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In the following sections we provide additional workings and results referred to but not included in the

main paper.

A Other microfoundations

In this section, we first describe Examples 1 - 3 that are similar to the leading example in the main paper

in that they assume a continuum of atomistic product categories, with a single (monopoly) seller in each.

We will then describe Example 4, which presents a microfoundation with sellers that behave oligopolistically.

Examples 1 - 3 are written in a way to accommodate each platform i choosing a multi-dimensional

instrument vector ai. To recover the single-dimensional case, we can simply fix all but one component of

the vector for all platforms. Online Appendix B explains in our general baseline model how the analysis

and results extend to this multi-dimensional setting.

As will be shown below, the functions Ui and Ri that correspond to Examples 1 - 3, also satisfy the

special functional form (17) imposed in Section 3.2 when holding all but one of the multi-dimensional

instruments as fixed. Therefore, the results in (Proposition 3 and Corollary 1) hold for these examples, as

claimed in Section 3.2.

In Examples 1 - 3, we impose a simplifying assumption of c = 0. This means that seller’s optimal

price p(ri), the resulting consumer demand q(ri), and the corresponding utility v(ri) are all independent

of commission rate ri, and so we denote them as pm, qm, and vm respectively. Then, denote π(ri) =

(1− ri)πm ≡ (1− ri) pmqm.

� Example 1 (First-party entry and self-preferencing). Continue from the leading example, but

suppose now each platform chooses ai = (ri, ei, li), where ei ∈ {0, 1} indicates whether platform i operates

as a dual-mode marketplace or not and li ∈ {0, 1} indicates whether platform i engages in self-preferencing

or not.3 When it operates in dual mode, it introduces a first-party product whenever a third-party seller

has entered in any product category.

With probability 1 − α, the first-party entry fails, and the third-party seller (in the relevant category)

remains a monopolist (with corresponding gross profit πm and buyer utility vm). With probability α, the

first-party entry succeeds. The resulting duopolistic competition results in two possible outcomes. When

the platform doesn’t engage in self-preferencing, the first-party profit is πfp and the third-party seller profit

is (1 − ri)πd, where 0 < πd < πm, while the corresponding buyer utility is vd > vm. When the platform

engages in self-preferencing, the first-party profit is πsp > πfp and, for expositional simplicity, the third-

party seller profit is set to zero, while the corresponding buyer utility is vsp, where vsp < vd. We assume

that first-party products do not “cross-list” on rival platforms.

Following the same steps in our leading example, we have

k̄i ≡ (1− ri)(πm − αei(πm − (1− li)πd))si,

and
Ui = (vm + αei(liv

sp + (1− li) vd − vm))G
(
k̄i
)

Ri = (riπ
m + αei(liπ

sp + (1− li)
(
riπ

d + πfp
)
− riπm))G

(
k̄i
)
si.

1Division of Economics, Nanyang Technological University
2Department of Economics, National University of Singapore
3A literature has recently emerged to address whether the choice of dual-mode marketplace is desirable in the

context of a single platform, either absent the possibility of self-preferencing (see, for example, Etro (2021)) or also
allowing for the possibility of self-preferencing (see, for example, Hagiu et al. (2022) and Anderson and Bedre-Defolie
(2024)).
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Here, ei and li directly affect buyers’ utility on platform i, as well as indirectly via how many sellers

participate on platform i. Finally, seller surplus is SSi =
∫ kmax

kmin
max{k̄i − ki, 0}dG (ki), where k̄i is clearly

decreasing in ri, ei, and li.

By Proposition 2, if we restrict platforms to choose only one of the instruments from (ri, ei, li) (while

exogenously fixing the remaining two instruments), then each of the following holds in isolation: r∗ = rSE ≥
rW , e∗ = eSE ≥ eW , and l∗ = lSE ≥ lW . Moreover, as shown in Online Appendix B, under a relatively mild

quasi-supermodularity condition, we can establish similar results even when platforms choose all instruments

together, so that (r∗, e∗, l∗) = (rSE , eSE , lSE) ≥ (rW , eW , lW ). That is, the equilibrium levels of commission,

first-party entry, and self-preferencing are excessive.

� Example 2 (Preventing disintermediation). Suppose sellers continue to be monopolists as in

our leading example, but now they also have direct sales channels (e.g., their own websites). In order for

buyers to transact on a seller’s direct channel, buyers must first discover them through a platform. A direct

channel allows a seller to avoid a platform’s transaction-based fees if buyers switch from the platform to

purchase from the seller through their direct channel, which we call disintermediation.4 A fraction λi ≥ 0 of

buyers are unaware of this option to buy from the seller directly, with the remaining fraction 1−λi aware of

the option. Buyers have heterogeneous costs to switch to the direct channel. Specifically, with probability

ζ buyers who are aware of the direct channel are assumed to be able to costlessly switch (and so buy from

whichever channel is cheapest), while with probability 1 − ζ buyers face a sufficiently high switching cost

such they will never use the direct channel regardless of the price difference. Buyers realize which situation

they are in after participating on a platform.

Each platform chooses ai = (ri, λi), where λi ∈ [λmin, λmax] reflects that the platform can influence

the probability any given buyer will be aware of a seller’s direct-channel option via its design choices. For

example, a platform could take steps to prevent communication by sellers on the platform which would

make it more difficult for them to inform buyers of their direct channel.

Participating sellers set prices pi (on platforms i = 1, ...,m) and pd (their price when selling directly).

Buyers on platform i who are informed and able to switch would buy directly if and only if pi ≥ pd.

Moreover, given ri ≥ 0, each seller would always want to induce disintermediation. Therefore, a seller that

joins a non-empty set of platform(s) φ ⊆ {1, 2, ...,m} sets its prices to maximize∑
i∈φ

[(1− ri) piD(pi)(1− (1− λi)ζ) + pdD(pd)(1− λi)ζ] si

subject to pd ≤ pi, i ∈ φ.

Given the pricing problem across channels is additively separable, the optimal price is

pd = pi = arg max
pi
{piq(pi)} ≡ pm

for all i ∈ φ, so the standard profit and utility terms πm and vm still apply in this case (given c = 0). Each

seller participates on platform i if and only if

ki ≤ (1− ri + (1− λi)ζri)πmsi ≡ k̄i,

so
Ui = G

(
k̄i
)
vm

Ri = (1− (1− λi)ζ)riG
(
k̄i
)
πmsi.

Finally, seller surplus is SSi =
∫ kmax

kmin
max{k̄i − ki, 0}dG (ki), where k̄i is clearly decreasing in ri and λi.

4Hagiu and Wright (2023) study disintermediation (or leakage in their terminology) in the case of a monopoly
platform.
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By Proposition 2, if we restrict platforms to choose only one of the instruments from (ri, λi) (while

exogenously fixing the remaining instrument), then each of the following holds in isolation: r∗ = rSE ≥
rW and λ∗ = λSE ≥ λW . Moreover, as shown in Online Appendix B, under a relatively mild quasi-

supermodularity condition, we can establish similar results even when platforms choose both instruments

together, so that (r∗, λ∗) = (rSE , λSE) ≥ (rW , λW ). That is, the equilibrium levels of commission and

disintermediation-prevention effort are excessive.

� Example 3 (App tracking restriction). Similar to Example 2, buyers must first discover sellers

through a platform before transacting. Buyers on platform i can obtain (e.g., unlock) q units of content from

sellers by either: (i) paying the seller price pi per unit; or (ii) watching ads, which results in ad disutility

z per unit to buyers and generates per-unit ad revenue πa (1− κi) > 0 to sellers. Here κi ∈ [0, κmax] with

κmax < 1 measures how restrictive platform i’s app tracking policy is, which can limit the ad revenue of

sellers, which is at most πa. Suppose seller’s revenue from (i) can be taxed by the platform through its

commission ri, while its ad revenue in (ii) cannot. We assume z ≥ 0 is IID across buyers and sellers, drawn

from the weakly log-concave CDF H.

Each platform chooses ai = (ri, κi). Then, a typical seller that joins a non-empty set of platform(s)

φ ⊆ {1, 2, ...,m} sets its prices to maximize its profit5

∑
i∈φ

(
(1− ri) piq(pi)(1−H(pi)) + πa (1− κi)

∫ pi

0

q(z)dH(z)

)
si.

Observe that the pricing problems are separable, and so each seller’s optimal price p on platform i is

independent of the (rj , κj) (when holding si) constant. Each seller would participate on i if and only if

ki ≤
(

(1− ri) pq(p)(1−H(p)) + πa (1− κi)
∫ p

0

q(z)dH(z)

)
si ≡ k̄i,

and so
Ui =

(∫∞
0
v(q(min(p, z))−min(p, z)q(min(p, z))dH(z)

)
G(k̄i)

Ri = ripq(p)(1−H(p∗i ))siG
(
k̄i
)
.

Finally, seller surplus is SSi =
∫ kmax

kmin
max{k̄i − ki, 0}dG (ki), where k̄i is clearly decreasing in ri and κi.

By Proposition 2, if we restrict platforms to choose only one of the instruments from (ri, κi) (while

exogenously fixing the remaining instrument), then each of the following holds in isolation: r∗ = rSE ≥ rW

and κ∗ = κSE ≥ κW . Moreover, as shown in Online Appendix B, when all sellers have zero participation

costs ki = 0 (i.e., the distribution G is degenerate), we can establish similar results even when platforms

choose both instruments together, so that (r∗, κ∗) = (rSE , κSE) ≥ (rW , κW ). That is, the equilibrium levels

of commission and app-tracking restriction effort are excessive.

� Example 4 (Demand-side heterogeneity and competing sellers). This example is constructed

independently of our leading example and those above (and so CDF G(·) has a different interpretation here).

Each platform chooses its commission ai = ri. There is a continuum of product categories with mass 1

indexed by the buyers’ interaction benefit parameter V , where V is drawn from some distribution G on

[0, Vmax]. There are n ≥ 1 potential competing sellers in each product category. A representative buyer’s

gross utility function for purchasing ql units from each seller k = 1, .., n in a particular product category is

u (q1, ..., qn) = V

n∑
k=1

qk −
n

2

(1− θ)
n∑
k=1

q2
k +

θ

n

(
n∑
k=1

qk

)2
 ,

5We assume the profit function is strictly quasiconcave, a sufficient condition for which is that q(pi) has an
elasticity (in magnitude) that is non-decreasing and is no lower than one over the relevant range.

3



and θ ∈ [0, 1) is a measure of seller differentiation within the category. This is the model by Shubik and

Levitan (1980). Then, buyer demand for seller k in category V is

DV,k =
1

n

(
V − pk

1− θ
+

θ

1− θ

n∑
k′=1

pk′

n

)
.

We assume sellers face no fixed costs of participating on a platform, but face a positive marginal cost per

unit of sales c > 0.

Solving for the symmetric equilibrium between sellers yields the equilibrium price on platform i, which

is denoted pV (ri),

pV (ri) =
(1− θ)nV

2n− θ (n+ 1)
+

(n− θ) c
(2n− θ (n+ 1)) (1− ri)

.

This is increasing in V , and in ri because c > 0. The demand and profit an individual seller gets in product

category V from a representative buyer is denoted qV (ri) = 1
n (V − pV (ri)) and

πV (ri) = ((1− ri) pV (ri)− c) qV (ri)

= (1− ri)
(1− θ) (n− θ)

(2n− θ (n+ 1))
2

(
V − c

1− ri

)
.

The corresponding per-buyer utility in product category V is vV (ri) = n2

2 qV (ri)
2. Once it has joined

platform i, each participating seller in product category V sets the price pV (ri) on platform i and transacts

with each buyer on that platform once, with the representative buyer consuming qV (ri) units from each

such seller.

