close.9 Since 

the parameter of interest is the average treatment effect on the treated, I proceed by 

                                                 
9 See Powell (1987) and Ahn & Powell (1993) for censored selection models as well as Honoré (1992) and 
Kyriazidou (1997) for panel data sample extensions. 
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differencing out the local office and week effects from 0Y  by using a pairwise difference 

approach in three steps.  

In the first step, the local office with the largest number of observations, 01 0δ = , 

is normalized, and the estimation of the k office effects, 0̂kδ , proceeds by taking weighted 

averages over outcomes for observable similar individuals within the subsample with 

T=0 in local offices 1 and k who have approximately equal propensity scores in the same 

week, 

                    0 01 0 0 1 0 01 0 0 0 01[ ( ) ( )] [ ] [ ] [ ]kt t kt t k t t kt tY Y g g U Uρ ρ δ δ β β− = − + − + − + −       (1)  

                          0 01k kt tU Uδ≅ + − . 

The degree of similarity between two individuals is determined by the distance, based on 

some metric, between the observed covariates that constitute the matching variables. As 

there are m  offices, the remaining m-2 parameters are identified using the same 

approach. The local office effect 0̂( )δ  is obtained by averaging the 1m − individual 

effects, which is then differenced out from the outcome equation 0.Y 10 

 The second step follows the same approach. After normalizing the week with the 

largest number of observations, 01 0β = , the ϖ -week effect is estimated by taking 

weighted averages over the new outcome 0 0 0̂Y Y δ= −%  for observably similar individuals 

within the subsample with T=0 in weeks 1 and ϖ who have approximately equal 

propensity scores,  

  0 01 0 0 1 0 01 0 01[ ( ) ( )] [ ] [ ] Y Y g g U Uϖ ϖ ϖ ϖρ ρ β β− = − + − + −% % % %                (2)  

                                                 
10 Although E[Y0kt-Y01t]=0, there is no reason to believe that the realization of U0kt should be close to that of 
U01t. It is only after averaging that these differences go away.    
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                0 01U Uϖ ϖβ≅ + −% % . 

As there are n different weeks, the time effect 0
ˆ( )β  is obtained by averaging the 1n −  

individual effects, which is then differenced out from the outcome equation 0.Y%  

In the third step, a new model free of time and local office effects emerges: 

0 0 0( ) ,   Y g Uρ= +% %% % where 0 0 0
ˆY Y β= −%% %  is the new outcome variable and 

0 0 0 0 0 0
ˆ ˆ

j t jtU Uδ β δ β= + + − −%%  is the error term with 0( ) 0.E U =%% Standard matching based 

on participants’ characteristics are implemented to form the expected counterfactual 

outcome for each treated unit. More formally, 0| 1 0 | 1ˆ ( ) ( ). ( )T Tg g f dρρ ρ ρ ρ= == ∫ , where 

0 0( ) ( | )g E Yρ ρ= %% denotes the conditional mean function given non-participation and 

| 1( )Tfρ ρ= denotes the distribution of ρ  conditional on participation. Finally, the 

counterfactual outcome for each treated unit is defined by 0 0| 1 0 0
ˆ ˆˆ ˆ TY g δ β== + + , which 

allows one to estimate the sample analog of the average treatment effect on the treated:    

1

1 1 0
1

ˆ ˆ(1/ ) ( )
n

TT
i

n Y Y
=

∆ = −∑ .       

Three features of the model need to be highlighted. First, this approach assumes 

that both local offices and time variables enter linearly in the model. If that is not the 

case, the proposed estimator may perform poorly. I then use the experimental Kentucky 

WPRS data as a benchmark against which to judge the performance of the proposed 

estimator.  Second, this model implicitly allows both δ̂ and β̂  to differ across T=1 and 

T=0, although they are not estimated directly. Likewise, the estimated parameter is 
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equivalent to 1 1 1 0 0 0( ) ( )TT g gρ δ β ρ δ β∆ = + + − − − , which implies that (.)g ,δ and β  

can differ by treatment status.  

Third, this variant of matching with fixed effects applies not only to situations in 

which the analyst has covariates (or combinations of them) that perfectly predict 

participation in the program but more generally when he or she has covariates that 

prevent fulfilling the balancing property of the propensity score matching methods.  This 

situation is not uncommon in program evaluation. For instance, Eichler and Lechner 

(2002) report balancing problems in the distribution of a specific covariate (gender) when 

implementing the propensity score method. Michalopoulos et al. (2004) point outs that 

for some out-of-state comparisons balancing is not achieved and no attempt is made to 

use propensity score matching methods.   

 

3.2 Estimation 

3.2.1 Conditional Mean Functions 

The literature suggests a wide variety of ways to estimate the conditional mean functions 

(semi) nonparametrically (see Heckman et al. 1998; Imbens 2004; Hirano Imbens and 

Ridder 2003). The focus of this paper is on propensity score matching methods.  

In step 1, nearest neighbor with replacement estimates the conditional mean 

function (equation 1).  A Euclidian metric on the propensity scores is used along with 

matching on exact weeks. This approach is less efficient (i.e., larger variance) than local 

polynomial matching (Frölich 2004), but it is pursued because of its simplicity in the 

estimation of the “nuisance” parameters. In step 2, nearest-neighbor matching on the 

propensity scores is also implemented to estimate equation 2. In step 3, local polynomial 
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matching is used in the estimation of the average treatment effects on the treated 

(Heckman et al. 1998; Smith and Todd 2005a, b).  The conditional mean 0[of ]Y%% at a point 

iρ ρ=  readily follows as a weighted average of the data points in the comparison 

sample 0 0{ , }j jY yρ ρ= =%% % , where the weights depend upon jρ  and the point iρ  at which 

the conditional mean is evaluated. The conditional mean function 0| 1ˆ ( )Tg ρ= equals 0θ  

from the solution to the optimization problem:  

