Online Appendix: Competitive bottlenecks and platform spillovers
Tat-How Teh! and Julian Wright?

In the following sections we provide additional workings and results referred to but not included in the

main paper.

A Other microfoundations

In this section, we first describe Examples 1 - 3 that are similar to the leading ezample in the main paper
in that they assume a continuum of atomistic product categories, with a single (monopoly) seller in each.
We will then describe Example 4, which presents a microfoundation with sellers that behave oligopolistically.

Examples 1 - 3 are written in a way to accommodate each platform ¢ choosing a multi-dimensional
instrument vector a;. To recover the single-dimensional case, we can simply fix all but one component of
the vector for all platforms. Online Appendix B explains in our general baseline model how the analysis
and results extend to this multi-dimensional setting.

As will be shown below, the functions U; and R; that correspond to Examples 1 - 3, also satisfy the
special functional form (17) imposed in Section 3.2 when holding all but one of the multi-dimensional
instruments as fixed. Therefore, the results in (Proposition 3 and Corollary 1) hold for these examples, as
claimed in Section 3.2.

In Examples 1 - 3, we impose a simplifying assumption of ¢ = 0. This means that seller’s optimal
price p(r;), the resulting consumer demand ¢(r;), and the corresponding utility v(r;) are all independent
of commission rate r;, and so we denote them as p™, ¢™, and v™ respectively. Then, denote 7 (r;) =
(1—r)m™=(1—r;)pmq™.

O Example 1 (First-party entry and self-preferencing). Continue from the leading example, but
suppose now each platform chooses a; = (14, €;,1;), where e; € {0, 1} indicates whether platform ¢ operates
as a dual-mode marketplace or not and I; € {0,1} indicates whether platform i engages in self-preferencing
or not.> When it operates in dual mode, it introduces a first-party product whenever a third-party seller
has entered in any product category.

With probability 1 — «, the first-party entry fails, and the third-party seller (in the relevant category)
remains a monopolist (with corresponding gross profit 7 and buyer utility v™). With probability a, the
first-party entry succeeds. The resulting duopolistic competition results in two possible outcomes. When
the platform doesn’t engage in self-preferencing, the first-party profit is 7/P and the third-party seller profit
is (1 —7;)7?, where 0 < 7% < 7™, while the corresponding buyer utility is v¢ > v™. When the platform
engages in self-preferencing, the first-party profit is 77 > 7/P and, for expositional simplicity, the third-
party seller profit is set to zero, while the corresponding buyer utility is v*P, where v*? < v?. We assume
that first-party products do not “cross-list” on rival platforms.

Following the same steps in our leading example, we have

Ei=(1—r) (@™ — aey(m™ — (1 = 1;) 7))s;,

and 7.
U, = (v™ + ae; (L;v%P + (1 = ;) vt — v™))G (kl)
R; = (rim™ + e (L + (1 — 1;) (Tz'ﬂd + ﬂfp) —rm™))G (Ejz) sie
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allowing for the possibility of self-preferencing (see, for example, Hagiu et al. (2022) and Anderson and Bedre-Defolie
(2024)).



Here, e; and [; directly affect buyers’ utility on platform ¢, as well as indirectly via how many sellers
participate on platform i. Finally, seller surplus is $9; = |, kk;i" max{k; — k;,0}dG (k;), where k; is clearly
decreasing in r;, €;, and [;.

By Proposition 2, if we restrict platforms to choose only one of the instruments from (r;,e;, ;) (while

exogenously fixing the remaining two instruments), then each of the following holds in isolation: r* = % >

W e* =eSF > eW and I* = 19 > [W. Moreover, as shown in Online Appendix B, under a relatively mild
quasi-supermodularity condition, we can establish similar results even when platforms choose all instruments
together, so that (r*,e*,1*) = (r¥F e5F [9F) > (+W W W), That is, the equilibrium levels of commission,

first-party entry, and self-preferencing are excessive.

O Example 2 (Preventing disintermediation). Suppose sellers continue to be monopolists as in
our leading example, but now they also have direct sales channels (e.g., their own websites). In order for
buyers to transact on a seller’s direct channel, buyers must first discover them through a platform. A direct
channel allows a seller to avoid a platform’s transaction-based fees if buyers switch from the platform to
purchase from the seller through their direct channel, which we call disintermediation.* A fraction \; > 0 of
buyers are unaware of this option to buy from the seller directly, with the remaining fraction 1 — \; aware of
the option. Buyers have heterogeneous costs to switch to the direct channel. Specifically, with probability
¢ buyers who are aware of the direct channel are assumed to be able to costlessly switch (and so buy from
whichever channel is cheapest), while with probability 1 — ¢ buyers face a sufficiently high switching cost
such they will never use the direct channel regardless of the price difference. Buyers realize which situation
they are in after participating on a platform.

Each platform chooses a; = (r;, A;), where A\; € [Amin, Amax] reflects that the platform can influence
the probability any given buyer will be aware of a seller’s direct-channel option via its design choices. For
example, a platform could take steps to prevent communication by sellers on the platform which would
make it more difficult for them to inform buyers of their direct channel.

Participating sellers set prices p; (on platforms ¢ = 1,...,m) and pg (their price when selling directly).
Buyers on platform ¢ who are informed and able to switch would buy directly if and only if p; > pq.
Moreover, given r; > 0, each seller would always want to induce disintermediation. Therefore, a seller that

joins a non-empty set of platform(s) ¢ C {1,2,...,m} sets its prices to maximize

D (=) piD(pi) (1 = (1= X)) + paD(pa) (1 = Xi)C] s
i€}
subject to pg < p;,i € @.

Given the pricing problem across channels is additively separable, the optimal price is

m

pa = pi = argmax {piq(pi)} = p

for all i € ¢, so the standard profit and utility terms 7™ and v™ still apply in this case (given ¢ = 0). Each

seller participates on platform i if and only if
ki S (1 — T =+ (1 — /\7)CT7)7Tm57 = Ei,

SO B
Ui =G (kz) o™

kmax

Finally, seller surplus is SS; = |, X max{k; — k;,0}dG (k;), where k; is clearly decreasing in r; and \;.

min

“Hagiu and Wright (2023) study disintermediation (or leakage in their terminology) in the case of a monopoly
platform.



By Proposition 2, if we restrict platforms to choose only one of the instruments from (r;, \;) (while
exogenously fixing the remaining instrument), then each of the following holds in isolation: r* = r9% >
W and \* = AP > AW, Moreover, as shown in Online Appendix B, under a relatively mild quasi-
supermodularity condition, we can establish similar results even when platforms choose both instruments
together, so that (r*,\*) = (rF X5F) > (#W AW). That is, the equilibrium levels of commission and

disintermediation-prevention effort are excessive.

O Example 3 (App tracking restriction). Similar to Example 2, buyers must first discover sellers
through a platform before transacting. Buyers on platform i can obtain (e.g., unlock) ¢ units of content from
sellers by either: (i) paying the seller price p; per unit; or (ii) watching ads, which results in ad disutility
z per unit to buyers and generates per-unit ad revenue 7, (1 — k;) > 0 to sellers. Here k; € [0, Kmax] With
Kmax < 1 measures how restrictive platform i’s app tracking policy is, which can limit the ad revenue of
sellers, which is at most 7,. Suppose seller’s revenue from (i) can be taxed by the platform through its
commission r;, while its ad revenue in (ii) cannot. We assume z > 0 is IID across buyers and sellers, drawn
from the weakly log-concave CDF H.

Each platform chooses a; = (7, k;). Then, a typical seller that joins a non-empty set of platform(s)

¢ C {1,2,...,m} sets its prices to maximize its profit®

S (=m0~ #0) 47 (1) [ atdam () ) s

i€P

Observe that the pricing problems are separable, and so each seller’s optimal price p on platform ¢ is

independent of the (r;, ;) (when holding s;) constant. Each seller would participate on ¢ if and only if

ki < ((1 —73)pq(p)(1 — H(p)) + ma (1 — k;) /0” Q(Z)dH(Z)> si = ki,

and so
U, — (fooo v(q(min(p, 2)) — mir_1(p, 2)q(min(p, z))dH(z)) G(k;)
Ri =ripq(p)(1 — H(p;))s:iG (kl) :

kmax

Finally, seller surplus is S.5; = f k max{l%i — k;,0}dG (k;), where k; is clearly decreasing in r; and k;.

By Proposition 2, if we restr?lcr:c platforms to choose only one of the instruments from (r;, k;) (while
exogenously fixing the remaining instrument), then each of the following holds in isolation: r* = 9% > W
and x* = k%F > kW, Moreover, as shown in Online Appendix B, when all sellers have zero participation
costs k; = 0 (i.e., the distribution G is degenerate), we can establish similar results even when platforms
choose both instruments together, so that (r*, k*) = (rSF k%) > (rW k"W). That is, the equilibrium levels

of commission and app-tracking restriction effort are excessive.

O Example 4 (Demand-side heterogeneity and competing sellers). This example is constructed
independently of our leading example and those above (and so CDF G(-) has a different interpretation here).
Each platform chooses its commission a; = r;. There is a continuum of product categories with mass 1
indexed by the buyers’ interaction benefit parameter V', where V is drawn from some distribution G on
[0, Vinax]- There are n > 1 potential competing sellers in each product category. A representative buyer’s

gross utility function for purchasing ¢; units from each seller kK = 1,..,n in a particular product category is

n

n n 2
u(q1, -y qn) :VZQk—g (1—9)Zq,§+% (Z%) :

k=1 k=1 k=1

®We assume the profit function is strictly quasiconcave, a sufficient condition for which is that g(p;) has an
elasticity (in magnitude) that is non-decreasing and is no lower than one over the relevant range.



and 6 € [0,1) is a measure of seller differentiation within the category. This is the model by Shubik and
Levitan (1980). Then, buyer demand for seller k in category V is

1 Dk 0 <~ pw
Dyp,=-|V - —_— .
Vk n( 1—9+1—0k,§::1n

We assume sellers face no fixed costs of participating on a platform, but face a positive marginal cost per

unit of sales ¢ > 0.
Solving for the symmetric equilibrium between sellers yields the equilibrium price on platform ¢, which

is denoted Ti),
pV( ) B (1-0)nV (n—0)c
pv(ri) = 2n — 0 (n+1) + (2n—0(n+1))(1—r)

This is increasing in V', and in r; because ¢ > 0. The demand and profit an individual seller gets in product

category V from a representative buyer is denoted gy (r;) = 2 (V — py/(r;)) and

mv(ri) = ((1=7)pv(rs) —c)qv(r)

B o (1-0)(n—20) o
= l)(2n—9(n+1))2<v 1m>'

The corresponding per-buyer utility in product category V is vy (r;) = %qv(ri)? Once it has joined
platform 7, each participating seller in product category V sets the price py (r;) on platform ¢ and transacts
with each buyer on that platform once, with the representative buyer consuming ¢y (r;) units from each
such seller.