Notice there is an equilibrium where the n sellers of type V can operate (make positive sales) and obtain

a profit if and only if (1− ri) pV (ri) > c. But the highest price that sellers can charge and obtain positive

demand is V . Therefore, in the absence of any seller fixed costs of participation, if ri < 1− c
V , all n sellers in

category V participate on platform i and make positive sales; while if ri ≥ 1− c
V , none of them participate

on platform i since in equilibrium they would not make a profit while making positive sales. The measure

of product categories where sellers participate on platform i is 1−G
(

c
1−ri

)
. Therefore,

Ui =
∫ Vmax

c
1−ri

vV (ri)dG(V )

Ri = sirin
∫ Vmax

c
1−ri

pV (ri)qV (ri)dG(V ).

Finally, seller surplus is

SSi =

∫ Vmax

c
1−ri

πV (ri)dG(V ),

where πV (ri) is clearly decreasing in ri. By Proposition 2, we conclude r∗ = rSE ≥ rW . That is, the

equilibrium level of commission is excessive in this oligopolistic seller model.

B Multi-dimensional instruments

We now extend the baseline model in Section 2 by allowing each platform’s instrument choice ai ∈ A ⊆
RN be a multi-dimensional vector, where N ≥ 1. Our ordering that a higher ai corresponds to a lower

seller surplus means that SSi(ai; si) is decreasing in every dimension of ai, holding si constant, and denote

SS(a) = mSSi(a; 1/m). The analysis below admits the possibility of non-unique equilibrium instruments

a∗ and non-unique solutions to welfare benchmarks aSE and aW (where we denote the sets of solutions aSE

and aW as ASE and AW respectively.).

It is straightforward to verify that the analysis in Section 2 holds as it is. In particular, the definition of
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the equilibrium object (11) always applies regardless of whether ai is single-dimensional or multi-dimensional.

Denote set

A∗ = arg max
ai∈A

{
1

m
Ui(ai;

1

m
) +Ri(ai;

1

m
)

}
We focus on the case where every a∗ ∈ A∗ constitute an equilibrium (this is true in, e.g., our leading example

in Section 3). Then, given that ASE is defined by the exact same condition, we have ASE = A∗.

Lemma 1 now requires additional conditions. One well-known complication of multi-dimensional com-

parative statics is the cross-dimension effects, whereby distortions in one of the dimensions may reinforce

or diminish distortions in other dimensions. To proceed, we define the following concepts as introduced by

Milgrom and Shannon (1994):

� Quasi-supermodularity (QSM). A function W : A → R is quasi-supermodular in its argument

ai ∈ A if, for any pair of vectors a′i ∈ A and a′′i ∈ A, we have

W (a′)−W (a′ ∧ a′′) ≥ (>)0⇒W (a′ ∨ a′′)−W (a′′) ≥ (>)0.

Here, a′∨a′′ is the dimension-wise maxima of the two vectors and a′∧a′′ is the dimension-wise minima

of the two vectors.

Intuitively, quasi-supermodularity expresses a weak kind of complementarity between each dimension

of vector a. That is, if an increase in some dimensions has a positive marginal return at some level of the

remaining dimensions, then the marginal return will also be positive at any higher level of those remaining

dimensions. Clearly, it is implied by the standard weak supermodularity condition. More generally, by

Milgrom and Shannon (1994), there are several easy-to-check sufficient conditions for W (ai) to be QSM: (i)

W (ai) is monotone in ai; (ii) if a is one-dimensional then QSM trivially holds; (iii) if a is two-dimensional,

then QSM is equivalent to W (a) obeying single-crossing difference in a pairwise manner.6

To compare ASE and AW , we adopt the following notion by Milgrom and Shannon (1994):

� Strong set order. A set A′′ is higher than set A′ in strong set order (denoted as A′′ ≥sso A′) if for

any pairs of vectors a′ ∈ A′ and a′′ ∈ A′′, we have a′ ∨ a′′ ∈ A′′ and a′ ∧ a′′ ∈ A′.

Then, the following is analogous to Lemma 1 and Proposition 2. It shows that the baseline distortion

persists under multi-dimensional platform instruments.

Proposition OA.1 Suppose function W (a) (or WSE(a)) is quasi-supermodular. The seller-excluded bench-

mark exceeds the total-welfare benchmark (ASE ≥sso AW ), indicating that the seller-excluded benchmark level

of instrument is excessive. Consequently, A∗ = ASE ≥sso AW .

Proof. (Proposition OA.1). We first verify that W (a) single-crossing dominates WSE(a): for any

a′′ > a′, whenever W (a′′)−W (a′) ≥ (>)0 holds, we must have

WSE(a′′)−WSE(a′)

= W (a′′)−W (a′) + SS(a′)− SS(a′′)︸ ︷︷ ︸
≥0

≥ (>)0

because SS(·) is decreasing. Then, we apply Theorem 1 of Amir and Rietzke (2025), which implies ASE ≥sso
AW , as required.

6That is, if we assume continuous choice and differentiability, and let N = 2 so that a platform’s instrument
vector is ai = (z1, z2) ∈ R2, then this is equivalent to ∂Ŵ/∂zk being single-crossing in zl for each dimension k 6= l,
k = 1, 2. That is, if ∂Ŵ/∂zk ≥ (>)0 at zl = z′l, then ∂Ŵ/∂zk ≥ (>)0 for all zl > z′l.
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It is useful to verify that QSM holds in Examples 1-3 presented in Section A, all of which involve multi-

dimensional instruments (Example 4 has a single-dimensional instruments and so QSM trivially holds).

� Example 1 (First-party entry and self-preferencing). Dropping the redundant constant terms,

the total welfare objective function is

W (r, e, l) =
(
vm + πm + αe

(
l∆sp + (1− l) ∆fp

))
G
(
k̄i
)
−m

∫ k̄

kmin

kdG (k) ,

where k̄ = (1− r)(πm − αe(πm − (1− l)πd)) 1
m . Observe that k̄ is decreasing in r, e, and l.

Define ∆sp = πsp + vsp − πm − vm and ∆fp = πfp + πd + vd − πm − vm as the ex-post efficiency gain

from first-party entry with and without self-preferencing. Suppose ∆fp > ∆sp. Then W is decreasing in r,

decreasing in e regardless of l provided ∆fp is not too large, and decreasing in l:

dW

dr
= (vm + πm + αe

(
l∆sp + (1− l) ∆fp

)
−mk̄)︸ ︷︷ ︸

>0 because mk̄i<(1−ri)π∗

g
(
k̄
) dk̄
dr

< 0;

dW

dl
=
(
vm + πm + αe

(
l∆sp + (1− l) ∆fp

)
−mk̄

)
g
(
k̄
) dk̄
dl

+ αei
(
∆sp −∆fp

)
G
(
k̄
)
< 0

dW

de
=
(
vm + πm + αe

(
l∆sp + (1− l) ∆fp

)
−mk̄

)
g
(
k̄
) dk̄
de

+ α
(
l∆sp + (1− l) ∆fp

)
G
(
k̄
)
< 0

As such, W is QSM when these conditions hold. Proposition OA.1 then implies (r∗, e∗, l∗) = (rSE , eSE , lSE) ≥
(rW , eW , lW ).

� Example 2 (Preventing disintermediation). Dropping the redundant constant terms,

W (r, λ) = (v + π)G
(
k̄
)
−m

∫ k̄

kmin

kdG (k) ,

where k̄ = (1− r + (1− λ)ζr) π
m . Clearly, W (r, λ) is decreasing in platform fee r and disintermediation

prevention effort λ by the standard deadweight loss logic (a higher λ can be seen as amplifying the effective

fees paid by sellers). Thus, W (r, λ) is QSM, and Proposition OA.1 then implies (r∗, λ∗) = (rSE , λSE) ≥
(rW , λW ).

� Example 3 (App tracking). Assuming the seller objective function is strictly quasiconcave, then

by additive separability, the optimal price p satisfies the first-order condition (FOC)

p =
πa (1− κi)

1− ri
+

(
1 + p

q′(p)

q(p)

)
1−H(p)

h(p)
.

Observe that p is an increasing function of 1−κi
1−ri . That is, sellers set a higher price for their apps (to divert

buyers to watch ads) when ads becomes more profitable relative to their share of transaction revenue 1− ri.
To check strict quasiconcavity of the seller objective function, notice dπ/dpi has the same sign as

− pi +
πa (1− κi)

1− ri
+ (1 + eq)

1−H(pi)

h(pi)
, (22)

where eq ≡ pi q
′(pi)
q(pi)

< 0 is elasticity of q(.). By standard results, eq is weakly decreasing in pi if q(.) is weakly

log-concave or admits constant-elasticity. Therefore, as long as (1 + eq) > 0 then we know (1 + eq)
1−H(pi)
h(pi)

is decreasing in pi by log-concavity of 1 − H, and so (22) is always decreasing in pi, which establishes

strict-quasiconcavity.

Imposing symmetry and dropping constant terms, the total welfare objective function that is relevant
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for determining (rW , κW ) is

W (r, κ) = U0(p)G
(
k̄
)

+ riR0(p)G
(
k̄
)

+m

∫ k̄

0

(k̄ − ki)dG,

where

U0(p) =

∫ p

0

u(q(z))− zq(z)dH(z) +

∫ ∞
p

u(q(p))− pq(p)dH(z)

R0(p) = pq(p)(1−H(p))

k̄ =
(1− r)
m

pq(p)(1−H(p)) +
πa (1− κ)

m

∫ p

0

q(z)dH(z).

To establish quasi-supermodularity, we reframe the maximization problem as choosing a = (r,−p), where

κ = κ(r, p) = 1 + ψ(p)

(
1− r
πa

)
and

ψ(p) ≡ (1 + eq)
1−H(p)

h(p)
− p < 0

is strictly decreasing in p by the properties on (22) as established above. Then

1

G
(
k̄
) dW
dr

= (U0(p) + riR0(p))
g
(
k̄
)

G
(
k̄
) dk̄
dr

+m
dk̄

dr
< 0

for all p because dk̄
dr = − 1

1−r k̄ < 0. Thus, dW/dr is single-crossing in p, as required. Likewise,

1

G
(
k̄
) dW
dp

=

(
dU0

dp
+
dR0

dp
r

)
+ (U0(p) + rR0(p))ϕ

(
k̄
) dk̄/dp

k̄
+m

dk̄

dp
,

where ϕ(x) ≡ xg(x)
G(x) is the elasticity of G with respect to its argument. If we impose constant-elasticity

G (k) =
(

k
kmax

)ϕ
on [0, kmax], and let ϕ→ 0, then

1

G
(
k̄i
) d2W

dpdr
→ dR0

dp
+m

d2k̄

dpdr
< 0

because dR0

dp < 0 by (22), and

d2k̄

dpdr
= − 1

1− r
dk̄

dp
=

1

m
ψ′(p)

∫ p

0

q(z)dH(z) < 0.

Thus, dW/dp is single-crossing in r, as required. Proposition OA.1 implies (r∗,−p∗) = (rSE ,−pSE) ≥
(rW ,−pW ). Given p is an increasing function of 1−κi

1−ri , we conclude that pSE ≤ pW and rSE ≥ rW together

imply κSE ≥ κW . Hence, (r∗, κ∗) = (rSE , κSE) ≥ (rW , κW ).

C Advertising on the buyer-side

Suppose instead of setting lump-sum prices on the buyer side, each platform i chooses its advertising

intensity Ai and gets an associated payoff Ai per buyer. At the same time, buyers incur an associated

disutility of γAi, where γ > 0 captures a nuisance cost. Here, γ = 1 implies that raising advertising

intensity reduces buyer utility by the same amount it increases platform revenue — just like a lump-sum
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price. More generally though, ad monetization may be more efficient than using lump-sum prices (i.e., one

dollar of extra revenue can be extracted from a buyer with less than a one dollar reduction in utility, so

γ < 1), or less efficient (γ > 1).