  
0

0,

2
0...., 1 0

ˆmin ( ( ) ) ( )
p

n p
j im

j m j i
j m

Y K
hθ θ

ρ ρ
θ ρ ρ

= =

−
− −∑ ∑%% , 

where 0 1( , ,..., )pθ θ θ denotes a vector of regression coefficients, p denotes the order of the  

local polynomial, (.)K  denotes a symmetric kernel function satisfying some standard 

properties, and h a bandwidth parameter. Fan, Gasser, Gijbels, Brockmann and Engel 

(1997) present the general solution to this problem. When 0=p , the resulting estimator 

corresponds to local constant kernel regression (called the Nadaraya-Watson estimator in 

statistics),    

0

0

( , )LC
i j

Tg
S

ρ ρ =      (3) 

where 0 ( )( )j i r
r j j iT Y K

h
ρ ρ

ρ ρ
−

= −∑ %% , and ( )( )j i r
r j iS K

h
ρ ρ

ρ ρ
−

= −∑ . The 

corresponding local linear regression ( 1p = ) equals 

0 1

0 2

( , ) ( )LL
j i j i

T Tg
S S

ρ ρ ρ ρ= + − .          (4) 

As discussed in Fan (1992), the local linear estimator converges faster near boundary 

points (a potentially important property in contexts with many estimated propensity 
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scores near zero or one) and appears more robust to different data designs. At the same 

time, the local linear estimator demands more of the data because it estimates one 

additional parameter in every local regression. Moreover, when iρ  is far away from jρ  

or the data design becomes sparse or clustered, then the local linear estimator is unstable, 

leading to a high variance.11   

To overcome the poor finite sample properties of the local linear estimator, Seifert 

and Gasser (2000) propose adding a ridge parameter, 5 | |
16 j iR h ρ ρ= − , in the 

denominator of the local linear estimator such that the variance of the estimator becomes 

finite,  

0 1

0 2

( , ) ( )RIDGE
j i j i

T Tg
S S R

ρ ρ ρ ρ= + −
+

.  (5) 

The ridge estimator can be thought of as a weighted average of the local constant and 

local linear estimators: 

0 0 1

0 0 2

( , ) (1 ) ( )RIDGE
j i j i

T T Tg
S S S

ρ ρ α α ρ ρ
⎛ ⎞

= − + + −⎜ ⎟
⎝ ⎠

, 

where the weight 2 2/( )S S Rα = + . When R=0 then 1,α =  and the ridge estimator 

becomes the local linear one. When R →∞  then 0,α = and the ridge estimator becomes 

the local constant estimator. Thus, the ridge estimator provides a compromise between 

the local constant estimator with finite variance but encounters problems with boundary 

bias and the local linear estimator with nice bias behavior but unbounded variance 

(Seifert and Gasser 2000). So far, the only evidence about the superior performance of 

                                                 
11 Seifert and Gasser (1996) show that one needs at least four observations in the smoothing window to 
obtain a finite unconditional variance of the local linear estimator, but even with more points, there is no 
upper bound for the conditional variance.   
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the ridge estimator in the context of matching estimators constitutes Frölich’s (2004) 

Monte Carlo analysis. Given the lack of a clear choice between these estimators in many 

applied contexts, I consider all of them in the empirical analysis later on. 

The greater flexibility associated with local polynomial estimation of the 

conditional mean functions comes with a price: bandwidth selection. To avoid the 

excesses of bias or variance associated with a poor bandwidth choice, this paper 

implements a locally varying bandwidth approach that improves over conventional cross-

validation methods by taking into account the location of the treated individuals in the 

selection of the optimal bandwidths. This approach selects a bandwidth for each treated 

individual according to the local density of the untreated ones, with narrower bandwidths 

in regions that are dense with untreated individuals and wider bandwidths in regions with 

few untreated individuals. Thus, this estimator adjusts itself to changes in the shape of the 

regression function, providing a good estimation of the counterfactual outcomes for high 

values of the propensity scores (see Galdo et al. 2007 for more details).12  

 
3.2.2 Propensity Scores, Common Support Region, and Balancing Conditions   

This study adopts a flexible logit parametric specification for the propensity scores, thus 

changing the overall procedure from a nonparametric to a semiparametric one. Balancing 

tests, as described in Dehejia and Wahba (2002), and Smith and Todd (2005b), for 

instance, guides the selection of the parametric specification for a given set of 

conditioning variables thought to satisfy the conditional independence assumption. 

Covariates influencing both the decision to participate in the Kentucky WPRS program 

                                                 
12 The formula for the locally varying bandwidth is given by 1/ 5( ) ( /(1 ))cvh hρ ρ ρ= − , where cvh denotes the 
bandwidth from conventional cross-validation and ρ  the estimated propensity scores.  
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and potential outcomes of UI claimants should be included in the specification of the 

propensity scores. Standard human capital and search models suggest that when 

predicting future outcomes of UI beneficiaries, it is important to take into account 

opportunity costs, such as lost earnings and lost leisure, that differ across individuals 

according to tastes, socioeconomic factors, and personal labor market history.  

 Common variables that have been used in empirical analyses to approximate these 

categories include sex, education, age, and race. I also include earnings measures for the 

first and fourth quarters before the start of the UI spell to control for a potential earnings 

dip (Ashenfelter’s Dip) and employment transitions between the first and fourth quarters 

before the start of the spell: Employed→ Employed, Employed→ Not Employed, Not 

Employed→ Employed, and Not Employed→ Not Employed, as suggested by Heckman 

and Smith (1999).  

