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1 Models of Risk Preferences: Further Details

In this section, we provide further details about the models of risk preferences that we

describe in Section 3 of the review. We illustrate how the models work – and how their

predictions differ – by describing their predictions in some examples. In addition, for some

of the models, we also describe some additional issues that arise.

We use the following three examples.

Example 1. What is a household’s willingness to pay for insurance with deductible d against
the possibility of losing L with probability µ? In other words, what is the z that makes the

household indifferent between the lottery (−z−d, µ;−z, 1−µ) and the lottery (−L, µ; 0, 1−µ)?

Example 2. What is a household’s certainty equivalent for the lottery X ≡ (x1, µ, x2, 1−µ)

with x1 < x2? In other words, what is the z that makes the household indifferent between the

lottery X and the lottery (z, 1)?

Example 3. What is a household’s willingness to pay for an asset that pays out x1 with

probability µ1, x2 with probability µ2, and x3 with probability µ3? In other words, what is

the z that makes the household indifferent between the lottery (0, 1) and the lottery (−z +

x1, µ1;−z + x2, µ2;−z + x3, µ3)?

The conditions derived below for Example 1 are the conditions that appear in Table 2 of

the review. The equations derived below for Example 2 – in particular, the utility equations

for the generic binary lotteryX – are those that appear in Section 4.4 of the review. Finally,

Example 3 highlights some further details for RDEU and CPT.

1.1 Expected Utility

According to expected utility (EU) theory, given a choice set X, a person will choose the

option X ∈ X that maximizes

EU(X) ≡
N∑
n=1

µnu(w + xn),

where u is a utility function that maps final wealth onto the real line.

In our three examples:

Example 1 (Under EU). A household’s willingness to pay for insurance with deductible d
against the possibility of losing L with probability µ is the z such that

µu(w − z − d) + (1− µ)u(w − z) = µu(w − L) + (1− µ)u(w).
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Example 2 (Under EU). A household’s certainty equivalent for the lotteryX ≡ (x1, µ, x2, 1−
µ) with x1 < x2 is the z such that

u(w + z) = µu(w + x1) + (1− µ)u(w + x2).

Example 3 (Under EU). A household’s willingness to pay for an asset that pays out x1 with

probability µ1, x2 with probability µ2, and x3 with probability µ3 is the z such that

u(w) = µ1u(w − z + x1) + µ2u(w − z + x2) + µ3u(w − z + x3).

1.2 Rank-Dependent Expected Utility

Under rank-dependent expected utility (RDEU), we replace the EU equation with

V (X) ≡
N∑
n=1

ωnu(w + xn),

where ωn is a decision weight associated with outcome xn and may not be equal to a person’s

belief µn. When evaluating a lottery X ≡ (x1, µ1;x2, µ2; . . . ;xN , µN), if the outcomes are

ordered such that x1 < x2 < · · · < xN , then the weight on outcome n is

ωn =


π(µ1) for n = 1

π
(∑n

j=1 µj

)
− π

(∑n−1
j=1 µj

)
for n ∈ {2, . . . , N − 1}

1− π
(∑n−1

j=1 µj

)
for n = N

,

where π is a probability weighting function.

For our three examples, RDEU generates the following equations:

Example 1 (Under RDEU). A household’s willingness to pay for insurance with deductible
d against the possibility of losing L with probability µ is the z such that

π(µ)u(w − d− z) + (1− π(µ))u(w − z) = π(µ)u(w − L) + (1− π(µ))u(w).

Example 2 (Under RDEU). A household’s certainty equivalent for the lotteryX ≡ (x1, µ, x2, 1−
µ) with x1 < x2 is the z such that

u(w + z) = π(µ)u(w + x1) + (1− π(µ))u(w + x2).

