
Supplemental Appendix
Attitudes towards success and failure

By Larbi Alaoui and Antonio Penta*

Ordering the Remaining Attitudes

An analogous exercise to that of ordering failure avoidance can be conducted for all the
remaining attitude. Much of the reasoning above carries through, mutatis mutandis, to the
definitions and results of these attitudes, as we now discuss.

Concerning success attachment, the first requirement will be that the more success-attaching
agent will have a smaller set of lotteries that he regards as net failures, in the sense of being
worse than the certain x0. In the continuous case, this would be identical to saying that there
is a larger set of lotteries that he regards as net successes, and so the first requirement is simply
the reverse of that for failure avoidance. But, as discussed above, for the discontinuous case it
is important to account for the existence of certainty equivalents, and hence the notion of net
failure is adequately captured by a set, Fi(x, x

′), whose definition is specular to Si(x, x
′) above:

(C1) Fi(x, x
′) := cl

{
p ∈ ∆(x, x′) : CEi(p) exists and CEi(p) < x0

}
Similarly, we define the set RLi(x, x

′) of lotteries over which success attachment is not
manifested, symmetrically to the RAi(x, x

′) sets above:

(C2) RLi(x, x
′) := cl

{
p ∈ ∆(x, x′) : CEi(p) exists and CEi(p) > Ep

}
.

The ranking over success attachment is thus defined as follows:

DEFINITION 7: Let preferences ≿1 and ≿2 both satisfy the conditions in Def.3 with respect to
the same x0 ∈ R. Then, ≿1 displays (weakly) more success attachment than ≿2 if there exist
xf , xs : xf < x0 < xs : ∀x′ ∈ (x0, xs], ∃x

¯
∈ [xf , x0) such that, for each x ∈ [x

¯
, x0), both the

following conditions are satisfied: (i) F1 (x, x
′) ⊆ F2 (x, x

′), and (ii) RL1 (x, x
′) ⊆ RL2(x, x

′).

Analogous of Theorems 5 and 6 hold for this definition too. Here we only reproduce the
statement of the differentiable case, which is easier to read and most useful in applications:

THEOREM 7 (Success Attachment: Interpersonal Comparisons): Suppose that (≿i)i=1,2 are such
that Du−i > 0 and Du+i < ∞ and ui is twice differentiable in some left- and right-neighborhoods
of x0. Then: ≿1 displays more success avoidance than ≿2 only if one of the following applies:

1) K1

Du−
1

> K2

Du−
2

,

2) K1

Du−
1

= K2

Du−
2

> 0 and
Du+

1

Du−
1

≥ Du+
2

Du−
2

,

3) K1

Du−
1

= K2

Du−
2

= 0,
Du+

1

Du−
1

≥ Du+
2

Du−
2

and
D2u+

1

Du−
1 −Du+

1

≥ D2u+
2

Du−
2 −Du+

2

.1

These conditions are also sufficient if all the inequalities hold strictly.
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1Note that, given the restrictions imposed by Theorem 2, both the numerators and the denominators on both sides of
the latter inequality are negative.
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For the remaining two attitudes, Success Seeking and Failure Resignation, things are simpler,
due to the fact they only admit a continuous representation, and hence the certainty equivalent
existence requirement in the definitions of the S, F , RA and RL sets are moot. As a consequence,
the F and RL sets are, respectively, the complements of the S and RA sets, and hence F1 ⊆ F2

if and only if S2 ⊆ S1, and RA1 ⊆ RA2 if and only if RL2 ⊆ RL1. The definitions of the
orderings for these two attidues therefore may be equivalently expressed in several ways.

DEFINITION 8: Let preferences ≿1 and ≿2 both satisfy the conditions in Def.4 with respect
to the same x0 ∈ R. Then, ≿1 displays (weakly) more failure resignation than ≿2 if thre exist
xf , xs : xf < x0 < xs s.t. ∀x ∈ [xf , x0), ∃x̄ ∈ (x0, xs] such that, for each x′ ∈ (x0, x̄], both the
following conditions are satisfied: (i) F1 (x, x

′) ⊆ F2 (x, x
′), and (ii) RA1 (x, x

′) ⊆ RA2(x, x
′).

DEFINITION 9: Let preferences ≿1 and ≿2 both satisfy the conditions in Def.3 with respect
to the same x0 ∈ R. Then, ≿1 displays (weakly) more success seeking than ≿2 if there exist
xf , xs : xf < x0 < xs s.t.: ∀x′ ∈ (x0, xs], ∃x

¯
∈ [xf , x0) such that, for each x ∈ [x

¯
, x0), both the

following conditions are satisfied: (i) S1 (x, x
′) ⊆ S2 (x, x

′), and (ii) RL1 (x, x
′) ⊆ RL2(x, x

′).