Notice there is an equilibrium where the n sellers of type V' can operate (make positive sales) and obtain
a profit if and only if (1 — r;) py(r;) > ¢. But the highest price that sellers can charge and obtain positive
demand is V. Therefore, in the absence of any seller fixed costs of participation, if r; <1, all n sellers in
category V participate on platform ¢ and make positive sales; while if 7; > 1 — {7, none of them participate

on platform ¢ since in equilibrium they would not make a profit while making positive sales. The measure

[
177“7; :

of product categories where sellers participate on platform i is 1 — G Therefore,

Ui = [V2 vy (r)dG (V)
1—r;
R; = sirin ;/_7“ pv (ri)qv (ri)dG(V).

Finally, seller surplus is

Vmax
SSZ :/ Wv(ri)dG(V),

c
1—r

where 7y (1) is clearly decreasing in 7;. By Proposition 2, we conclude r* = 75F > +W. That is, the

equilibrium level of commission is excessive in this oligopolistic seller model.

B Multi-dimensional instruments

We now extend the baseline model in Section 2 by allowing each platform’s instrument choice a; € A C
RY be a multi-dimensional vector, where N > 1. Our ordering that a higher a; corresponds to a lower
seller surplus means that SS;(a;; s;) is decreasing in every dimension of a;, holding s; constant, and denote
SS(a) = mSS;(a;1/m). The analysis below admits the possibility of non-unique equilibrium instruments
a* and non-unique solutions to welfare benchmarks a”” and a"' (where we denote the sets of solutions a*¥
and a" as ASF and AW respectively.).

It is straightforward to verify that the analysis in Section 2 holds as it is. In particular, the definition of



the equilibrium object (11) always applies regardless of whether a; is single-dimensional or multi-dimensional.

Denote set 1 1 1
A* = arg max {Ui(ai§ —) + Ri(as; )}
m m

a; EA m

We focus on the case where every a* € A* constitute an equilibrium (this is true in, e.g., our leading example
in Section 3). Then, given that A%F is defined by the exact same condition, we have A% = A*.

Lemma 1 now requires additional conditions. One well-known complication of multi-dimensional com-
parative statics is the cross-dimension effects, whereby distortions in one of the dimensions may reinforce
or diminish distortions in other dimensions. To proceed, we define the following concepts as introduced by
Milgrom and Shannon (1994):

¢ Quasi-supermodularity (QSM). A function W : A — R is quasi-supermodular in its argument
a; € A if, for any pair of vectors a; € A and a € A, we have

W) —=W(a Na") > (>)0= W(a' va')—-W(a") > (>)0.

Here, o/ Va" is the dimension-wise maxima of the two vectors and a’ Aa” is the dimension-wise minima

of the two vectors.

Intuitively, quasi-supermodularity expresses a weak kind of complementarity between each dimension
of vector a. That is, if an increase in some dimensions has a positive marginal return at some level of the
remaining dimensions, then the marginal return will also be positive at any higher level of those remaining
dimensions. Clearly, it is implied by the standard weak supermodularity condition. More generally, by
Milgrom and Shannon (1994), there are several easy-to-check sufficient conditions for W (a;) to be QSM: (i)
W (a;) is monotone in a;; (ii) if a is one-dimensional then QSM trivially holds; (iii) if @ is two-dimensional,
then QSM is equivalent to W (a) obeying single-crossing difference in a pairwise manner.

To compare A°F and AW, we adopt the following notion by Milgrom and Shannon (1994):

e Strong set order. A set A” is higher than set A’ in strong set order (denoted as A" >4, A’) if for

any pairs of vectors a’ € A’ and a” € A", we have o’ Va’ € A” and o’ Na” € A'.

Then, the following is analogous to Lemma 1 and Proposition 2. It shows that the baseline distortion

persists under multi-dimensional platform instruments.

Proposition OA.1 Suppose function W (a) (or W5 (a)) is quasi-supermodular. The seller-excluded bench-
mark exceeds the total-welfare benchmark (ASE >ss0 AW), indicating that the seller-excluded benchmark level

of instrument is excessive. Consequently, A* = ASE > AW

Proof. (Proposition OA.1). We first verify that 1 (a) single-crossing dominates W (a): for any
a” > a', whenever W(a") — W(a’) > (>)0 holds, we must have

WSE(CL”) _ WSE(a/)
= W(d")-W(d)+SS(a)—SS(a") > (>)0
>0

because SS(-) is decreasing. Then, we apply Theorem 1 of Amir and Rietzke (2025), which implies A%F >,
AW | as required. m

SThat is, if we assume continuous choice and differentiability, and let N = 2 so that a platform’s instrument
vector is a; = (z1,22) € ]R2, then this is equivalent to OW /9zx being single-crossing in z; for each dimension k # [,
k=1,2. That is, if 9W /dz, > (>)0 at z; = z;, then OW /dz, > (>)0 for all z; > 2.



It is useful to verify that QSM holds in Examples 1-3 presented in Section A, all of which involve multi-
dimensional instruments (Example 4 has a single-dimensional instruments and so QSM trivially holds).
O Example 1 (First-party entry and self-preferencing). Dropping the redundant constant terms,

the total welfare objective function is

k
W(r,e,l) = (v™ + 7" + ae (IAP + (1 1) Afp)) G (ki) — m/ kdG (k) ,
kmin
where k = (1 —r)(7™ — ae(r™ — (1 — ) 7?)) L. Observe that k is decreasing in r, e, and L.

Define AP = 7P 4+ ¢ — ™ — ™ and AP = 7/P 4 7¢ 4 pd — 7™ — ™ as the ex-post efficiency gain
from first-party entry with and without self-preferencing. Suppose AP > AP, Then W is decreasing in r,
decreasing in e regardless of | provided A/P is not too large, and decreasing in I:

. dk

= (W™ + 7"+ ae (AP + (1 — 1) ATP) —mk)g (k) o < 0;

aw
dr

>0 because mk; <(1—7r;)7*

aw

B = (0 7 4 ae (1A% + (1) AT7) — k) g (F) B 4 e, (A7 — A7) G () <0
DY (w7 77+ e (1A% + (1= D AT) —mE) g () % 0 (16 + (1 ) AT) G (F) <0

As such, W is QSM when these conditions hold. Proposition OA.1 then implies (r*, e*,1*) = (r9F e5F [5F)
(rW, e W),

v

O Example 2 (Preventing disintermediation). Dropping the redundant constant terms,

k
W(r,\) = (v+m)G (k) — m/ kdG (k) ,
kmin
where & = (1 —r+ (1 —\)(r)
prevention effort A by the standard deadweight loss logic (a higher A can be seen as amplifying the effective
fees paid by sellers). Thus, W(r,\) is QSM, and Proposition OA.1 then implies (r*,\*) = (r5F A\5F) >
(r" AW,

Clearly, W (r,\) is decreasing in platform fee r and disintermediation

s
m’

O Example 3 (App tracking). Assuming the seller objective function is strictly quasiconcave, then
by additive separability, the optimal price p satisfies the first-order condition (FOC)

o (1 — k) q'(p)\ 1-H(p)
1—r; +<1+ Q(p)> h(p)

11:’:’ That is, sellers set a higher price for their apps (to divert

Observe that p is an increasing function of
buyers to watch ads) when ads becomes more profitable relative to their share of transaction revenue 1 —r;.

To check strict quasiconcavity of the seller objective function, notice dm/dp; has the same sign as

Ta (1 — K;) 1— H(p;)
—p; 411 E—— 22
where e, = p; ‘g((ﬁf)) < 0 is elasticity of g(.). By standard results, e, is weakly decreasing in p; if ¢(.) is weakly
1-H(pi)

log-concave or admits constant-elasticity. Therefore, as long as (1 + e4) > 0 then we know (1 + e4) )
is decreasing in p; by log-concavity of 1 — H, and so (22) is always decreasing in p;, which establishes
strict-quasiconcavity.

Imposing symmetry and dropping constant terms, the total welfare objective function that is relevant



for determining (r"V, k") is

k

W(r,x) = Uo(p)G (k) + riRo(p)G (k) +m | (k — k;)dG,
where
Uolp) = / " u(q(2)) - za(2)dH(:) + / " ulalp) - pa(p)dH(2)
Ro(p) = pqe(p)(1—H(p))
b= - e+ == i)

To establish quasi-supermodularity, we reframe the maximization problem as choosing a = (r, —p), where

K= K(r,p) =1+ () (11~)

Tq

and
1 - H(p)

h(p)

is strictly decreasing in p by the properties on (22) as established above. Then

¢(p)5(1+6q) —p<0

1 dw g (k) dk dk
@W = (Uo(p) + riRo(p)) m% Tmos < 0
for all p because ‘é—’i = - 1;]?: < 0. Thus, dW/dr is single-crossing in p, as required. Likewise,
1 dW dUy  dRy — dk/dp dk
——=|— 4+ —— U R k) —— —,
G = (Gt o) + W)+ o) () L+ m

where p(z) = g’((f)) is the elasticity of G with respect to its argument. If we impose constant-elasticity
]

G (k)= (&) on [0, kmax], and let ¢ — 0, then

1 W  dRg d’k
— — ——+tm

G (k;) dpdr dp dpdr <0

because % < 0 by (22), and

d*k 1 de 1 P
dpdr ~ 1—rdp ET/J (p)/o q(2)dH(z) <0.