Example 3 (Under RDEU). A household’s the willingness to pay for an asset that pays out
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x1 with probability µ1, x2 with probability µ2, and x3 with probability µ3 is the z such that

u(w) = π(µ1)u(w − z + x1) + (π(µ2 + µ1)− π(µ1))u(w − z + x2)

+ (1− π(µ2 + µ1))u(w − z + x3).

Extrapolating from Example 2, under RDEU, when choosing among binary lotteries

X ≡ (x1, µ;x2, 1− µ) with x1 < x2, a household chooses the lottery that maximizes

U(X) = Ω(µ)u(w + x1) + (1− Ω(µ))u(w + x2),

where Ω(µ) = π(µ).

It’s worth highlighting some implications of RDEU. Consider the implications of the

Karmarkar (1978) probability weighting function with γ = 0.50 (as depicted in Figure 2

of the review). For binary lotteries, as in Examples 1 and 2, there will be overweighting

of low probability events (events with µ < 1/2) and underweighting of high probability

events (events with µ > 1/2). Hence, in Example 1, for instance, if the probability of a loss

µ < 1/2, then the weight π(µ) on the loss will be greater than the probability, and thus

probability weighting generates a source of risk aversion. In contrast, if the probability of a

loss µ > 1/2, then the weight π(µ) on the loss will be less than the probability, and thus

probability weighting generates a source of risk seeking.

For lotteries with more than two outcomes, such as in Example 3, an inverse-S-shaped

probability weighting function (as discussed in the review) instead generates overweighting

of extreme outcomes and underweighting of intermediate outcomes – and importantly two

outcomes that are equally likely need not have the same decision weights. For instance,

consider Example 3 when µ1 = µ2 = µ3 = 1/3. Given the Karmarkar function, the extreme

outcomes of x1 and x3 will both be overweighted (i.e., π(1/3) > 1/3 and 1− π(2/3) > 1/3),

while the intermediate outcome x2 is underweighted (i.e., π(2/3)− π(1/3) < 1/3).

In the RDEU model outlined above, the probability weighting function is first applied to

the worst outcome, and then successively applied to better and better outcomes – which

we refer to as RDEU from the bottom. Some analyses do the reverse, so the probability

weighting function is first applied to the best outcome, and then successively applied to

worse and worse outcomes – which we refer to as RDEU from the top. Formally, if the

outcomes are again ordered such that x1 < x2 < · · · < xN , then, under RDEU from the top,
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the weight on outcome n is

ωn =


π(µN) for n = N

π
(∑N

j=n µj

)
− π

(∑N
j=n+1 µj

)
for n ∈ {2, . . . , N − 1}

1− π
(∑N

j=n+1 µj

)
for n = 1

.

In principle, the decision whether to apply RDEU from the bottom versus from the top

might not matter. In particular, if we use πT in RDEU from the top and πB in RDEU

from the bottom, the two forms yield identical predictions as long as these functions are

symmetric, in the sense that πB(µ) = 1− πT (1− µ) for all µ. Similarly, if one estimates an

RDEU model with a nonparametric approach to π, it is not important which version one

uses. However, if one uses a parametric functional form that does not satisfy the symmetry

property, the direction along which RDEU is applied can yield different predictions. For

instance, suppose we use the Prelec (1998) function with γ = 0.61 (as depicted in Figure

2 of the review) in Example 1 with µ = 0.40. Under RDEU from the bottom, because

π(0.40) < 0.40, we would underweight the loss event, whereas under RDEU from the top,

because 1− π(0.6) > 0.40, we would overweight the loss event. In other words, applied from

the bottom probability weighting would generate a source of risk seeking, whereas applied

from the top it would generate a source of risk aversion.

In fact, both variants have been used in field applications. Typically, the version used

depends on which outcome is more "focal" in a particular application. For insurance appli-

cations, where the loss event arguably is the focal event, researchers most often use RDEU

from the bottom. For gambling applications, where the win event arguably is the focal event,

researchers most often use RDEU from the top.

