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OA1 Supply side equations in the decentralized equilibrium

Substituting the firm’s demand curve (9) and research technology (5), we write the
Hamiltonian for the firm’s maximization problem as:

H ji = αPjL1−α

j q jixα
ji −Pjq jix ji −ws ji +λ jiµQ js ji.

The first order condition (FOC) for s ji is (11). The FOC for x ji reads

αPjL1−α

j q jixα−1
ji α = Pjq ji,

which after substitution of (9) gives (10) and

x ji = α
2

1−α L j. (OA.1)

Substituting (10) and (OA.1) into the definition of profits gives (15). Substitution
of (OA.1) into the production function for Yj gives (13).

The FOC for q ji gives (12). Since ∂π ji/∂q ji is the same across firms, λ ji is also
the same across firms. Omitting the subscript i in (12), dividing both sides by λ j,
and substituting (15), we find

λ̇ j/λ j ≡ λ̂ j = r− (1−α)αPjYj/(Q jλ j). (OA.2)

Using (11), (8), and (13), we find (A.2) for the research active sector. From (11) we
have λ̂k = ŵ− Q̂k, which combined with (A.2) gives (A.4).
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Finally, for any sector j, (OA.2) can be rewritten as

λ̂ j = r−αµLk
PjL j/λ j

PkLk/λk
.

Using PcQc = PdQd as derived from (8) and (13) and the definition of mc, the above
equation is equivalent to

λ̂ j = r−αµL j
Qkλk

Q jλ j
= r−αµL j

mk

m j
. (OA.3)

OA2 Planner’s solution

From (7), we write the carbon stock S as the sum of a non-decaying stock S1 and a
decaying stock S2, where Ṡ1 = φLE and Ṡ2 = φDE − δS2. To allow for symmetric
expressions (across clean and dirty sectors), we write emissions as E = acYc+adYd

but we maintain our assumption ac = 0. The current value Hamiltonian of the
planner’s problem is given by

H sp = ln
[
exp(−γ(S1 +S2 − S̄))C

]
+ΩC

( ∑
j∈{c,d}

C
σ−1

σ

j

) σ

σ−1

−C


+ ∑

j∈{c,d}
ΩY j

[
L1−α

j

∫ 1

0
q jixα

jidi−Yj

]
+ ∑

j∈{c,d}
ζ j

[
Yj −

∫ 1

0
q jixi jdi−C j

]

+ ∑
j∈{c,d}

∫ 1

0
λ

s
jiµs ji

(∫ 1

0
q jidi

)
di+λS1φL ∑

j∈{c,d}
a jYj +λS2

[
φD ∑

j∈{c,d}
a jY j −δS2

]

+ζL

[
1− ∑

j∈{c,d}
L j − ∑

j∈{c,d}

∫ 1

0
s jidi

]
+ ∑

j∈{c,d}

∫ 1

0
ξs jis jidi,

(OA.4)

where C, C j, Yj, {x ji}1
i=0, L j, {s ji}1

i=0 ( j ∈ {c,d}) are the choice variables, {q ji}1
i=0

( j ∈ {c,d}) and S are the state variables, ΩC and ΩY j are the shadow price associ-
ated with C and Yj respectively, ζ j and ζL are the shadow prices associated with the
market clearing conditions, λ s

ji, λS1, and λS2 are the co-state variables, and finally,
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ξs ji are the shadow prices associated with the non-negativity constraints.
The FOCs are given by

∂H sp

∂C
: C−1 = ΩC, (OA.5)

∂H sp

∂C j
: ζ j = ΩC

(
C j/C

)−1/σ
, (OA.6)

∂H sp

∂x ji
: ζ jq ji = ΩY jαL1−α

j q jixα−1
ji , (OA.7)

∂H sp

∂Yj
: ΩY j = ζ j +a j [φLλS1 +φDλS2] , (OA.8)

∂H sp

∂L j
: ζL = ΩY j(1−α)Yj/L j, (OA.9)

∂H sp

∂ s ji
: ζL = λ

s
jiµQ j +ξs ji, (OA.10)

∂H sp

∂q ji
: λ̇

s
ji = ρλ

s
ji −µ

∫ 1

0
λ

s
jis jidi−ΩY jL1−α

j xα
ji +ζ jx ji, (OA.11)

∂H sp

∂S1
: λ̇S1 = γ +ρλS1, (OA.12)

∂H sp

∂S2
: λ̇S2 = γ +(ρ +δ )λS2. (OA.13)

From (OA.7) we conclude that x ji = x j for all i. From (OA.10) we conclude that
all producers i in sector j that are active in R&D have the same shadow price λ s

ji

denoted λ s
j . Hence

∫ 1
0 λ s

jis jidi = λ s
j s j, where s j is aggregate R&D labor as above.

