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Appendix: Proofs of propositions and corollaries

Proof of Proposition 2. The value of money obeys _yt = f(yt) where

f(yt) � [�+ ��(1�M)] yt � ��(1�M)u(yt):

Steady state. A steady-state monetary equilibrium (SSME) is a ys > 0 solution to

f(ys) = 0, i.e.,
u(ys)

ys
= 1 +

�

��(1�M) :

From the strict concavity of u and the assumption u(0) = 0, the left side is strictly decreasing

in ys. Hence, if a SSME exists, it is unique. From the assumption, limy!+1 u
0(y) < 1, there

exists a SSME if and only if

lim
y!0

u(y)

y
= u0(0) > 1 +

�

��(1�M) :

Speculative hyperin�ations. If u0(0) > 1 + �= [��(1�M)], so that a SSME exists, then

f 0(0) < 0. Given that f(0) = 0, it follows that for all y 2 (0; ys), f(y) < 0, i.e., _yt < 0.

Moreover, f , which is continuously di¤erentiable, is locally Lipschitz continuous. By the

Cauchy-Lipschitz theorem, for all y0 2 (0; ys), there is a unique solution to the ODE. It is

such that _yt < 0 as long as yt > 0. Hence, limt!+1 yt = 0.

For all yt > 0, the ODE can be rewritten as:

_yt
f(yt)

= 1:

For given y0 2 (0; ys), let T 2 (0;+1] denote the time at which yt reaches 0. Integrate both

sides from 0 to T to obtain: Z T

0

_yt
f(yt)

dt = T:

Use the change of variable y = yt, and hence dy = _ytdt, to rewrite the equation as:Z 0

y0

1

f(y)
dy = T;

where, by the de�nition of T , yT = 0. Substitute f(y) by its expression to obtain (13).
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A necessary condition for T < +1. A necessary condition for T < +1 is u0(0) =

+1. To see this, suppose u0(0) < +1. Since u(y)=y is strictly decreasing, u(y)=y <

limy!0 u(y)=y = u
0(0) for all y > 0. It follows that:

��(1�M)u(y)� [�+ ��(1�M)] y < y f��(1�M)u0(0)� [�+ ��(1�M)]g ;

for all y > 0. Take the reciprocal on both sides,

1

��(1�M)u(y)� [�+ ��(1�M)] y >
1

y f��(1�M)u0(0)� [�+ ��(1�M)]g ;

for all y > 0. Since u0(0) > 1 + �= [��(1�M)], so that a speculative hyperin�ation equilib-

rium exists, and
R y0
0
(1=y)dy = +1, the integral of the right side from 0 to y0 > 0 is +1.

Hence, T = +1.

Necessary and su¢ cient conditions for T < +1. From (13) T < +1 if and only ifZ y0

0

1

��(1�M)u(y)� [�+ ��(1�M)] ydy < +1:

I simplify this condition by establishing that T < +1 if and only if 1=u(y) is integrable over

(0; y0).

Necessity (=)). From (13), if T < +1 for y0 2 (0; ys), then �1=f(y) is integrable over

(0; y0). Since ��(1 �M)u(y) > �f(y) for all y > 0, 1= [��(1�M)u(y)] < �1=f(y) for all

y 2 (0; ys). Since the right side is integrable, it follows that 1=u(y) is integrable over (0; y0).

Su¢ ciency ((=). Next, suppose 1=u(y) is integrable over (0; y0) for some y0 2 (0; ys).

Then, it is integrable for any ~y0 2 (0; ys) since u is continuous on (0; ys). As shown above, a

necessary condition is u0(0) = +1. I now establish that there is a � > 0 and a ~y0 > 0 such

that

��(1�M)u(y)� [�+ ��(1�M)] y > �u(y) 8y 2 (0; ~y0):

To see this, rearrange the inequality as:

[��(1�M)� �] u(y)
y

> �+ ��(1�M) 8y 2 (0; ~y0):

As y goes to 0, u(y)=y tends to u0(0) = +1. Hence, there is a � < ��(1 �M) and a ~y0
small enough so that the inequality holds. Take the reciprocal on both sides,

0 <
1

��(1�M)u(y)� [�+ ��(1�M)] y <
1

�u(y)
8y 2 (0; ~y0):
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Since the right side is integrable, so is the middle term. Also, recall that if it is integrable

over (0; ~y0), it is integrable over (0; y0) for all y0 2 (0; ys). By the de�nition of T in (13) it

follows that T < +1.