 To analyze how the inclusion of week and local office covariates affect the 

support and balancing conditions of this baseline model, two alternative parametric logit 

models are estimated in which office and week dummy variables are added successively 

to the baseline model. Table 2 shows the overall classification rates for these models. The 

probability of successfully predicting treatment increases from 73 percent to 79 percent 

and then to 84 percent when successively adding local offices and weeks covariates to the 

estimation of the propensity score. This result is strongly related to the distribution of the 

propensity scores across the models. For the baseline model, the mean propensity score is 

0.261 and 0.101 for treated and comparison samples respectively. Adding local office 

variables has the immediate effect of increasing (decreasing) the mean propensity score 

to 0.335 (0.091) for the treated (untreated) samples. Finally, the inclusion of dummy 
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variables for weeks i.e. the full model, further increases the mean score values for treated 

observations (0.45) and further decreases the mean score values (0.075) for the 

comparison observations. It is worth noticing that a full set of interactions among 

profiling scores-offices-weeks is not used because of the complete failure of the support 

and balancing conditions. 

 These particular data impose a clear trade-off between the richness of the set of 

covariates that may be included in the propensity score model and the balance of the pre-

treatment covariates between the treated and comparison observations conditional on the 

propensity score. As Table 2 reveals, the baseline model shows the best balance across all 

parametric models when implementing the balancing test proposed by Rosenbaum and 

Rubin (1985).13 The sample covariate differences between treatment and matched 

comparison groups range from 0.31 percent for education to 9 percent for profiling 

scores, with an absolute median value of 0.61 percent for all covariates appearing in the 

propensity scores. Successively adding offices and weeks into the estimation of the 

propensity score model dramatically worsens the quality of the covariate balance. The 

same patterns are observed when implementing Smith and Todd’s (2005) parametric 

balancing test. Indeed, Table 2 provides an example of the conflicting relationship 

between the ability of the models to maximize the probability of successful prediction 

and their ability to balance the distribution of covariates between the treatment and 

comparison samples conditional on the propensity score model.  

 

                                                 
13 The standardized difference in percent is 2 2 1/ 2

1 0 1 0100*[ ] /[( ) / 2]Mx x s s− + , where for each covariate, 1x and 

0Mx are the sample means in the treated and matched comparison sample and 2
1s  and 2

0s  are the sample 
variances in the raw, treated, and comparison groups.   
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4. Matching Estimates 

Panels A and B in Table 3 show the bias estimates associated to matching with fixed 

effects (on the baseline model) and standard matching (on the full model), respectively. 

Within each panel, the rows correspond to different dependent variables: weeks receiving 

UI benefits measured over the 52-week period starting in the first week of the UI claim, 

employment in the first quarter after the start of the UI spell, and earnings in the first 

quarter after the start of the UI spell. Each cell of the table is devoted to one estimate and 

shows the following information (from the top down): the estimated treatment effects, the 

bootstrapped standard error over 100 simulations of the data (in parentheses), and the bias 

(in brackets) measured as a percentage of the experimental program effects.14 All 

estimates are based on observations within the support region defined by the 2-percent 

trimming method (Heckman et al. 1998).  The first column presents the experimental 

estimates that follow from Black et al. (2003) after imposing the common support 

condition.15  

Five main patterns emerge from Table 3. First, matching with fixed effects 

performs well on this particular data. The size of the biases is relatively small for all 

outcomes of interest. By looking at weeks receiving UI benefits, for instance, one 

observes that the biases range from 1 to 7 percent. The corresponding biases for 

employment range from 6 to 28 percent and from 11 to 25 percent for quarterly earnings. 

These results clearly show that comparing experimental and nonexperimental samples 

                                                 
14 The bias is defined as ( )( ) / *100

i

No Exp Exp Exp
TT TT TT

−∆ − ∆ ∆   
15 While not shown, using the full sample of experimental treated individuals yields similar qualitative 
conclusions.  
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within the same local office and with comparable measures from common data sources 

yield relatively small biases when implementing matching methods.16 

Second, standard matching on the full propensity score model performs poorly. 

The size of the biases in most cases is substantially larger than those obtained from 

matching with fixed effects. For example, the bias for weeks receiving UI benefits ranges 

from 14 to 20 percent and from 44 to 52 percent for quarterly earnings.  Likewise, the 

variance of the treatment effects estimates are also larger than those from matching with 

fixed effects, leading to the loss of statistical significance of the quarterly earnings 

pointwise estimates. The inclusion of the full set of covariates (i.e., scores, weeks, 

offices) in the propensity score specification causes problems in terms of higher variance, 

since a higher proportion of treated individuals are discarded from the analysis and the 

poor match quality (see Augurzky and Schmidt 2001 for a Monte Carlo analysis). This 

result reminds us that the main purpose of the propensity score approach is not to 

maximize the probability of successful prediction into treatment but to balance all 

covariates.17  

Third, Table 3 reveals that in the Kentucky WPRS data, the estimated biases are 

not sensitive to the selection of the local polynomial matching estimator. In particular, 

one observes that the ridge estimator does not improve over the local linear estimator.  

Two factors explain this result.  The estimates are based on relatively large sample sets 

                                                 
16 Heckman et al. (1998), for example, report biases ranging from 88 to 670 percent in the analysis of the 
JTPA program. Smith and Todd (2005a) estimate biases of over 400 percent in the analysis of the NSW 
program. Michalopoulos et al. (2004) report short-run bias of 75 percent for in-state comparisons and 267 
percent for out-of-state comparisons in the analysis of the Welfare-to-Work Strategies (NEWWS) using the 
propensity score subclassification estimator.  
17 Matching with fixed effects also outperforms conventional OLS estimation with fixed effects. The OLS 
specification relies on the same specification of the baseline propensity score model, plus a set of dummy 
variables for offices and weeks, and is estimated over the common support region. The resulting bias is 13 
percent for weeks receiving UI benefits, 36 percent for employment in 1st quarter after UI spell, and 31 
percent for earnings in 1st quarter after UI spell. 
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(about ten thousand observations) and, most importantly, high-quality data sets. This 

minimizes the risk of sparse or clustered designs that cause unreliable estimation of the 

regression curve with local linear estimators (Seifert and Gasser 1996). Moreover, kernel 

estimation of the conditional mean functions is based on locally varying bandwidths, 

which accounts for the location of the treated observations. This method selects larger 

bandwidths in areas of high propensity scores (sparse data regions), which also 

minimizes potential differences between the ridge and the local linear estimators.  