Using this and x ji = x j in (OA.11), we conclude that we can drop all i subscripts:

x ji = x j, s ji = s j, λ
s
ji = λ

s
j .

OA2.1 Social cost of carbon

Solving (OA.12) and (OA.13) we find λS1 =−γ/ρ and λS2 =−γ/(ρ +δ ), respec-
tively. Hence, the shadow values of the two carbon stocks are constant (because
of the logarithmic exponential structure as in Golosov et al. (2014)) and negative
(because excess carbon causes climate damage and reduces welfare). We use Φ to
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denote the social cost of carbon emissions (in utility terms):

Φ≡ λS
∂ Ṡ
∂E

=−λS,1
∂ Ṡ1

∂E
−λS,2

∂ Ṡ2

∂E
= φL(−λS1)+φD(−λS2)= γ(φL/ρ+φD/(ρ+δ )).

We define the social cost of emissions in sector j, in terms of j-goods, as

τ
s
j ≡ a j [φL(−λS1)+φD(−λS2)]/ζ j.

Thus, we find that in the optimum the emission costs equal:

τ
s
d = adΦ/ζd; τ

s
c = acΦ/ζc = 0, (OA.14)

where we refer to τs
j as the tax and introduce the zero tax in the clean sector τs

c to
allow symmetry in our expressions below.

OA2.2 Optimal input mix and static allocation

Because x ji = x j, the production function and goods market equilibrium can be writ-
ten as, respectively, Yj = L1−α

j Q jxα
j =C j +Q jx j. Substituting (OA.7) and (OA.8),

we find expressions (34) for the production function and we find the consumption-
output ratio C j/Yj as a function of the tax:

Yj = Q jL j[α(1− τ
s
j)]

α/(1−α) (OA.15)

C j = Yj[1−α(1− τ
s
j)]. (OA.16)

Let χC, j denote the share of goods j in total value of consumption and χL j

denote the share of production labor hired in sector j, that is

χC, j ≡
ζ jC j

ΩCC
, χL, j ≡

L j

L
. (OA.17)

χC, j is thus the direct counterpart of the expenditure share in the decentralized equi-
librium and χL, j the production labor share. From (OA.9), (OA.5), (OA.16), and
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(OA.17), we express the shadow price of labor as:

ζL =

(
(1− τs

j)(1−α)

1−α(1− τs
j)

)
χC j

L j
(OA.18)

We write the six equations (OA.9), (OA.7), (OA.6), (OA.8), (OA.15), and (OA.16)
in relative terms (clean versus dirty) and solve for ζr,ΩY r,Cr,Yr,Lr,xr in terms of
τs

j and Qr. Using these solutions with (20), the definition of θc, we find

χC,c

χC,d
=

θc

θd
(1− τ

s
d)

−σ−1
1−α ,

χL,c

χL,d
=

θc

θd
(1− τ

s
d)

−σ−α

1−α

1− (1− τs
d)α

1−α
. (OA.19)

While in the decentralized equilibrium the relative technology fully captures the
economic incentive for clean production and consumption, in the planner’s solution
these economic incentives must be augmented by the technology’s contribution to
carbon emission. Compared to the decentralized equilibrium, with the same level
of relative technology θc, the planner will allocate more labor to the clean sector
and consume a larger share of clean goods.

The allocation of labor for R&D is governed by (OA.10). For the research active
sector, ζL = λ s

k µQk must hold, while ζL > λ s
−kµQ−k holds for the research inactive

sector. Using the definition of ms
c, (35), we find that innovation is only active in

the clean (dirty) sector if ms
c > 1/2 (if ms

c < 1/2). Thus, ms
c = 1/2 separates the

innovation regimes, just like in the decentralized equilibrium.