1.3 Cumulative Prospect Theory

Cumulative prospect theory (CPT) requires as an input a reference outcome s, and each

outcome is coded as a gain or loss relative to this reference outcome. Consider a lottery

X ≡ (x1, µ1; . . . ;xN , µN) and a reference point s, and suppose x1 < · · · < xn̄−1 ≤ s < xn̄ <

· · · < xN . Under CPT, this lottery is evaluated as

V (X; r) ≡
N∑
n=1

ωnv(xn − s),
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where the weight on outcome xn is

ωn =


π−(µ1) for n = 1

π−
(∑n

j=1 µj

)
− π−

(∑n−1
j=1 µj

)
for n ∈ {2, . . . , n̄− 1}

π+
(∑N

j=n µj

)
− π+

(∑N
j=n+1 µj

)
for n ∈ {n̄, . . . , N − 1}

π+(µN) for n = N

.

In this formulation, π− and π+ are probability weighting functions applied to the loss and

gain events, respectively. The value function v is assumed to have three key properties: (i)

v(0) = 0 and and it assigns positive value to gains and negative value to losses, (ii) it is

concave over gains and convex over losses (often labelled "diminishing sensitivity"), and (iii)

it is steeper in the loss domain than in the gain domain (often labelled "loss aversion").

For our three examples, CPT with a reference point s = 0 generates the following equa-

tions:

Example 1 (Under CPT). A household’s willingness to pay for insurance with deductible d
against the possibility of losing L with probability µ is the z such that

π−(µ)v(−d− z) + (1− π−(µ))v(−z)) = π−(µ)v(−L).

Example 2 (Under CPT). A household’s certainty equivalent for the lotteryX ≡ (x1, µ, x2, 1−
µ) with x1 < x2 is the z such that

v(z) =


(1− π+(1− µ))v(x1) + π+(1− µ)v(x2) if s < x1

π−(µ)v(x1) + π+(1− µ)v(x2) if x1 ≤ s < x2

π−(µ)v(x1) + (1− π−(µ))v(x2) if s ≥ x2

.

Example 3 (Under CPT). A household’s willingness to pay for an asset that pays out x1

with probability µ1, x2 with probability µ2, and x3 with probability µ3, where x1 < s < x2 < x3

is the z such that1

v(0) = π−(µ1)v(−z + x1) +
(
π+(µ3 + µ2)− π+(µ3)

)
v(−z + x2)

+ π+(µ3)v(−z + x3).

Extrapolating from Example 2, under CPT, when choosing among binary lotteries X ≡
(x1, µ;x2, 1 − µ) with x1 < x2, we cannot reduce the model to one in which a household

1Here we use π+ to weigh the second event because we are assuming that z is such that x2 − z ≥ 0.
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chooses the lottery that maximizes

U(X) = Ω(µ)u(w + x1) + (1− Ω(µ))u(w + x2)

for some Ω(µ). In particular the weights must also be a function of how the possible outcomes

x1 and x2 compare to the reference point s, and moreover we must use the value function v

in place of the utility function u, and the value function also takes as an input how x1 and

x2 compare to the reference point s.

1.4 Expectations-Based Models

1.4.1 Kőszegi-Rabin Loss Aversion

Under the Kőszegi-Rabin (KR) loss aversion model (Kőszegi and Rabin 2006, 2007), the

utility from choosing lottery X ≡ (xn, µn)Nn=1 given a reference lottery X̃ ≡ (x̃m, µ̃m)Mm=1 is

V (X|X̃) ≡
N∑
n=1

M∑
m=1

µnµ̃m [u(w + xn) + v(w + xn|w + x̃m)] .

The function u represents standard "intrinsic" utility defined over final wealth, just as in EU.

The function v represents "gain-loss" utility that results from experiencing gains or losses

relative to the reference lottery. For the value function, KR use

v(y|ỹ) =

{
η [u(y)− u(ỹ)] if u(y) > u(ỹ)

ηλ [u(y)− u(ỹ)] if u(y) ≤ u(ỹ)
.