Proof of Corollary 2. I show that if u0(0) = +1 and limy!0 �(y) > 0, then 1=u(y) is

integrable over (0; y0) for all y0 2 (0; ys). (Since u(y) is continuous, if 1=u(y) is integrable over

(0; y0) for some y0 2 (0; ys) then it is integrable for all y0 2 (0; ys).) Hence, by Proposition

2, T < +1 for all y0 2 (0; ys). The proof is based on the following claim:

Claim: There is a a 2 (0; 1), a b > 0, and a y0 > 0 such that

u(y) > by1�a 8y 2 (0; y0).

Let ` � limy!0 u(y)y
a�1 for some a 2 (0; 1) and �0 � limy!0 �(y). Since u(0) = 0, u0 > 0

and u00 < 0, u(y) > u0(y)y for all y > 0. Equivalently, �(y) 2 (0; 1) for all y > 0. Hence,

�0 2 [0; 1]. From L�Hôpital�s rule,

` � lim
y!0

u(y)ya

y
= lim

y!0

�
u0(y)ya + au(y)ya�1

�
= lim

y!0
u(y)ya�1

�
u0(y)y

u(y)
+ a

�
:

Using the de�nition of �0 � limy!0 [1� yu0(y)=u(y)], it follows that

` = ` (1� �0 + a) :

Since �0 2 [0; 1], 1� �0 2 [0; 1], and 1� �0 + a > 0. If a 6= �0, the solution ` to the equation

above is either ` = 0 or ` = +1. In order to distinguish the two cases, I compute the limit

of the slope of u(y)ya�1 as y tends to 0:

lim
y!0

@ [u(y)ya�1]

@y
= lim

y!0

�
u0(y)ya�1 + (a� 1)u(y)ya�2

�
= lim

y!0

u(y)

y2�a

�
u0(y)y

u(y)
+ a� 1

�
= (a� �0) lim

y!0

u(y)

y2�a
:

In order to obtain the third equality, I used that �0 � limy!0 [1� yu0(y)=u(y)]. The limit

on the right side can be rewritten as

lim
y!0

u(y)

y2�a
= lim

y!0

�
u(y)

y

1

y1�a

�
= +1 for all a 2 (0; 1) :
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It follows that if a < �0, which requires �0 > 0, then

lim
y!0

@ [u(y)ya�1]

@y
= �1.

In that case, ` cannot be 0. Indeed, if u(y)ya�1 is 0 at y = 0 and its derivative is �1, then

u(y)ya�1 < 0 for y close to 0, which contradicts u(y)ya�1 > 0 for all y > 0. Hence, ` = +1.

I am now in position to prove the claim above, which can be reexpressed as follows: there

is a a 2 (0; 1), a b > 0, and a y0 > 0 such that

u(y)ya�1 > b 8y 2 (0; y0).

Assume a 2 (0; �0). Using that the left side of the inequality is continuous and approaches

+1 as y tends to 0, then for any b > 0, there is a y0 > 0 such that u(y)ya�1 > b for all

y 2 (0; y0). It follows that 1=u(y) < 1=(by1�a) for all y 2 (0; y0). Since 1=y1�a is integrable

when a 2 (0; 1), i.e., the primitive is ya=a which is �nite at y = 0, so is 1=u(y). From

Proposition 2, if 1=u(y) is integrable then T < +1.

Proof of Lemma 1. Suppose �rst that buyers�preferences are of the CRRA type,

u(y) = y1��=(1 � �), while sellers�preferences are linear, w(y) = y. The pricing function is

such that p(y) = w(y) = y. It follows that p0(y) = w0(y) = 1. If the liquidity constraint,

p � m, binds then y = m. Hence, u0 [y(m)] = m��. Otherwise, y = y� = 1, p = 1, and

u0 [y(m)] = 1. By de�nition,

L(m) =
u0 [y(m)]

p0[y(m)]
� 1:

Hence,

L(m) = m�� � 1 if m � 1

= 0 otherwise.

The second case is when buyers�preferences are linear, u(y) = u0y, while seller�s disutility

is strictly convex, w(y) = y1+
=(1+
), where 
 = �=(1��) and u0 = (1� �)��. The quantity

y� solves u0 = y
, i.e.,

y� = (1� �)�(1��) :
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The pricing function is p(y) = w(y). It follows that m� = p(y�) = 1. Hence, if m � m� = 1,

then p � m holds at equality and y solves w(y) = m, which gives

y(m) = [(1 + 
)m]
1

1+
 :

Using that p0(y) = w0(y) = y
, it follows that

p0 [y(m)] = [(1 + 
)m]



1+
 :

Using that 
 = �=(1� �),

p0 [y(m)] =
1

(1� �)�m
�:

Using that u0 = (1� �)��,

L(m) =
u0

p0 [y(m)]
� 1 = m�� � 1 if m � 1.