OA2.3 Static expression for the optimal tax

From (OA.5), (OA.6), (OA.17), and the definition of τs
d , we find τs

d = adΦ/ζd =

adΦCd/χC,d . Substituting 1/χC,d = 1+ χC,c/χC,d , (OA.16), (OA.15), and Ld =

χL,dL, we write:

τ
s
d = adΦ(χL,dL)Qd[α(1− τ

s
d)]

α/(1−α)(1+χC,c/χC,d)[1−α(1− τ
s
d)].
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Since, from (OA.19) we find χC,c/χC,d = (χL,c/χL,d)(1− τs
d)(1−α)/(1−α(1−

τs
d)), we can write:

τ
s
d = adΦLQd[α(1− τ

s
d)]

α/(1−α)
[
(1−α(1− τ

s
d))χL,d +(1− τ

s
d)(1−α)χL,c

]
.

(OA.20)
This equation gives a relationship between the tax and other key variables. We are
interested in the relationship with θc, L, and Qd . We therefore substitute χL,d =

1− χL,c at the RHS and divide both sides by τs
d . It can be easily seen that then the

RHS declines with τs
d and with χL,c, where the latter itself increases with τs

d and
θc. Hence, there is a unique solution for τs

d as a function of θc, L, and Qd with the
following properties:

τ
s
d = τ̃(θc,adΦLQd) ∈ [0,1), τ̃1 < 0, τ̃2 > 0. (OA.21)

OA2.4 Dynamic allocation

Time differentiating (20) and (OA.17), we find

θ̇c = (σ −1)θc(1−θc)
(
Q̂c − Q̂d

)
, (OA.22)

χ̇C,c = (σ −1)χC,c(1−χC,c)

[
Q̂c − Q̂d +

1
1−α

τs
d

1− τs
d

τ̂
s
d

]
, (OA.23)

χ̇L,c = (σ −1)χL,c(1−χL,c)

[
Q̂c − Q̂d +

(
1

1−α
+

1
(σ −1)(1−α(1− τs

d))

)
τs

d
1− τs

d
τ̂

s
d

]
.

(OA.24)

From (OA.10) and the definition of ms
j, (35), we derive as the planner’s coun-

terpart of (26) that sector j is the research-active sector if its social market value
exceeds cost: ms

j > κ j ⇔ s j > 0. Since j = k denotes the research-active sector, we
must have ms

k ≥ κk and ζL = µλ s
k Qk. This implies:

k =

c, if ms
c > 1/2;

d, if ms
c < 1/2.

(OA.25)
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(Q̂c, Q̂d) =

(µ(1−L),0), if k = c;

(0,µ(1−L)), if k = d.
(OA.26)

Substituting (OA.7), (OA.9), and (OA.15) into (OA.11) gives λ̂ s
j = ρ − µs j −

ζLL j/λ s
j Q j. For the research active sector ( j = k) we have sk > 0 and ζL = λ s

k µQk

from (OA.10). Together with the definition of ms
j, (35), this gives:

λ̂
s
j = ρ −µs j −

ms
k

ms
j
µL j. (OA.27)

For j = k, (OA.27) implies λ̂ s
k = ρ − µ(Lk + sk). To derive the dynamics for ms

j,
note that Q̂ j = µs j and m̂s

k − m̂s
j = (λ̂ s

k + Q̂k)− (λ̂ s
j − Q̂ j) = (ms

k/ms
j −Lk/L j)µL j

where the second equality follows from (OA.27). Using L j = χL, jL from (OA.17),
we find

ṁs
c =


ms

c(m
s
c −χL,c)µL, if k = c;

0, if k = c,d;

(1−ms
c)(m

s
c −χL,c)µL, if k = d.

(OA.28)

To derive the dynamics for L, we combine (OA.10) and λ̂ s
k = ρ − µ(Lk + sk)

to arrive at λ̂ s
k + Q̂k = ζ̂L = ρ − µLk, while time differentiating (OA.18) implies

ζ̂L = χ̂C,c − χ̂L,c − L̂. Hence, we arrive at L̂ = µLk −ρ + χ̂C,c − χ̂L,c. Substituting
(OA.23) and (OA.24), we find:

L̇ = L
[
µLk −ρ +(σ −1)(χL,c −χC,c)

(
Q̂c − Q̂d

)
+

(
(σ −1)(χL,c −χC,c)

1−α
−

1−χL,c

1−α(1− τs
d)

)
τs

d
1− τs

d
τ̂

s
d

]
.