KR propose that the reference lottery equals recent expectations about outcomes – i.e.,

if a person expects to face lottery X̃, then her reference lottery becomes X̃. However, because

situations vary in terms of when a person deliberates about and then commits to her choices,

KR offer multiple solution concepts for the determination of the reference lottery. Here, we

focus on two solution concepts that are perhaps most relevant for field data.

Definition 1 (KR-PPE). Given a choice set X, a lottery X ∈ X is a personal equilibrium if

for all X ′ ∈ X, V (X|X) ≥ V (X ′|X), and it is a preferred personal equilibrium if there does

not exist another X ′ ∈ X such that X ′ is a personal equilibrium and V (X ′|X ′) > V (X|X).

Definition 2 (KR-CPE). Given a choice set X, a lottery X ∈ X is a choice-acclimating

personal equilibrium if for all X ′ ∈ X, V (X|X) ≥ V (X ′|X ′).

To date, the literature on estimating risk preferences using field data has focused exclu-

sively on KR-CPE, and thus we focus on that solution concept here. Because the derivations
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for KR-CPE are slightly more complicated than for the models above, it is useful to start

with the utility equations.

For a certain lottery X ≡ (x, 1), we have V (X|X) = u(w + x).

For a binary lottery X ≡ (x1, µ;x2, 1− µ) with x1 < x2, we have

V (X|X) = µu(w + x1) + (1− µ)u(w + x2)

+µ(1− µ)η [u(w + x2)− u(w + x1)]

+µ(1− µ)ηλ [u(w + x1)− u(w + x2)]

= µ [1 + η(λ− 1)(1− µ)]u(w + x1)

+ [1− µ [1 + η(λ− 1)(1− µ)]]u(w + x2)

= µ [1 + Λ(1− µ)]u(w + x1)

+ [1− µ [1 + Λ(1− µ)]]u(w + x2),

where Λ ≡ η(λ− 1). Note two implications. First, under KR-CPE with binary lotteries, the

parameters η and λ always appear in the lottery evaluation as the product Λ. In fact, this

is true under KR-CPE for lotteries with any number of outcomes, and thus under KR-CPE

only Λ can be identified. Second, under KR-CPE, when choosing among binary lotteries

X ≡ (x1, µ;x2, 1− µ) with x1 < x2, a household chooses the lottery that maximizes

U(X) = Ω(µ)u(w + x1) + (1− Ω(µ))u(w + x2),

where Ω(µ) = µ [1 + Λ(1− µ)].

With these equations in hand, it is straightforward to derive the implications of KR-CPE

in Examples 1 and 2.

Example 1 (Under KR-CPE). A household’s willingness to pay for insurance with deductible
d against the possibility of losing L with probability µ is the z such that

µ [1 + Λ(1− µ)]u(w − d− z)

+ [1− µ [1 + Λ(1− µ)]]u(w − z) = µ [1 + Λ(1− µ)]u(w − L)

+ [1− µ [1 + Λ(1− µ)]]u(w).

Example 2 (Under KR-CPE). A household’s certainty equivalent for the lottery X ≡
(x1, µ, x2, 1− µ) with x1 < x2 is the z such that

u(w + z) = µ [1 + Λ(1− µ)]u(w + x1) + [1− µ [1 + Λ(1− µ)]]u(w + x2).
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There is one further point with regard to KR-CPE: it sometimes can yield strange pre-

dictions. For instance, one might naturally think that, ceteris paribus, if the probability µ of

a loss increases, the willingness to pay z for full insurance should also increase. However, if

Λ > 1, one can show that for µ close enough to one, z declines with µ. The intuition for this

result is that, under CPE, a person has a strong aversion to risk. Hence, because intermedi-

ate probabilities (close to 1/2) involve more risk that probabilities close to one, the person

is willing to pay more for full insurance (even though the expected loss is smaller). In fact,

one can also show that, for any Λ > 0, under CPE a person can choose a dominated lottery.