To understand the new welfare distortion in this setting, consider the case of inefficient ad monetization

(γ > 1) and consider a decrease in commission r below r∗. Fixing the level of ad monetization, the decrease

in r leads to higher seller-excluded welfare because the inefficient revenue extraction means that platforms

do not fully internalize buyer utility in their choice of r∗, resulting in an excessive equilibrium commission.

In our leading example, an incomplete pass-through argument shows that this direct effect dominates any

feedback effect from platforms reoptimizing their level of ad monetization. Formally, we get:

Proposition OA.2 Consider the above model with advertising on the buyer side. Suppose γ > (<)1 so

that advertising is inefficient (efficient). Then r∗ ≥ (≤)rSE, strictly so for interior solutions.

Proof. (Proposition OA.2). We first state the equilibrium in this case without invoking the leading

example. By the same reframing technique used to establish Proposition 1, we get

a∗ = arg max
ai∈A

{
1

γm
Ui

(
ai;

1

m

)
+Ri

(
ai;

1

m

)}
.

Meanwhile for each given instrument, we first solve for the equilibrium ad intensity A(a). Following the

steps in the proof of Proposition 1, solving for the symmetric FOCs gives

A(a) =
1/m

Φ′ (0)
− 1

m− 1

∂Ui(a; 1
m )

∂si
−
∂Ri(a; 1

m )

∂si
.

Therefore, when the (common) instrument a changes, we have

A′(a) = −(
1

m− 1
)
∂2Ui(a; 1

m )

∂si∂ai
−
∂2Ri(a; 1

m )

∂si∂ai
.

We now specialize the expressions above to the leading example, where we know

r∗ = arg max
ri∈[0,r]

{
γ

m
Ui

(
ri;

1

m

)
+Ri

(
ri;

1

m

)}
,

the FOC of which is
1

γm

∂Ui
(
r∗; 1

m

)
∂ri

+
∂Ri

(
r∗; 1

m

)
∂ri

= 0.

Meanwhile, using

Ui (ri; si) = v(ri)

(
π(ri)

kmax

)ϕ
sϕi

Ri (ri; si) = rip(ri)q(ri)

(
π(ri)

kmax

)ϕ
s1+ϕ
i ,

it is clear that ∂Ui
∂si

= ϕ
si
Ui, and so ∂2Ui

∂si∂ri
= ϕ

si
∂Ui
∂ri

; likewise, ∂Ri∂si
= 1+ϕ

si
Ri, and so ∂2Ri

∂si∂ri
= 1+ϕ

si
∂Ri
∂ri

. Then

A′(r) = −
(

m

m− 1

)
ϕ

γ

∂Ui
(
r; 1
m

)
∂ri

− (1 + ϕ)m
∂Ri

(
r; 1
m

)
∂ri

.
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Evaluating this at r = r∗ and using the FOC associated with r∗, we get

A′(r∗) = −
(

m

m− 1

)
ϕ

γ

∂Ui
∂ri

+
1 + ϕ

γ

∂Ui
∂ri

=

(
m− 1− ϕ
m− 1

)
1

γ

∂Ui
∂ri

.

From the expression of the seller-excluded welfare, we have

dWSE(r)

dr
=
∂Ui
∂ri

+m
∂Ri
∂ri

+ (1− γ)A′(r).

Evaluating the above at r = r∗, we have

dWSE(r∗)

dr
= −

(
1− γ
γ

)
∂Ui
∂ri

+ (1− γ)A′(r∗)

= −
(

1− γ
γ

)
∂Ui
∂ri

+

(
m− 1− ϕ
m− 1

)(
1− γ
γ

)
∂Ui
∂ri

= −
(

1− γ
γ

ϕ

m− 1

)
∂Ui
∂ri

,

which is negative if and only if γ > 1 (because ∂Ui
∂ri

< 0).

D Details for Section 3

D.1 The leading example

� Leading example with Hotelling competition. We first check our claim on global concavity: for

any given ri, if (16) holds, Πi is concave in si ∈ [0, 1] . Let z(ri) = v(ri) + rip(ri)q(ri). Then we can rewrite

(13) as:

Πi =

(
PB∗ + z(ri)

(
π(ri)

kmax

)ϕ
sϕi − v (r∗)

(
π (r∗)

kmax

)ϕ
(1− si)ϕ − (2si − 1)t

)
si.

The derivatives are

dΠi

dsi
= PB∗ + (1 + ϕ)z(ri)

(
π(ri)

kmax

)ϕ
sϕi

−v (r∗)

(
π(ri)

kmax

)ϕ
(1− si)ϕ−1 [1− si − ϕsi]− 4tsi + t

d2Πi

ds2
i

= ϕ(1 + ϕ)z(ri)

(
π(ri)

kmax

)ϕ
sϕ−1
i + 2ϕv (r∗)

(
π(ri)

kmax

)ϕ
(1− si)ϕ−1

−(ϕ− 1)v (r∗)

(
π(ri)

kmax

)ϕ
(1− si)ϕ−2ϕsi − 4t.

Among the terms in d2Πi/ds
2
i , only the first two components are positive, and we note sϕ−1

i and (1−si)ϕ−1

are both bounded below one given ϕ ≥ 1. Recalling from (14) that r∗ = arg maxri∈[0,r] {z(ri)π(ri)
ϕ}, a

sufficient condition for d2Πi/ds
2
i < 0 to hold for any si and ri is

2t > ϕ(1 + ϕ)z (r∗)

(
π (r∗)

kmax

)ϕ
, (23)

which coincides with the condition in (16). Notice this condition implies 2t ≥ 2ϕv (r∗)
(
π(ri)
kmax

)ϕ
because

ϕ ≥ 1 and z (r∗) ≥ v (r∗). Meanwhile, the condition for there to be a unique fixed-point in (8) is equivalent

9



to requiring (9) to be strictly decreasing in si, i.e.,

dPBi
dsi

= ϕz(ri)

(
π(ri)

kmax

)ϕ
sϕ−1
i + ϕv (r∗)

(
π(ri)

kmax

)ϕ
(1− s1)ϕ−1 − 2t < 0,

which holds given (16).

Next, we provide two sets of conditions under which the objective function in (14) is strictly quasiconcave

(hence has a unique maximizer).

One condition is to impose c = 0, which recall means r = 1. Then using the same notation as in Section

A, we have

(z(ri)π(ri)
ϕ) |c=0 = (v

m
+riπ

m)((1− ri)πm)
ϕ
.

The derivative with respect to ri has the same sign as(
πm − ϕ (vm + riπ

m)

1− ri

)
(1− ri)ϕ .

Observe the expression in the first (large) brackets is monotonically decreasing in ri, and so there exists a

(possibly negative) threshold r̂ < 1 such that the expression is strictly negative if and only if ri > r̂. Hence,

z(ri)π(ri)
ϕ is strictly single-peaked and so strictly quasiconcave.

Suppose instead c > 0. Then another set of conditions is ϕ = 1 and a linear-quadratic utility specification

u (q) = V q − 1

2
q2, such that D(pi) = V − pi,

with V > c. This implies q(ri) = 1
2

(
V − c

1−ri

)
, p(ri) = 1

2

(
V + c

1−ri

)
, π(ri) = 1−ri

4

(
V − c

1−ri

)2

, and

v(ri) = 1
8

(
V − c

1−ri

)2

, where recall r̄ = 1 − c
V < 1. Then, the objective function defining r∗ can be

rewritten

z(ri)π(ri) =
1

32

(
V − c

1− ri

)3

B(ri)

for ri ∈ [0, r̄], where V − c
1−ri and B(ri) = V − c+ (V + 2c) ri − 2r2

i V which are both strictly concave and

positive on ri ∈ [0, r̄) and V − c
1−r̄ = 0. This implies the maximum must occur on [0, r̄). Within this range,

the objective z(ri)π(ri) can therefore be written as the product of positive and strictly concave functions,

so must itself be strictly quasiconcave.

� Leading example with logit specification. Suppose we impose the logit demand system Φ(x) =
1

1+(m−1) exp{−x/µ} , with scale parameter µ > 0. Then

Φ−1 (si) = µ ln

(
(m− 1)si

1− si

)
and ∂

∂si
Φ−1 (si) = µ

(1−si)si . By the same calculation as before

dΠi

dsi
= PB∗ + (1 + ϕ)z(ri)

(
π(ri)

kmax

)ϕ
sϕi

−v (r∗)

(
π(ri)

kmax

)ϕ
(1− si)ϕ−1 [1− si − ϕsi]−

[
µ

1− si
+ µ ln

(
(m− 1)si

1− si

)]

d2Πi

ds2
i

= ϕ(1 + ϕ)z(ri)

(
π(ri)

kmax

)ϕ
sϕ−1
i + 2ϕv (r∗)

(
π(ri)

kmax

)ϕ
(1− si)ϕ−1

−(ϕ− 1)v (r∗)

(
π(ri)

kmax

)ϕ
(1− si)ϕ−2ϕsi −

[
µ

(1− si)2si

]
.
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We know maxsi∈[0,1](1− si)2si = 4/27. Hence, using the equivalent condition to (23), a sufficient condition

for strict concavity is

µ >
8

27
ϕ(1 + ϕ)z (r∗)

(
π (r∗)

kmax

)ϕ
. (24)

This condition also ensures (9) is strictly decreasing in si. To see this, note

dPBi
dsi

= ϕz(ri)

(
π(ri)

kmax

)ϕ
sϕ−1
i + ϕv (r∗)

(
π(ri)

kmax

)ϕ
(1− si)ϕ−1 − µ

(1− si)si

≤ ϕz (r∗)

(
π (r∗)

kmax

)ϕ
sϕ−1
i + ϕz (r∗)

(
π (r∗)

kmax

)ϕ
(1− si)ϕ−1 − µ

(1− si)si

≤ 2ϕz (r∗)

(
π (r∗)

kmax

)ϕ
− 4µ

< 0,

where the first inequality is due to the definitions of z(ri) and r∗; the second inequality is due to sϕ−1
i ≤ 1,

(1 − si)
ϕ−1 ≤ 1, and maxsi∈[0,1](1 − si)si = 1/4; and the last inequality is due to the stated sufficient

condition and ϕ ≥ 1.

� Buyer surplus. Buyer surplus is given by BS(r) = U(r; 1
m )− PB(r). Continuing from Proposition

1, we have

PB(r) =
1

mΦ′(0)
−
(
mϕv(r)

m− 1
+ (1 + ϕ)rp(r)q(r)

)(
π (r)

mkmax

)ϕ
so that

BS(r) =

(
v(r) +

mϕv(r)

m− 1
+ (1 + ϕ)rp (r) q(r)

)(
π (r)

mkmax

)ϕ
− 1

mΦ′(0)
.

Hence, the maximizer can be simplified as

rBS = arg max
r∈[0,r]

(
m− 1 +mϕ

m− 1 +mϕ− ϕ
v(r) + rp(r)q(r)

)
π(r)ϕ,

which we now compare with r∗ = rSE = arg maxr∈[0,r] (v(r) + rp(r)q(r))π(ri)
ϕ. Using the observations that

m−1+mϕ
m−1+mϕ−ϕ > 1 and that v(r) > 0 is decreasing, it follows that rBS ≤ rSE = r∗, with strictly inequality for

interior solutions.

To see the more general pass-through logic discussed in the text, in what follows we assume that BS(r)

is strictly quasiconcave in r and that r∗ is an interior solution. We note d
drBS(r) = ∂

∂rU(r; 1
m )− d

drP
B(r).