(OA.29)

Finally, we derive the dynamics of τs
d . From (OA.8) and (OA.9), we find ζd(1−

τs
d) = ζLLd/((1−α)Yd) and after using the definition of τs

d to eliminate ζd using
(OA.10) and (OA.15) to eliminate ζL and Yd , respectively, we derive

(1−α)adΦ = τ
s
d[(1− τ

s
d)α

α ]−1/(1−α)
λ

s
k µQk/Qd.
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Figure 9: Size of overlap under industrial policy

Time differentiating this equation and substituting (OA.27) to eliminate Q̂k, we find
the dynamics of the tax:

τ̇
s
d =−

(1−α)τs
d(1− τs

d)

1−α(1− τs
d)

(
ρ −µLk − Q̂d

)
. (OA.30)

OA2.5 Characterising dynamics

Using (OA.19), (OA.21), and (OA.30) to eliminate χL, χC, τs
d , and τ̇s

d , respectively,
we find that (OA.22), (OA.26), (OA.28), and (OA.29) constitute four differential
equations in four variables, namely θc, mc, L, and Qd .

The projection of the dynamics in the (θc,ms
c) plane, used in Figure 8, can be

characterised as follows. From (OA.25) we find the line ms
c = 1/2 as the regime

border which acts as the θ̇c = 0 locus: above (below) the line there is clean (dirty)
innovation only, and θc increases (decreases) over time if and only if σ > 1. Next,
from (OA.28) we derive ms

c = χL,c as the ṁs
c = 0 locus, with mc increasing (de-

creasing) over time above (below) the locus. This locus is not a fixed line in the
plane, since χL,c depends on not only θc but also τs

d , see (OA.19), which depends
on the whole dynamics of the system, cf. (OA.21). Nevertheless, (OA.19) shows
that χL,c > θc and χL,c → θc at the corners θc → 0 and θc → 1, so that the ṁs

c = 0
locus cuts the 45 degree line in the corners and is above the 45 degree line for θc.
From (OA.22) and (OA.28), we derive that the slope of the optimum path, ṁs

c/θ̇c, in

8



the corner (1,1) equals 0. Hence the optimal path must approach the clean steady
state from the south west.

OA2.6 Regulated market economy

With a tax τE on carbon emission (in real terms), the profit of final goods producers
becomes

π j = PjYj −wL j −
∫ 1

0
Pjix jidi− τEPa jYj = (1− τ j)PjYj −wL j −

∫ 1

0
Pjix jidi,

(OA.31)
where τ j = a jτEP/Pj is the emission tax in terms of revenue (i.e. formulated as a
value-added tax). Maximizing profits subject to the production function leads to a
modified factor demand:

w = (1−α)(1− τ j)Pj
Y j

L j
, (OA.32)

Pji = α(1− τ j)PjL1−α

j q jixα−1
ji . (OA.33)

With this modified factor demand and the industry policy specified in the propo-
sition, the Hamiltonian of the intermediate goods producers becomes

H ji = (1+ τα)α(1− τ j)PjL1−α

j q jixα
ji −Pjq jix ji −ws ji + τq jq ji +λ jiµQ js ji.

(OA.34)
where τα is the revenue subsidy, and τq j is the sector-specific technology subsidy.
Accordingly, (10)-(12) change to

Pji =
1
α
(1+ τα)

−1Pjq ji = Pjq ji, (OA.35)

µQ jλ ji ≤ w ⊥ s ji ≥ 0, (OA.36)

λ̇ ji = rλ ji − τq j −
∂π ji

∂q ji
. (OA.37)

Combining the above results with (16) and (17), and using the symmetry result
x ji = x j,λ ji = λ j, we can now summarize the regulated market economy by the
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following equations:
Pj/P = (C j/C)−1/σ (OA.38)

1 = (1− τ j)αL1−α

j xα−1
j α(1+ τα) (OA.39)

w = (1− τ j)Pj(1−α)Yj/L j (OA.40)

w = λkµQk (OA.41)

λ̂ j − P̂−Ĉ = ρ − sq j/λ j − (1− τ j)PjL1−α

j xα
j (1−α)α(1+ τα) (OA.42)

Combining the optimality conditions of the social planner’s problem (OA.5)-(OA.11),
using symmetry x ji = x j,λ

s
ji = λ j and the definition τs

j ≡ a j [φL(−λS1)+φD(−λS2)]/ζ j,
we find that the social planner’s solution satisfies the following equations:

ζ jC = (C j/C)−1/σ , (OA.43)

1 = (1− τ j)αL1−α

j xα−1
j , (OA.44)

ζL = (1− τ j)ζ j(1−α)Yj/L j, (OA.45)

ζL = λ
s
k µQk, (OA.46)

λ̂
s
j = ρ −µs j − (1− τ j)ζ jL1−α

j xα
j (1−α). (OA.47)

Comparing (OA.43)-(OA.47) for the optimal economy to (OA.38)-(OA.42) for the
regulated economy, we find that the latter replicates the former if the tax policies of
proposition are imposed, (1+ τα)α = 1, τq j = ws j/Q j, and τ j = τs

j . Note that this
implies Pj/PC = ζ j, w/PC = ζL, λ j/PC = λ s

j , i.e. the real market prices in utility
terms (market prices divided by P to make C the unit of account and then multiplied
by marginal utility 1/C to make utility the unit of account) equal the corresponding
shadow prices.

OA3 General condition for the overlap

This appendix, first, generalizes the production and innovation technology to allow
for more general complementarities in innovation and, second, relaxes the patent
length assumption to allow for variable patent length.
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OA3.1 Generalizing the sources of complementarity

We generalize the model in three ways to allow for multiple sources of investment
complementarities. First, we allow a direct effect of intermediate firms’ innovation
on productivity in their sector, by generalizing the final good production to be

Yj = (Qε
j L j)

1−α

∫ 1

0
q jixα

jidi, (OA.48)

where ε ≥ 0 measures how labor-augmenting the direct innovation spillovers are
(ε = 0 brings us back to the main text model).

Second, we allow for a more general input-output structure by assuming inter-
mediate goods production requires both own sector goods and general goods. The
unit cost (or equivalently, its monopoly price divided by markup) of an intermediate
in sector j with quality q ji is now

q jiPω
j P1−ω = αPji, (OA.49)

where ω ≥ 0 measures the share of own sector inputs in the production of specific
inputs (ω = 1 brings us back to the main text model; Acemoglu et al (2012) choose
ω = 0).

Third, we allow intersectoral knowledge spillovers in innovation such that

q̇ ji = µs jiQ
η+χ

j Qχ

− j(Qc +Qd)
1−η−2χ , (OA.50)

where Qc +Qd is the general knowledge stock, χ is the degree of cross-sectoral
spillovers and η denotes how much more own-sector knowledge enhances research
productivity than other-sector knowledge; we have maintained the linear homo-
geneity that was also assumed in the main text. The model presented in the main
text can then be considered a special case where η = 1,χ = 0.

Lemma OA1. In a static equilibrium, intermediate goods profits are linear in firms

own quality q ji, i.e. π ji = π̄ jq ji with

π̄r = (Qr)
ψ ,ψ ≡ (1+ ε)(σ −1)

1−α

1−ωα
−1, (OA.51)
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where π̄r ≡ π̄c/π̄d and Qr ≡ Qc/Qd , while relative R&D costs are

wsdi/q̇di

wsci/q̇ci
= µr(Qr)

η . (OA.52)

Proof of Lemma OA1. We determine static equilibrium, i.e. the allocation of labor
and profits, given the state variables q ji and given the amount of labor in production
L.1

From demand for intermediates (Pj∂Yj/∂x ji = Pji) and supply (OA.49) we find
x ji = α2/(1−α)Qε

j L j(Pj/P)(1−ω)/(1−α). Plugging this into the production function
we find Yj = α2α/(1−α)Qε+1

j L j(Pj/P)(1−ω)α/(1−α). Hence, in relative terms:

xr = Qε
r Lr(Pr)

(1−ω)/(1−α),

Yr = Qε+1
r Lr(Pr)

(1−ω)α/(1−α).

Demand for labor implies Pj∂Yj/∂L j = Pj(1−α)Yj/L j = w, or in relative terms

Lr = PrYr.

Demand for Y-goods implies:
Yr = (Pr)

−σ .

Hence we have four equations in Pr,Lr,Yr,xr which can be solved in terms of Qr.