If m > 1, y = y� and L(m) = 0.

Proof of Proposition 3. I consider equilibria such that mt 2 (0; 1) for all t 2 [0; T ).

From (22), L(mt) = m
��
t � 1 for all t 2 [0; T ). Hence, mt is a solution to (23). I operate the

change of variable, xt = m
�
t . By di¤erentiating xt with respect to t, I obtain _xt = �m

��1
t _mt.

Substitute _mt = _xtm
1��
t =� into (23) and rearrange to obtain the following nonautonomous,

linear di¤erential equation:

_xt = (�� + �+ �t)�xt � ��� for all t 2 (0; T ):

This ODE is solved using the method of the integrating factor. Multiply both sides of the

ODE by e��(��+�)t���(t), where �(t) =
R t
0
�sds, to obtain:

e��[(��+�)t+�(t)] [ _xt � (�� + �+ �t)�xt] = �e��[(��+�)t+�(t)]���,

for all t 2 (0; T ). A primitive of the left side is e��[(��+�)t+�(t)]xt. Integrate from t to T :

e��[(��+�)T+�(T )]xT � e��[(��+�)t+�(t)]xt = �
Z T

t

e��[(��+�)s+�(s)]���ds:

Rearrange the terms to obtain:

e��[(��+�)t+�(t)]xt =

Z T

t

e��[(��+�)s+�(s)]���ds+ e��[(��+�)T+�(T )]xT :
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Finally, multiply both sides by e�[(��+�)t+�(t)] to solve for xt:

(65) xt =

Z T

t

e��[(��+�)(s�t)+�(s)��(t)]���ds+ e��[(��+�)(T�t)+�(T )��(t)]xT :

I de�ne the nonspeculative solution as the solution obtained by taking the limit as T goes to

+1. From the restriction to time-paths such that xt 2 (0; 1) and the assumption �t+ � > 0

for all t, the limit of the second term on the right side of (65) is

lim
T!+1

e��[(��+�)(T�t)+�(T )��(t)]xT = lim
T!+1

e��[��(T�t)+
R T
t (�s+�)ds]xT = 0:

Hence, from (65),

�xt � lim
T!+1

xt =

Z +1

t

e��[(��+�)(s�t)+�(s)��(t)]���ds:

By assumption, �(s)� �(t) > ��(s� t). Hence,

e��[(��+�)(s�t)+�(s)��(t)] < e����(s�t) for all s > t.

Integrating both sides from s = t to s = +1, �xt is bounded above by

�xt <

Z +1

t

e����(s�t)���ds = 1; 8t > 0:

Moreover, by assumption, �(s)� �(t) � (s� t)��, which implies

�xt �
Z +1

t

e��(��+�+��)(s�t)���ds =
��

�� + �+ ��
> 0; 8t > 0:

So, �xt 2 (0; 1) for all t > 0, and hence �mt = (�xt)
1
� 2 (0; 1) for all t > 0. So the solution

satis�es the initial restriction. Using that �mt = (�xt)
1
� , I obtain (26).

The speculative hyperin�ation equilibria correspond to the continuum of solutions, in-

dexed by T 2 (0;+1), where money becomes valueless at time T < +1, xT = 0. From

(65),

xt = ���

Z T

t

e��f(��+�)(s�t)+[�(s)��(t)]gds � �xt for all t � T:

Using that mt = (xt)
1
� , I obtain (25). At t = T , mt = 0 and, from (23), _mt = 0. For all

t � T , mt = 0. So, the time-path is continuous and di¤erentiable at T and hence it is an

equilibrium.
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Proof of Corollary 3.

From (25):

(mt)
� = e�[(��+�)t+�(t)]���

Z T

t

e��[(��+�)s+�(s)]ds; 8t 2 [0; T ] .

From (26):

( �mt)
� = e�[(��+�)t+�(t)]���

Z +1

t

e��[(��+�)s+�(s)]ds; 8t � 0.

By taking the di¤erence between these two equations:

( �mt)
� � (mt)

� = e�[(��+�)t+�(t)]���

Z +1

T

e��[(��+�)s+�(s)]ds; 8t 2 [0; T ] .