The next results provide characterize these orderings in the space of utility representations.
They are completely analogous to the previous two theorems, with the only difference that they
only account for the continuous case, and hence Ki = 0 for both agents:

THEOREM 8 (Failure Resignation: Interpersonal Comparisons): Suppose that (≿i)i=1,2 are such
that Du−i > 0 and Du+i < ∞ and ui is twice differentiable in some left- and right-neighborhoods

of x0. Then: ≿1 displays more success avoidance than ≿2 only if both (i)
Du+

1

Du−
1

≥ Du+
2

Du−
2

and (ii)

D2u−
1

Du−
1 −Du+

1

≥ D2u−
2

Du−
2 −Du+

2

. These conditions are also sufficient if all the inequalities hold strictly.

THEOREM 9 (Success Seeking: Interpersonal Comparisons): Suppose that (≿i)i=1,2 are such
that Du−i < ∞ and Du+i > 0 and ui is twice differentiable in some left- and right-neighborhoods

of x0. Then: ≿1 displays more success seeking than ≿2 only if both (i)
Du−

1

Du+
1

≥ Du−
2

Du+
2

and (ii)

D2u+
1

Du−
1 −Du+

1

≥ D2u+
2

Du−
2 −Du+

2

. These conditions are also sufficient if all the inequalities hold strictly.

Interpersonal Comparisons: A Tight Characterization

The next result provides a tight characterization of the ranking of agents’ failure avoidance
(as per Def. 6), in terms of the key elements in the main representation theorem:

THEOREM 10: Let preferences ≿1 and ≿2 both satisfy the conditions in Def. 2 with respect to
the same x0 ∈ R. Then, ≿1 displays more failure avoidance than ≿2 if and only if there exists
x < x0, such that ∀x ∈ (x, x0), there exists x̄ > x0, s.t., for all x′ ∈ (x0, x̄), one of the following
applies:

1) K1 > 0 and K1
m1(x′) −

K2
m2(x′) >

[
m2(x)
m2(x′) −

m1(x)
m1(x′)

]
(x0 − x).

2) K1 = K2 = 0, m1(x)
m1(x′) >

m2(x)
m2(x′) and

(D1)
m1(Ep̂1(x, x

′))−m1(x)

m2(Ep̂1(x, x′))− βm2(x)
>

m1(Ep̂1(x, x
′))−m1(x

′)

m2(Ep̂1(x, x′))−m2(x′)
+
[
1− β(x, x′)

]
γ(x, x′),

where β = x0−x
x′−x , and γ(x, x′) = m1(Ep̂1(x,x′))m1(x)m2(x′)−m2(x)m1(x′2)

m1(x′)(m2(Ep̂1(x,x′))−m2(x′))(m2(Ep̂1(x,x′))−β(x,x′)m2(x))
.

PROOF:
Lemma 10 above proves part 1 of the theorem, while Lemma 4, together with Lemma 6

(concerning the p̄i ranking, noting that for K1 = K2 = 0, the expression in the lemma reduces

to m1(x)
m1(x′) >

m2(x)
m2(x′)) and Lemma 14 (concerning the p̂i ranking) prove part 2 of the theorem.



Detailed Proof of 14

Lemma 15: If both u1 and u2 are continuous, p̂1(x, x
′) > p̂2(x, x

′) if and only if

(E1)
m1(y)−m1(x)

m2(y)− βm2(x)
>

m1(y)−m1(x
′)

m2(y)−m2(x′)
+ (1− β)γ(x, x′, y),

where γ(x, x′, y) = m1(y)m1(x)m2(x′)−m2(x)m1(x′2)
m1(x′)(m2(y)−m2(x′))(m2(y)−βm2(x))

.

PROOF:

Let β := x0−x
x′−x , and note that β ∈ (0, 1) and β → 1 as x′ → x0. Also let y = Ep̂1, and

note that y → x0 as x′ → x0 (these facts will be useful in the lemmas that follow). Then, from
Lemma 13, we have that:

(E2)

(
x0 − y

x′ − y

)(
(x′ − x)

(x0 − x)

)
=

m1 (x)−m1 (x
′)

βm1 (y)−m1 (x′)
.