Using the equilibrium condition for r∗, this becomes

d

dr
BS(r∗) = −m

∂Ri(r
∗; 1
m )

∂r
− dPB(r∗)

dr

and so d
drBS(r∗)(≤) < 0 if and only if

dPB(r∗)

dr
(≥) > −m

∂Ri(r
∗; 1
m )

∂r
. (25)

That is, starting from the equilibrium value r∗, for any increase in r that raises the per-buyer revenue 1
1/mRi

by one unit, the per-buyer price PB does not decrease by more than one unit. We now prove that inequality

(25) always hold in strict inequality in our leading example. Continuing from Proposition 1,

dPB(r)

dr
= −

(
1

m− 1

)
∂Ui(r;

1
m )

∂r∂si
−
∂Ri(r;

1
m )

∂r∂si
,
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where the constant-elasticity G(·) in the leading example means

∂Ri(r;
1
m )

∂si∂r
= m (1 + ϕ)

∂Ri(r;
1
m )

∂r
and

∂Ui(r;
1
m )

∂si∂r
= mϕ

∂Ui(r;
1
m )

∂r

and so
dPB(r)

dr
= −

(
mϕ

m− 1

)
∂Ui(r;

1
m )

∂r
−m (1 + ϕ)

∂Ri(r;
1
m )

∂r
.

Recall the first order condition of r∗ implies

m
∂Ri(r

∗; 1
m )

∂ri
= −

∂Ui(r
∗; 1
m )

∂ri
> 0,

where the inequality is due to Ui = v (ri)
(
π(ri)
kmax

)ϕ
(1− si)ϕ decreasing in ri. So,

dPB(r∗)

dr
=

(
ϕ

m− 1
− 1

)
m
∂Ri(r

∗; 1
m )

∂r
> −m

∂Ri(r
∗; 1
m )

∂r
.

For a general platform instrument ai beyond the leading example, the same pass-through logic of in-

equality (25) works. Specifically, suppose the equilibrium outcome a∗ is an interior solution. Then, we get
d
drBS(a∗) ≤ 0 if and only if

dPB(a∗)

da
≥ −m

∂Ri(a
∗; 1
m )

∂a
.

That is, the pass-through rate of extra per-buyer revenue from a higher level of ai onto a lower buyer-side

price is no more than one. When this is true, we can conclude aBS ≤ a∗ if BS(a) is quasiconcave (strictly so,

if the inequality above is strict), and aTUS ≡ arg maxa∈ABS(a) +mSSi(a; 1
m ) < a∗ if BS(a) +mSSi(a; 1

m )

is quasiconcave.

D.2 The leading example with myopic buyers

Suppose buyers’ perceived Ui when making their platform choice is discounted by δ, where 0 ≤ δ < 1.

We first characterize the equilibrium before specializing to the leading example. By the same steps that

establish Proposition 1, we get

a∗ = arg max
ai∈A

{
δ

m
Ui

(
ai;

1

m

)
+Ri

(
ai;

1

m

)}
and PB∗ = PB(a), where

PB(a) =
1

mΦ′(0)
−
(

δ

m− 1

)
∂Ui(a; 1

m )

∂si
−
∂Ri(a; 1

m )

∂si
.

Meanwhile, the seller-excluded benchmark remains the same as in the baseline model because the planner

takes into account the actual utility of buyers, so

aSE = arg max
ai∈A

{
1

m
Ui

(
ai;

1

m

)
+Ri

(
ai;

1

m

)}
.

Finally, aBS = arg maxai∈A
{
U(ai;

1
m )− PB(ai)

}
.

We now specialize to the leading example, where ai = ri. We claim that r∗ ≥ rSE and r∗ ≥ rBS . In the
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leading example Ui(ri) = v(ri)
(
π(ri)
mkmax

)ϕ
, so

r∗ = arg max
r∈[0,r]

(δv(r) + rp(r)q(r))π(r)ϕ

rSE = arg max
r∈[0,r]

(v(r) + rp (r) q(r))π(r)ϕ

rBS = arg max
r∈[0,r]

(
m− 1 +mδϕ

(m− 1) (1 + ϕ)
v(r) + rp(r)q (r)

)
π(r)ϕ,

where we used

BS(r) =

(
v(r) +

δmϕv(r)

m− 1
+ (1 + ϕ)rp (r) q(r)

)(
π (r)

mkmax

)ϕ
− 1

mΦ′(0)
.

Given v(r) > 0 is decreasing, it follows that δ < 1 implies r∗ ≥ rSE . If r∗ or rSE is pinned down as an

interior solution, the associated FOC then implies r∗ > rSE . Likewise,

m− 1 +mδϕ

(m− 1) (1 + ϕ)
> δ =⇒ rBS ≤ r∗,

with strictly inequality holds for interior solutions. Moreover, m+mδϕ−1
(m−1)(1+ϕ) > 1 is equivalent to (m− 1)(1−

δ) + δϕ > 0, which always holds by assumption.

D.3 Seller-side lump-sum fees

Suppose we interpret instrument ai as a seller-side lump-sum fee (ai = PSi ). Then, Ui = vG(πsi − ai)
and Ri = aiG(vsi − ai), where the interaction benefits of buyers and sellers, v and π, are independent of

the level ai on sellers. Applying Proposition 1, in the equilibrium

a∗ = arg max
ai∈A

{
(
v

m
+ ai)G(

π

m
− ai)

}
.

Given G is log-concave, the objective function is quasiconcave and so the FOC gives

a∗ = − v

m
+
G( πm − a

∗)

g( πm − a∗)
(26)

= − v

m
+

π
m − a

∗

ϕ( πm − a∗)
.

Log-concavity implies x
ϕ(x) is an increasing function in x ≥ 0, i.e., ϕ(x)−xϕ′(x) > 0. Totally differentiating

da∗

dm
=

1

m2

(
v − π

ϕ(x)
− πx

ϕ(x)2
ϕ′(x)

)
x= π

m−a∗
.

Therefore,
da∗

dm
< 0 ⇔ v

π
<

(
1

ϕ(x)
+
xϕ′(x)

ϕ(x)2

)
x= π

m−a∗
.

In the special case of constant-elasticity G, ϕ′(·) = 0, and so

da∗

dm
< 0 ⇔ v

π
<

1

ϕ
.

Intuitively, a higher m means sellers get a lower surplus from joining each individual platform, which induces

platforms to set a lower seller-side fee a∗; at the same time, a higher m also means that each platform extracts

less buyer utility, and so platforms are less incentivized to attract sellers and raise buyer utility. The fee-
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decreasing (fee-increasing) effect dominates when the elasticity of seller participation ϕ is relatively large

(small).

Nonetheless, if we denote k̄∗ ≡ π
m − a

∗ as the marginal participating seller in the equilibrium, then (26)

becomes

k̄∗ +
G(k̄∗)

g(k̄∗)
=
π + v

m
.

So, k̄∗ is always decreasing in m. That is, an increase in the number of platforms results in less sellers

participating on platforms in equilibrium, although each seller that does participate, participates on a

greater number of platforms.

E Without symmetry and full coverage

In this Online Appendix, we extend our baseline model to an environment with possibly asymmetric

platforms and a partially covered buyer-side market. Let U0 = 0 be the exogenous net utility of the buyers’

outside option (of not joining any platform). We first establish the equilibrium in this environment, and

then revisit the comparative statics with respect to the number of platforms.

E.1 Equilibrium characterization

For any given instrument profile (a1, ..., am) and buyer price profile (PB1 , ..., P
B
m ), the buyer-side market

share profile s = (s1, s2, ..., sm) is pinned down by the simultaneous fixed-point equation system:

si = Pr

(
Ui(ai, si)− PBi + εi ≥ max

j 6=i

{
Uj(aj , sj)− PBj + εj , 0

})
for i = 1, ...,m, (27)

where the probability is taken with respect to (ε1, ..., εm) that follows some underlying distribution F (·). As

in the baseline model, we assume a unique fixed point s = (s1, s2, ..., sm) to (27) always exists.

To derive the equilibrium outcome, denote the equilibrium buyer price profile as (PB∗1 , ..., PB∗m ), the

equilibrium instrument profile as (a∗1, ..., a
∗
m) ∈ Am, and the equilibrium buyer-side market share profile as

(s∗1, ..., s
∗
m) ∈ [0, 1]

m
.

� Reframing the maximization problem. Consider the maximization problem of platform i. It

chooses
(
ai, P

B
i

)
to maximize profit

Πi = PBi si +Ri (ai; si) ,

taking as given the choices of other platforms {(a∗j , PB∗j )}j 6=i. We can frame the problem as platform

i directly choosing (ai, si), where PBi is then set to implement the target market share si. Specifically,

continuing from (27), for given instrument choice ai, the target market share si can be implemented by

setting

PBi = Ui (ai; si)− ξi(si; {(a∗j , PB∗j )}j 6=i),

where the function ξi(·; ·) is the scalar solution ξ to the following system of equations:

si = Pr

(
ξ + εi ≥ max

j 6=i

{
Uj(aj , sj)− PB∗j + εj , 0

})
sj = Pr

(
Uj(aj , sj)− PB∗j + εi ≥ max

k 6=j

{
ξ + εi, Uk(ak, sk)− PB∗k + εk, 0

})
for j 6= i,

where the existence of the solution is guaranteed given the existence of a unique fixed point to (27). Impor-

tantly, observe the system of equations that defines ξi(·; ·) is independent of ai, reflecting that the market

share of si depends on ai only indirectly via Ui(ai; si).
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� Optimal instrument choices and equilibrium. Therefore, platform i’s problem now becomes

choosing (ai, si) to maximize

Ui (ai; si) si + ξi(si; {(a∗j , PB∗j )}j 6=i)si +Ri (ai; si) ,

which we assume to be globally strictly quasiconcave in (ai; si). By the principle of optimality, in any

equilibrium, platform i’s optimal choices necessarily satisfy

a∗i = arg max
ai∈A

{Ui (ai; s
∗
i ) s
∗
i +Ri(ai; s

∗
i )} (28)

and

s∗i = arg max
si∈[0,1]

{Ui (a∗i ; si) si + ξi(si; {(a∗j , PB∗j )}j 6=i)si +Ri (a∗i ; si))}. (29)

Summarizing, the equilibrium is pinned down by a system of 3m-equations-and-3m-variables:

Proposition OA.3 In any equilibrium with all m platforms active in the market, the equilibrium outcome

is described by (a∗1, ..., a
∗
m), (PB∗1 , ..., PB∗m ), and (s∗1, ..., s

∗
m) that solve the (i) optimality conditions in (28)

and (29) for i = 1, ...,m, and (ii) the consistency requirement:

PB∗i = Ui (a∗i ; s
∗
i )− ξi(s∗i ; {(a∗j , PB∗j )}j 6=i) for i = 1, ...,m.

Proposition OA.3 generalizes the baseline equilibrium characterization in Proposition 1. In this envi-

ronment, the equilibrium instrument and buyer-side prices do not generally have closed-form expressions

given s∗i 6= 1/n in general.

E.2 An increase in the number of platforms

We now specialize the functional forms of Ui and Ri as in Section 3.2 of the main text:

Ui(ai; si) = vi(ai)G(πi(ai)si)

Ri(ai; si) = wi(ai)siG(πi(ai)si)
.