Fourth, the largest differences between matching with fixed effects and standard 

matching occur when implementing the nearest-neighbor estimator. In fact, this particular 

estimator is very unstable and yields, as expected, the largest standard errors. Fifth, the 

finite sample performance of the matching estimators is affected by the variance of the 

outcome of interest. In general, one observes that the larger the variance of the outcomes, 

the larger the sensitivity of the estimated treatment effects along some dimensions. By 

looking at employment and quarterly earnings variables, for instance, one observes in the 

outcomes that have the highest variances that the size of the bias is the largest and varies 

greatly between the nearest neighbor and polynomial-matching estimators.  

 

5. Sensitivity Analysis  

Specification of the Propensity Scores 

For these propensity score methods to produce consistent estimates, it is very important 

that the statistical model is correctly specified. To evaluate the sensitivity of the results to 

the specification of the propensity score, a kernel-based counterpart to the baseline 

parametric logit model is estimated following the work of Li, Racine, and Wooldridge 



 25

(2005).  These authors show higher classification rates for the kernel-based propensity 

score method relative to the frequency approach, and argue efficiency gains in the 

estimation of treatment impacts within a class of weighting estimators proposed by 

Hirano, Imbens, and Ridder (2003).18  

As the propensity scores can be thought of as a conditional probability density 

function, let define ˆ ˆ ˆ( | ) ( , ) / ( )i i if T X f T X f Xρ = = , where ˆ ( , )i if T X  is the joint density 

of ,i iT X , and ˆ ( )if X is the marginal density of iX . The nonparametric propensity score 

estimator is defined by  

1

1

( , , , , , )ˆ ( | )
( , , )

n
i i T xi

n
i xi

K T X T X h h
f T X

K X X h
ρ =

=

= = ∑
∑

   (6) 

where (.)K  is a well-behaved kernel function that depends on the distribution of ,i iT X   

and bandwidth parameters , .T xh h  If c and d are the number of continuous and discrete 

regressors respectively then the numerator in equation (6) can be written as    

1 1

( , , , , , ) ( , , ) ( , , ) ( , , ),
c d c

i i T X i T ij j xj ij j xj
j j c

K T X T X h h K T T h K X X h K X X h
+

= = +

= ×∏ ∏    

and similarly the denominator can be written as  

1 1

( , , ) ( , , ) ( , , ),
c d c

i x ij j xj ij j xj
j j c

K X X h K X X h K X X h
+

= = +

= ×∏ ∏  

The Epanechnikov weight-assigning kernel function is used for the continuous 

covariates. The discrete covariates are considered categorical unordered variables and 

                                                 
18 Todd (2002) as well as Kordas and Lehrer (2004) examine semiparametric estimation of the propensity 
scores.   
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follow the univariate Aitchison and Aitken’s (1976) weight-assigning kernel function.19 

The selection of the optimal values 1 ( 1) ( ), ,... , ,...T x cx c x c d xh h h h h+ + follows cross-validation 

methods, which minimizes the sample version of the mean squared error of the prediction 

of participation into the program. Hall, Racine, and Li (2004) show that this method, 

applied in the context of multivariate “hybrid” product kernels, has the property of 

smoothing away categorical conditioning variables that are irrelevant in the estimation of 

the density function by assigning them large bandwidth parameters and, consequently, 

reducing them toward the uniform distribution.20  

 Figure 1 compares the distribution of scores between the baseline logit model and 

its kernel-based nonparametric version. One can observe that the distribution of the 

propensity scores values is somewhat different even though the correlation between the 

predicted probabilities from the two models is high (0.9). For both parametric and 

nonparametric models, the distribution of propensity score values has support over the 

entire [0, 1] distribution. The nonparametric model, however, exhibits higher probability 

mass in its tails than the parametric one. An examination of the in-sample predictions for 

both models (Table 2) reveals the nonparametric estimator does a better job of predicting 

for both participants and nonparticipants. In particular, the kernel-based model gives a 

rate of 83 percent correct predictions for treatment, whereas the parametric model 

correctly predicts 73 percent. These results indicate that the parametric logit model may 

suffer from misspecification. 

                                                 
19 

1 ,    if 
( , , )

,   if 
1

x i j

i x x
i j

h x x
K x x h h x x

p

⎧ − =
⎪= ⎨

≠⎪ −⎩

. The range of xh is [0,1], where xh =0 represents an indicator function and xh =1 

a uniform weight function.  
20 The kernel-based propensity score model is estimated by using five discrete regressors (sex, age, 
schooling, race, and employment transitions) and three continuous regressors (profiling scores, 1st and 4th 
quarter earnings before program). 
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Does this better predictive performance translate into lower bias estimates? Table 

4 shows the estimated bias with kernel-based propensity score. By looking at the local 

polynomial estimates, one observes that the estimated bias for both weeks receiving UI 

benefits (5 percent) and employment on first quarter after UI spell (30 percent) are 

somewhat similar to those emerging from parametric-based propensity scores models. On 

the other hand, the bias for quarterly earnings (65 percent) is consistently higher than the 

parametric one (25 percent). It is noteworthy that matching estimators show higher levels 

of sensitivity along the parametric-nonparametric dimension for the outcome with the 

highest variance (i.e., quarterly earnings).  

Overall, the bias estimates show that, in the Kentucky WPRS data, nonparametric 

propensity score models do not improve over flexible logit models (either in terms of bias 

or standard errors) even though their higher predictive performance. This result is driven 

by the trade-off between the ability of the models to maximize the probability of 

successful prediction into treatment and their ability to balance the distribution of 

covariates. As columns 1 and 4 in Table 2 show, the match quality is better for the 

baseline logit model than for its counterpart kernel-based model. The absolute median 

value for the sample covariate differences between treatment and matched comparison 

groups increases from 0.61 (logit model) to 2.79 percent (kernel-based model). Likewise, 

the kernel-based propensity score model yields higher variances for the estimated 

treatment effects because a higher proportion of treated individuals are discarded from 

the analysis relative to the parametric-based propensity score model.   

