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OA1 Supply side equations in the decentralized equilibrium

Substituting the firm’s demand curve (9) and research technology (5), we write the

Hamiltonian for the firm’s maximization problem as:
Hj,' = anL.}_aqjix% — ijﬁxﬁ —wsji+ Aji,quSﬁ.
The first order condition (FOC) for s;; is (11). The FOC for x j; reads

a—1
o= Piqj;,

-«

which after substitution of (9) gives (10) and
2
Xji=oT-aL;. (OA.1)

Substituting (10) and (OA.1) into the definition of profits gives (15). Substitution
of (OA.1) into the production function for ¥; gives (13).

The FOC for g; gives (12). Since 87rj,~/8qj,~ is the same across firms, A; is also
the same across firms. Omitting the subscript i in (12), dividing both sides by A;,
and substituting (15), we find

Aifdj=2dj=r—(1—a)aPY;/(QjA)). (0A.2)

Using (11), (8), and (13), we find (A.2) for the research active sector. From (11) we
have A, = W — O, which combined with (A.2) gives (A.4).



Finally, for any sector j, (OA.2) can be rewritten as

i PiLi/A;
Ai=r—aulL,~ =L,
/ H “PeLi/ M

Using P.Q. = P;Q, as derived from (8) and (13) and the definition of m,, the above
equation is equivalent to

A= r—apL, 2% _ur, ™ (OA.3)

j =r—=
QjA; m;

OA2 Planner’s solution

From (7), we write the carbon stock § as the sum of a non-decaying stock S; and a
decaying stock S», where S| = ¢,E and S» = ¢pE — 85,. To allow for symmetric
expressions (across clean and dirty sectors), we write emissions as E = a.Y. +a,Yy
but we maintain our assumption a. = 0. The current value Hamiltonian of the

planner’s problem is given by
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where C, C;, Yj, {x;i}os Lj, {sji}}\_o (j € {c,d}) are the choice variables, {g;;}L,
(j € {c,d}) and S are the state variables, Q¢ and Qy; are the shadow price associ-
ated with C and Y; respectively, {; and {; are the shadow prices associated with the

market clearing conditions, A}, Ag;, and Ag; are the co-state variables, and finally,
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és].i are the shadow prices associated with the non-negativity constraints.

The FOCs are given by
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From (OA.7) we conclude that x;; = x; for all i. From (OA.10) we conclude that

all producers i in sector j that are active in R&D have the same shadow price QLJS-Z-

denoted /l]ﬁ‘ . Hence fol l;is jidi = l;s j» where s; is aggregate R&D labor as above.

Using this and xj; = x; in (OA.11), we conclude that we can drop all i subscripts:

e . s _ s
Xji = Xj, Sji = Sj, A = Aj.

0OA2.1 Social cost of carbon

Solving (OA.12) and (OA.13) we find Ag; = —y/p and Asp = —7/(p + &), respec-

tively. Hence, the shadow values of the two carbon stocks are constant (because

of the logarithmic exponential structure as in Golosov et al. (2014)) and negative

(because excess carbon causes climate damage and reduces welfare). We use @ to



denote the social cost of carbon emissions (in utility terms):

2S 2S 2S
D= Aso = —Asigr —Asa s = 0L(—Ast)+0p(~As2) = Y(9L/p+9p/ (P +6)).

We define the social cost of emissions in sector j, in terms of j-goods, as

T} = a;[0L(—As1) + op(—2As2)] /-
Thus, we find that in the optimum the emission costs equal:
T =a,P/Cs; T =a.P/ =0, (OA.14)

where we refer to 7} as the tax and introduce the zero tax in the clean sector 7 to

allow symmetry in our expressions below.

0OA2.2 Optimal input mix and static allocation

Because x j; = x, the production function and goods market equilibrium can be writ-
ten as, respectively, ¥; = L}._O‘Q jx;?‘ = Cj+ Qjx;. Substituting (OA.7) and (OA.8),
we find expressions (34) for the production function and we find the consumption-

output ratio C;/Y; as a function of the tax:
Y; = Q;L;la(1— 1)/~ (OA.15)

Cj:Yj[l—(X(l—Tj-)]. (OA.16)

Let xc,; denote the share of goods j in total value of consumption and Y,

denote the share of production labor hired in sector j, that is

L
’_QCC’ LJ L’

xc, (OA.17)