Note we allow functions vi, wi, and πi and distribution Gi to be different across platforms. Then, the

equilibrium instrument in (28) becomes

a∗i = arg max
ai∈A

{(vi(ai) + wi(ai))Gi(πi(ai)s
∗
i )} ,

where the equilibrium market share s∗i is held fixed in the optimization problem. Assuming differentiability,

the associated first-order condition (the functional arguments are omitted for notational simplicity) is:[
∂vi
∂ai

+
∂wi
∂ai

]
ai=a∗i︸ ︷︷ ︸

additional revenue per inframarginal seller

+

[
(vi + wi)ϕi(πis

∗
i )
∂πi/∂ai
πi

]
ai=a∗i︸ ︷︷ ︸

loss in seller participation

= 0,

where recall ∂π/∂ai < 0, whereas ϕ(k) ≡ kg(k)
G(k) ≥ 0 is seller participation elasticity. Utilizing the same proof

that establishes Proposition 3, we conclude:

Proposition OA.4 Suppose the equilibrium described in Proposition OA.3 exists. In this equilibrium,

da∗i
dm

has the same sign as − ϕ′i ×
ds∗i
dm

.
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In the case of constant elasticity ϕ′i = 0, then a∗i is always independent of m.

Proposition OA.4 generalizes Proposition 3 to environments with possibly asymmetric platforms and

partially covered buyer-side market, assuming that the equilibrium described in Proposition OA.3 exists

(which requires quasiconcavity of platform profit functions). We make three important observations here.

First, we see that seller participation elasticity remains a key factor (as captured by the term −ϕ′i in

the proposition statement). Buyer participation elasticity matters only to the extent that it influences the

sign of ds∗i /dm.

Second, suppose that ds∗i /dm < 0 holds (i.e., the equilibrium buyer-side market share of platform i

shrinks with the number of platforms m). Then, Proposition OA.4 immediately implies

da∗i
dm

has the same sign as ϕ′,

which is exactly the same condition as Proposition 3. This result is a consequence of the competitive

bottlenecks logic: platforms face no real competition with respect to the seller side, and so a higher m

affects a∗i only indirectly through changes in the buyer-side market share s∗i .

Third, by standard logic of increased competitiveness, ds∗i /dm < 0 is a reasonable property, but it may

not always hold in environments with asymmetric platforms and strong enough network effects. Verifying

ds∗i /dm < 0 requires total differentiation of the system of equations that pins down (s∗1, ..., s
∗
m) in Proposition

OA.3, which is analytically challenging. Nonetheless, in the special case of constant elasticity ϕ′i = 0, then

a∗i is always independent of m, regardless of the sign of ds∗i /dm.

F Details for Section 4

F.1 Heterogeneous interaction benefits

� Preliminaries. We first state the equilibrium pricing by the sellers. Facing the commission rate ri,

a seller’s optimal price on platform i is then

p(ri) = arg max
pi

{
((1− ri) pi − c)(V − pi)

(
siθreg +

λ

m
θloyal

)}
,

where siθreg + λ
mθloyal is the sum of buyers on platform i (weighted according to their interaction value).

Then, define q(ri) = V − p(ri). The linear demand form implies q(ri) > 0 for all ri < r̄ = 1 − c
V

and q(ri) = 0 otherwise. Seller total profit from platform i is
(
siθreg + λ

mθloyal
)
π(ri), where π(ri) =

((1− ri) p(ri)− c)(V − p(ri)), and the per-seller surplus of the buyer is

vτ (ri) = V θτq(ri)−
θ2
τ

2θτ
q(ri)

2 − p(ri)θτq(ri)

=
θτ
2

(V − p(ri))2.

We have

Uτi = vτ (ri)

(
π(ri)(siθreg+ λ

m θloyal)
kmax

)ϕ
Ri = rip(ri)q(ri)

(
siθreg + λ

mθloyal
)(π(ri)(siθreg+ λ

m θloyal)
kmax

)ϕ
.

Platform profit is
(
λ
m + si

)
PBi +Ri.

� Equilibrium existence. We now use the leading example with Hotelling competition to demonstrate

the conditions for equilibrium existence. Recall that loyal buyers have no transportation costs for their
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preferred platform and infinite transportation costs for the other platform, and their outside option is

valued at zero.

Clearly, if λ = 0, the model reduces to the leading example with Hotelling competition, in which case

the existence condition (16) immediately applies. Hence, our strategy here is to show equilibrium existence

for sufficiently small λ→ 0. We focus on θreg = 0.

Each platform i chooses ri and si to maximize

Πi =
(
PB∗ + Uregi (ri; si)− Ureg−i (r∗; 1− si)− (2si − 1)t

)(λ
2

+ si

)
+Ri(ai; si)

=
(
PB∗ − (2si − 1)t

)(λ
2

+ si

)
+ rip(ri)q(ri)

(
π(ri)

kmax

)ϕ(
λ

2
θloyal

)1+ϕ

,

where we used θreg = 0. Observe that r∗ is determined by a single-variable maximization, regardless of the

value of si:

r∗ = arg max
ri∈[0,r̄]

rip(ri)q(ri))π(ri)
ϕ.

Meanwhile, maximization with respect to si is a standard Hotelling problem and so local concavity holds

and the FOC gives PB∗ = (1 + λ) t. The equilibrium profit is

Πeqm =
t

2
(1 + λ)

2
+ r∗p (r∗) q (r∗)

(
π (r∗)

kmax

)ϕ(
λ

2
θloyal

)1+ϕ

.

Full coverage of the regular type requires

b >

(
3

2
+ λ

)
t,

which also ensures full coverage of the loyal type.

It remains to rule out a global deviation where each platform just fully exploits its loyal buyers by setting

P dev = b+ vloyal
(
rdev

)(π (rdev)
kmax

)ϕ(
λ

2
θloyal

)ϕ
> (1 + λ) t = PB∗

together with the optimal deviation commission rdev that is the maximizer of

Πdev = max
ri∈[0,r̄]

{(
b+ vloyal(ri)

(
π(ri)

λ
2 θloyal

kmax

)ϕ)(
λ

2
+ sdevi

)
+ rip(ri)q(ri)

(
π(ri)

kmax

)ϕ(
λ

2
θloyal

)1+ϕ
}
,

where

sdevi =
1

2
+

1

2t

(
(1 + λ) t− b− vloyal(ri)

(
π(ri)

λ
2 θloyal

kmax

)ϕ)
.

Using an envelope theorem argument, it is easy to verify that limλ→0 Πdev < Πeqm by definition. Hence,

the equilibrium exists for λ sufficiently small.

� Proof of Proposition 4. Notice that only regular buyers are marginal because loyal buyers al-

ways purchase from their respective preferred platform. We apply the same reframing technique used in

Proposition 1: each platform’s optimal ri (for given si) maximizes(
λ

m
+ si

)
Uregi +Ri

=

(
vreg(ri)

(
λ

m
+ si

)
+ rip(ri)q(ri)

(
siθreg +

λ

m
θloyal

))(
π(ri)

(
siθreg + λ

mθloyal
)

kmax

)ϕ
.
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After imposing symmetry and removing the multiplicative coefficients that are irrelevant for the maximiza-

tion problem, we conclude that in the equilibrium r∗ is

r∗ = arg max
ri∈[0,r̄]

{(vreg(r) (1 + λ) + rp(r)q(r) (θreg + λθloyal))π (r)
ϕ} ,

whereas

PB∗ =
1

mΦ′(0)
−
(

m

m− 1
ϕvreg(r

∗) + (1 + ϕ)r∗p(r∗)q(r∗) (θreg + λθloyal)

)(
π(r∗) (θreg + λθloyal)

mkmax

)ϕ
.

Now consider WSE :

WSE(r) = Uregi +mRi + λ
(
b+ U loyali

)
+

∫ ε̄

ε

ε̂dF̂ (ε̂)

= λb+ (1 + λ)Uregi +mRi + λ
(
U loyali − Uregi

)
+

∫ ε̄

ε

ε̂dF̂ (ε̂),

where (1 + λ)Uregi +mRi is proportional to the objective of r∗ and so it is maximized at r∗. Meanwhile,

U loyali − Uregi = (vloyal (r)− vreg(r))
(
π (r) (θreg + λθloyal)

mkmax

)ϕ
=

θloyal − θreg
2

(V − p(r))2

(
π (r) (θreg + λθloyal)

mkmax

)ϕ
,

which is monotonically decreasing (increasing) in r if θloyal > (<)θreg. A simple proof by contradiction then

shows rSE ≤ (≥)r∗ if θloyal > (<)θreg, thus completing the proof.

� General demand specification. We now consider a more general demand specification rather than

the linear-quadratic specification in the main text. We denote seller total profit on i as

π̄ (ri; si) = max
pi

{
((1− ri) pi − c)[

λ

m
Dloyal(pi) + siDreg(pi)]

}
,

where p(ri) is its maximizer. The corresponding total transaction quantity is

q̄(ri; si) =
λ

m
Dloyal(p(ri; si)) + siDreg(p(ri; si)),

while the per-seller surplus of the buyer is vτ (ri; si) = uτ (Dτ (p (ri; si))) − p (ri; si)Dτ (p (ri; si)) for each

type τ ∈ {reg, loyal}. We have

Uθi = vθ (ri; si)
(
π̄(ri;si)
kmax

)ϕ
Ri = rip(ri)q̄(ri; si)

(
π̄(ri;si)
kmax

)ϕ
.

Platform profit is
(
λ
m + si

)
PBi +Ri. By the same reframing technique used in Proposition 1, each platform’s

optimal ri (for given si = 1/m) maximizes

r∗ = arg max
ri∈[0,r̄]

{
1 + λ

m
Uregi +Ri

}
= arg max

ri∈[0,r̄]

{(
vreg(r;

1

m
)
1 + λ

m
+ rp(r;

1

m
)q̄(r;

1

m
)

)
π̄(r;

1

m
)ϕ
}

,

while

WSE(r) = λb+ (1 + λ)Uregi +mRi + λ
(
U loyali − Uregi

)
+

∫ ε̄

ε

ε̂dF̂ (ε̂),
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where (1 + λ)Uregi +mRi is proportional to the objective of r∗ and so it is maximized at r∗. Meanwhile,

U loyali − Uregi =

(
vloyal(r;

1

m
)− vreg(r;

1

m
)

)(
π̄(r; 1

m )

kmax

)ϕ
,

and so rSE ≤ (≥)r∗ holds if d
dr (U loyali − Uregi ) ≤ (≥)0.

Suppose the utility function satisfies the standard Spence-Mirrlees single-crossing condition d
dquloyal >

d
dqureg (for all q ≥ 0) and boundary condition uloyal(0) = ureg(0). It implies vloyal(r;

1
m ) > vreg(r;

1
m ) and

d
dr

[
vloyal(r;

1
m )− vreg(r; 1

m )
]
< 0, so that rSE ≤ r∗. In the opposite case of d

dquloyal <
d
dqureg, the same

reasoning implies rSE ≥ r∗.

F.2 Partial market coverage

� Preliminaries. In this setting, the interaction benefit Ui of all buyers on platform i is the same, and

it just depends on the total measure si of (regular and loyal) buyers on platform i. Hence, we can employ

our standard technique for solving for the equilibrium. Recall, in our leading example, the solution for the

equilibrium commission r∗ is determined by a single-variable maximization, regardless of the value of si, as

shown in (14). Thus, the determination of r∗ remains unchanged even when the market is only partially

covered.

Denote the total mass of buyers (both regulars and loyals) on platform i as si = sregi +sloyali . Continuing

from the leading example with Hotelling competition, we know the market shares of regular buyers (i.e., those

between the Hotelling line)

sreg1 =
1

2
+
U1 − U2 + PB2 − PB1

2t
,

with sreg2 = 1− sreg1 ; whereas the market shares of loyal buyers (i.e., those in the hinterlands) is

sloyali =
b+ Ui − PBi

L · tL
.

Combining,

s1 =
1

2
+
U1 − U2 + PB2 − PB1

2t
+
b+ U1 − PB1

L · tL

s2 =
1

2
− U1 − U2 + PB2 − PB1

2t
+
b+ U2 − PB2

L · tL
.

Without loss of generality, we normalize L = 1 (by rescaling tL accordingly).