Pr = (Qr)
−(ε+1)(1−α)/(1−ωα)

Lr = (Qr)
(σ−1)(ε+1)(1−α)/(1−ωα)

xr = (Qr)
ε+(ε+1)[(σ−1)(1−α)−(1−ω)]/(1−ωα)

Now we turn to profits of intermediate firms. Since the markup is 1/α , prof-
its are π ji = (1−α)Pjix ji. and the price Pji from (OA.49), we find π ji = [(1−
α)α−1x jiPω

j P1−ω ]q ji ≡ π̄ jq ji, where the latter step uses the result that x ji in equi-
librium is the same across firms. This shows that profits are linear in own quality

1Using this static allocation, below we turn to the dynamic equilibrium to determine the alloca-
tion of labor over production and innovation and the resulting dynamics of the state variable.
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q ji, which is stated in the lemma. Plugging in the solution for x ji and taking relative
variables, we find π̄r = xr(Pr)

ω which together with above solutions gives (OA.51).
From (OA.50) we directly find (OA.52).

Hence ψ reflects investment complementarities in production: if ψ > 0, an
increase in relative knowledge stocks increases relative marginal profits (in the
main text, ω = 1,ε = 0 so that ψ = σ − 2). Complementarities arise from (i) de-
mand externalities (σ ) (ii) input-output mulitipliers (ω) and (iii) direct productivity
spillovers (ε). Furthermore, η reflect investment complementarities in innovation:
if η > 0 investment in sector j reduces the cost of subsequent investment more than
in the other sector.

Lemma OA2. SFPs in the unregulated market economy require ψ > max{0,−η}.

Proof of Lemma OA2. This proof turns to the dynamics of the model and exploits
the static equilibrium solutions in terms of the state variables q ji from the revious
proof. The intermediate good producer’s investment problem of choosing s ji has
the following Hamiltonian:

H ji = π̄ jq ji −ws ji +λ jiµQ̄ js ji.

where Q̄ j = Qη+χ

j Qχ

− j(Q j +Q− j)
1−η−2χ is the productivity of research labor. The

firm takes variables without i subscript as given. Optimality conditions are:

Q̄ jµλ ji ≤ w ⊥ s ji ≥ 0 (OA.53)

λ̂ ji = r− π̄ j/λ ji (OA.54)

The two conditions show that all firms within a sector have the same shadow value
of quality, λ ji = λ j. We define two variables, zc and mc:

zc ≡
π̄cQ̄c

π̄cQ̄c + π̄dQ̄d
=

(Qr)
ψ+η

1+(Qr)ψ+η
, (OA.55)

mc ≡
λcQ̄c

λcQ̄c +λdQ̄d
=

λr(Qr)
η

1+λr(Qr)η
. (OA.56)

13



Variable zc captures current (green) market conditions. It is a predetermined
state variable, i.e. a transformation of the relative technology state variable Qr.
The transformation ensures that zc captures all channels through which the state
variable affects the return to innovation: complementarities in production (ψ) and
in innovation (η). Variable mc captures future (green) market conditions. It is a
forward-looking variable constructed such that its value directly pins down which
innovation is active. Clean (dirty) innovation requires future green market condi-
tions to be sufficiently good (poor) according to:2

mc > (<)1/2 ⇔ Q̂r > (<)0.

From optimality condition (OA.54) we derive the relative growth rates λ̂r =
π̄d
λd

(
1− π̄r

λr

)
which in terms of our new variables reads:3

λ̂r =

(
π̄d/λd

(1− zc)mc

)
(mc − zc).

To derive the dynamics of the model in terms of zc and mc, we time differentiate
(OA.55) and (OA.56):

żc = zc(1− zc)(ψ +η) Q̂r (OA.57)

ṁc = mc(1−mc)(λ̂r +ηQ̂r), (OA.58)

We now build the phase diagram in (zc,mc) plane. The regime border is the
horizontal line mc = 1/2. We first consider ψ +η < 0 and show that this rules out
SFPs. If mc < 1/2, innovation is brown, Qr declines and zc grows. Symmetric for
mc > 1/2. Hence the interior steady state with simultaneous research and mc = zc =

1/2 is stable, the corner steady states can never be reached, and no SFPs can arise.
We next show that an overlap requires ψ > 0. Assume ψ +η > 0. The slope

of any time path is given by ṁc/żc. On the 45 degree line (with mc = zc and hence

2From (OA.53) we derive the regime border condition λrQ̄rµr > (<)1 ⇔ Q̂r > (<)0 which in
terms of mc gives the expression.