Thus, dW/dp is single-crossing in 7, as required. Proposition OA.1 implies (r*,—p*) = (r9F, —p°F) >
r¥ —p”). Given p is an increasing function of ===¢ we conclude that p~* < p"¥ and r°* > r"" together
W —p"). Gi i i ing function of 1=~ lude that pS < p" and r°F >+ togeth

imply k% > kW. Hence, (r*,x*) = (r°F k5F) > (v, k"W).

C Advertising on the buyer-side

Suppose instead of setting lump-sum prices on the buyer side, each platform ¢ chooses its advertising
intensity A; and gets an associated payoff A; per buyer. At the same time, buyers incur an associated
disutility of vA;, where v > 0 captures a nuisance cost. Here, v = 1 implies that raising advertising

intensity reduces buyer utility by the same amount it increases platform revenue — just like a lump-sum



price. More generally though, ad monetization may be more efficient than using lump-sum prices (i.e., one
dollar of extra revenue can be extracted from a buyer with less than a one dollar reduction in utility, so
v < 1), or less efficient (y > 1).

To understand the new welfare distortion in this setting, consider the case of inefficient ad monetization
(v > 1) and consider a decrease in commission r below 7*. Fixing the level of ad monetization, the decrease
in r leads to higher seller-excluded welfare because the inefficient revenue extraction means that platforms
do not fully internalize buyer utility in their choice of r*, resulting in an excessive equilibrium commission.
In our leading example, an incomplete pass-through argument shows that this direct effect dominates any

feedback effect from platforms reoptimizing their level of ad monetization. Formally, we get:

Proposition OA.2 Consider the above model with advertising on the buyer side. Suppose v > (<)1 so

that advertising is inefficient (efficient). Then r* > (<)rSF | strictly so for interior solutions.

Proof. (Proposition OA.2). We first state the equilibrium in this case without invoking the leading

example. By the same reframing technique used to establish Proposition 1, we get

1 1 1
a* = arg max {Ui (ai; ) + R; <ai; ) } .
ai€A | ym m m

Meanwhile for each given instrument, we first solve for the equilibrium ad intensity A(a). Following the

steps in the proof of Proposition 1, solving for the symmetric FOCs gives

_1/m 1 8Ui(a;%) 8Ri(a;%)
S P®(0) m-—-1 Js Os;

Ala)

Therefore, when the (common) instrument a changes, we have

1 0%U;(a; %) 0%R;(a; %)

/ —
A'la) = (m — 1) 0s;0a; 0s;0a;

We now specialize the expressions above to the leading example, where we know

1 1
r* = arg max lUi ri;— | Ry s — | ¢
r€[0,7] (M m m

U ) OR(iE)

the FOC of which is

ym or; or;

Meanwhile, using

Uitris) = o) (TE2) o

Riis) = rrdatr) (120)sre,

kmax

o aU; _ 77, d*U; _ U, 1s : AR, _ 1+ p. 3*R; __ 149 dR;
it is clear that oo =+ U;, and so Baoe = = ors likewise, 5ar = 3, R;, and so Beo = s or Then

o (Y SE)  oR (i)
A'lr) = <m—1>7 or; (L+@)m or; '




Evaluating this at » = r* and using the FOC associated with r*, we get

Al(r")

_( m )g@aUl 1+§0an

m—1) v 0Or; v Or;

m—1—¢\ 10U
m—1 v Or;

From the expression of the seller-excluded welfare, we have

dWSE(T) (3'U1 8Rl 7
Tar " on TMan T AT AD

Evaluating the above at r = r*, we have

SE,’,* _ ; -
T - () v am A

B <1—7> 3Ui+(m—1—go> (1—7) oU;

¥ or; m—1 v or;
_ L=7 ¢ U
a _<'ym—1> or;’

oU;
8’[‘1'

which is negative if and only if v > 1 (because <0). =

D Details for Section 3

D.1 The leading example

O Leading example with Hotelling competition. We first check our claim on global concavity: for

any given r;, if (16) holds, II; is concave in s; € [0,1] . Let z(r;) = v(r;) + rip(r;)q(r;). Then we can rewrite

(13) as:
I; = (PB* + 2(ry) (”(”)Y s — v () (”(”)Y (1— 8,)% — (28, — l)t) 5.

kmax kmax

The derivatives are

= P (1)
o) (B2 (e [ s ) — s+

T = w400 (F) s 4 2000) (B22) (- e
=106 (R) (1 - sy 2 -t

Among the terms in d?11;/ds?, only the first two components are positive, and we note sf_l and (1—s;)?~ !

are both bounded below one given ¢ > 1. Recalling from (14) that r* = argmax, cjo7 {2(r:)7 ()%}, a
sufficient condition for d?I1;/ds? < 0 to hold for any s; and r; is

2t > o(1 + )z (") <7T(7")>¢ (23)

kmax

max

A\
which coincides with the condition in (16). Notice this condition implies 2¢ > 2pv (r*) #) because

¢ >1and z (r*) > v (r*). Meanwhile, the condition for there to be a unique fixed-point in (8) is equivalent



to requiring (9) to be strictly decreasing in s;, i.e.,

dpf = p2(r;) (W(ri)yp s?71 4 v () (W(m)@ (1—s1)?"" =2t <0,

ds; kmax Kmax

which holds given (16).

Next, we provide two sets of conditions under which the objective function in (14) is strictly quasiconcave
(hence has a unique maximizer).

One condition is to impose ¢ = 0, which recall means 7 = 1. Then using the same notation as in Section

A, we have
(r)m(r)?) oo = (04w ™) (1 = r)a™).

The derivative with respect to r; has the same sign as

<7rm A Gl ) ””m)> (1—r)%.

1—7’2'

Observe the expression in the first (large) brackets is monotonically decreasing in r;, and so there exists a
(possibly negative) threshold # < 1 such that the expression is strictly negative if and only if r; > 7. Hence,
z(r;)m(r;)? is strictly single-peaked and so strictly quasiconcave.

Suppose instead ¢ > 0. Then another set of conditions is ¢ = 1 and a linear-quadratic utility specification

1
u(q) =Vq— qu, such that D(p;) =V — p;,

with V > c. This implies q(r;) = 1 (V =

1—7‘7;

) = %(V+ lf,.i), m(r) = 5 (V— 1_0”_)2, and

SN—

, p(

<
S

o(r;) = % (V — 1%“-)2’ where recall 7 = 1 — ¢ < 1. Then, the objective function defining r* can be
rewritten
(r)m(r) =—— <V - C>BB(T¢)
32 1—r;
for r; € [0,7], where V — 5~ and B(r;) =V —c+ (V +2¢)r; — 2r2V which are both strictly concave and
positive on r; € [0,7) and V — % = 0. This implies the maximum must occur on [0, 7). Within this range,

the objective z(r;)m(r;) can therefore be written as the product of positive and strictly concave functions,

so must itself be strictly quasiconcave.

O Leading example with logit specification. Suppose we impose the logit demand system ®(z) =

1+(m_1);xp{_m/#}, with scale parameter p > 0. Then

and %@‘1 (s;) = By the same calculation as before

o
(1737;)51 :

= e ()
—v (r¥) (m)w (1= 5)?7 1 — 55 — s8] — [1 fsi + pln ((ml_izsz)]
et (2) s 2000 (T02) 1 e
e (Y 0 [t



We know max;,e(0,1)(1 — 5;)%s; = 4/27. Hence, using the equivalent condition to (23), a sufficient condition

for strict concavity is

i gt () (24)

kmax

This condition also ensures (9) is strictly decreasing in s;. To see this, note

= et (F) s o) (R) s -

ds; kmax Emax 1- 51;)31'
T (r*)\* o1 7 (r*)\* 1 p
< * » * N7 _ . \¥ _ o~
< o) (F0) s ) (T2 ) - st -
* ¥
< 20z (r") (7;0)) —4u
max
< 0,

where the first inequality is due to the definitions of z(r;) and 7*; the second inequality is due to s*~" < 1,
(1 —s)?7! < 1, and maxg,ep1](1 — si)s; = 1/4; and the last inequality is due to the stated sufficient
condition and ¢ > 1.

O Buyer surplus. Buyer surplus is given by BS(r) = U(r; =) — PZ(r). Continuing from Proposition

P01~ iy - (572 + o) ()

1, we have

so that

BS(r) = (v(r) + ”;Li(:) +(L+¢)rp(r) q(r)) (njk(r:zx)w - mq>1/(0)'

Hence, the maximizer can be simplified as

BS _ m—1+myp o
rP° = argrrél[%))% (m  pr—— gov(r) + rp(r)q(ﬂ) m(r)?,

SE

which we now compare with 7* = 7°% = arg max, o7 (v(r) + 7p(r)q(r))m(r;)?. Using the observations that

7m”_1;1_;7$f¢ > 1 and that v(r) > 0 is decreasing, it follows that r%% < r9F = p* with strictly inequality for
interior solutions.

To see the more general pass-through logic discussed in the text, in what follows we assume that BS(r)
o)

is strictly quasiconcave in r and that 7* is an interior solution. We note &L BS(r) = ZU(r; L) — L PB(r).