It is useful to define

y(r) ≡ v (r)
π (r)

kmax

z(r) ≡ 1

kmax
(v (r) + rp(r)q(r))π (r) ,

where we note z(r) > y(r) for all r ∈ [0, r]. Throughout, we assume

min{t, tL} > max
r∈[0,r]

{2z(r)} ≡ 2z(r∗). (30)

As will be shown below, condition (30) ensures that the market share expressions below are well-behaved,

and that the second-order conditions for the platform’s profit-maximizing pricing choices hold.
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To express s1 and s2 explicitly in terms of prices, we substitute Ui = y(ri)si (given ϕ = 1) to get

s1 =
1

2
+
y (r1) s1 − y (r2) s2 + PB2 − PB1

2t
+
b+ y (r1) s1 − PB1

tL

s2 =
1

2
− y (r1) s1 − y (r2) s2 + PB2 − PB1

2t
+
b+ y (r2) s2 − PB2

tL
,

which upon solving implies

s1 =
1

2
+

(2PB2 − 2PB1 + y (r1)− y (r2))t2L + 2 (ttL − ty (r2)− tLy (r2))
(
2b− 2PB1 + y (r1)

)
4tt2L + 4 (t+ tL) y (r1) y (r2)− (2t2L + 4ttL)(y (r1) + y (r2))

.

The denominator of s1 is positive because

4tt2L + 4 (t+ tL) y1y2 − (2t2L + 4ttL)(y1 + y2)

> 4tt2L + 4 (t+ tL) t2L − 2(2t2L + 4ttL)tL = 0,

where the inequality uses that the denominator is decreasing in y1 and y2 and that y(r) < tL by (30).

Note that si is decreasing in PBi , and so the reframing technique used to establish Proposition 1 continues

to apply. Then following the derivation associated with (14), we know that each platform’s optimal ri is

independent of its market share si, and the equilibrium r∗ maximizes z(r). Hence, in what follows, we focus

on the symmetric commission r1 = r2 = r. In this case, the market share expressions simplify to

s1 =
1

2
+

t2L
(
PB2 − PB1

)
2 (tL − y(r)) (ttL − (t+ tL) y(r))

+
2
(
b− PB1

)
+ y (r)

2 (tL − y(r))
(31)

s2 =
1

2
+

t2L
(
PB1 − PB2

)
2 (tL − y(r)) (ttL − (t+ tL) y(r))

+
2
(
b− PB2

)
+ y (r)

2 (tL − y(r))
,

where the denominators are positive due to (30) as noted above.

� Proof of Proposition 5. Platform profit functions are PB1 s1 + R1 and PB2 s2 + R2 respectively,

where recall

Ri =
1

kmax
rp(r)q(r)π (r) s2

i .

For any given r, solving the symmetric FOCs with respect to PBi gives

PB∗ =

(
tt2L + (t+ tL) y(r) (2z(r)− y(r))− tL (2t+ tL) z(r)

)
(tL + 2b)

t3L + 4tt2L + 4 (t+ tL) y(r)z (r)− tL (4t+ 3tL) y(r)− 2tL (2t+ tL) z(r)
.

Condition (30) implies denominator of PB∗ expression is positive given z(r∗) > y(r) for all r. Substituting

PB∗ back into the expressions for si given by 31, the symmetric equilibrium measure of buyers on each

platform will be

s∗ =

(
b+

tL
2

)
2ttL + t2L − 2 (t+ tL) y(r)

t3L + 4tt2L + 4 (t+ tL) y(r)z(r)− tL (4t+ 3tL) y(r)− 2tL (2t+ tL) z (r)
.

Note s∗ is increasing in y(r); and it is also increasing in z(r) if tL(2t+ tL) > 2 (t+ tL) y(r), which holds due

to (30).

Now consider WSE , which is equal to

WSE(r) = 2bs∗ + 2z(r) (s∗)
2 − t

4
− tL

(
s∗ − 1

2

)2

.
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Given z(r) is maximized at r∗, at r∗ a small change in r only changes WSE via s∗. Then

dWSE

dr
|r=r∗ =

∂WSE

∂s∗
ds∗

dr
|r=r∗ ,

where

∂WSE

∂s∗
= 2b+ 4z(r)s∗ − 2tL

(
s∗ − 1

2

)
= 2b+ tL − 2 (tL − 2z(r)) s∗

= 2tL

(
b+

tL
2

)
2t (tL − y (r))− tLy(r)

t3L + 4tt2L + 4 (t+ tL) y(r)z(r)− tL (4t+ 3tL) y(r)− 2tL (2t+ tL) z (r)

= 2tLs
∗ 2t (tL − y(r))− tLy(r)

2ttL + t2L − 2 (t+ tL) y (r)
> 0,

where the last inequality holds given (30) as it implies ttL > (t+ tL) y(r); whereas ds∗

dr |r=r∗ has the same

sign as ∂
∂ry(r) < 0. We conclude dWSE

dr |r=r∗ < 0.

� Equilibrium existence. Computing the second derivative of platform profit with respect to PBi ,

concavity holds if

−
(
t2L + 2ttL − 2 (tL + t) y(r)

) (
2tt2L + 2 (tL + t) y(r)z(r)− tL (2t+ tL) (y(r) + z(r))

)
< 0.

Condition (30) implies ttL > (t+ tL) y(r), and so the first bracketed term is positive. Thus, we require

2tt2L + 2 (t+ tL) y(r)z(r) > tL (2t+ tL) (y(r) + z(r)) . (32)

Note since the expression is linear in y(r), for it to be true for all 0 ≤ y(r) ≤ z(r), it just needs to be true

when y(r) = 0 and when y(r) = z (r). When y(r) = 0 it requires 2ttL > (2t+ tL) z(r), which is true given

ttL > (t+ tL) z(r). When y(r) = z(r), it requires 2tt2L > 2tL (2t+ tL) z − 2 (t+ tL) z2, which follows from

(30).

F.3 Asymmetric platforms

� Preliminaries. Continuing from the leading example with Hotelling competition, when platform 1

offers an additional standalone benefit β > 0, we have

s1 =
1

2
+
U1 − U2 + PB2 − PB1 + β

2t
,

with s2 = 1− s1. It is useful to define

y(r) ≡ v (r)
π (r)

kmax

z(r) ≡ 1

kmax
(v (r) + rp(r)q(r))π (r) .

Throughout, we assume

t > max
r∈[0,r]

{z(r)} ≡ z(r∗). (33)

As will be shown below, condition (33) ensures that the market share expression below is well-behaved, and

that the second-order conditions for the platform’s profit-maximizing pricing choices hold.

To express s1 and s2 explicitly in terms of prices, we substitute Ui = y(ri)si (given ϕ = 1) to get
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s1 =
1

2
+
y(r1)s1 − y(r2)s2 + PB2 − PB1 + β

2t
,

which implies

s1 =
1

2
+

PB2 − PB1 + β

(2t− y (r1)− y(r2))
,

and s2 = 1 − s1. Notice the denominator is positive due to (33). Note that si is decreasing in PBi , and so

the reframing technique used to establish Proposition 1 continues to apply. Then following the derivation

associated with (14), we know that each platform’s optimal ri is independent of its market share si, and the

equilibrium r∗ maximizes z(r).

� Proof of Proposition 6. Platform profit functions are PB1 s1 + R1 and PB2 s2 + R2 respectively,

where recall

Ri =
1

kmax
rp(r)q(r)π (r) s2

i .

For any given r, solving the FOCs gives

PB∗2 − PB∗1 = −2β
t− z(r)

3t− y (r)− 2z(r)

so that

s∗1 =
1

2
+

β

6t− 2y(r)− 4z (r)
. (34)

Since r∗ is the maximizer of z(r) and given y(r) is decreasing in r, we have
ds∗1
dr |r=r∗ < 0.

Now consider WSE , which is equal to

WSE = b+ U1s
∗
1 + U2s

∗
2 +R1 +R2 −

t

2
(s∗1)

2 − t

2
(s∗2)

2
+ βs∗1

= b+

(
z(r)− t

2

)
(s∗21 + s∗22 ) + βs∗1.

Given z(r) is maximized at r∗, at r∗ a small change in r only changes WSE via s∗. Then

dWSE

dr
|r=r∗ =

∂WSE

∂s∗1

ds∗1
dr
|r=r∗ < 0

because

∂WSE

∂s∗
= 2 (2s1 − 1)

(
z(r)− t

2

)
+ β

= β

(
2t− y(r)

3t− y(r)− 2z (r)

)
> 0,

where the last inequality holds given (33) as it implies t > y(r).

� Acquisitions that add to buyers’ per-seller value. Continuing from the leading example,

suppose platform i’s acquisition adds to its buyers’ per-seller value by σBi . This benefit is independent of

the quantity of purchase. Recall that given a seller’s price pi on platform i, each buyer chooses the number

of units to purchase qi to maximize their net utility with respect to this seller: arg maxqi{u(qi)−piqi+σBi }.
Clearly, the component σBi does not change the resulting demand function. Therefore, sellers continue

to solve p(ri) = arg maxpi {((1− ri)pi − c)D(pi)}. Let q(ri) ≡ D(p(ri)). We continue to denote v(ri) =

u(q(ri))− p(ri)q(ri) as the transaction value that buyers get per-seller, and π(ri) = ((1− ri)p(ri)− c)q(ri)
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as each seller’s per-buyer transaction profit. Then

Ui = (v(ri) + σBi )

(
π(ri)si
kmax

)ϕ

whereas Ri = rip(ri)q(ri)si

(
π(ri)si
kmax

)ϕ
remains the same. The equilibrium commission by the acquiring

platform i is

r∗i = arg max
ri∈[0,r]

{
(v(ri) + σBi + rip(ri)q(ri))π(ri)

ϕ
}
.

Denote the objective function as F (ri, σ
B
i ), the cross partial-derivative is

∂2

∂ri∂σBi
F (ri, σ

B
i ) = ϕπ(ri)

ϕ−1 dπ(ri)

dri
< 0

Therefore, by the standard monotone comparative statics argument, r∗i is decreasing in σBi . That is, platform

i decreases its equilibrium commission after the buyer-side acquisition.

� Acquisitions that add to sellers’ per-buyer value. Continuing from the leading example, suppose

platform i’s acquisition adds to its sellers’ per-buyer value by σSi . There are no changes from the buyer

perspective. So, we continue to denote v(ri) = u(q(ri))− p(ri)q(ri) as the transaction value that buyers get

per-seller, and π(ri) = ((1 − ri)p(ri) − c)q(ri) as each seller’s per-buyer transaction profit. Then, a seller

joins the platform if and only if (π(ri) + σSi )si ≥ ki. Therefore,

Ui = v(ri)

(
(π(ri) + σSi )si

kmax

)ϕ

whereas Ri = rip(ri)q(ri)si

(
(π(ri)+σ

S
i )si

kmax

)ϕ
. The equilibrium commission by the acquiring platform i is

r∗i = arg max
ri∈[0,r]

{
(v(ri) + rip(ri)q(ri))(π(ri) + σSi )ϕ

}
.

Denote the objective function as F (ri, σ
S
i ), then

1

(π(ri) + σSi )ϕ−1

∂F (ri, σ
S
i )

∂ri
= (π(ri) + σSi )

d

dri
(v(ri) + rip(ri)q(ri)) + ϕ

dπ(ri)

dri
,

which is single-crossing in σSi : Suppose ∂F
∂ri

(≥) > 0, at σSi = σ′ then

(π(ri) + σ′)
d

dri
(v(ri) + rip(ri)q(ri)) + ϕ

dπ(ri)

dri
(≥) > 0,

which means the first term is positive (because dπ(ri)/dri < 0). Therefore, for σ′′ > σ′, we have

(π(ri) + σ′′)
d

dri
(v(ri) + rip(ri)q(ri)) + ϕ

dπ(ri)

dri
(≥) > 0.