Furthermore, the selection of optimal bandwidths in the estimation of high-

dimensional density functions is not a trivial issue (see Pagan and Ullah 1999). In 
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particular, the cross-validation property of smoothing away categorical conditioning 

variables that are irrelevant in the estimation of the density function can be 

counterproductive in the context of matching estimation because there is no support for 

the rule of selecting matching variables by choosing the set of variables that maximizes 

the probability of successful prediction into treatment or by including variables in 

conditioning sets that are statistically significant in binary choice models. Finally, the 

reader should bear in mind that this method requires nonparametric estimation of high-

dimensional objects, which leads back to the “curse of dimensionality” problem.  

 

Mismatch of Geography  

One intriguing result in the evaluation literature is that in-state evaluations of training and 

welfare programs do not consistently reduced matching bias substantially even when one 

observes large improvements with respect to out-of-state comparisons (e.g., 

Michalopoulos 2004). The Kentucky WPRS data allows one to investigate further this 

issue because of the program’s random design. I match experimental treated individuals 

from the manufacturing-based local offices in ‘northern’ Kentucky (i.e., Greater 

Louisville and Blue Grass regions) to two geographically misaligned nonexperimental 

comparison groups. The first comparison group is based on local offices located in the 

‘western’ region of Kentucky where the economy is also driven by manufacturing 

businesses. The second comparison group is based on local offices from the less-

developed Appalachian region that largely depends on mining. 21  

                                                 
21 Louisville, Fern Valley, Covington, Frankfort, Lexington, and Georgetown local offices compose the 
experimental subsample, which together represents 47 percent of the full experimental sample. The first 
nonexperimental comparison group comes from Bardstown, Elizabethtown, Glasgow, Bowling Green, 
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Table 5 shows the effect of geography on estimated bias using the baseline logit 

propensity score matching model with (weeks) fixed effects. The geographically aligned 

comparison group (column 2) shows the smallest bias with estimates close to those from 

the full sample set. On the contrary, the geographically misaligned comparison groups 

(columns 3 and 4) yield consistently large bias. By looking at the local constant matching 

estimates, one observes that the bias for week receiving UI benefits increases to 69 and 

135 percent for the ‘Western’ and ‘Appalachian’ comparison groups, respectively.  

Likewise, the bias for the employment outcome increases to 58 and 168 percent, 

respectively. This evidence indicates that the ability of matching estimators to solve the 

evaluation problem worsens dramatically even when the comparison groups are drawn 

from the same state but from different local welfare offices. It highlights the difficulty of 

controlling for local labor market conditions between treated and comparison offices and, 

at the same time, it might help to understand the relative poor performance of matching 

estimators in careful executed in-state evaluations of welfare programs (e.g., 

Michalopoulos 2004).  

 

Alternative Empirical Support Regions and Bandwidth Selection Methods 

The violation of the common support condition is a major source of evaluation bias in 

observational studies (Heckman et al. 1998). Thus, the definition of the empirical 

overlapping region is an important step in the implementation of matching estimators. As 

several analysts may have experienced, however, the number of units in or out of the 

overlapping region can vary depending on the definition employed, which adds a source 

                                                                                                                                                 
Campbellsville, Paducah, and Mayfield local offices; whereas the second one from Pikeville, Whitesburg, 
Harlan, Middlesboro, Corbin, Hazard, Prestonsburg, and Jackson local offices.  
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of sensitivity to the matching estimators that is not fully appreciated in the empirical 

literature. To address this potential issue, I impose a new empirical overlapping region 

that follows the “minima and maxima” approach (Dehejia and Wahba 1999).22 Column 3 

in Table 6 shows the new estimates for local constant matching using the baseline logit 

propensity score model. By comparing these estimates to those of the baseline estimation 

(column 2), one observes that the size of the treatment estimates change somewhat 

without affecting any of the qualitative conclusions of the paper. Once again, it is the bias 

associated with the outcome with the highest variance (i.e., quarterly earnings) that 

changes the most (15 percentage points).  

 Likewise, bandwidth selection has posed a problem for evaluation methods that 

rely on kernel regression (Frölich 2004). In the particular case of matching, the 

bandwidth affects the number of untreated units used to estimate the expected 

counterfactual outcome for each treated unit.  Too large a bandwidth means including 

untreated units quite different from each treated unit in the estimation while too small a 

bandwidth means using only one or two untreated units for each treated unit, with noisy 

estimates being the result. Column 4 in Table 6 shows local constant matching estimates 

with a fixed (global) bandwidth rather than locally varying bandwidths, which is selected 

by standard cross-validation methods (Black and Smith 2004).23 For all outcomes of 

interest, the treatment estimates are not sensitive to the imposition of alternative 

bandwidth-selection approaches. This result is just a manifestation of the good covariate 

                                                 
22 The basic criterion of this approach is to drop all observations whose propensity score is smaller than the 
minimum and larger than the maximum in the opposite group. In the Kentucky WPRS data, the common 
support lies within the interval [0.004, 0.773].   
23 The grid for the bandwidth search equals [0.01, 0.04, 0.07,…, 0.49].  



 31

balance in the treated and comparison samples, conditional on the baseline parametric 

propensity scores model. 

  

Alternative Fixed Effects Estimation  

The estimation of the space and time effects may be sensitive to which covariate is first 

eliminated. To investigate this potential issue of order, column 5 in Table 6 re-examines 

the local constant matching estimates by reversing the order in which the space and time 

effects are eliminated. Now, the time effect is first removed, followed by the local offices 

effect. By looking at the new estimates, one concludes that matching with fixed effects is 

robust to the selection of which variable is eliminated first.  