Xc,j 1s thus the direct counterpart of the expenditure share in the decentralized equi-
librium and ), ; the production labor share. From (OA.9), (OA.5), (OA.16), and



(OA.17), we express the shadow price of labor as:

4= (%:2351}?) %’ (OA.18)

We write the six equations (OA.9), (OA.7), (OA.6), (OA.8), (OA.15), and (OA.16)
in relative terms (clean versus dirty) and solve for {,,Qy,,C,,Y,, L, x, in terms of
’L’j and Q,. Using these solutions with (20), the definition of 6., we find

XC.c Oc _o=1 XL OC 70;0:1—(1—’55)0{
208 X (1) F Ale _ Ze(p gy Fa— )7 QAL
XC.d Od( ) ’ (1-7) -« ( 2
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While in the decentralized equilibrium the relative technology fully captures the
economic incentive for clean production and consumption, in the planner’s solution
these economic incentives must be augmented by the technology’s contribution to
carbon emission. Compared to the decentralized equilibrium, with the same level
of relative technology 6., the planner will allocate more labor to the clean sector
and consume a larger share of clean goods.

The allocation of labor for R&D is governed by (OA.10). For the research active
sector, 7 = A} 1Oy must hold, while {7 > A*, uQ_ holds for the research inactive
sector. Using the definition of m}, (35), we find that innovation is only active in
the clean (dirty) sector if m > 1/2 (if m} < 1/2). Thus, m} = 1/2 separates the

innovation regimes, just like in the decentralized equilibrium.

0OA2.3 Static expression for the optimal tax

From (OA.5), (OA.6), (OA.17), and the definition of 7}, we find 7} = a,®/C; =
adQDCd/qu. Substituting I/XC,d = 1+XC,C/XC,d, (OA.16), (OA.15), and L; =

XL.aL, we write:

7y = aq®(xz.4L) Qalot(1 =TI = (14 xeo/ 2ea)[1 = (1 = 7).



Since, from (OA.19) we find Yc/xc.a = (XL.c/Xr.a)(1 =T (1 —0) /(1 —a(l -
74)), we can write:

15 = ag®LQ [0 (1 — )] 1=Y [(1 — (1 — 7)) ara+ (1 — ) (1 — &) xrc] -
(OA.20)
This equation gives a relationship between the tax and other key variables. We are
interested in the relationship with 6., L, and Q,. We therefore substitute y; 4 =
1 — x1.. at the RHS and divide both sides by 7. It can be easily seen that then the
RHS declines with 7} and with x; ., where the latter itself increases with 7 and
6.. Hence, there is a unique solution for 7 as a function of 6., L, and Q, with the

following properties:
Ty = 1(0:,a4PLQ,) € 10,1), T <0, % >0. (OA.21)

OA2.4 Dynamic allocation

Time differentiating (20) and (OA.17), we find

6. = (0 —1)6:(1-6.) (Qc— Qu) (OA.22)
. A A 1 T)
Xee= (0= 1)xcc(1—Xce) |:Qc —Qit 4T —dffl Td} : (0A.23)
(Le=(0—1)xLc(l - ){Q—QA +( Ly : ) % g
ALe= e e (c-D(-a(l-1) /) 1-154
(OA.24)

From (OA.10) and the definition of m;, (35), we derive as the planner’s coun-
terpart of (26) that sector j is the research-active sector if its social market value
exceeds cost: mj > Kj < s; > 0. Since j = k denotes the research-active sector, we

must have m} > & and {7 = uA;Qy. This implies:

c, ifm>1/2;
k= (OA.25)
d, itmS<1/2.

|



. (u(1-L1),0), ifk=c
(Qc, Qu) = . (OA.26)
0,u(1—=L)), ifk=d.
Substituting (OA.7), (OA.9), and (OA.15) into (OA.11) gives ijs =p—us;—
CiLj/ /1; Q;. For the research active sector (j = k) we have s; > 0 and {; = A/ uQx
from (OA.10). Together with the definition of m}‘., (35), this gives:

A m,
s _ k
;=P —MUSsj— —cHL;j. (OA.27)

For j = k, (OA.27) implies A = p — p(Lg + s;). To derive the dynamics for m’,
note that Q; = ps; and 7t} — = (4 + Or) — (4] — 0;) = (my /m’ — Ly /Lj)UL;
where the second equality follows from (OA.27). Using L; = xz ;L from (OA.17),
we find

me(mg — XL.c) UL, ifk=c;
H =1 0, if k=c,d; (OA.28)

(1 —ml)(ml —xrc)uL, ifk=d.