The intuition is much the same: the aversion to risk can be so strong that the person would

rather choose a certain outcome over a risky lottery that dominates that certain outcome.

1.4.2 Disappointment Aversion

Under the Bell (1985) disappointment aversion model, a lottery X ≡ (xn, µn)Nn=1 is evaluated

as

V (X) =
N∑
n=1

µnu(w + xn)− β
N∑
n=1

µn
[
I
(
u(w + xn) < Ū

) (
Ū − u(w + xn)

)]
,

where I is an indicator function and Ū ≡
∑N

n=1 µnu(w+ xn). The first term is the standard

expected utility of lottery X. The second term reflects the expected disutility from disap-

pointment that arises when the realized utility from an outcome is less than the standard

expected utility of the lottery. The parameter β captures the magnitude of disappointment

aversion, where the model reduces to expected utility for β = 0.2

Again, it is useful to start with the utility equations.

For a certain lottery X ≡ (x, 1), we have V (X) = u(w + x).

For a binary lottery X ≡ (x1, µ;x2, 1 − µ) with x1 < x2, disappointment is experienced

if and only if x1 is realized, and thus we have

V (X) = µu(w + x1) + (1− µ)u(w + x2)

−βµ([µu(w + x1) + (1− µ)u(w + x2)]− u(w + x1))

= µ [1 + β(1− µ)]u(w + x1)

+ [1− µ [1 + β(1− µ)]]u(w + x2).

2Bell (1985) further assumes that (i) u(x) = x and (ii) a person might also experience utility from elation
when the realized outcome is larger than the expected utility. Even with the latter, however, his model
reduces to the model in the text where β represents the difference between the marginal disutility from
disappointment and the marginal utility from elation. Loomes and Sugden (1986) also use this formulation,
except they study nonlinear disappointment.
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It follows that, under Bell-DA, when choosing among binary lotteries X ≡ (x1, µ;x2, 1− µ)

with x1 < x2, a household chooses the lottery that maximizes

U(X) = Ω(µ)u(w + x1) + (1− Ω(µ))u(w + x2),

where Ω(µ) = µ [1 + β(1− µ)].

In Examples 1 and 2, these equations imply:

Example 1 (Under Bel-DA). A household’s willingness to pay for insurance with deductible
d against the possibility of losing L with probability µ is the z such that

µ [1 + β(1− µ)]u(w − d− z)

+ [1− µ [1 + β(1− µ)]]u(w − z) = µ [1 + β(1− µ)]u(w − L)

+ [1− µ [1 + β(1− µ)]]u(w).

Example 2 (Under Bell-DA). A household’s certainty equivalent for the lotteryX ≡ (x1, µ, x2, 1−
µ) with x1 < x2 is the z such that

u(w + z) = µ [1 + β(1− µ)]u(w + x1) + [1− µ [1 + β(1− µ)]]u(w + x2).

Under the Gul (1991) disappointment aversion model, a lottery X ≡ (xn, µn)Nn=1 is eval-

uated as V (X) = V such that

V =
N∑
n=1

µnu(w + xn)− β
N∑
n=1

µn
[
I
(
u(w + xn) < V

) (
V − u(w + xn)

)]
.

The z that solves u(w + z) = V is one’s certainty equivalent for lottery X in this model.

On the right-hand side, the first term is the standard expected utility of lottery X, while

the second term reflects the expected disutility from disappointment that arises when the

realized utility from an outcome is less than the utility from the certainty equivalent of the

lottery. The parameter β captures the magnitude of disappointment aversion, where the

model reduces to expected utility for β = 0.

Again, it is useful to start with the utility equations.

For a certain lottery X ≡ (x, 1), clearly V (X) = u(w + x).