At t = 0,

( �m0)
� � (m0)

� = ���

Z +1

T

e��[(��+�)s+�(s)]ds:

Hence, from the last two equations:

( �mt)
� � (mt)

� = e�[(��+�)t+�(t)] [( �m0)
� � (m0)

�] ; 8t 2 [0; T ] .

It can be rearranged to give (27). The time T at which mT = 0 solves

( �mT )
� = e�[(��+�)T+�(T )] [( �m0)

� � (m0)
�] :

Divide both sides by ( �mT )
� and take the log to obtain (28).

Proof of Proposition 4. Existence of speculative hyperin�ation equilibria. An equi-

librium is a di¤erentiable function, mt, solution to _mt = f(mt) where

f(m) � (�+ �)m� ��mL(m):

A positive steady state is a ms > 0 solution to

f(ms) = 0() �+ � = ��L(ms):

Since L0(m) < 0 for all m < p(y�), the right side is decreasing in ms, it is equal to ��L(0)

when ms = 0, and it is equal to zero for ms = p(y�) < +1. The left side is constant

and greater than zero. Hence, a solution exists provided that the right side evaluated at
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ms = 0 is greater than the left side, i.e., ��L(0) > � + �. If this condition holds and

limm!0+ L(m)m = 0, speculative hyperin�ation equilibria exist by the following logic. As

shown in the phase diagram in Figure 3, any solution to _mt = f(mt) with m0 2 (0;ms) is

such thatmt 2 [0;ms] for all t 2 R. Consider an open interval 
 � (0;ms). By assumption, f

is continuously di¤erentiable for all m > 0. Hence, f : 
! R is locally Lipschitz continuous

for all x 2 
. By the Cauchy-Lipschitz theorem, for all m0 2 (0;ms), _mt = f(mt) has a

unique solution in the neighborhood of m0. Since _mt < 0 for all mt 2 (0;ms), this solution

is decreasing and it approaches 0 at t! +1.

If �+ � > ��L(0), there is no positive steady state and f(m) > 0 for all m > 0. Hence,

one cannot construct time-paths where mt decreases over time. If limm!0+ L(m)m > 0 then

any time-path such that mt > 0 for all t < T and mt = 0 for all t � T is not di¤erentiable

at t = T since

_mT� = ��� lim
m!0+

L(m)m < _mT+ = 0:

Hence, it does not satisfy the de�nition of an equilibrium.

Characterization of T�. Assume m0 2 (0;ms) and let T� > 0 be the time at which mt

reaches �m0, i.e., mT� = �m0, for some � 2 (0; 1]. For all t 2 (0; T�), _mt=f(mt) = 1. Integrate

both sides from 0 to T� to get:

T� =

Z T�

0

_mt

f(mt)
dt:

Use the change of variable m = mt to obtain:

T� =

Z �m0

m0

1

f(m)
dm:

Using that f(m) is continuous and such that f(m) 2 (0;+1) for all m 2 (0;ms), 1=f(m) is

integrable and T� 2 (0;+1) for all � 2 (0; 1]. Substitute f(m) by its expression,

T� =

Z m0

�m0

1

��mL(m)� (�+ �)mdm:

I now adopt the change of variable x = m=m0 to rewrite T� as:

T� =

Z 1

�

1

��xL(xm0)� (�+ �)x
dx:

Conditions for money to die in �nite time. The time it takes for money to lose all of its

value is

T � T0 =
Z m0

0

1

��mL(m)� (�+ �)mdm:
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A necessary condition for T < +1 is L(0) = +1. By contradiction, suppose L(0) < +1.

Using that L(m) is decreasing for all m 2 (0; p(y�)), then

1

��mL(m)� (�+ �)m >
1

m [��L(0)� (�+ �)] for all m > 0.

From the observation that Z m0

0

1

m [��L(0)� (�+ �)]dm = +1;

where I used that ��L(0) > � + �, it follows that T = +1. By the logic of the proof of

Proposition 2, where u(y) is replaced with mL(m), a necessary and su¢ cient condition for

T < +1 is
R m0

0
1= [mL(m)] dm < +1.