Using the equilibrium condition for 7*, this becomes

d o ORi(r*; ) dPB(r¥)
%BS(T J=-m or - dr

and so £ BS(r*)(<) < 0 if and only if

dr (2) or (25)

That is, starting from the equilibrium value 7*, for any increase in r that raises the per-buyer revenue ﬁRi
by one unit, the per-buyer price PZ does not decrease by more than one unit. We now prove that inequality

(25) always hold in strict inequality in our leading example. Continuing from Proposition 1,

dPB(r) o 1 oU; (r; %) B OR;(r; %)
dr m—1 Oros; Ords; '

11



where the constant-elasticity G(-) in the leading example means

8RZ(’I",%) _ (1+ ) 8R1(7‘,%) d 8UZ(7’,%) _ 8Ul(r,%)
ds;0r m ¢ or an ds;0r e 5y
and so 5 o, . ) OR,( L )
dpP®(r) mey Ui(r; - Ri(r; -
dr (m—l) or m(1+¢) '

Recall the first order condition of r* implies

ORi(r*; ) _ OU(r*s o)
m 8’/"1‘ B 67“1'

>0,

3\ @
where the inequality is due to U; = v (1) (m) (1 — ;)% decreasing in r;. So,

kmax

dPB(r*) < © 1> m@Ri(r*;%) - maRi(r*;%).

dr m—1 or B or

For a general platform instrument a; beyond the leading example, the same pass-through logic of in-
equality (25) works. Specifically, suppose the equilibrium outcome a* is an interior solution. Then, we get
4 BS(a*) < 0 if and only if

dPB(a*) OR;(a*; L)

> —-m m
da - da

That is, the pass-through rate of extra per-buyer revenue from a higher level of a; onto a lower buyer-side

price is no more than one. When this is true, we can conclude a® < a* if BS(a) is quasiconcave (strictly so,
if the inequality above is strict), and a”V% = arg maxaeq BS(a) + mSS;(a; =) < a* if BS(a) +mSS;(a; L)

is quasiconcave.

D.2 The leading example with myopic buyers

Suppose buyers’ perceived U; when making their platform choice is discounted by &, where 0 < § < 1.
We first characterize the equilibrium before specializing to the leading ezample. By the same steps that

establish Proposition 1, we get

a* = arg max {5Ui <ai; 1) + R; (ai; 1>}
aeA | m m m

1 § \ OUia: 3;)  ORi(a; 5;)
m®’(0) m—1 0s; ds;

and PB* = PB(a), where

PB(a) =

Meanwhile, the seller-excluded benchmark remains the same as in the baseline model because the planner

takes into account the actual utility of buyers, so

1 1 1
aSE = arg max {Ui <ai; ) + R; (%‘? ) } .
a,EA | M m m

Finally, a?® = argmax,,ca {U(a;; =) — PP(a;)}.

m

We now specialize to the leading example, where a; = r;. We claim that 7* > r5F and 7* > rB9. In the

12



leading example U;(r;) = v(r)) (7:;(#'))%, S0

g Emax

r* = arg Tren[%)i] (51)(7‘) + TP(T)Q(T)) W(T)w
- argrrél[gi]( o(r) +rp(r)q(r)) =(r)?

BS _  are max ww rp(r)q (r) ) =(r
25 = g (20 4yl () ) 7).

where we used

550) = (o) + 224 4 (14 i ()0

i)

SE

Given v(r) > 0 is decreasing, it follows that § < 1 implies 7* > 5. If r* or v is pinned down as an

interior solution, the associated FOC then implies r* > rSF. Likewise,

m—1-+mdyp
(m—=1)(1+¢)

>0 = B9 <,

with strictly inequality holds for interior solutions. Moreover, (m+m59@_1 > 1 is equivalent to (m — 1)(1 —

(m=1)(1+¢)
8) + 8¢ > 0, which always holds by assumption.
D.3 Seller-side lump-sum fees

Suppose we interpret instrument a; as a seller-side lump-sum fee (a; = P{°). Then, U; = vG(7s; — a;)
and R; = a;G(vs; — a;), where the interaction benefits of buyers and sellers, v and =, are independent of

the level a; on sellers. Applying Proposition 1, in the equilibrium

v i
@ = argmax { (= +a)G(Z —a)}.

Given G is log-concave, the objective function is quasiconcave and so the FOC gives

v G(l a*)
* = m 2
“ m g(x —a*) (26)
v, i
m (g —a*)

Log-concavity implies — is an increasing function in z > 0, i.c. , o(x) —x¢'(x) > 0. Totally differentiating

2?7; - % (U - sozrx) - @?zj)zd(x))

=L _g*
™

Therefore,

da* v 1 xap’(ac))
<0 e —-—<|—+ .
m m (w(x) P(2)? ) 4oz o

In the special case of constant-elasticity G, ¢'(-) = 0, and so

da* v 1
<0 & —<—.
dm T P

Intuitively, a higher m means sellers get a lower surplus from joining each individual platform, which induces
platforms to set a lower seller-side fee a*; at the same time, a higher m also means that each platform extracts

less buyer utility, and so platforms are less incentivized to attract sellers and raise buyer utility. The fee-

13



decreasing (fee-increasing) effect dominates when the elasticity of seller participation ¢ is relatively large
(small).

Nonetheless, if we denote k* = -~ —a* as the marginal participating seller in the equilibrium, then (26)
becomes _
E* + G(Zﬂ*) — 7T+U
g(k*) m

So, k* is always decreasing in m. That is, an increase in the number of platforms results in less sellers
participating on platforms in equilibrium, although each seller that does participate, participates on a

greater number of platforms.

E Without symmetry and full coverage

In this Online Appendix, we extend our baseline model to an environment with possibly asymmetric
platforms and a partially covered buyer-side market. Let Uy = 0 be the exogenous net utility of the buyers’
outside option (of not joining any platform). We first establish the equilibrium in this environment, and

then revisit the comparative statics with respect to the number of platforms.

E.1 Equilibrium characterization

For any given instrument profile (a1, ..., a,,) and buyer price profile (P{, ..., PZ), the buyer-side market

share profile s = (s, s2, ..., S, ) is pinned down by the simultaneous fixed-point equation system:
s; = Pr <Ui(ai,si) —PP 1> mgx{Uj(aj,sj) - P]B + ej,0}> fori=1,...,m, (27)
VES)

where the probability is taken with respect to (€1, ..., €, ) that follows some underlying distribution F(-). As
in the baseline model, we assume a unique fixed point s = (s1, S2, ..., $;m) to (27) always exists.

To derive the equilibrium outcome, denote the equilibrium buyer price profile as (P£*, ..., P2*), the

*

*.) € A™ and the equilibrium buyer-side market share profile as

equilibrium instrument profile as (af, ..., a
(51, 87) €0,1]™.

O Reframing the maximization problem. Consider the maximization problem of platform . It
chooses (a;, PP) to maximize profit
Hi = PiBSi + Rl (0,1'; 51) 5

taking as given the choices of other platforms {(a}PJB*)}j#. We can frame the problem as platform
i directly choosing (a;,s;), where PP is then set to implement the target market share s;. Specifically,
continuing from (27), for given instrument choice a;, the target market share s; can be implemented by
setting

PP =Ui(as; si) — &(sis{(af, PP*) i)

where the function &;(+;-) is the scalar solution ¢ to the following system of equations:

Si

Pr (“ e 2 max {U(ay,8;) = P" + ej,o})
JF1

Sj

Pr (Uj(ajasj) — PPt > max {¢+ €, Unlak, sp) — PP + 5k70}> for j # i,
¥)

where the existence of the solution is guaranteed given the existence of a unique fixed point to (27). Impor-
tantly, observe the system of equations that defines &(-;-) is independent of a;, reflecting that the market

share of s; depends on a; only indirectly via U;(a;; s;).

14



OO0 Optimal instrument choices and equilibrium. Therefore, platform 4’s problem now becomes

choosing (a;, ;) to maximize
Ui (ai; 8:) si + & (s {(a5, PP*)}j20) 81 + Ri (ai; 83)

which we assume to be globally strictly quasiconcave in (a;;s;). By the principle of optimality, in any

equilibrium, platform ¢’s optimal choices necessarily satisfy
al = arg max {U; (as;87) sf + Ri(ai; s7)} (28)

and
5; = arg %%Xu{Ui (a758i) si + &(sis {(af, PP*)}Yji)si + Ri (a];50))}- (29)

Summarizing, the equilibrium is pinned down by a system of 3m-equations-and-3m-variables:

Proposition OA.3 In any equilibrium with all m platforms active in the market, the equilibrium outcome
is described by (a3, ...,a%,), (PP*, ..., PB*) and (s%,...,s%,) that solve the (i) optimality conditions in (28)

I Em

and (29) fori=1,...,m, and (i) the consistency requirement:
PP* = Ui (a};s}) — &(s;3{(al, PP*)}ji)  fori=1,..m.
Proposition OA.3 generalizes the baseline equilibrium characterization in Proposition 1. In this envi-

ronment, the equilibrium instrument and buyer-side prices do not generally have closed-form expressions

given s} # 1/n in general.
E.2 An increase in the number of platforms

We now specialize the functional forms of U; and R; as in Section 3.2 of the main text:

Uilas; si) = via)G(mi(as)si)
Ri(a;;si) = wi(a;)siG(mi(ai)si)

Note we allow functions v;, w;, and 7; and distribution G; to be different across platforms. Then, the

equilibrium instrument in (28) becomes
a; = arg max {(vi(a;) + wi(a:))Gi(mi(ai)s;)}
a;€

where the equilibrium market share s is held fixed in the optimization problem. Assuming differentiability,

the associated first-order condition (the functional arguments are omitted for notational simplicity) is:

dv;  Ow; om; /day;
[8 Lt 0 : + [ (vs +wi)%(77i3f)¢ =0,
a; @; a;j=aj % a;=a}
additional revenue per inframarginal seller loss in seller participation
where recall 97/da; < 0, whereas ¢(k) = kg((:)) > 0 is seller participation elasticity. Utilizing the same proof

that establishes Proposition 3, we conclude:

Proposition OA.4 Suppose the equilibrium described in Proposition OA.3 exists. In this equilibrium,

da} _ ds}
L has the same sign as — @} X —

dm’
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In the case of constant elasticity ¢}, = 0, then al is always independent of m.

Proposition OA.4 generalizes Proposition 3 to environments with possibly asymmetric platforms and
partially covered buyer-side market, assuming that the equilibrium described in Proposition OA.3 exists
(which requires quasiconcavity of platform profit functions). We make three important observations here.