For a binary lottery X ≡ (x1, µ;x2, 1 − µ) with x1 < x2, disappointment is experienced

if and only if x1 is realized, and thus we have

V̄ = µu(w + x1) + (1− µ)u(w + x2)− βµ(V̄ − u(x1)).
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Solving for V̄ and recalling that V (X) = V̄ yields

V (X) =
(1 + β)µ

1 + βµ
u(w + x1) +

(
1− (1 + β)µ

1 + βµ

)
u(w + x2).

It follows that, under Gul-DA, when choosing among binary lotteriesX ≡ (x1, µ;x2, 1−µ)

with x1 < x2, a household chooses the lottery that maximizes

U(X) = Ω(µ)u(w + x1) + (1− Ω(µ))u(w + x2),

where Ω(µ) = (1 + β)µ/(1 + βµ).

In Examples 1 and 2, these equations imply:

Example 1 (Under Gul-DA). A household’s willingness to pay for insurance with deductible
d against the possibility of losing L with probability µ is the z such that

(1 + β)µ

1 + βµ
u(w − d− z)

+

(
1− (1 + β)µ

1 + βµ

)
u(w − z) =

(1 + β)µ

1 + βµ
u(w − L)

+

(
1− (1 + β)µ

1 + βµ

)
u(w).

Example 2 (Under Gul-DA). A household’s certainty equivalent for the lotteryX ≡ (x1, µ, x2, 1−
µ) with x1 < x2 is the z such that

u(w + z) =
(1 + β)µ

1 + βµ
u(w + x1) +

(
1− (1 + β)µ

1 + βµ

)
u(w + x2).

When applied to binary lotteries, Bell-DA is equivalent to KR-CPE, and Gul-DA, while

having slightly different equations, also has much the same structure. One can show that

the three models are more distinct when applied to lotteries with more than two outcomes.

1.5 Combining RDEU and KR-CPE

As mentioned in the review, sometimes one might want to consider a model that combines

features from the different models discussed above. To illustrate how one might do so, in

this section we develop a model that combines RDEU and KR-CPE. This combination is

particularly interesting because – as mentioned in Section 4.4 of the review – one can

show that, for lotteries with any number of outcomes, the combination of RDEU and KR-

CPE reduces to an equivalent RDEU model using effective probability weighting Ω(µ) =
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π(µ)(1+Λ(1−π(µ))). In turn, this implies that it is never possible to separately identify the

RDEU probability weighting function π(µ) and the KR-CPE loss aversion parameter Λ.3

Recall that, under KR, the utility from choosing lotteryX ≡ (xn, µn)Nn=1 given a reference

lottery X̃ ≡ (x̃m, µ̃m)Mm=1 is

V (X|X̃) ≡
N∑
n=1

M∑
m=1

µnµ̃m [u(w + xn) + v(w + xn|w + x̃m)] .

When we add probability weighting as in RDEU, we assume the RDEUweight ωn on outcome

xn given lottery X is used in place of the probability µn, and we further assume that the

RDEU weight ω̃m on outcome x̃m given lottery X̃ is used in place of the comparison weight

µ̃m. The former is natural, as the RDEU model is framed as generating weights to replace

probabilities. The latter is perhaps less natural, as µ̃m is best thought of as a weight rather

than a probability – i.e., it is the weight used when comparing a realized outcome to the

possible reference outcome x̃m. That said, just as KR argue that the natural weight to use

when making this comparison is the probability of x̃m, once we move to a person who is

subject to probability weighting in how they react to probabilities, it seems natural to use

the RDEU weight ω̃m.

Given these assumptions, we can rewrite V (X|X̃) as

V (X|X̃) ≡
N∑
n=1

M∑
m=1

ωnω̃m [u(w + xn) + v(w + xn|w + x̃m)] ,

where the ωn’s are generated as in RDEU applied to lottery X, and the ω̃m’s are generated

as in RDEU applied to lottery X̃. Given this V (X|X̃), the definition of CPE is exactly

as in Definition 3 in the review – i.e., a household chooses the lottery X that maximizes

V (X|X).