Consequently, by the monotone comparative statics argument, r∗i is increasing in σSi . That is, platform i

increases its equilibrium commission after the buyer-side acquisition.

G Details for Section 5

We first verify the equilibrium construction stated in the proof of Proposition 7, and then provide the

omitted details corresponding to Sections 5.2 and 5.3.
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G.1 Equilibrium with spillovers

To characterize any symmetric equilibrium (a∗, PB∗), we consider an off-path “semi-symmetric” partic-

ipation equilibrium when one of the platforms (say platform i = 1) deviates and sets
(
ai, P

B
i

)
6= (a∗, PB∗),

resulting in an off-equilibrium path instrument vector profile

â = (ai, a
∗1m−1) = (ai, a

∗, ..., a∗) ∈ Am,

buyer-side price profile (PBi , P
B∗, ..., PB∗) and buyer-side market share profile:

(si,
1− si
m− 1

1m−1) =

(
si,

1− si
m− 1

, · · · , 1− si
m− 1

)
,

where 1m−1 is a 1 × (m − 1) vector of ones. That is, all other m − 1 platforms j 6= i equally absorb the

resulting change in market share (due to symmetry and the market being covered), resulting in sj = 1−si
m−1 .

Then, the fixed-point definition of market share si in (2) becomes

si = Φ

(
Ui(â; si,

1− si
m− 1

1m−1)− Uj(â; si,
1− si
m− 1

1m−1)− PBi + PB∗
)
.

Notice we are expressing Ui and Uj as functions of (a1, a2, ..., am; s1, s2, ..., sm) in the exact stated order.

Therefore, we let ∂Ui/∂si and ∂Uj/∂si (likewise, ∂Ui/∂sj and ∂Uj/∂sj) denote the partial derivative of

Ui and Uj with respect to their m + i-th argument (likewise, m + j-th argument). Then, the slope of the

right-hand-side with respect to si is

Φ′ ×

∂Ui
∂si
− ∂Uj
∂si
− 1

m− 1
(
∂Ui
∂sj
− ∂Uj
∂sj

)− 1

m− 1

∑
l 6=i,j

(
∂Ui
∂sl
− ∂Uj
∂sl

)


< BΦ ×

(
m

m− 1
BUown +

m

m− 1
BUcross +

m− 2

m− 1
2BUcross

)
,

where

BΦ ≡ sup
x∈R

Φ′(x)

BUown ≡ sup
a∈Am

sup
s∈[0,1]m

| ∂
∂si

Ui(a, s)|

BUcross ≡ sup
a∈Am

sup
s∈[0,1]m

| ∂
∂sj

Ui(a, s)|.

Therefore, to ensure the existence of a fixed point, a formal sufficient condition is 2BΦ×(BUown + 2BUcross) <

1. Under this condition, the resulting demand system is analogous to standard discrete choice models.

Platform i chooses
(
ai, P

B
i

)
to maximize profit Πi, taking as given (a∗, PB∗) set by each other platform.

Following the approach of Armstrong (2006) and Tan and Zhou (2021), to solve this maximization problem,

we reframe the problem as platform i directly choosing the target market share si implementable by its

buyer-side price PBi , i.e., maximization with respect to (ai, si). Formally, this is done by inverting (8), so

that PBi becomes a function of (ai, si) satisfying:

PBi = PB∗ + Ui(â; si,
1− si
m− 1

1m−1)− Uj(â; si,
1− si
m− 1

1m−1)− Φ−1(si).
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Then, platform i’s problem is to choose (ai, si) to maximize

Πi (ai; si) = PBi si +Ri(ai; si)

=

(
PB∗ + Ui(â; si,

1− si
m− 1

1m−1)− Uj(â; si,
1− si
m− 1

1m−1)− Φ−1(si)

)
si +Ri(â; si,

1− si
m− 1

1m−1).

To ensure the existence of a symmetric equilibrium, we assume that Πi is globally strictly quasiconcave

in (ai, si), as in the baseline model. In any symmetric equilibrium, each platform’s optimal choice of ai = a∗

is a maximizer of Πi (ai; si) while holding si = 1/m and the instrument choices of other platforms constant

at a∗. That is,

a∗ ∈ arg max
ai∈A

{
1

m
Ui(â;

1

m
1)− 1

m
Uj(â;

1

m
1) +Ri(â;

1

m
1)

}
,

which is exactly (18). Meanwhile, the derivative of Πi with respect to si (using sj = 1−si
m−1 , as noted above)

is

dΠi

dsi
=

∂Ui
∂si
− ∂Uj
∂si
− 1

m− 1
(
∂Ui
∂sj
− ∂Uj
∂sj

)− 1

m− 1

∑
l 6=i,j

(
∂Ui
∂sl
− ∂Uj
∂sl

)− 1

Φ′

 si +

∂Ri
∂si
− 1

m− 1

∑
l 6=i

∂Ri
∂sl


+PB∗ + Ui − Uj − Φ−1(si),

where we have omitted function arguments. Imposing symmetry, that is, ∂Ui
∂si

=
∂Uj
∂sj

, ∂Ui
∂sj

=
∂Uj
∂si

for i 6= j

and ∂Ui
∂sl

=
∂Uj
∂sl

, and ∂Ri
∂sl

= ∂Ri
∂sj

for l 6= i, j, we get

dΠi

dsi
=

(
m

m− 1
(
∂Ui
∂sj
− ∂Uj
∂sj

)− 1

Φ′

)
1

m
+ (

∂Ri
∂si
− ∂Ri
∂sj

) + PB∗ − Φ−1(
1

m
).

So the FOC gives

PB∗ =
1

mΦ′(0)
− 1

m− 1
(
∂Ui(a; s)

∂si
− ∂Ui(a; s)

∂sj
)− (

∂Ri(a; s)

∂si
− ∂Ri(a; s)

∂sj
), (35)

where the derivatives are evaluated at the symmetric outcome (a; s) = (a∗1; 1
m1).

Meanwhile, the welfare objectives are given by

WSE(a) =

∫ ε̄

ε

[
ε̂+ Ui(a1;

1

m
1)

]
dF̂ (ε̂) +mRi(a1;

1

m
1),

W (a) = WSE(a) +mSSi(a1;
1

m
1).

Given SSi is decreasing in a, it is immediately clear that aSE ≥ aW (as claimed in Lemma 1).

G.2 Spillovers from seller singlehoming

We continue from the leading example and assume that sellers’ outside option is zero, and each seller is

indexed by (k1, ..., km) ∈ [kmin, kmax]
m

. We add a standalone benefit bS to seller’s participation utility from

joining platform i, which is now

bS + π(ri)si − ki.

We assume bS is sufficiently high to ensure full coverage of the seller-side market. Denote Ψ(·) as the CDF of

ki −maxj 6=i{kj} and the corresponding derivative is denoted as Ψ′(·). To ensure that seller participation is

well behaved, as we did on the buyer side, we assume that the extent of heterogeneity in sellers’ idiosyncratic

draws of participation costs (k1, ..., km), as measured by 1/Ψ′ > 0, is large enough.
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We know from (18) that

r∗ = arg max
ri∈[0,r]

{
1

m
Ui −

1

m
Uj +Ri

}
.

Due to the semi-symmetry structure in the off-equilibrium path when one platform i deviates, we have

nj = 1−ni
m−1 for j 6= i, and so

r∗ = arg max
ri∈[0,r]

{
1

m

(
v(ri)ni − v (r∗)

1− ni
m− 1

)
+
rip(ri)q(ri)

m
ni

}
,

where ni = Ψ

(
π(ri)− π(r∗)

m

)
.

It is useful to define

z(ri) ≡ v(ri) + rip(ri)q(ri).

Then, ignoring boundary conditions, the corresponding FOCs for r∗ is(
mv (r∗)

m− 1
+ r∗p(r∗)q(r∗)

)
Ψ′(0)

m2

dπ(r∗)

dri
+
dz(r∗)

dri

1

m2
= 0. (36)

Meanwhile, the welfare benchmarks have

rSE = arg max
ri∈[0,r]

{v(ri) + rip(ri)q(ri)} = arg max
ri∈[0,r]

z(ri)

rW = arg max
ri∈[0,r]

{v(ri) + (p(ri)− c)q(ri)} = 0.

Next, given dπ/dri < 0, it is clear that rSE ≥ r∗, with strict inequality if r∗ or rSE is an interior solution,

or if r∗ = 0 and rSE = r̄.

� A closed-form solution. To proceed further, suppose seller marginal cost is c = 0, so that v(ri) = v,

and p(ri)q(ri) = pq are now constants that are independent of the commission rate ri. Then, dz/dri =

−dπ/dri = pq > 0, and so (36) simplifies to

−
(

vm

m− 1
+ r∗pq

)
Ψ′(0) + 1 = 0

=⇒ r∗ =
1

pq

(
1

Ψ′(0)
− vm

m− 1

)
,

whereas rSE = r̄ (where r̄ = 1 due to c = 0). Therefore, we have

r∗ < rSE = r̄ if
vm

m− 1
>

1

Ψ′(0)
− pq

and

r∗ > rW = 0 if
vm

m− 1
<

1

Ψ′(0)
.

In particular, in the equilibrium the baseline distortion is completely mitigated (i.e., r∗ = rW < rSE)

if vm
m−1 ≥

1
Ψ′(0) . This holds when the extent of heterogeneity in sellers’ idiosyncratic draws of participation

costs (k1, ..., km) is low (provided the symmetric equilibrium still exists — see, e.g., the two-sided Hotelling

specification below). If we allow platforms to choose negative commissions ri < 0, then it is straightforward

to show that rW = 0 continues to hold, so that vm
m−1 >

1
Ψ′(0) implies a reversion of the sign of distortion in

equilibrium (i.e., r∗ < rW ). Intuitively, the reversion reflects that platforms are overly focused on attracting

sellers and thus subsidize sellers by too much relative to the socially optimal level.

As an illustration, we consider the following two-sided Hotelling specification withm = 2 platforms. That
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is, the buyer-side participation demand is Φ(x) = 1
2 + x

2tB
whereas the seller-side participation demand is

Ψ (x) = 1
2 + x

2tS
, where tB and tS are the respective mismatch cost parameters. Then,

r∗ =
2

pq
(tS − v) .

Meanwhile, the pricing equation (35) and

Ui = v
(

1
2 +

(1−ri)pqsi−(1−rj)pqsj
2tS

)
Ri = ripqsi

(
1
2 +

(1−ri)pqsi−(1−rj)pqsj
2tS

)
,

imply

PB∗ = tB −
(
v +

r∗pq

2

)
(1− r∗)pq

tS
− r∗pq

2
.

Suppose p = q = 1, and tB = tS = 2. We can verify that the symmetric equilibrium exists for v in the range

[1.5, 2] which maps out r∗ = 1 down to r∗ = 0. Note that at v = 2, we have r∗ = 0, illustrating that the

outcome of r∗ = rW < rSE does not necessarily violate equilibrium existence.

� Seller-side lump-sum fees. We can apply our formula (18) to the case of seller-side lump-sum fees

PSi considered by Armstrong (2006) and Tan and Zhou (2021). Given the absence of commissions, we can

drop the function arguments in v and π. By the same analysis as above, PS∗ is the maximizer of

PS∗ = arg max
PSi

{
1

m
Ui −

1

m
Uj +Ri

}
= arg max

PSi

{
v

m

(
ni −

1− ni
m− 1

)
+ PSi ni

}
,

where ni = Ψ
(
PS∗ − PSi

)
. Note we do not need the domain of feasible PSi to be compact for this maxi-

mization problem to be well-defined. The corresponding FOC is

PS∗ =
1/m

Ψ′(0)︸ ︷︷ ︸
market power

− v

m− 1︸ ︷︷ ︸
cross-subsidization due to benefits enjoyed by buyers

,

which is a special micro-founded case of the equilibrium pricing formula obtained by Tan and Zhou (2021).