 

6. Concluding Remarks 

The main implication of this study for evaluation research is clear. Matching methods 

perform consistently well in the Kentucky WPRS data because the program identifies 

both experimental and nonexperimental comparison samples within the same local office 

and with comparable measures from common data sources. These features largely 

improve over comparisons based on geographic mismatch or situations where the 

dependent variables are measured in different ways in the treated and comparison groups.  

Overall, this study found strong support for matching with fixed effects that first 

removes space and time effects before proceeding to apply matching based on participant 

characteristics. The estimated treatment effects show much lower bias for all outcomes of 

interest than those emerging from standard matching approaches. Matching with fixed 

effects can be used not only to address situations in which the analyst has covariates (or 
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combinations of them) that perfectly predict participation in the program but more 

generally when he or she has some particular covariates that prevent fulfilling the 

balancing property of the propensity score matching methods.   

 Three main lessons emerge from the sensitivity analyses. First, the ability of the 

matching estimators to solve the evaluation problem worsens dramatically when the 

comparison groups are drawn from different local welfare offices within the same state. 

This result might explain why matching estimators do not consistently reduce bias 

substantially in carefully executed in-state evaluations. Second, the Kentucky WPRS 

treatment effects are very sensitive to the parametric/nonparametric specification of the 

propensity scores; in general, kernel-based propensity scores models show significant 

better predictive performance than their counterpart parametric logit models. This nice 

feature, however, does not translate into lower bias estimates. This result reinforces the 

vision that the main purpose of the propensity score estimation is not to maximize the 

probability of successful prediction into treatment but to balance all covariates. Third, the 

performance of the matching estimators is largely dependent on the outcome of interest. 

Overall, quarterly earnings – the variable with the highest variance – show the largest 

bias and the highest sensitivity across different dimensions. Unfortunately, there is little 

work on assessing the performance of matching methods to the changes in the 

distribution of the outcomes of interest. More research in this direction will be welcome. 
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Table 1: Summary Statistics 
Kentucky WPRS Program, October 1994 to June 1996  

 
 Sample Sets  Test for Differences In Means  
 Treated 

(1) 
Control 

(2) 
Comparison 

(3) 
 p-values  

(1)-(2) 
p-values 
 (1)-(3) 

Standardized 
difference (%) 

(1)-(3) 
        
Profiling score 0.83 

(0.22) 
0.80 

(0.21) 
0.58 

(0.23) 
 0.91 0.00 108 

1st quarter earnings $4560 
(3821) 

$5011 
(4074) 

$3971 
(3647) 

 0.81 0.00 15.8 

2nd quarter earnings $4456 
(3829) 

$4683 
(3744) 

$3846 
(3578) 

 0.90 0.00 16.6 

3rd quarter earnings $4901 
(3795) 

$4976 
(3515) 

$4174 
(3521) 

 0.84 0.00 19.9 

4th quarter earnings $5130 
(3735) 

$5103 
(3609) 

$4496 
(3396) 

 0.43 0.00 17.9 

Years of schooling 12.5 
(2.1) 

12.3 
(2.0) 

12.4 
(1.9) 

 0.22 0.21 6.6 

Less than high school (%) 1.9 
(0.1) 

1.3 
(0.1) 

1.1 
(0.1) 

 0.88 0.00 4.5 

Bachelor degree (%) 5.4 
(0.2) 

5.2 
(0.2) 

4.3 
(0.2) 

 0.31 0.20 5.0 

Graduate studies (%) 1.30 
(0.11) 

0.94 
(0.0) 

0.81 
(0.08) 

 0.44 0.16 4.8 

Age 37.0 
(11) 

37.0 
(10.8) 

36.6 
(11.4) 

 0.77 0.31 3.9 

Percent females 43.1 
(0.4) 

39.6 
(0.4) 

40.8 
(0.4) 

 0.06 0.26 4.5 

Percent whites 88.9 
(0.3) 

91.7 
(0.2) 

90.2 
(0.2) 

 0.76 0.43 -4.3 

Percent blacks 10.7 
(0.3) 

7.9 
(0.2) 

9.4 
(0.2) 

 0.84 0.44 4.3 

        
N 1236 745 9,002     
        

 
Notes: Standard deviations are given in parenthesis. Means are unweighted. Test for differences in means for the 
experimental sample (1 versus 2) are based on a linear regression that conditions on a treatment dummy variable and on the 
PTGs. Test for differences in means for the nonexperimental sample (1 versus 3) are based on a linear regression that 
conditions on a treatment dummy variable and on local office and week.  The standardized difference is the mean difference 
as a % of the average standard deviation: 2 2 1/ 2100*( ) /[( ) / 2]T C T Cx x s s− +  where Tx  and Cx are the sample means for each variable in 
the treatment group and comparison group and, 2

Ts  and 2
Cs  are the sample variances in both groups 
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Table 2 
Balancing Test, Empirical Support Region, and Classification Rates  

Kentucky WPRS Program, October 1994 to June 1996 
 
 

 parametric propensity scores models a  kernel-basede 
 ( 1 | )P T Xρ = =  ( 1 | , )P T X officeρ = =  ( 1 | , , )P T X office weekρ = =

 
 ( 1 | )P T Xρ = =  

 (1) (2) (3)  (4) 
Standardized Differencesb      
sex 0.65 0.32 -1.80  2.62 
schooling  -0.31 -2.70 -2.89  -0.26 
age 1.65 0.89 5.33  1.71 
white -0.53 -0.26 -0.53  -1.06 
profiling scores 9.01 17.02 23.15  4.71 
1st quarterly earnings   3.96 3.59 4.87  2.96 
4th quarterly earnings    4.39 4.00 5.61  4.54 
Employed→ Employed -0.49 -0.49 0.00  -3.99 
Employed→ Not Employed 0.56 0.56 0.00  4.50 
Not Employed→ Not 
Employed 

0.00 0.00 0.00  0.00 

      
Classification Rates (%)c      
   Treatment  73 79 84  83 
   Control 68 74 79  74 
      