Consider the evaluation of a generic discrete lottery X ≡ (x1, p1; . . . ;xN , pN) with x1 ≤
· · · ≤ xN .

3Masatlioglu and Raymond (2014) make a similar point using a decision-theoretic approach.
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V (X|X) ≡ ω1u(w + x1) + · · ·+ ωNu(w + xN)

+ω1

[
N∑
n=2

[ωnηλ(u(w + x1)− u(w + xn))]

]

+ω2

[
ω1η(u(w + x2)− u(w + x1)) +

N∑
n=3

[ωnηλ(u(w + x2)− u(w + xn))]

]

+ω3

[
2∑
n=1

[ωnη(u(w + x3)− u(w + xn))] +
N∑
n=4

[ωnηλ(u(w + x3)− u(w + xn))]

]
...

+ωN

[
N−1∑
n=1

[ωnη(u(w + xN)− u(w + xn))]

]
,

where

ω1 = π(µ1)

ω2 = π(µ1 + µ2)− π(µ1)
...

ωN = 1− π(µ1 + · · ·+ µN−1).

Defining Λ ≡ η(λ− 1), we can rewrite this as

V (X|X) = u(w + x1)ω1

[
1 + Λ

N∑
n=2

ωn

]

+u(w + x2)ω2

[
1 + Λ

N∑
n=3

ωn − Λω1

]

+u(w + x3)ω3

[
1 + Λ

N∑
n=4

ωn − Λ

2∑
n=1

ωn

]
...

+u(w + xN)ωN

[
1− Λ

N−1∑
n=1

ωn

]

=
N∑
n=1

u(w + xn)ωn

[
1 + Λ

N∑
n′=n+1

ωn′ − Λ
n−1∑
n′=1

ωn′

]
.
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Result. For any probability-weighting function π(µ), define π̃(µ,Λ) such that

π̃(µ,Λ) (1 + Λ(1− π̃(µ,Λ))) = π(µ).

Then any combination of loss aversion Λ ≥ 0 and probability weighting π̃(µ,Λ) generates the

same utility function V (X|X).

Proof : Fix Λ ≥ 0 and consider the weights under the combination Λ and π̃(µ,Λ). The

weight on outcome x1 is

ω1

[
1 + Λ

N∑
n=2

ωn

]
= π̃(µ1,Λ) [1 + Λ (1− π̃(µ1,Λ))] = π(µ1).

Defining Mn ≡
∑n

n′=1 µn′ , the weight on outcome xn ∈ {x2, . . . , xN} is

ωn

[
1 + Λ

N∑
n′=n+1

ωn′ − Λ
n−1∑
n′=1

ωn′

]
= [π̃ (Mn,Λ)− π̃ (Mn−1,Λ)] [1 + Λ (1− π̃ (Mn,Λ))− Λπ̃ (Mn−1,Λ)]

= π̃ (Mn,Λ) [1 + Λ(1− π̃ (Mn,Λ))]− π̃ (Mn−1,Λ) [1 + Λ(1− π̃ (Mn−1,Λ))]

= π(Mn)− π(Mn−1).

Hence, all weights are independent of Λ, and thus the utility function V (X|X) is the same

for all Λ and π̃(µ,Λ). �

From this result, it follows that the combination of RDEU with probability weighting

function π(µ) and KR-CPE with loss aversion Λ reduces to an equivalent RDEU model

using effective probability weighting Ω(µ) = π(µ)(1 + Λ(1− π(µ))). It further follows that,

in this model, one cannot separately identify π(µ) and Λ; all one can do is estimate Ω(µ).