To derive the dynamics for L, we combine (OA.10) and i]f =p —pu(Lg+sx)
to arrive at jL,f + 0 = éL = p — ulLy, while time differentiating (OA.18) implies
éL =Jce—Xre— L. Hence, we arrive at [ = uL; —p + Xc.c — L. Substituting
(OA.23) and (OA.24), we find:

L=L [“Lk —p+ (G - 1)(%L,c - %C,C) (Qc - Qd)
N ((G— D) (XL.e — Xce) 1 — e ) T As} ‘

- z
l-a l—a(l-1t) ) 1-15 ¢

(OA.29)

Finally, we derive the dynamics of 7). From (OA.8) and (OA.9), we find Ca(1—
75) = CrLa/((1 — «)Yy) and after using the definition of 7§ to eliminate {; using
(OA.10) and (OA.15) to eliminate {; and Y, respectively, we derive

(1 - a)ag® = 53[(1 - 7))~ /= Au0s/ 4.



o=1.1 oc=15

1 T T T T 1
09t 09t
08 08
0.7+ 07f
06 06
M. 05F-=---=mmmmmm- ‘:_.--4---4—-—-—-»'7‘" m—mmmmemeeaaad m, 05,,,,,,,,,,,,,,,,,‘?,.,._._.:" 7777777777777777
:""
04 04F
03 03} e
02F 02F
01 01 o
0 A L L L L 0 0 o L L L L 0
0 0.2 0.4 0.6 0.8 1 ¢ 0 0.2 0.4 0.6 0.8 1¢

= Clean path with industry policy Dirty path with industry policy ===« Clean path w/o industry policy =#===== Dirty path w/o industry policy

Figure 9: Size of overlap under industrial policy
Time differentiating this equation and substituting (OA.27) to eliminate Oy, we find
the dynamics of the tax:

(1-o)Ti(1—15)
l1—o(l—1)

= — (p—uLy—Q4) - (OA.30)

OA2.5 Characterising dynamics

Using (OA.19), (OA.21), and (OA.30) to eliminate Yz, Xc, TCSI, and i'fl, respectively,
we find that (OA.22), (OA.26), (OA.28), and (OA.29) constitute four differential
equations in four variables, namely 6., m., L, and Q.

The projection of the dynamics in the (6.,m) plane, used in Figure 8, can be
characterised as follows. From (OA.25) we find the line m} = 1/2 as the regime
border which acts as the 8, = 0 locus: above (below) the line there is clean (dirty)
innovation only, and 6, increases (decreases) over time if and only if o > 1. Next,
from (OA.28) we derive m;. = 1 . as the m = 0 locus, with m,. increasing (de-
creasing) over time above (below) the locus. This locus is not a fixed line in the
plane, since x; . depends on not only 6, but also 7}, see (OA.19), which depends
on the whole dynamics of the system, cf. (OA.21). Nevertheless, (OA.19) shows
that 7 . > 6. and )z . — O, at the corners 6. — 0 and 6. — 1, so that the riz; =0
locus cuts the 45 degree line in the corners and is above the 45 degree line for 6,.
From (OA.22) and (OA.28), we derive that the slope of the optimum path, 2 / 0., in



the corner (1,1) equals 0. Hence the optimal path must approach the clean steady

state from the south west.

OA2.6 Regulated market economy

With a tax Tg on carbon emission (in real terms), the profit of final goods producers

becomes

1 1
ﬂ:j:Pij_WLj_/O Pjinidi—TEPanj:(I—Tj)Pij—WLJ'—/O Pj,’xj'l'di,

(OA.31)
where 7; = a;TgP/Pj is the emission tax in terms of revenue (i.e. formulated as a
value-added tax). Maximizing profits subject to the production function leads to a

modified factor demand:
Y.
w = (1 — OC)(I — ‘L'j)Pj—],
L;

Pi=o(l— rj)PjL}.’aqﬁx?‘fl. (OA.33)

(OA.32)

With this modified factor demand and the industry policy specified in the propo-

sition, the Hamiltonian of the intermediate goods producers becomes

Hji = (1+ 7a) (1 — ) PiL; ™ “qix — Pigjixji — wsji + Tqjqji + Ajitt Qs i
(OA.34)
where 7 is the revenue subsidy, and 7,; is the sector-specific technology subsidy.
Accordingly, (10)-(12) change to

1 _
Pji=_(1+%)"'Pjgji = Pigji (OA.35)
quAji <w_L S ji > O, (OA36)
A 87@-,-

_aqji.