Substituting this notation in the condition of Lemma 14, and particularly using eq. (E2),
we obtain

m1(y)−m1(x)

m1(x′)
− m2(y)−m2(x)

m2(x′)
>

(
m1(y)

m1(x′)
− m2(y)

m2(x′)

)(
1− m1(x)−m1(x

′)

βm1(y)−m1(x′)

)
.(E3)

Next, re-arrange (E3) to:

(
m1(y)

m1(x′)
− m2(y)

m2(x′)

)
−

(
m1(x)

m1(x′)
− m2(x)

m2(x′)

)
>

(
m1(y)

m1(x′)
− m2(y)

m2(x′)

)(
1− m1(x)−m1(x

′)

βm1(y)−m1(x′)

)
⇐⇒(

m1(y)

m1(x′)
− m2(y)

m2(x′)

)(
m1(x)−m1(x

′)

βm1(y)−m1(x′)

)
>

(
m1(x)

m1(x′)
− m2(x)

m2(x′)

)
⇐⇒

1

m1(x′)

(
m1(y)(m1(x)−m1(x

′))

βm1(y)−m1(x′)
−m1(x)

)
>

1

m2(x′)

(
m2(y)(m1(x)−m1(x

′))

βm1(y)−m1(x′)
−m2(x)

)
⇐⇒

m1(y)(m1(x)−m1(x
′))−m1(x)(βm1(y)−m1(x

′))

m1(x′)(βm1(y)−m1(x′))
>

m2(y)(m1(x)−m1(x
′))−m2(x)(βm1(y)−m1(x

′))

m2(x′)(βm1(y)−m1(x′))

⇐⇒
m1(y) ((1− β)m1(x)−m1(x

′)) +m1(x)m1(x
′)

m1(x′)
>

m2(y)(m1(x)−m1(x
′))−m2(x)(βm1(y)−m1(x

′))

m2(x′)

⇐⇒
m1(x

′)(m1(x)−m1(y)) + (1− β)m1(y)m1(x)

m1(x′)
>

m2(y)(m1(x)−m1(x
′))−m2(x)(βm1(y)−m1(x

′))

m2(x′)

⇐⇒

m1(x)−m1(y) +
(1− β)m1(y)m1(x)

m1(x′)
>

m2(y)(m1(x)−m1(x
′)) +m2(x)m1(x

′)

m2(x′)
− βm2(x)m1(y)

m2(x′)

⇐⇒



m1(y)

(
βm2(x)

m2(x′)
− 1

)
+m1(x) >

m2(y)(m1(x)−m1(x
′)) +m2(x)m1(x

′)

m2(x′)
− (1− β)m1(y)m1(x)

m1(x′)

⇐⇒

m1(y) (βm2(x)−m2(x
′)) +m1(x)m2(x

′)

m2(x′)
>

m2(y)(m1(x)−m1(x
′)) +m2(x)m1(x

′)− (1−β)m1(x)m1(y)m2(x
′)

m1(x′)

m2(x′)

and re-arranging further, which we obtain the following (details are in the online appendix):
(E4)

m1(y)
(
βm2(x)−m2(x

′)
)
−m1(x

′)m2(x)+
(1− β)m1(x)m1(y)m2(x

′)

m1(x′)
> m2(y)(m1(x)−m1(x

′))−m1(x)m2(x
′).

rearranging now Equation (C15) (and writing γ rather than γ(x, x′, y), we have:

m1(y)m2(y)−m1(y)m2(x
′)−m1(x)m2(y) +m1(x)m2(x

′) >

m1(y)m2(y)− βm1(y)m2(x)−m1(x
′)m2(y)+βm1(x

′)m2(x)− γ(1− β)
(
m2(y)−m2(x

′)
)
(m2(y)− βm2(x))

⇐⇒
m1(y)

(
βm2(x)−m2(x

′)
)
− βm1(x

′)m2(x) >

m2(y)
(
m1(x)−m1(x

′)
)
−m1(x)m2(x

′)− γ(1− β)(m2(y)−m2(x
′))(m2(y)− βm2(x)).

Using that −βm1(x
′)m2(x) = (1− β)m1(x

′)m2(x)−m1(x
′)m2(x), we obtain:

m1(y)
(
βm2(x)−m2(x

′)
)
−m1(x

′)m2(x) +
[
γ(1− β)(m2(y)−m2(x

′))(m2(y)− βm2(x)) + (1− β)m1(x
′)m2(x)

]
>

m2(y)
(
m1(x)−m1(x

′)
)
−m1(x)m2(x

′).(E5)

For Inequality E4 to hold if and only Inequality E5 holds, it must be that:

γ(1− β)(m2(y)−m2(x
′))(m2(y)− βm2(x))+(1− β)m1(x

′)m2(x) =
(1− β)m1(x)m1(y)m2(x

′)

m1(x′)

⇐⇒(E6)

γ =

m1(y)m1(x)m2(x)
m1(x′) −m1(x

′)m2(x)

(m2(y)−m2(x′))(m2(y)− βm2(x))
(E7)

⇐⇒(E8)

γ =
m1(y)m1(x)m2(x

′)−m2(x)m1(x
′2)

m1(x′) (m2(y)−m2(x′)) (m2(y)− βm2(x))
,(E9)

which concludes the proof of the lemma. QED.