First, we see that seller participation elasticity remains a key factor (as captured by the term —¢/ in
the proposition statement). Buyer participation elasticity matters only to the extent that it influences the
sign of ds}/dm.

Second, suppose that dsf/dm < 0 holds (i.e., the equilibrium buyer-side market share of platform ¢

shrinks with the number of platforms m). Then, Proposition OA.4 immediately implies

*
?

has the same sign as ¢/,

which is exactly the same condition as Proposition 3. This result is a consequence of the competitive
bottlenecks logic: platforms face no real competition with respect to the seller side, and so a higher m
affects a only indirectly through changes in the buyer-side market share s;.
Third, by standard logic of increased competitiveness, ds}/dm < 0 is a reasonable property, but it may
not always hold in environments with asymmetric platforms and strong enough network effects. Verifying
*

ds}/dm < 0 requires total differentiation of the system of equations that pins down (s7, ..., s,) in Proposition

OA.3, which is analytically challenging. Nonetheless, in the special case of constant elasticity ¢ = 0, then

a*

¥ is always independent of m, regardless of the sign of ds}/dm.

F Details for Section 4

F.1 Heterogeneous interaction benefits

O Preliminaries. We first state the equilibrium pricing by the sellers. Facing the commission rate r;,

a seller’s optimal price on platform i is then

A
p(rl) = arg n;ax {((1 - Ti)pi - C)(V - pz) (Siereg + meloyal> } s
where 5;0,.¢ + %Gloyal is the sum of buyers on platform i (weighted according to their interaction value).
Then, define q(r;) = V — p(r;). The linear demand form implies g(r;) > 0 for all ;, < 7 = 1~ §
and ¢(r;) = 0 otherwise. Seller total profit from platform i is (siHTeg + %Gloyal) 7(r;), where 7(r;) =

(L =ry)p(ri;) — c)(V —p(r:)), and the per-seller surplus of the buyer is

vr(ri) = Vorq(r;) — %Q(H)Q — p(r:)0-q(rs)
= T i)

We have

7 kmax

m(ri)(si0r A ks
SOy )

i) (8:0reg+ 25 010ya v
R = rip(ri)q(ri) ($i0reg + 2-Bioyal) (W(T (e — - l)> .

Platform profit is (% + si) Pl-B + R;.

0 Equilibrium existence. We now use the leading example with Hotelling competition to demonstrate

the conditions for equilibrium existence. Recall that loyal buyers have no transportation costs for their
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preferred platform and infinite transportation costs for the other platform, and their outside option is
valued at zero.

Clearly, if A = 0, the model reduces to the leading example with Hotelling competition, in which case
the existence condition (16) immediately applies. Hence, our strategy here is to show equilibrium existence
for sufficiently small A — 0. We focus on 0,..4 = 0.

Each platform i chooses r; and s; to maximize

I, = (PP*+U"(ri;s) — U (r*;1—s;) — (28, — 1)t) (;\ + si) + Ri(ai; si)
A ; (VSN 1+
= (PP*—(2s; — 1)) (2 + Si) +rip(ri)q(rs) (Z(T )) (2910yal> ,

where we used 0., = 0. Observe that 7* is determined by a single-variable maximization, regardless of the
value of s;:

r* = arg m%X]Tz'P(?”i)Q(Ti))W(W)w-
r;€(0,7

Meanwhile, maximization with respect to s; is a standard Hotelling problem and so local concavity holds
and the FOC gives P2* = (1 + \)t. The equilibrium profit is

(402 +rp () g () (” (T*))w (;elow) o

kmax

3

which also ensures full coverage of the loyal type.

IIea™ —

N | =+

Full coverage of the regular type requires

It remains to rule out a global deviation where each platform just fully exploits its loyal buyers by setting

kmax

dev ®
Pde’u =b+ Vioyal (Tdev) (ﬂ'(’l")) (geloyal> > (1 + /\)t = PB*

together with the optimal deviation commission 7%V that is the maximizer of

A 4 @ I+
dev __ . 7T(Ti)fel"yal é dev . . . ,/T(Ti) é
II — TLnel[%},(F] { (b + Vloyal (Tz) < kmax 9 + S; + TzP(T’z)lI(Tz) kmax 9 eloyal )

where )
1 1 W(Ti)éalo al
dev _ = 1 [ b [ T\Ti) 5 %0yal .
s 5+ 5 (( + At — b — vioyar(73) < -

Using an envelope theorem argument, it is easy to verify that limy_qII% < I1°9™ by definition. Hence,

the equilibrium exists for A sufficiently small.

0 Proof of Proposition 4. Notice that only regular buyers are marginal because loyal buyers al-
ways purchase from their respective preferred platform. We apply the same reframing technique used in

Proposition 1: each platform’s optimal r; (for given s;) maximizes

(2 ea)orson
m

/\ A T™\T5 Siare + A90 a ’
— (vreg(ri) (m + sz) + rip(ri)q(ri) (siereg + melOyal>) ( (r:) ( g T oy l))

kmax
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After imposing symmetry and removing the multiplicative coefficients that are irrelevant for the maximiza-

tion problem, we conclude that in the equilibrium r* is

7”'* = arg max] {(UTEQ(T) (1 + >‘) + Tp(?”‘)q(?”’) (97“89 + Aeloyal)) ™ (7,)89} )

TiG[O,F
whereas
1 m W(T*) (ere + AHlo al) v
PB* — _ * 1 * * * g Y .
m<I>/(O) (m — 1<Pvreg(7“ ) + ( + 80)7" p(r )Q(T ) (ereg + Aeloyal)) ( ke
Now consider W9E:
WSE(r) = U7+ mRi+ A (b+ U + / edF (&)

? 3

= Mo+ (L+NU +mR; + A (Ul"y“l - U?“eg) + / e (é),

where (1+ \) U] + mR; is proportional to the objective of 7* and so it is maximized at r*. Meanwhile,

©
Uiloyal - UiTeg = (Uloyal (’I“) — Ureg (T)) <7r (T) (e’lzjz - Aeloyal))
eloyal - 0reg o [ T (T) (areg + )\eloyal) ?
= el 200 (v p(r)) o ,

which is monotonically decreasing (increasing) in r if 6oyq1 > (<)8reg- A simple proof by contradiction then
shows 75F < (>)r* if Oj0ya1 > (<)0req, thus completing the proof.

[0 General demand specification. We now consider a more general demand specification rather than

the linear-quadratic specification in the main text. We denote seller total profit on ¢ as

T (ri; 52) = max {((1 - Tz)pz - C)[%Dloyal (pz) + siDreg(pi)]} )

Di

where p(r;) is its maximizer. The corresponding total transaction quantity is

_ A
q(ri; 52) = E-Dloyal(p('ri; Sz)) + siDreg(p(ri; sz))v

while the per-seller surplus of the buyer is v, (r;;8;) = ur (Dr (p(ri;8:))) — p(ri;8:) Dr (p (rs; 8;)) for each
type 7 € {reg,loyal}. We have

max

N
U = vy (ri;8:) (7“”’81))
(T84 @
R; = rip(ri)q(ri; si) ( EC ))

max

Platform profit is (2 + s;) P?+R;. By the same reframing technique used in Proposition 1, each platform’s

optimal r; (for given s; = 1/m) maximizes

1+ A
r* = arg max {—FUZEQ—FRZ}

r;€[0,7] m

r;€[0,T

ong e { (v0agr5 ) 22 s Dyt 1)) 7t 1 |

while 5
WSE(r) = b+ (1+ M) U/ + mR; + A (Uf"-”‘“ - Ufeg) + / edF (),

€
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where (1+ \) U] + mR; is proportional to the objective of 7* and so it is maximized at r*. Meanwhile,

loyal e 1 ! ﬁ.(r;%) Lp

and so r°F < (>)r* holds if %(U;Oyal - U/ < (>)0.
Suppose the utility function satisfies the standard Spence-Mirrlees single-crossing condition diquloyal >

d%ureg (for all ¢ > 0) and boundary condition ujoya(0) = Ureg(0). It implies vioyar(7; %) > Upeg (73 %) and
d% [vloyal(r; %n) — Upeg (T3 %)] < 0, so that r*F < r*. In the opposite case of d%uloyal < d%umg, the same
reasoning implies 75 > r*.

F.2 Partial market coverage

0 Preliminaries. In this setting, the interaction benefit U; of all buyers on platform ¢ is the same, and
it just depends on the total measure s; of (regular and loyal) buyers on platform i. Hence, we can employ
our standard technique for solving for the equilibrium. Recall, in our leading example, the solution for the
equilibrium commission r* is determined by a single-variable maximization, regardless of the value of s;, as
shown in (14). Thus, the determination of r* remains unchanged even when the market is only partially
covered.

Denote the total mass of buyers (both regulars and loyals) on platform i as s; = s; Y —&—sioyal. Continuing
from the leading example with Hotelling competition, we know the market shares of regular buyers (i.e., those

between the Hotelling line)
reg_1+U1*U2+P2B*P13

1T 2t ’
with s5%9 =1 — s]°%; whereas the market shares of loyal buyers (i.e., those in the hinterlands) is
gloval _ b+U; — PP
Lty
Combining,
1 U -U+PP-PE b+U —PP
s = 14U 2+ By - 1 1
2 2t L-tg
. Up—Uy+ PP - PP +b+U2—PQB
T2 2 L-tp,

Without loss of generality, we normalize L = 1 (by rescaling ¢;, accordingly).