Combining the above results with (16) and (17), and using the symmetry result

xji = xj,Aji = Aj, we can now summarize the regulated market economy by the



following equations:

p;/P=(c;/C)"1/° (OA.38)

1= (1=7)aL; *¢ a(l+ 1) (OA.39)
w=(1—1))P;(1—a)Y;/L; (OA.40)
w = L Ox (OA.41)

Aj—P—C=p—s4/Ai—(1-1)PLY % (1—)a(1+14)  (0A42)

Combining the optimality conditions of the social planner’s problem (OA.5)-(OA.11),
Aj and the definition 7} = a; [¢.(—As1) + ¢p(—As2)] / ;s

we find that the social planner’s solution satisfies the following equations:

using symmetry x;; = x;, )L;i =

¢ic=(c;/o)71e, (OA.43)

1= (1—-1)aL; %", (OA.44)
CL:(I—‘L’j)Cj(I—OOYj/Lj, (OA45)

CL = A u0x, (OA.46)

Ay =p—ps;—(1- 1)L %% (1 - ). (OA.47)

Comparing (OA.43)-(0OA.47) for the optimal economy to (OA.38)-(0A.42) for the
regulated economy, we find that the latter replicates the former if the tax policies of
proposition are imposed, (1+7q)0t = 1, 7g; = ws;/Q;, and 7; = 7}. Note that this
implies P;/PC = {;, w/PC = {1, A;/PC = A4, i.e. the real market prices in utility
terms (market prices divided by P to make C the unit of account and then multiplied
by marginal utility 1/C to make utility the unit of account) equal the corresponding

shadow prices.

OA3 General condition for the overlap

This appendix, first, generalizes the production and innovation technology to allow
for more general complementarities in innovation and, second, relaxes the patent

length assumption to allow for variable patent length.

10



OA3.1 Generalizing the sources of complementarity

We generalize the model in three ways to allow for multiple sources of investment
complementarities. First, we allow a direct effect of intermediate firms’ innovation

on productivity in their sector, by generalizing the final good production to be

1
Y; = (Q5L)"* /O qjixjidi, (OA.48)

where € > 0 measures how labor-augmenting the direct innovation spillovers are
(€ = 0 brings us back to the main text model).

Second, we allow for a more general input-output structure by assuming inter-
mediate goods production requires both own sector goods and general goods. The
unit cost (or equivalently, its monopoly price divided by markup) of an intermediate

in sector j with quality g ; is now
qjiP;OPl_w = (XPj,', (OA49)

where @ > 0 measures the share of own sector inputs in the production of specific
inputs (@ = 1 brings us back to the main text model; Acemoglu et al (2012) choose
w=0).

Third, we allow intersectoral knowledge spillovers in innovation such that
gji = usiQ] *OF (Qc+Qa)' T, (OA.50)

where Q. + Q, is the general knowledge stock, x is the degree of cross-sectoral
spillovers and 711 denotes how much more own-sector knowledge enhances research
productivity than other-sector knowledge; we have maintained the linear homo-
geneity that was also assumed in the main text. The model presented in the main

text can then be considered a special case where =1, = 0.
Lemma OA1. In a static equilibrium, intermediate goods profits are linear in firms
own quality qj;, i.e. Tj; = T;q; with

7= ()Y y=(1+e) o)

—1 OA.51
— L (OA.51)

11



where T, = 7. /Ty and Q, = Q./Qqu, while relative R&D costs are

ws(zl:/ q'df' — 1.(0)". (0A.52)
WSCl/qu

Proof of Lemma OAl. We determine static equilibrium, i.e. the allocation of labor
and profits, given the state variables g ; and given the amount of labor in production
L!