Treated units out of CS  (%)d      
   trimming  13 15 15  21 
   max of min 2 3 3  13 
   kth larger comparison unit 8 11 16  18 
      

a The specification for the baseline propensity scores model follows: 1 2 3 4 5 6( age+ sex+ white+ white*sex+ educiT f scoreα α α α α α= + +  

7 8 9 10 11 12+ score*educ+ score*age+ past 1st quarterly earnings+ past 4th quarterly earnings+ work-work+α nowork-work+α α α α α+  

13+α nowork-nowork+ ).ε  
b The standardized differences are defined by 2 2 1/ 2100*( ) /[( ) / 2]T C T Cx x s s− +  where Tx  and Cx are the sample weighted means of covariates in 
the treatment and matched comparison groups and, 2

Ts  and 2
Cs  are the sample variances in the raw data for both groups. Nearest-neighbor 

matching with replacement is estimated using the Mahalanobis metric distance. 
c  Classification rates are based on P(x)>0.12 to predict T=1 and P(x) ≤ 0.12 to predict T=0.  
d “trimming” uses the 2 percent trimming method developed in Heckman et al. (1998). “max of min” drops all units with propensity scores 
smaller than the minimum and larger than the maximum in the opposite group. “kth larger comparison observation” defines the empirical 
common support as the region where at least k comparison units with the highest propensity scores are available to match. All treatment units 
with propensity scores higher than that for the kth larger comparison unit are dropped. k=15 is the cutoff point.  
e The kernel-based propensity scores model is based on multivariate density function estimation with cross-validated bandwidth selection 
and mixed data type (Hall, Racine, and Li 2004) . The estimated model is:  

(age, sex, white, educ, scores, past 1st quarterly earnings, past 4th quartely earnings, employment transitions).iT g=  
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                 Table 3 

Estimated Bias for Parametric Propensity Score Models 
Kentucky WPRS Program, October 1994 to June 1996. 

 
PANEL A PANEL B 

experimental 
estimates 

matching with fixed effects 
 

experimental 
estimates 

standard matching 
 
 
 
Outcomes  

 

 nearest-
neighbor  

local 
constant 

local  
linear 

ridge  
estimator 

 nearest-
neighbor 

local 
constant 

local 
linear 

ridge  
estimator

            

          

Weeks receiving 
UI benefits  

 -2.23 
(0.52) 

-2.39  
(0.62) 

[7] 

-2.20 
(0.35) 
[-1] 

-2.15 
(0.36) 
[-4] 

-2.15 
(0.36) 
[-4] 

 -2.25 
(0.52) 

-1.80 
(0.65) 
[-20] 

-1.93 
(0.41) 
[-14] 

-1.92 
(0.44)
[-14] 

-1.92 
(0.44) 
[-14] 

          
Employment (%) 
on  1st quarter 
after UI spell 

 8.53 
(2.73) 

7.99  
(2.80) 
[-6] 

6.25  
(1.71) 
[-27] 

6.17  
(1.80) 
[-28] 

6.17  
(1.80) 
[-28] 

 9.48 
(2.71) 

2.61 
(3.40) 
[-72] 

7.13 
(1.80) 
[-25] 

6.83 
(2.35)
[-28] 

6.83 
(2.35) 
[-28] 

          
Earnings on  1st 
quarter after UI 
spell 

 488 
(201) 

543 
(167) 
[11] 

365 
(130) 
[-25] 

383 
(128) 
[-22] 

 

383 
(128) 
[-22] 

 526 
(200) 

268 
(222) 
[-49] 

295 
(177) 
[-44] 

251 
(193) 
[-52] 

251 
(193) 
[-52] 

        N  1810 9938    9938    9938    9938  1791 9929 9929 9929 9929 
  

Bootstrap standard errors are shown in parenthesis. They are based on 100 repetitions. Nonexperimental bias defined as exp exp exp[( ) / ]*100non
TT TT TT

−∆ −∆ ∆  is 
shown in brackets.   
The experimental treatment effects are estimated as in Black et al. (2003) after imposing the common support condition using the 2 percent 
trimming method developed in Heckman et al. (1998).  
The specification for the baseline logit propensity scores model follows: 1 2 3 4 5 6( age+ sex+ white+ white*sex+ educiT f scoreα α α α α α= + +  

7 8 9 10 11 12+ score*educ+ score*age+ past 1st quarterly earnings+ past 4th quarterly earnings+ work-work+α nowork-work+α α α α α+  

13+α nowork-nowork+ )ε . Local polynomial matching estimation is based on Epanechnikov kernel functions. The bandwidth-selector is based 
on locally varying bandwidths: 1/ 5( ) ( /(1 ))cvh hρ ρ ρ= − , where cvh denotes the bandwidth from conventional cross-validation and ρ  the 
estimated propensity scores.  
Standard matching is based on the full logit model that includes local office and week dummy variables in the specification of the propensity 
scores model.    
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        Table 4 
Estimated Bias for Kernel-Based Propensity Score Models  

Kentucky WPRS Program, October 1994 to June 1996. 
 

Matching with Fixed Effects   
 
  

experimental 
estimates 

 
nearest-
neighbor  

local 
constant  

local  
linear   

ridge  
estimator 

 (1)  (2) (3) (4) (5) 
       
Weeks receiving UI 
benefits  

-2.28 
(0.54) 

 -2.43  
(0.78) 

[7] 

-2.04 
(0.40) 
[-11] 

-2.17  
(0.42) 
[-5] 

-2.17  
(0.42) 
[-5] 

       
Employment (%) on 
1st quarter after UI 
spell 

8.60 
(2.81) 

 2.67 
(3.48) 
[-69] 

5.93 
(2.12) 
[-31] 

6.01  
(1.96) 
[-30] 

6.01  
(1.96) 
[-30] 

       
Earnings on 1st 
quarter after UI  
spell 

416 
(162) 

 155  
(200) 
[-63] 

136 
 (113) 
[-67] 

155 
 (106) 
[-63] 