It is useful to define

(v (r) +rp(r)g(r)) = (r),

kmax

where we note z(r) > y(r) for all r € [0,7]. Throughout, we assume

min{t, ¢} > ma?%]{Zz(r)} = 2z(r"). (30)

rel0

As will be shown below, condition (30) ensures that the market share expressions below are well-behaved,

and that the second-order conditions for the platform’s profit-maximizing pricing choices hold.
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To express s1 and s2 explicitly in terms of prices, we substitute U; = y(r;)s; (given ¢ = 1) to get

1 y(r)si—y(re)se+ PP —PP  b+y(r)si— PP
s = =+ +
2 2t tr,
1 y(r)si—y(ra)sa+ PP — PP b+y(ry) sy — PP
SS9 = — — + ,
2 ot tr

which upon solving implies

o= Ly (2P — 2P +y (r1) —y (ra))t3 + 2 (ttr —ty (r2) — try (r2)) (26 — 2PF +y (1))
172 442 +4(t+tn)y(r)y (re) — (263 +4ttr)(y (1) +y (r2))

The denominator of s; is positive because

At2 + 4 (4 tn) yiye — (262 +4tt) (y1 + o)
> At +4(t+t)t2 — 2262 + Attp )ty =0,

where the inequality uses that the denominator is decreasing in y; and yo and that y(r) < ¢tz by (30).
Note that s; is decreasing in Pf , and so the reframing technique used to establish Proposition 1 continues

to apply. Then following the derivation associated with (14), we know that each platform’s optimal r; is

independent of its market share s;, and the equilibrium r* maximizes z(r). Hence, in what follows, we focus

on the symmetric commission 71 = ro = r. In this case, the market share expressions simplify to

1 t2 (PP — PP) 2(b—PP)+y(r)
S N G ) =G em) | 20— ) (31
o - L. t2 (PP — PP) +2(b—P2B)+y(r)
? 2" 2(ty —y(r) (ttr — (t+tr) y(r)) 2(tr, —y(r))

where the denominators are positive due to (30) as noted above.

O Proof of Proposition 5. Platform profit functions are PPs; + Ry and PPs, + Ry respectively,

where recall )

R, = rp(r)q(r)m (r) s3.

kmax

For any given r, solving the symmetric FOCs with respect to PP gives

_ (tt2 + (t+tr)y(r) (22(r) —y(r)) —tr (2t + t1) 2(7‘)) (tr +2b)
3+ 4tt2 +4(t+tn)y(r)z(r) —tn (46 +3tr) y(r) — 2t (2t +t1) z(r)’

PB*

Condition (30) implies denominator of PP* expression is positive given z(r*) > y(r) for all r. Substituting
PB* back into the expressions for s; given by 31, the symmetric equilibrium measure of buyers on each

platform will be

s*—(bHL) 2t +12 —2(t+tL)y(r)
B 2 )3 4t +4(t+tr)y(r)z(r) —tp (4t +3tr)y(r) — 2t 2t +tr)z (r)

Note s* is increasing in y(r); and it is also increasing in z(r) if ¢z (2t +¢1) > 2 (¢t + ¢1) y(r), which holds due
to (30).

Now consider W2 which is equal to

2
WSE(r) = 2bs* + 22(r) (s*) — L tr (s* - ) .
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Given z(r) is maximized at 7*, at r* a small change in r only changes W*F via s*. Then

dWsE| _ (i)WsE E|
dr 77T 9st dr 7T
where
oWSE . L, 1
e 2b+ 4z(r)s* — 2ty <s — 2>
= 2b+tr —2(tr —22(r)) s*
. (b+ tL) 2t (tr —y(r) —try(r)
2 )63+ 42 +4(t+tr)y(r)z(r) —trp (4t +3tr)y(r) — 2t (2t +tr) z (r)

2t (tr —y(r)) —toy(r)
2ty +12 —2(t+tr)y(r)

= 258" >0,

where the last inequality holds given (30) as it implies tty, > (¢t + t) y(r); whereas %h:r* has the same
9

sign as 5-y(r) < 0. We conclude dVZ:E [p=pr < 0.

O Equilibrium existence. Computing the second derivative of platform profit with respect to PP,
concavity holds if

— (6 +2tt =2t +t)y(r) (2ttF +2(tr + ) y(r)z(r) — tp (2t +t1) (y(r) + 2(r))) <O0.
Condition (30) implies tt;, > (t 4+ t1,) y(r), and so the first bracketed term is positive. Thus, we require
2tt7 +2(t+tr)y(r)z(r) > tr (2t +t1) (y(r) + 2(r)). (32)

Note since the expression is linear in y(r), for it to be true for all 0 < y(r) < z(r), it just needs to be true
when y(r) = 0 and when y(r) = z (). When y(r) = 0 it requires 2tt;, > (2t + t1) z(r), which is true given
ttr, > (t+tr)z(r). When y(r) = z(r), it requires 2tt3 > 2t (2t +t1)z — 2 (t +t1,) 22, which follows from
(30).

F.3 Asymmetric platforms

O Preliminaries. Continuing from the leading example with Hotelling competition, when platform 1
offers an additional standalone benefit 5 > 0, we have

1+U1—U2+PQB_P1B+/3

51 = =

2 2t ’
with s = 1 — s71. It is useful to define
m(r
W) = v
1
2r) = (v (r) +rp(r)g(r))  (r)
max
Throughout, we assume
t > max {z(r)} = 2(r"). (33)
re(0,7]

As will be shown below, condition (33) ensures that the market share expression below is well-behaved, and
that the second-order conditions for the platform’s profit-maximizing pricing choices hold.

To express s and sy explicitly in terms of prices, we substitute U; = y(r;)s; (given ¢ = 1) to get
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1 y(r)sy —ylr)so + PP — PP+
s1=5 % 2t ’

which implies
1 PP — PP+

R RN CT Ry oy gy ey

and sy = 1 — s;. Notice the denominator is positive due to (33). Note that s; is decreasing in P, and so

the reframing technique used to establish Proposition 1 continues to apply. Then following the derivation
associated with (14), we know that each platform’s optimal r; is independent of its market share s;, and the

equilibrium r* maximizes z(r).

O Proof of Proposition 6. Platform profit functions are Pfs; + Ry and Pfsy + Ry respectively,

where recall )
R;, = rp(r)q(r)m (r) sf.

kmax

For any given r, solving the FOCs gives

t—z(r)

PB* o PB* —_92
e O PR

so that
L s
T T e 2y(r) — 4z (r)’

. . . . . L ds}
Since r* is the maximizer of z(r) and given y(r) is decreasing in 7, we have |- < 0.

Now consider W5F | which is equal to
SE « * b2 b .
w = b+U151+U232+R1+R2_5(31) _5(52) + Bsi

= b+ <z(r) — ;) (832 + s3%) + Bst.

Given z(r) is maximized at 7*, at r* a small change in r only changes W*F via s*. Then

dWSE OWSE dsi
7|T:T* = 7‘7":7’* <0
dr Ost dr
because
oW SE t

S = 201 (z(r) - 2) +5
5(&—?5%2am>>a

where the last inequality holds given (33) as it implies ¢ > y(r).

O Acquisitions that add to buyers’ per-seller value. Continuing from the leading example,
suppose platform i’s acquisition adds to its buyers’ per-seller value by ¢Z. This benefit is independent of
the quantity of purchase. Recall that given a seller’s price p; on platform ¢, each buyer chooses the number
of units to purchase ¢; to maximize their net utility with respect to this seller: arg maxg, {u(q;) —piq; +2}.
Clearly, the component ¢” does not change the resulting demand function. Therefore, sellers continue
to solve p(r;) = argmax,, {((1 —r;)p; —c)D(p;)}. Let ¢(r;) = D(p(r;)). We continue to denote v(r;) =
u(q(r;)) — p(r;)q(r;) as the transaction value that buyers get per-seller, and 7(r;) = ((1 — r;)p(r;) — ¢)q(r;)
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as each seller’s per-buyer transaction profit. Then

U = (u(r;) + o) (”(’“)S)w

kIl’l ax

NG
whereas R; = r;p(r;)q(ri)s; ( ) remains the same. The equilibrium commission by the acquiring

platform i is

r; = arg max {(U(rz) +of + Tz‘p(ri)Q(Ti))W(Ti)(p} .
r; €[0,7]

Denote the objective function as F(r;, o), the cross partial-derivative is

62 B ga—ldﬂ-(ri)
WF(%% ) = @m(rs) Tm

<0
Therefore, by the standard monotone comparative statics argument, 7} is decreasing in 0. That is, platform

1 decreases its equilibrium commission after the buyer-side acquisition.

[0 Acquisitions that add to sellers’ per-buyer value. Continuing from the leading example, suppose
s

platform i’s acquisition adds to its sellers’ per-buyer value by o;. There are no changes from the buyer
perspective. So, we continue to denote v(r;) = u(q(r;)) — p(r;)q(r;) as the transaction value that buyers get
per-seller, and 7(r;) = ((1 — r;)p(r;) — ¢)q(r;) as each seller’s per-buyer transaction profit. Then, a seller

joins the platform if and only if (7 (r;) + o7)s; > k;. Therefore,

(m(rs) +Uf)8i>@

kmax

Ui = v(r;) (

(m(ri)+o?)s;

kmax

©
whereas R; = r;p(r;)q(r;)s; ( ) . The equilibrium commission by the acquiring platform 7 is

i =arg e {(0(re) + rip(r)a(ri)) (n(r) + )7}

Denote the objective function as F(r;,of), then

1 OF (r;,07)
(n(r) +of)et o

dﬂ'(’l’i)

= (8(r) + )2 (0l0) + riprar) + o

d’l“i

which is single-crossing in o: Suppose %(Z) >0, at 07 = o’ then

dm(r;)

> 0
d?"i (_)> ’

() + ')

(v(ri) +rip(ri)q(ri)) + ¢

which means the first term is positive (because dm(r;)/dr; < 0). Therefore, for o” > o/, we have

(m(rs) + "%%

(v(ri) +rip(ri)q(ri)) + ¢

Consequently, by the monotone comparative statics argument, 7} is increasing in af . That is, platform 4

increases its equilibrium commission after the buyer-side acquisition.