From demand for intermediates (P;dY;/dx; = P;;) and supply (OA.49) we find
Xji = 052/(1_0‘)Q?Lj(Pj/P)(l_“’)/(l_“). Plugging this into the production function
we find Y; = aza/(I*“)QiﬂLj(Pj/P)(1"")“/(1*0‘). Hence, in relative terms:

X, = QFL,(P,)1=@)/(1-a),
Y, = Q¢ ()1 -@)a/(1-0),
Demand for labor implies P;dY;/dL; = P;(1 — )Y;/L; = w, or in relative terms
L, =PY,.

Demand for Y-goods implies:

Hence we have four equations in P, L,,Y,,x, which can be solved in terms of Q,.

P. = (Qr)f(eJrl)(lfa)/(lfwa)
L, = (Qr)(6—1)(€+1)(1—0¢)/(1—wa)
X, = (Qr)£+(£+1)[(cr—l)(l—a)—(l—w)]/(l—a)oc)

Now we turn to profits of intermediate firms. Since the markup is 1/a, prof-
its are 7j; = (1 — &)Pjixj;. and the price Pj; from (OA.49), we find 7;; = [(1 —
a)ox j,-P;"PI*“’]q ji = ®jqji, where the latter step uses the result that xj; in equi-

librium is the same across firms. This shows that profits are linear in own quality

!Using this static allocation, below we turn to the dynamic equilibrium to determine the alloca-
tion of labor over production and innovation and the resulting dynamics of the state variable.

12



q i, which is stated in the lemma. Plugging in the solution for x;; and taking relative
variables, we find 7, = x,(P,)® which together with above solutions gives (OA.51).
From (OA.50) we directly find (OA.52). ]

Hence y reflects investment complementarities in production: if y > 0, an
increase in relative knowledge stocks increases relative marginal profits (in the
main text, ® = 1,€ = 0 so that y = ¢ —2). Complementarities arise from (i) de-
mand externalities (o) (ii) input-output mulitipliers (®) and (iii) direct productivity
spillovers (€). Furthermore, 1 reflect investment complementarities in innovation:
if 1 > 0 investment in sector j reduces the cost of subsequent investment more than

in the other sector.
Lemma QA2. SFPs in the unregulated market economy require Yy > max{0,—n}.

Proof of Lemma OA2. This proof turns to the dynamics of the model and exploits
the static equilibrium solutions in terms of the state variables g;; from the revious
proof. The intermediate good producer’s investment problem of choosing s;; has

the following Hamiltonian:
Hj; = ®jqji — wsji+ Ajip Qs ji-

where Q; = Q}Hx o* (Qj+0-)) I=1=2% is the productivity of research labor. The

firm takes variables without i subscript as given. Optimality conditions are:

QjuAji<w Ls;i>0 (0A.53)
Aji =r—7;/Aji (OA.54)

The two conditions show that all firms within a sector have the same shadow value

of quality, A;; = A;. We define two variables, z. and m,:

= ﬁCQ_C _ (QI’)W+n
“T R0 +7,00 1+ (Q,) v+’ (OA.55)
lch . A,(Q,)n (OA56)

e = A’CQ_C +24de B 1+)Lr(Qr>n .

13



Variable z. captures current (green) market conditions. It is a predetermined
state variable, i.e. a transformation of the relative technology state variable Q.
The transformation ensures that z. captures all channels through which the state
variable affects the return to innovation: complementarities in production (y) and
in innovation (7). Variable m. captures future (green) market conditions. It is a
forward-looking variable constructed such that its value directly pins down which
innovation is active. Clean (dirty) innovation requires future green market condi-

tions to be sufficiently good (poor) according to:?
me > (<)1/2 < 0, > (<)0.

From optimality condition (OA.54) we derive the relative growth rates A=

% (1 — %) which in terms of our new variables reads:>

A = ((ﬁd&) (me —z¢).

1 - Zc)mc

To derive the dynamics of the model in terms of z. and m., we time differentiate
(OA.55) and (OA.56):

Ze=z(1—2¢) (W+n)0r (OA.57)
tite = me(1—me) (A +n0,), (OA.58)

We now build the phase diagram in (z.,m.) plane. The regime border is the
horizontal line m, = 1/2. We first consider Y+ 1 < 0 and show that this rules out
SFPs. If m. < 1/2, innovation is brown, Q, declines and z. grows. Symmetric for
m. > 1/2. Hence the interior steady state with simultaneous research and m, = z. =
1/2 is stable, the corner steady states can never be reached, and no SFPs can arise.