2 Evidence on Moral Hazard and Adverse Selection

For many of the property insurance contexts, moral hazard appears to play a small role (for

a recent review of the literature, see Cohen and Siegelman (2010)). Most studies that test for

the presence of asymmetric information in auto insurance markets using cross-sectional data

do not find evidence of a positive correlation between risk and coverage (Chiappori 1999; Chi-

appori and Salanié 2000; Chiappori, Jullien, Salanié, and Salanié 2006; Dionne, Gouriéroux,
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and Vanasse 1999, 2001).4 These studies have been interpreted as casting doubt on the pres-

ence of moral hazard (Cohen 2005), at least in auto insurance. More recently, a handful of

papers separately test for moral hazard in longitudinal auto insurance data using a dynamic

approach pioneered by Abbring, Chiappori, and Pinquet (2003) and Abbring, Chiappori,

Heckman, and Pinquet (2003). Abbring, Chiappori, and Pinquet (2003) find no evidence of

moral hazard in French auto insurance data. Israel (2004) reports a small, but statistically

significant moral hazard effect for drivers in Illinois. Ceccarini (2007), Abbring, Chiappori,

and Zavadil (2008), Pinquet, Dionne, Vanasse, and Mathieu (2008), and Dionne, Michaud,

and Dahchour (2007) present stronger evidence of moral hazard using auto insurance data

from Italy, the Netherlands, Quebec, and France, respectively. Each of the foregoing papers,

however, identifies a moral hazard effect with respect to either liability coverage or a compos-

ite coverage that confounds liability coverage with other coverages. None of them identifies

or quantifies the separate moral hazard effect (if any) directly attributable to collision and

comprehensive auto coverages.5

There is a significant body of work assessing the presence of asymmetric information in

other markets, in particular the health and life insurance markets. Cardon and Hendel (2001)

estimate a structural model of health insurance and health care choices using individual-level

data. They find no evidence of informational asymmetries. Cawley and Philipson (1999) look

for the presence of asymmetric information in term life insurance markets, using measures

for both actual and self-reported risk. They too find no evidence of asymmetric information.

More recent work has found increasing evidence for informational asymmetries. As in the

prior two works, Finkelstein and Poterba (2004) find no informational asymmetries in the

U.K. annuity market based only on annuity amounts or "insurance payout." However, they

find informational asymmetries for other annuity characteristics – e.g., payout timing and

whether an estate is guaranteed payment. Further, in long-term care insurance, Finkelstein

and McGarry (2006) find evidence for multiple dimensions of private information, which

can separately lead to moral hazard, adverse selection, or advantageous selection. Thus,

focusing on the failure to reject a positive correlation between insurance coverage and risk

occurrence ignores the fact that these selection forces may "cancel" each other out. The

findings of Fang, Keane, and Silverman (2008) support the notion of advantageous selection

4We are aware of two exceptions: Puelz and Snow (1994) and Cohen (2005). Recent work criticizes the
methodology of Puelz and Snow (1994) and suggests that their results are spurious (Chiappori 1999; Dionne,
Gouriéroux, and Vanasse 1999). Cohen (2005) presents mixed evidence of asymmetric information. She finds
that a positive coverage-accident correlation exists for new customers with more than three years of driving
experience, but not for new customers with fewer than three years of driving experience. To our knowledge,
there are no studies that test for asymmetric information in home insurance.

5These are the auto coverages that have been used to date, to estimate risk preferences with property
insurance data

14



in Medigap insurance. Bajari, Dalton, Hong, and Khwaja (2014), using semi-parametric

methods, report significant moral hazard/adverse selection in a recent (2002-2004) dataset

from a large self-insured U.S. employer. He (2009) finds evidence of asymmetric information

in life insurance markets in a sample of potential new buyers. Bundorf, Levin, and Mahoney

(2012) calculate that asymmetric information between consumers and the risk-adjustment

software used by health insurance providers, lowers annual welfare by $35—$100 per enrollee

in data from small employers. Einav, Finkelstein, Ryan, Schrimpf, and Cullen (2013) find

evidence of moral hazard in individuals’choices of health insurance plans.
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