3Note π̄r/λr = zr/mr = [zc/(1− zc)]/[mc/(1−mc)].
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λ̂r = 0) this slope boils down to:

ṁc

żc

∣∣∣∣
mc=zc

=
η

ψ +η
. (OA.59)

This means that, unless η/(ψ +η) = 1 ⇐⇒ ψ = 0, an equilibrium path can cross
the 45 degree line only once. When tracing back the equilibrium path from a corner
steady state (either the dirty staedy state mc = zc = 0 or the clean one mc = zc = 1),
we start on the 45 degree line and never cross again; when the slope is smaller than
1, the path from the dirty (clean) steady state crosses the regime border to the right
(left) of the 45 degree line, implying an overlap. Hence the condition for SFPs is
η/(ψ +η)< 1 ⇔ ψ > 0,ψ +η > 0.

Remark. This proof only uses the investment conditions and does not need
consumer intertemporal utility maximization. This is becuase we only need to solve
for relative variables. When we want to solve for all variables, in particular total -
rather than relative - investment, as measured by 1−L, we need the savings block
of the model.

OA3.2 Variable patent length

While Acemoglu et al. (2012) assume one-period patents and our main text model
assumes infinite patent length, in reality patents often last between 15 and 20 years.
To model elementary aspects of patent protection issues, we assume all intermediate
firms face a risk of losing their profits permanently because of patent infringement.4

The infringement event occurs at Poisson rate ι , so that the arbitrage equation (12)
now contains a risk premium:

λ̇ ji = (r+ ι)λ ji −
∂π ji

∂q ji
, (OA.60)

4This modelling assumes that infringement is exogenous and uniform across firms; firms who
“steal” the patent are immediately in the same position as robbed incumbent. A full modelling would
require specifying who is successful in infringement, whether this costs effort etc. Moreover, (legal)
patent length is not the same as (illegal) infringement. We leave these details for further research.
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Figure 10: Equilibrium paths with different ρ values (σ = 3)

which implies that profits are discounted with the interest rate plus the infringement
risk ι to calculate the value of investment λ ji.

The patent infringement rate does not affect the analysis in Section 3. Intu-
itively, because patent infringement occurs with the same probability in all sectors,
it does not affect the direction of investment.

However, the patent infringement rate affects the speed of overall investment
as analyzed in Section 4. Following the procedure of Section A.2, we derive the
counterparts of (A.2) and (A.4),

λ̂ j = r+ ι −αµL(mk/m j)θc, (OA.61)

r = αµLθk + ŵ− Q̂k − ι . (OA.62)

Continuing the same procedure as in Section A.2 to derive the reduced-form equi-
librium dynamics, we find that in all equations in Lemma 1, ρ is replaced by ρ + ι .
Intuitively, a higher probability of loosing the patent right reduces investors’ hori-
zon as does an increase in the discount rate, so that the sum of discount rate and
patent infringement rate governs the speed of innovation. The effect of a change in
ρ and a change in ι are the same with respect to the equilibrium dynamics analyzed
in Section 4. Hence, we conclude that a shorter average patent length (increase in
ι) makes the overlap smaller.

Figure 10 shows the projection of the equilibrium paths for different time pref-
erence rates. As in Proposition 3, the larger the time preference rate, the smaller is
the size of the overlap.

In the market economy, policy is needed to counteract the excessively short
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horizon of investors introduced by effect of finite patent length. A subsidy to R&D
can do this job and is needed to decentralize the first-best.

OA4 Segmented labor market

Suppose labour market is segmented and the total supply of labour is L̄ for workers
and s̄ for scientists, that is, Lc + Ld ≤ L̄ and sc + sd ≤ s̄, where L̄ and s̄ are now
parameters. Wage in (8) now differs from wage in (11). Denote the former by wL

and the latter by ws. From (11) and (24), we see that we can continue to use the
variable m j to determine the innovation regime.

Combining (12), (15), and (22), we find

λ̂ j = r− (1−α)α
θ jPY
λ jQ j

. (OA.63)

From (24), we find ṁc = mc(1−mc)
(

λ̂c + Q̂c − λ̂d − Q̂d

)
or

ṁc = mc(1−mc)µ(sc − sd)+αµ
(1−α)PY

ws
mk(mc −θc), (OA.64)

where k denotes the research active sector and we have used µλcQc = wsmc/mk

based on (11). Finally, the clean market share evolves according to

θ̇c = θc(1−θc)(σ −1)µ(sc − sd). (OA.65)

From (OA.64) and (OA.65), it is clear that the two variables θc and mc are
insufficient in describing the entire dynamics of the model due to the expression
(1−α)PY/ws in (OA.64). This expression can be rewritten as wLL̄/ws. Compared
to the integrated labour market, where relative wage in production and research is
1 and production labour L is endogenous, here L̄ is a constant but the relative wage
wL/ws is an endogenous variable. Assuming segmented labour market thus does
not reduce the dimensionality of the model, because a third variable is needed in
order to fully describe the dynamics of the model.