155 
 (106) 
[-63] 

       
         N  1714  9954 9954 9954 9954 

   
Bootstrap standard errors are shown in parenthesis. They are based on 100 repetitions. Nonexperimental bias defined as 

exp exp exp[( ) / ]*100non
TT TT TT

−∆ −∆ ∆  is shown in brackets.   
The experimental treatment effects are estimated as in Black et al. (2003) after imposing the common support condition 
using the 2 percent trimming method developed in Heckman et al. (1998).  
Kernel-based propensity score model is based on multivariate density function estimation with cross-validated bandwidth 
selection and mixed data type (Hall, Racine, and Li 2004) . The estimated model is:  

(age, sex, white, educ, scores, past 1st quarterly earnings, past 4th quartely earnings, employment transitions).iT g=  
Local polynomial matching estimation is based on Epanechnikov kernel functions over the empirical common support 
region, which is defined by the 2 percent trimming method developed in Heckman et al. (1998). The bandwidth-selector is 
based on locally varying bandwidths: 1/ 5( ) ( /(1 ))cvh hρ ρ ρ= − , where cvh denotes the bandwidth from conventional cross-
validation and ρ  the estimated propensity scores.  
 



 40

 
                 Table 5 

The Effect of Geography on Estimated Bias 
Kentucky WPRS Program, October 1994 to June 1996. 

 
                                  Matching with Fixed Effects                                          
 experimental 

estimates 
 ‘northern’  

local offices 
‘western’  

local offices 
 ‘appalachian’  

local offices 
   LC LL  LC LL  LC LL 
           

Weeks receiving UI 
benefits  
 

-2.01 
(0.86) 
 

 -1.93 
(0.50) 

[4] 

-1.95 
(0.51) 

[3] 

 -3.39 
(1.31) 
[69] 

-3.00 
(1.42) 
[49] 

 -4.73 
(0.56) 
[135] 

-4.84 
(0.69) 
[140] 

           
Employment (%) on 
1st quarter after UI 
spell 

5.89 
     (4.30) 

 4.34 
(2.98)
[26] 

4.28 
(3.04)
[27] 

 9.30 
(4.15) 
[58] 

7.91 
(5.75) 
[34] 

 15.79 
(3.22) 
[168] 

15.62 
(3.81) 
[166] 

           
Earnings on 1st 
quarter after UI  
spell 

535 
(356) 

 279 
(213)
[48] 

289 
(208) 
[46] 

 872 
(188) 
[63] 

735 
(260) 
[37] 

 559 
(232) 

[5] 

645 
(269) 
[21] 

           
     N         900             4528             1368               1639 

 
Bootstrap standard errors are shown in parenthesis. They are based on 100 repetitions. Nonexperimental bias defined as 

exp exp exp[( ) / ]*100non
TT TT TT

−∆ −∆ ∆  is shown in brackets.  
The experimental treatment effects are estimated as in Black et al. (2003) after imposing the common support condition using the 2 
percent trimming method developed in Heckman et al. (1998) and for the subsample of ‘northern’ local offices. Local polynomial 
matching estimation is based on Epanechnikov kernel functions over the empirical common support region. The bandwidth-selector is 
based on locally varying bandwidths: 1/ 5( ) ( /(1 ))cvh hρ ρ ρ= − , where cvh denotes the bandwidth from conventional cross-validation 
and ρ  the estimated propensity scores.  
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             Table 6 

Sensitivity Checks for Local Constant Matching Estimation 
Kentucky WPRS Program, October 1994 to June 1996. 

 
Local Constant Matching with Fixed Effects  

 
  

experimental 
estimates 

 
Baseline 

estimation 
‘max of min’ 

support 
region   

cross-
validated  

bandwidth 

time and space 
fixed effects 

order 
 (1)  (2) (3) (4) (5) 
       
Weeks receiving UI 
benefits  

-2.23 
(0.52) 

 -2.20 
(0.35) 
[-1] 

-2.05 
(0.37) 
[-8] 

-2.17 
(0.36) 
[-3] 

-2.20 
(0.36) 
[-1] 

       
Employment (%) on 
1st quarter after UI 
spell 

8.53 
(2.73) 

 6.25 
 (1.71) 
[-27] 

6.44 
(1.97) 
[-25] 

6.32 
(1.81) 
[-26] 

6.22 
(1.80) 
[-27] 

       
Earnings on 1st 
quarter  after UI 
spell 

488 
(201) 

 365 
(130) 
[-25] 

292 
(131) 
[-40] 

370 
(127) 
[-24] 

365 
(128) 
[-25] 

       
        N  1810  9938 9917 9938 9938 

   
Bootstrap standard errors are shown in parenthesis. They are based on 100 repetitions. Nonexperimental bias defined as 

exp exp exp[( ) / ]*100non
TT TT TT

−∆ −∆ ∆  is shown in brackets.  The experimental treatment effects are estimated as in Black et al. (2003) after 
imposing the common support condition using the 2 percent trimming method developed in Heckman et al. (1998).  
The baseline model (column 2) is implemented using the 2 percent trimming method and locally varying bandwidths: 

1/ 5( ) ( /(1 ))cvh hρ ρ ρ= − , where cvh denotes the bandwidth from conventional cross-validation and ρ  the estimated 
propensity scores. Column (3) defines the overlapping support region by the ‘max of min’ criterion that drops all 
observations whose propensity score is smaller than the minimum and larger than the maximum in the opposite group. The 
common support lies within the interval [0.004, 0.773]. Column (4) selects the optimal bandwidths for standard leave-one-
out cross-validation techniques. The resulting bandwidths are 0.07, 0.04, and 0.04 for weeks receiving UI benefits, 
employment, and quarterly earnings, respectively. Column (5) removes first time effects followed by local offices effects 
in the estimation of matching with fixed effects.  



 42

Figure 1 
Parametric Propensity Score Model Distribution 
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Kernel Propensity Score Model Distribution 
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