G Details for Section 5

We first verify the equilibrium construction stated in the proof of Proposition 7, and then provide the

omitted details corresponding to Sections 5.2 and 5.3.
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G.1 Equilibrium with spillovers

To characterize any symmetric equilibrium (a*, P2*), we consider an off-path “semi-symmetric” partic-
ipation equilibrium when one of the platforms (say platform ¢ = 1) deviates and sets (ai, PP ) # (a*, PB¥),

resulting in an off-equilibrium path instrument vector profile
a=(a;,a"1ym_1) = (a;,a",...,a") € A™,

buyer-side price profile (P2, PB*,.... PB*) and buyer-side market share profile:

1—s; 1 s, 1 s,
(s, i 1,1) = (Si i K i >,

m—1 "m—1"""m-1

where 1,,_1 is a 1 X (m — 1) vector of ones. That is, all other m — 1 platforms j # i equally absorb the

resulting change in market share (due to symmetry and the market being covered), resulting in s; = %

Then, the fixed-point definition of market share s; in (2) becomes
1— S;

1,-1) — Uj(a; s, ]

1—s;
si=® (Ul-(a; siy — 1
m

. 1,,_1)— PP +PB*>.

Notice we are expressing U; and U; as functions of (a1, aq, ..., am; S1, $2, ..., Sm) in the exact stated order.
Therefore, we let U;/0s; and 0U,;/0s; (likewise, OU;/Js; and 0U;/9s;) denote the partial derivative of
U; and U; with respect to their m + i-th argument (likewise, m + j-th argument). Then, the slope of the
right-hand-side with respect to s; is

d x %,%, 1 (%,BUJ), 1 (8UZ’*%
0s; 0s; m—1 0s; 0s; m—1 ey 0sy sy
m m m—2
< B<I> X 7BU0U)TL + 7BUcross + 72BU{:T‘OSS 5
m—1 m—1 m—1
where
Bs = sup®'(x)
x€R
0
BUown = sup sup ‘7Ul (a7 S)|
acA™ scfo,1]m US;
0
BUcross = sup sup ‘ Ui(a'7 S)‘

acA™ sclo1]m 08;

Therefore, to ensure the existence of a fixed point, a formal sufficient condition is 2B¢ X (Byown + 2BUcross) <
1. Under this condition, the resulting demand system is analogous to standard discrete choice models.

Platform 7 chooses (ai, P ) to maximize profit II;, taking as given (a*, PB*) set by each other platform.
Following the approach of Armstrong (2006) and Tan and Zhou (2021), to solve this maximization problem,
we reframe the problem as platform i directly choosing the target market share s; implementable by its
buyer-side price PP, i.e., maximization with respect to (a;,s;). Formally, this is done by inverting (8), so
that PP becomes a function of (a;, s;) satisfying:

1—s; 1—s;

PZ-B = PB* + Ul(d, Si, mlmfl) - Uj(d, Si, mlmfl) - ¢_1(Si).
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Then, platform 4’s problem is to choose (a;, s;) to maximize

IT; (ay; Sz) = PiBSi + Ri(ai; Si)
1-— S;

lmfl) — é_l(sl')> S; —+ Rl(d, Siy mi—

1-— Si
]-mf .
1 1)

1—s;
_ Bx (A . _I7 (A < ?
= (P +Uz(a,s“m_ 1lm,l) Uj(a; S“m

-1

To ensure the existence of a symmetric equilibrium, we assume that II; is globally strictly quasiconcave
in (a4, ;), as in the baseline model. In any symmetric equilibrium, each platform’s optimal choice of a; = a*
is a maximizer of II; (a;; ;) while holding s; = 1/m and the instrument choices of other platforms constant
at a*. That is,

1 1 1 1 1
*e —U;(a; —1) — =Uj;(a; —1) + R;(a; —1) ¢,
“ argff?ﬁ{m (@ m ) m i@ m )+ Ri(@ m )}

which is exactly (18). Meanwhile, the derivative of II; with respect to s; (using s; = 1=5 as noted above)
is
dil; ou; ou; 1 (%_8%)_ 1 (an_an 1 . 4 OR; 1 ZaRi
ds; 0s; O0s; m—1"0s; 0s; m—1 ey 0sy 0sy o | Os; m—1 oy 0sy
2% #i
+PP* + U —U; — 27 (sy),
where we have omitted function arguments. Imposing symmetry, that is, ggj = ggj, g[s]; = ‘gg] for i # j
C aU, v v .
and ??[s]; = Bl and %1:”; = ‘31:”; for I #i,7, we get

)+ PB* — <1>—1(i).

m (8si B 0s; m

dHi ( m aUl GUJ 1 ) 1 8RZ 8Rl
= —(=-F) -5 )=+
ds; m

So the FOC gives

1 1 0Ui(a;s) 9Ui(a;s)

B ( ORi(a;s) ORi(a;s)
m®’(0) m-—1 0s; 0Os;

PB* _
aSi 8Sj

) —( ), (35)

where the derivatives are evaluated at the symmetric outcome (a;s) = (a*1; L1).

Meanwhile, the welfare objectives are given by
W3 (a) = / é+U;(al; i1) dF (&) + mR;(al; ll),
. m m
1
W(a) = W9(a)+mSS;(al; El)
Given S; is decreasing in a, it is immediately clear that a°” > a" (as claimed in Lemma 1).

G.2 Spillovers from seller singlehoming

We continue from the leading ezample and assume that sellers’ outside option is zero, and each seller is
indexed by (ki, ..., km) € [Fmin, kmax] - We add a standalone benefit bg to seller’s participation utility from
joining platform ¢, which is now

bs + m(ri)si — ki.

We assume bg is sufficiently high to ensure full coverage of the seller-side market. Denote ¥(-) as the CDF of
k; — max;;{k;} and the corresponding derivative is denoted as ¥’(-). To ensure that seller participation is
well behaved, as we did on the buyer side, we assume that the extent of heterogeneity in sellers’ idiosyncratic

draws of participation costs (ki, ..., k), as measured by 1/¥’ > 0, is large enough.
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We know from (18) that
1 1
r* = arg max {Ui -—U; + Ri} .
m

i€ [0,?] m

Due to the semi-symmetry structure in the off-equilibrium path when one platform i deviates, we have

— 1=ny ; ; .
nj = —4 for j # i, and so

. {1 (v(n)m o) 1— m) N mp(n)Q(n-)m} 7

ri€fo,7] | m m—1 m

where n; = (LT

m

It is useful to define
2(ri) = v(rs) +rip(ri)q(rs).

Then, ignoring boundary conditions, the corresponding FOCs for r* is

mo (r*) . o) Y0)dr(re) dz(r*) 1
(B0 s epreygrey ) P D L, (36)
Meanwhile, the welfare benchmarks have
rSF = arg max {v(ri) +rip(ri)q(ri)} = arg max z(r;)
i€ [0,7] i€ [0,7]
™ = arg max} {v(r;) + (p(r;) — c)q(r;)} = 0.

7’7‘,6[0,?

SE

Next, given dr/dr; < 0, it is clear that rF > r* with strict inequality if 7* or °F is an interior solution,

orif r* =0 and r5F = 7.

O A closed-form solution. To proceed further, suppose seller marginal cost is ¢ = 0, so that v(r;) = v,
and p(r;)q(r;) = pq are now constants that are independent of the commission rate ;. Then, dz/dr; =
—dm/dr; = pq > 0, and so (36) simplifies to

= (vm + r*pq> V(0)+1=0

m—1

:>r*—i L um
Cpg \W'(0) m—1)"

whereas r°F = 7 (where ¥ = 1 due to ¢ = 0). Therefore, we have
r*<r9F =5 if _um > LI
- m—1"~ v M
and )
* w . vm
> =0 if —— < ——.
nor Y1 T v (0)

In particular, in the equilibrium the baseline distortion is completely mitigated (i.e., 7* = W < r9F)
if o > \11%@' This holds when the extent of heterogeneity in sellers’ idiosyncratic draws of participation
costs (k1, ..., km) is low (provided the symmetric equilibrium still exists — see, e.g., the two-sided Hotelling

specification below). If we allow platforms to choose negative commissions r; < 0, then it is straightforward

to show that V' = 0 continues to hold, so that > qz%(o) implies a reversion of the sign of distortion in
equilibrium (i.e., 7* < 7). Intuitively, the reversion reflects that platforms are overly focused on attracting
sellers and thus subsidize sellers by too much relative to the socially optimal level.

As an illustration, we consider the following two-sided Hotelling specification with m = 2 platforms. That
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is, the buyer-side participation demand is ®(x) = % + ﬁ whereas the seller-side participation demand is

U (z) = % + 3¢5+ Where tp and ts are the respective mismatch cost parameters. Then,

r*=—(ts —v).
bg

Meanwhile, the pricing equation (35) and

Ui=v (% + (lfri)pqsgs(lfrj)msj'
3+ (I_T'i)pqsi_(1—7'j)pqu) )

2tg

R; = ripgs; (

imply

r*pg\ (1—71")pg  17pq
PB* =5 — - .
B (v + 9 ) ts 9

Suppose p=q =1, and tg = tg = 2. We can verify that the symmetric equilibrium exists for v in the range
[1.5,2] which maps out r* = 1 down to r* = 0. Note that at v = 2, we have r* = 0, illustrating that the

outcome of r* = " < r9F does not necessarily violate equilibrium existence.

O Seller-side lump-sum fees. We can apply our formula (18) to the case of seller-side lump-sum fees
P# considered by Armstrong (2006) and Tan and Zhou (2021). Given the absence of commissions, we can

drop the function arguments in v and 7. By the same analysis as above, PS* is the maximizer of

1 1
P = argmax{Ui - —U; —I-RZ}
PS5 | m m

i

1—n;
= argmax{v <nZ — n ) +Pisni},
prs |m m—1

i

where n; = ¥ (P5* — P). Note we do not need the domain of feasible P to be compact for this maxi-
mization problem to be well-defined. The corresponding FOC is

1/m v

v(0) m—1 ’
——

market power  cross-subsidization due to benefits enjoyed by buyers

PS* _

which is a special micro-founded case of the equilibrium pricing formula obtained by Tan and Zhou (2021).

G.3 Spillovers from seller-side post-participation decisions

Throughout this subsection, we assume all sellers have zero fixed costs and zero participation costs k; = 0
(i.e., the distribution G is degenerate) in order to show spillovers can arise absent any fixed participation
cost.