We next show that an overlap requires ¥ > 0. Assume ¥+ 1 > 0. The slope

of any time path is given by ri./z.. On the 45 degree line (with m, = z, and hence

ZFrom (OA.53) we derive the regime border condition A,Q,1, > (<)1 < O, > ( <)0 which in
terms of m, gives the expression.

3Note ﬁ'r//’Lr = Zr/mr = [Zc/(l 716)]/[””0/(1 *mc)}'

14



Ay = 0) this slope boils down to:

e __n (OA.59)

% |mp=g, WM
This means that, unless 1/(y+n) = 1 <= y = 0, an equilibrium path can cross
the 45 degree line only once. When tracing back the equilibrium path from a corner
steady state (either the dirty staedy state m, = z. = 0 or the clean one m, =z, = 1),
we start on the 45 degree line and never cross again; when the slope is smaller than
1, the path from the dirty (clean) steady state crosses the regime border to the right
(left) of the 45 degree line, implying an overlap. Hence the condition for SFPs is

n/(y+n)<lsy>0,y+n>0. O

Remark. This proof only uses the investment conditions and does not need
consumer intertemporal utility maximization. This is becuase we only need to solve
for relative variables. When we want to solve for all variables, in particular total -
rather than relative - investment, as measured by 1 — L, we need the savings block
of the model.

OA3.2 Variable patent length

While Acemoglu et al. (2012) assume one-period patents and our main text model
assumes infinite patent length, in reality patents often last between 15 and 20 years.
To model elementary aspects of patent protection issues, we assume all intermediate
firms face a risk of losing their profits permanently because of patent infringement.*
The infringement event occurs at Poisson rate 1, so that the arbitrage equation (12)
now contains a risk premium:

: aTle'

7le' = (r+ l)lﬁ — W’ (OA.60)
Jt

4This modelling assumes that infringement is exogenous and uniform across firms; firms who
“steal” the patent are immediately in the same position as robbed incumbent. A full modelling would
require specifying who is successful in infringement, whether this costs effort etc. Moreover, (legal)
patent length is not the same as (illegal) infringement. We leave these details for further research.

15
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Figure 10: Equilibrium paths with different p values (¢ = 3)

which implies that profits are discounted with the interest rate plus the infringement
risk 1 to calculate the value of investment A ;.

The patent infringement rate does not affect the analysis in Section 3. Intu-
itively, because patent infringement occurs with the same probability in all sectors,
it does not affect the direction of investment.

However, the patent infringement rate affects the speed of overall investment
as analyzed in Section 4. Following the procedure of Section A.2, we derive the
counterparts of (A.2) and (A.4),

Aj=r+1—auL(m/m;)e., (OA.61)
r=oauLO+w—Qr—1. (OA.62)

Continuing the same procedure as in Section A.2 to derive the reduced-form equi-
librium dynamics, we find that in all equations in Lemma 1, p is replaced by p + 1.
Intuitively, a higher probability of loosing the patent right reduces investors’ hori-
zon as does an increase in the discount rate, so that the sum of discount rate and
patent infringement rate governs the speed of innovation. The effect of a change in
p and a change in 1 are the same with respect to the equilibrium dynamics analyzed
in Section 4. Hence, we conclude that a shorter average patent length (increase in
1) makes the overlap smaller.

Figure 10 shows the projection of the equilibrium paths for different time pref-
erence rates. As in Proposition 3, the larger the time preference rate, the smaller is
the size of the overlap.

In the market economy, policy is needed to counteract the excessively short
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horizon of investors introduced by effect of finite patent length. A subsidy to R&D

can do this job and is needed to decentralize the first-best.

OA4 Segmented labor market

Suppose labour market is segmented and the total supply of labour is L for workers
and § for scientists, that is, L. +L; < L and s. + sy < §, where L and § are now
parameters. Wage in (8) now differs from wage in (11). Denote the former by wr,
and the latter by w;. From (11) and (24), we see that we can continue to use the
variable m; to determine the innovation regime.