G.3 Spillovers from seller-side post-participation decisions

Throughout this subsection, we assume all sellers have zero fixed costs and zero participation costs ki = 0

(i.e., the distribution G is degenerate) in order to show spillovers can arise absent any fixed participation

cost.

� Price coherence. We first prove the claim on p (ravg) q(ravg) being decreasing in ravg. Whenever

a seller is subjected to price coherence, the seller chooses its common price p to maximize(∑
i∈φ

si ((1− ri)p− c)
)
D(p),

which can be rewritten as

((1− ravg)p− c)D(p)
∑

i∈φ
si,

where ravg = 1∑
i∈φ si

∑
i∈φ siri. We denote the optimal price as p(ravg). Given that D(p) is strictly
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log-concave, p(ravg) is given by the FOC:

p =
c

1− ravg
− D(p)

D′(p)

=⇒ pD′(p) < −D(p).

The last inequality implies

d

dravg
p (ravg) q(ravg) =

d

dravg
p (ravg)D(p(ravg))

= (D(p) + pD′(p))︸ ︷︷ ︸
<0

dp

dravg︸ ︷︷ ︸
>0

< 0.

Similar to the leading example, we denote π(r) = maxp ((1− r)p− c)D(p). Then, the seller has joined a set

φ of platforms (and subjected to price coherence) earns profit
∑
i∈φ siπ(ravg).

Next, we verify the claims that all sellers will multihome on all platforms as long as the commission

difference maxj 6=i |ri − rj | is not too large, and that the platforms have no incentive to deviate and induce

large commission differences if β is small enough. Without loss of generality, it suffices to focus on the case

where platform i sets ri ≤ r∗ while all other platforms j 6= i set rj = r∗. Consider an individual seller’s

decision on whether to multihome. Clearly, all sellers who are not subjected to price coherence would prefer

to multihome. For the sellers subjected to price coherence, multihoming on all platforms is always better

than joining only the higher-commission platforms (platform j 6= i) because

πall = π(r∗(1− si) + risi)

> π(r∗)

> π(r∗)(1− si) = πj only,

since π(.) is a decreasing function. Meanwhile, multihoming is better than singlehoming on the lower-

commission platform (platform i) if and only if

πall = π(r∗(1− si) + risi) ≥ π(ri)si,

which holds if and only if the commission difference r∗ − ri is small enough.

We now verify that platforms have no incentive to set a large difference in commission as long as ω is

sufficiently small. Let us pin down the equilibrium commission level r∗. Recall

Ui = ωv(ravg) + (1− ω)v(ri)

Ri = ri (ωp (ravg) q(ravg) + (1− ω)p(ri)q(ri)) si.

Assuming all sellers multihome on all platforms in the equilibrium, the FOC satisfies:(
∂Ui
∂ri
− ∂U−i

∂ri

)
1

m
+
∂Ri
∂ri

= 0

⇐⇒ (1− ω)v′(r∗)

m
+
p (r∗) q(r∗)

m
+
r∗

m

( ω
m

+ 1− ω
)

(p′ (r∗) q(r∗) + p (r∗) q′(r∗)) = 0.

Observe that r∗ is increasing in ω because the derivative of the left-hand-side with respect to ω is

−v
′(r∗)

m
− r∗

m

(
m− 1

m

)
(p′ (r∗) q(r∗) + p (r∗) q′(r∗)︸ ︷︷ ︸

<0

) > 0.
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Suppose platform i wants to deviate by choosing (ri, P
B
i ) 6= (r∗, PB∗) to induce some sellers to single-

home. Recall this necessarily requires ri < r∗. This is applicable only to the mass ω of sellers that are

subjected to price coherence. A successful deviation requires

π(siri + (1− si)r∗) < π(ri)si.

Let us denote the maximum deviation fee as rdev, which we know is strictly below r∗ as long as si < 1 (i.e.,

buyer-side heterogeneity is not too small), for any ω ≥ 0. With this undercutting strategy, buyers expect

utility difference

Ui − U−i = v(rdev)− (1− ω)v(r∗) + PBi − PB∗

and the deviation platform profit is

Πdev = max
PBi ;ri≤rdev

{
(PBi + rip(ri)q(ri))

×Φ(v(rdev)− (1− ω)v(r∗) + PBi − PB∗)

}
.

Furthermore, observe that the equilibrium platform profit can be expressed as

Π∗ = (PB∗ + r∗p(r∗)q(r∗))
1

m

= max
PBi ;ri

{
(PBi + ωrip(r

avg)q(ravg) + (1− ω)rip(ri)q(ri))

×Φ((1− ω) (v(ri)− v(r∗)) + PBi − PB∗)

}
.

Therefore, if ω → 0, then the two objective functions coincide. Therefore, the constraint of rdev < r∗ implies

Πdev < Π∗.

� Seller investment that applies to all platforms. Consider our leading example. Suppose in

addition to setting prices, sellers can choose how much to invest to raise their product demand in ways

that are not platform-specific (e.g., this could include investments in broad marketing efforts or quality

improvements).

Specifically, each buyer chooses the number of units to purchase qi to maximize their net utility; i.e.,

arg maxqi {u(qi)B (Is)− piqi}, where B(Is) > 0 indicates the utility enhancement due to seller investment

and Is is a seller’s investment level. We assume B(·) is differentiable, and the derivative B′(·) > 0. We

assume sellers face the associated corresponding cost function K(Is), where K is increasing and strictly

convex, with boundary conditions limIs→∞K ′(Is) =∞ and K ′(0) = 0. Sellers are assumed to set Is at the

same time as their prices on the different platforms. All sellers participate given the absence of participation

fixed cost.

Suppose each platform chooses ri ∈ [0, r̄]. We let c = 0 to simplify seller pricing. Then we define a

seller’s quality-adjusted price p̂i = pi
B(Is)

, and denote the optimal quality-adjusted price as

p̂ ≡ arg max
p̂i

(1− ri)B (Is) p̂iDi (p̂i) ,

which does not depend on either ri or Is. The per-buyer gross profit (not including investment costs) of

each seller is (1− ri)B (Is)π
m and the per-seller surplus of the buyer is B (Is) v

m, where πm = p̂D (p̂) and

vm = u (D (p̂))− p̂D (p̂).

Each seller’s optimal investment maximizes∑m

i=1
(1− ri)B (Is) siπ

m −K(Is).

The above conditions ensures a seller’s optimal investment I∗s is uniquely defined, strictly positive, and
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satisfies the FOC ∑m

i=1
(1− ri)B′ (I∗s ) siπ

m = K ′(I∗s ).

Moreover, I∗s is decreasing in ri on each platform i. As a result, both Ui = B (I∗s ) vm and Ri = riB (I∗s )πmsi

are decreasing in rj for j 6= i. Therefore, there are negative spillovers and r∗ ≥ rSE ≥ rW .

� Platform and seller investment. Continue from the setting immediately above (which we refer

to as the seller-only investment application) and suppose now that each platform chooses ai = −Ii, where

Ii is platform i’s level of investment with associated convex cost C(Ii). We keep the commission rate

ri = r ∈ [0, r̄] fixed and equal across all platforms i = 1, ...,m. Note that we define the platform instrument

in terms of the negative of Ii to maintain the order of ai, which recall was defined so that a higher ai

corresponds to a lower seller surplus.

Platform i’s investment Ii scales up the buyer’s gross utility obtained from transacting with any seller.

The gross utility of buyers is now u(qi)B(Is, Ii), where Is is a seller’s investment with the corresponding

cost function K(Is), with the properties defined in the seller-only investment application above. We assume

B is differentiable and increasing in both its arguments, with B1(Is, Ii) > 0 when evaluated at Is = 0,

and B1(Is, Ii) weakly decreasing in Is. This combination of assumptions ensures that each seller’s optimal

investment is unique, strictly positive, and finite. We say the two types of investments are complements

(substitutes) if B1(Is, Ii) is everywhere increasing (decreasing) in Ii. The timing is that platforms set their

investments first (at the same time as their prices to buyers), before sellers set their investments and prices.

Defining the seller’s quality-adjusted price

p̂i =
pi

B(Is, Ii)

each seller sets p̂i to maximize (1− r)B (Is, Ii) p̂iqi(p̂i). Let the resulting profit maximizing price be denoted

p̂, which does not depend on either r, Is or Ii. The per-buyer gross profit (not including investment costs)

of each seller is (1− r)B (Is, Ii)π
m and the per-seller surplus of the buyer is B(Is, Ii)v

m, where πm and vm

are defined in the seller-only investment application above.

Each seller’s optimal investment maximizes∑m

i=1
(1− r)B(Is, Ii)siπ

m −K(Is).

The above conditions ensures a seller’s optimal investment I∗s is uniquely defined, strictly positive, and

satisfies the FOC ∑m

i=1
(1− r)B1 (I∗s , Ii) siπ

m = K ′(I∗s ).

Moreover, I∗s is decreasing (increasing) in ai = −Ii on each platform i if the two types of investments are

complements (substitutes). As a result, both Ui = B (I∗s , Ii) v
m and Ri = rB (I∗s , Ii)π

msi − C (Ii) are

decreasing (increasing) in aj = −Ij for j 6= i if the two types of investments are complements (substitutes).

Therefore, there are negative spillovers and I∗ ≤ ISE ≤ IW (since a∗ ≥ aSE ≥ aW ) if the two types

of investments are complements, and there are positive spillovers and I∗ ≥ ISE (since a∗ ≤ aSE) which

mitigates the baseline distortion that ISE ≤ IW if the two types of investments are substitutes.

� Promotion of sellers’ direct channel. We continue from Example 2 in Online Appendix A and

modify it by allowing sellers to promote their direct channels. Specifically, suppose each seller chooses

the amount to spend on promoting their direct channel (say spending on an advertising campaign on it),

denoted as κ. Then, each buyer will become aware of the seller’s direct channel with some positive probability

0 ≤ Y (κ) ≤ 1, where Y (0) = 0, Y (∞) = 1, Y ′ > 0 and Y ′′ < 0. Thus, if λi of a seller’s buyers on platform

i are initially uninformed of its direct channel, after promoting its direct channel, only λi (1− Y (κ)) of its

buyers on platform i will remain uninformed.
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Given G(·) is degenerate, we know all sellers will always choose to multihome on all platforms due to

the fact that sellers do not face any restrictions in setting the on-platform prices, face no other costs, and

still keep a fraction of their revenues. Meanwhile, their pricing problem remains the same as Example 2.

Therefore,

Ui = vm.

Meanwhile, a seller’s total profit is
∑m
i=1(1 − ri + (1 − λi (1− Y (κ)))ζri)π

msi − κ, and the maximization

with respect to κ leads to the optimal promotion spending κ∗ satisfying

ζπ∗
m∑
i=1

λirisi =
1

Y ′ (κ∗)
,

where κ∗ is increasing in
∑m
i=1 λirisi given Y ′′ < 0. Moreover,

Ri = (1− (1− λi (1− Y (κ∗)))ζ)riπ
msi.

Observe that Ri decreases when the “disintermediation-adjusted effective commission” rjλj on platform

j increases, because a higher effective commission on platform j induces more sellers to invest in promot-

ing their direct channels, i.e., a higher κ∗. Therefore, this direct channel mechanism results in negative

spillovers in platform fees rj and disintermediation prevention efforts λj through platform i revenues. We

can immediately conclude from Proposition 7 that r∗ ≥ rSE ≥ rW or λ∗ ≥ λSE ≥ λW .
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