O Price coherence. We first prove the claim on p (r*"?) ¢(r**9) being decreasing in r*¥9. Whenever

a seller is subjected to price coherence, the seller chooses its common price p to maximize

(Zqus si(L=ri)p — C)) D(p),

which can be rewritten as

(L=r"Op =) D) D, _ 50

where r®9 = ﬁZi@ﬁ s;ri. We denote the optimal price as p(r®¥?). Given that D(p) is strictly
i€ 7t

27



log-concave, p(r®¥9) is given by the FOC:

P c D
s D(p)
= pD'(p) < -D(p).
The last inequality implies
P () = (99) D(p(r))
dr(wgp q d,,«avgp p
dp
= (D) +prD'p) -5
(R ——
<0 e

Similar to the leading example, we denote 7(r) = max, ((1 — )p — ¢) D(p). Then, the seller has joined a set
¢ of platforms (and subjected to price coherence) earns profit 3, , sim(r®"9).

Next, we verify the claims that all sellers will multihome on all platforms as long as the commission
difference max;; |r; — ;| is not too large, and that the platforms have no incentive to deviate and induce
large commission differences if g is small enough. Without loss of generality, it suffices to focus on the case
where platform 4 sets r; < r* while all other platforms j # ¢ set r; = r*. Consider an individual seller’s
decision on whether to multihome. Clearly, all sellers who are not subjected to price coherence would prefer
to multihome. For the sellers subjected to price coherence, multihoming on all platforms is always better

than joining only the higher-commission platforms (platform j # i) because

o = w(r*(1—s;) +7:8;)

*

> w(r")

> 7'('(7’*)(1 - SZ) = Tj only,

since 7(.) is a decreasing function. Meanwhile, multihoming is better than singlehoming on the lower-

commission platform (platform 4) if and only if
T = T(r* (1 — s;) + ri8;) > mw(r;) s,

which holds if and only if the commission difference r* — r; is small enough.
We now verify that platforms have no incentive to set a large difference in commission as long as w is

sufficiently small. Let us pin down the equilibrium commission level r*. Recall

Ui = wo(r®9) + (1 — w)v(r;)
R; =r; (wp (r*v9) q(r*9) + (1 — w)p(r;)q(r;)) si-

Assuming all sellers multihome on all platforms in the equilibrium, the FOC satisfies:

oU, oU_,\ 1 OR;
(8” B or; > m or; =0
e QW) PUDAED) L T2y ) (0 () alr) + () 67)) = 0.

Observe that r* is increasing in w because the derivative of the left-hand-side with respect to w is

D (D) ) ae) ) 0607 0

m m

<0
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Suppose platform i wants to deviate by choosing (r;, PP?) # (r*, PB*) to induce some sellers to single-
home. Recall this necessarily requires r; < r*. This is applicable only to the mass w of sellers that are

subjected to price coherence. A successful deviation requires

w(siri + (1 — s)r") < w(r;)s;.

dev " which we know is strictly below 7* as long as s; < 1 (i.e.,

Let us denote the maximum deviation fee as r
buyer-side heterogeneity is not too small), for any w > 0. With this undercutting strategy, buyers expect
utility difference

Ui —U_; = v(r?) — (1 —w)o(r*) + PB — PB*

and the deviation platform profit is

B L '
%Y =  max (P77 +rip(ri)q(ri)) .
P | x@(u(rer) - (1= w)o(r*) + PF — PP*)

Furthermore, observe that the equilibrium platform profit can be expressed as

T = (PP (e

e { (PE 4 wrp(r9)q(r479) + (1 — w)rip(ri)a(r) }
PBir; X‘b((l - w) (U(Ti) — U(T*)) 4 PiB _ PB*)

i

Therefore, if w — 0, then the two objective functions coincide. Therefore, the constraint of r?¥ < r* implies

Hdev < II*.

O Seller investment that applies to all platforms. Consider our leading example. Suppose in
addition to setting prices, sellers can choose how much to invest to raise their product demand in ways
that are not platform-specific (e.g., this could include investments in broad marketing efforts or quality
improvements).

Specifically, each buyer chooses the number of units to purchase ¢; to maximize their net utility; i.e.,
arg maxg, {u(g;)B (Is) — pig; }, where B(Is) > 0 indicates the utility enhancement due to seller investment
and I is a seller’s investment level. We assume B(-) is differentiable, and the derivative B’(-) > 0. We
assume sellers face the associated corresponding cost function K (1), where K is increasing and strictly
convex, with boundary conditions limy, ., K'(Is) = oo and K’(0) = 0. Sellers are assumed to set I at the
same time as their prices on the different platforms. All sellers participate given the absence of participation
fixed cost.

Suppose each platform chooses r; € [0,7]. We let ¢ = 0 to simplify seller pricing. Then we define a
seller’s quality-adjusted price p; = %, and denote the optimal quality-adjusted price as

p=argmax (1 —r;) B (Is)p:iD; (i) ,
Pi

which does not depend on either r; or I,. The per-buyer gross profit (not including investment costs) of
each seller is (1 — r;) B (1) 7™ and the per-seller surplus of the buyer is B (1) v™, where 7 = pD (p) and
o™ = u(D () — 5D (5).

Each seller’s optimal investment maximizes

Zzl (1 —7i) B(ILs) sim™ — K(I).

The above conditions ensures a seller’s optimal investment I is uniquely defined, strictly positive, and
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satisfies the FOC
Zi:l (1 —7;) B (IF) sim™ = K'(I7).

Moreover, I} is decreasing in r; on each platform ¢. As a result, both U; = B (I})v™ and R; = r; B (I}) ©™s;

are decreasing in r; for j # i. Therefore, there are negative spillovers and r* > r5F > W,

O Platform and seller investment. Continue from the setting immediately above (which we refer
to as the seller-only investment application) and suppose now that each platform chooses a; = —1I;, where
I; is platform #’s level of investment with associated convex cost C(I;). We keep the commission rate
r; =r € [0, 7] fixed and equal across all platforms ¢ = 1,...,m. Note that we define the platform instrument
in terms of the negative of I; to maintain the order of a;, which recall was defined so that a higher a;
corresponds to a lower seller surplus.

Platform ¢’s investment I; scales up the buyer’s gross utility obtained from transacting with any seller.
The gross utility of buyers is now u(q;)B(Is, I;), where I, is a seller’s investment with the corresponding
cost function K (I), with the properties defined in the seller-only investment application above. We assume
B is differentiable and increasing in both its arguments, with By(Is,I;) > 0 when evaluated at I, = 0,
and B (I, I;) weakly decreasing in I;. This combination of assumptions ensures that each seller’s optimal
investment is unique, strictly positive, and finite. We say the two types of investments are complements
(substitutes) if By (Is,I;) is everywhere increasing (decreasing) in I;. The timing is that platforms set their
investments first (at the same time as their prices to buyers), before sellers set their investments and prices.

Defining the seller’s quality-adjusted price

s bi
D= (1L, T

each seller sets p; to maximize (1 — 1) B (I, I;) p;¢;(p;). Let the resulting profit maximizing price be denoted

p, which does not depend on either r, Iy or I;. The per-buyer gross profit (not including investment costs)

m m

of each seller is (1 — r) B (I, I;) #™ and the per-seller surplus of the buyer is B(I;, I;)v™, where 7™ and v
are defined in the seller-only investment application above.

Each seller’s optimal investment maximizes
21:1 (1 —r)B(Is, Li)s;im™ — K ().

The above conditions ensures a seller’s optimal investment I is uniquely defined, strictly positive, and
satisfies the FOC

m
Yo A=r) Bl L) sin™ = K'(I7).

Moreover, I is decreasing (increasing) in a; = —I; on each platform ¢ if the two types of investments are
complements (substitutes). As a result, both U; = B (I}, I;)v™ and R; = rB (I}, I;)n™"s, — C (I;) are
decreasing (increasing) in a; = —I; for j # i if the two types of investments are complements (substitutes).

Therefore, there are negative spillovers and I* < [ SE < W (since a* > a’E > aW) if the two types
of investments are complements, and there are positive spillovers and I* > I°F (since a* < a®F) which

mitigates the baseline distortion that I°” < I if the two types of investments are substitutes.

O Promotion of sellers’ direct channel. We continue from Example 2 in Online Appendix A and
modify it by allowing sellers to promote their direct channels. Specifically, suppose each seller chooses
the amount to spend on promoting their direct channel (say spending on an advertising campaign on it),
denoted as k. Then, each buyer will become aware of the seller’s direct channel with some positive probability
0<Y (k) <1, where Y (0)=0,Y (00) =1, Y’ >0 and Y” < 0. Thus, if \; of a seller’s buyers on platform
¢ are initially uninformed of its direct channel, after promoting its direct channel, only \; (1 — Y (k)) of its

buyers on platform ¢ will remain uninformed.
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Given G(-) is degenerate, we know all sellers will always choose to multihome on all platforms due to
the fact that sellers do not face any restrictions in setting the on-platform prices, face no other costs, and
still keep a fraction of their revenues. Meanwhile, their pricing problem remains the same as Example 2.
Therefore,

Ui =™,

Meanwhile, a seller’s total profit is > ;- (1 —r; + (1 — X\; (1 = Y (x))){r;)7™s; — K, and the maximization

with respect to k leads to the optimal promotion spending x* satisfying

* - 1
cm ;)\irisi =y )
where k* is increasing in Y-, A\i7;s; given Y < 0. Moreover,
Ri=(1-(1=-XQ=Y(k))rm™s;.

Observe that R; decreases when the “disintermediation-adjusted effective commission” r;\; on platform
j increases, because a higher effective commission on platform j induces more sellers to invest in promot-
ing their direct channels, i.e., a higher x*. Therefore, this direct channel mechanism results in negative
spillovers in platform fees r; and disintermediation prevention efforts A; through platform ¢ revenues. We

can immediately conclude from Proposition 7 that r* > rSE > W oor A > \SE > \W,
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