Combining (12), (15), and (22), we find

A 0,PY
Ai=r—(1—a)a-—. (OA.63)
’ AiQj
From (24), we find rit, = m.(1 —m,) (ic +0c— Ay — Qd) or
e = me(1— m) it (se — ) + et S22V o (e — 8., (OA.64)

W

where k denotes the research active sector and we have used uA.Q. = wgm./my

based on (11). Finally, the clean market share evolves according to
O = 0c(1— 6.)(0 — 1)1 (sc — 5a).- (OA.65)

From (OA.64) and (OA.65), it is clear that the two variables 6, and m, are
insufficient in describing the entire dynamics of the model due to the expression
(1 — a)PY /wy in (OA.64). This expression can be rewritten as wyL/w;. Compared
to the integrated labour market, where relative wage in production and research is
1 and production labour L is endogenous, here L is a constant but the relative wage
wr/ws is an endogenous variable. Assuming segmented labour market thus does
not reduce the dimensionality of the model, because a third variable is needed in
order to fully describe the dynamics of the model.

To more precisely compare the model with segmented labour market with the
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integrated labour market model in the main text, we define L, = (1 — ot)PY /wj.
This new variable adopts a similar role to production labour L in the main text by
determining the savings rate. With integrated labour market, the savings rate is
given by ws/(PC) < s/L = (1 —L)/L. Here, using (18), we find L, to be inversely

proportional to the savings rate:

5 [was] !
L, = e
1+« {PC]

Combining the above expression with (11), (OA.63) and (17), we find

Le=L.[auL.6,—us—p]. (OA.66)
Using L., (OA.64) can be written as
e = A Lemyg(me — 0,) + U(se — sq)me(1 —me). (OA.67)

Together, (OA.65)-(OA.67) form a differential equation system in variables 6., L.,
and m, that summarizes the dynamics of the model with segmented labor market.
Comparing with Lemma 1, we see that the dynamics of both models are almost
identical, the only difference being that where the constant § shows up in the equa-
tion for L,, in the integrated market model the variable s; = 1 — L shows up.

We conclude that assuming segmented labour market does not reduce the di-
mensionality of the model. The reason is that, as long as the investment decision
is dynamic, the expected present value of investment m; will be affected by the
savings rate. Even if the supply of scientists is fixed (measured as labor input), the
savings rate (measured consumption equivalents) changes over time depending on
the relative wage. If labour is mobile across the two sectors and the wage equalized,
the savings rate depends on the allocation of scientists. Thus, to reduce the dimen-
sionality, we either need to make investment decision static (e.g. with one-period

patent) or assume a fixed savings rate.
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OAS Modeling innovation as creative destruction

In this appendix we model innovation as creative destruction and demonstrate that
it generates the same qualitative result.

The R&D process is the following (see also Acemoglu et al., 2012). At the
beginning of each period, each scientist decides whether to direct her research to
clean or dirty technology. Each scientist is then randomly allocated to innovating at
most one machine within their chosen sector with a success probability of .

The rest of the model is the same as in Section 2. Thus, equations (8)-(10), (13),
(15)-(22) continue to hold. From (15), the average profit of a sector is given by

1
7'L'j = /0 ﬂjidi = (1 — (X)(XPij. (OA68)

Denote by V; the value of the patent in sector j in case of successful innovation.

The decision to target a particular sector is governed by the free entry condition:
uv;<wls; >0, (OA.69)

which is the counterpart of (11). Note that for the research active sector k, V; =
w/u. From (8),
Vi = (1 — (X)PkYk/<‘LlLk) (OA70)

follows.

Equation (12) is replaced by the non arbitrage condition:

Vi=rV;—m;+ us;V;. (OA.71)

For the dynamic equilibrium, note that (31) and (32) continue to hold. Similar

to (25), we can define
Ve

(OA.72)

me =

From (OA.69), it is clear that m, E 1/2 separates the three innovation regimes.
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Time differentiating m. and using (OA.71), we find

Hle = mc(l _mc) (Vc - Vd) = mc(l - mc) (_% + % + Qc - Qd) . (OA.73)
Using (OA.68), (OA.70), (21), and the definition of m., we can derive (30). Thus,
Lemma 1 holds.

This analysis shows that creative destruction and inhouse R&D offer almost ex-
actly the same equilibrium conditions, both statically and dynamically. The only
difference is that quality improvement is evaluated at its marginal value of improv-
ing the patent in the case of inhouse R&D, as innovation can occur repeatedly,
whereas in the case of creative destruction, quality improvement is valued at the
total value of the patent. As Lemma 1 holds in both cases, this difference does not

matter for the result.
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