To more precisely compare the model with segmented labour market with the
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integrated labour market model in the main text, we define Le ≡ (1−α)PY/ws.
This new variable adopts a similar role to production labour L in the main text by
determining the savings rate. With integrated labour market, the savings rate is
given by ws/(PC) ∝ s/L = (1−L)/L. Here, using (18), we find Le to be inversely
proportional to the savings rate:

Le =
s̄

1+α

[
wss̄
PC

]−1

.

Combining the above expression with (11), (OA.63) and (17), we find

L̇e = Le [αµLeθk −µ s̄−ρ] . (OA.66)

Using Le, (OA.64) can be written as

ṁc = αµLemk(mc −θc)+µ(sc − sd)mc(1−mc). (OA.67)

Together, (OA.65)-(OA.67) form a differential equation system in variables θc, Le,
and mc that summarizes the dynamics of the model with segmented labor market.
Comparing with Lemma 1, we see that the dynamics of both models are almost
identical, the only difference being that where the constant s̄ shows up in the equa-
tion for L̇e, in the integrated market model the variable sk = 1−L shows up.

We conclude that assuming segmented labour market does not reduce the di-
mensionality of the model. The reason is that, as long as the investment decision
is dynamic, the expected present value of investment m j will be affected by the
savings rate. Even if the supply of scientists is fixed (measured as labor input), the
savings rate (measured consumption equivalents) changes over time depending on
the relative wage. If labour is mobile across the two sectors and the wage equalized,
the savings rate depends on the allocation of scientists. Thus, to reduce the dimen-
sionality, we either need to make investment decision static (e.g. with one-period
patent) or assume a fixed savings rate.
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OA5 Modeling innovation as creative destruction

In this appendix we model innovation as creative destruction and demonstrate that
it generates the same qualitative result.

The R&D process is the following (see also Acemoglu et al., 2012). At the
beginning of each period, each scientist decides whether to direct her research to
clean or dirty technology. Each scientist is then randomly allocated to innovating at
most one machine within their chosen sector with a success probability of µ .

The rest of the model is the same as in Section 2. Thus, equations (8)-(10), (13),
(15)-(22) continue to hold. From (15), the average profit of a sector is given by

π j =
∫ 1

0
π jidi = (1−α)αPjYj. (OA.68)

Denote by Vj the value of the patent in sector j in case of successful innovation.
The decision to target a particular sector is governed by the free entry condition:

µVj ≤ w ⊥ s j ≥ 0, (OA.69)

which is the counterpart of (11). Note that for the research active sector k, Vk =

w/µ . From (8),
Vk = (1−α)PkYk/(µLk) (OA.70)

follows.
Equation (12) is replaced by the non arbitrage condition:

V̇j = rVj −π j +µs jVj. (OA.71)

For the dynamic equilibrium, note that (31) and (32) continue to hold. Similar
to (25), we can define

mc ≡
Vc

Vc +Vd
. (OA.72)

From (OA.69), it is clear that mc ⋛ 1/2 separates the three innovation regimes.
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Time differentiating mc and using (OA.71), we find

ṁc = mc(1−mc)
(
V̂c −V̂d

)
= mc(1−mc)

(
−πc

Vc
+

πd

Vd
+ Q̂c − Q̂d

)
. (OA.73)

Using (OA.68), (OA.70), (21), and the definition of mc, we can derive (30). Thus,
Lemma 1 holds.

This analysis shows that creative destruction and inhouse R&D offer almost ex-
actly the same equilibrium conditions, both statically and dynamically. The only
difference is that quality improvement is evaluated at its marginal value of improv-
ing the patent in the case of inhouse R&D, as innovation can occur repeatedly,
whereas in the case of creative destruction, quality improvement is valued at the
total value of the patent. As Lemma 1 holds in both cases, this difference does not
matter for the result.
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