Approximate solutions. Suppose L(0) < +1 and L is di¤erentiable at m = 0. I linearize

the ODE in the neighborhood of mt = 0 to obtain:

_mt = [�+ � � ��L(0)]mt;

where I used that L(m) is di¤erentiable atm = 0 so that L0(0) 2 (�1; 0) and limm!0mL
0(m) =

0. The solution is (35). Under the condition for the existence of a positive steady state,

i.e., ��L(0) > � + �, the term on the right side between squared brackets is negative,

@ _mt=@mt 2 (�1; 0). Hence, mt converges to 0 but only at the limit as t! +1.

The linearization of the ODE in the neighborhood of ms gives

_mt = [�+ � � ��L(ms)� ��msL0(ms)] (mt �ms):

From (31), �+ � = ��L(ms), and hence

_mt = �� [1 + L(m
s)]
�msL0(ms)

1 + L(ms)
(mt �ms):

Using the notation �(ms) � �msL0(ms)= [1 + L(ms)] and �� [1 + L(ms)] = �+ � + ��, one

obtains

_mt = (�+ � + ��) �(m
s) (mt �ms) :

The solution to this linear di¤erential equation is (34). Note that mt close to ms requires

that m0 is also close to ms.
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Proof of Corollary 4. Preliminary result: If a speculative hyperin�ation with �nite

duration exists, then �0 � limm!0�L0(m)m= [1 + L(m)] 2 [0; 1].

The proof of this result is as follows. From Proposition 4, a necessary condition for

T < +1 is L(0) = +1. Hence, �0 = limm!0�L0(m)m=L(m). In order for a speculative

hyperin�ation equilibrium to exist, limm!0 L(m)m = 0. Since L(m)m � 0 for all m > 0,

it follows that limm!0 @ [L(m)m] =@m � 0, i.e., limm!0 fL(m) [1� �(m)]g � 0. Hence,

�0 2 [0; 1].

I now turn to the main part of the proof. From Proposition 4, T < +1 if and only if

1= [L(m)m] is integrable. In order to establish that 1= [L(m)m] is integrable if �0 > 0, I show

that there exists an a 2 (0; 1), a b > 0, and a m0 > 0 such that

L(m)m > bm1�a for all m 2 (0;m0) .

This inequality can be reexpressed as

L(m)ma > b for all m 2 (0;m0) :

Consider the limit of the left side as m tends to 0.

` � lim
m!0

L(m)ma

= lim
m!0

L(m)m1+a

m

= lim
m!0

�
L0(m)m1+a + (1 + a)L(m)ma

	
= lim

m!0
L(m)ma fL0(m)m=L(m) + 1 + ag

= ` (1 + a� �0) :

To go from the second line to the third line, I apply L�Hôpital�s rule. To go from the fourth

line to the last line I use the de�nitions of ` and �0. From the preliminary result above, under

the assumptions limm!0 L(m)m = 0 and L(0) = +1, �0 2 [0; 1], and hence 1 + a� �0 > 0.

If a 6= �0, then the solution to the ` = ` (1 + a� �0) is either ` = 0 or ` = +1.

In order to determine whether ` = 0 or ` = +1 is the solution, I compute the limit of
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the slope of L(m)ma as m tends to 0:

lim
m!0

�
@L(m)ma

@m

�
= lim

m!0

�
L0(m)ma + aL(m)ma�1	

= lim
m!0

L(m)

m1�a

�
L0(m)m

L(m)
+ a

�
= (a� �0) lim

m!0

L(m)

m1�a :

If a < �0, this limit is �1. It implies ` = +1. To see this, suppose, a contrario, that ` �

limm!0 L(m)m
a = 0. From @ [L(m)ma] =@m = �1 at m = 0, it follows that L(m)ma < 0

for small m, which is inconsistent with L(m)ma � 0 for all m > 0.

Using the result that ` � limm!0 L(m)m
a = +1, it follows by continuity that for any

b > 0, there is a m0 > 0 such that L(m)ma > b for all m 2 (0;m0). Equivalently,

1

L(m)m
<

1

bm1�a for all m 2 (0;m0) .

Since the right side is integrable, i.e.,
R m0

0
ma�1dm = (m0)

a=a, so is the left side. Hence,

T < +1.

Proof of Corollary 5.

Part 1. Under the generalized CRRA preferences, for every element of the sequence

fbng+1n=0, the ODE, (21), can be rewritten as

(66) _mn;t = (�+ � + ��)mn;t � ��mn;t(mn;t + bn)
��:

The positive steady state, denoted ms
n, solves _mn;t = 0, i.e., ��(ms

n + bn)
�� = � + � + ��.

Solving forms
n in closed form gives (37). Since bn 2

�
0; [��=(�� + �+ �)]

1
�

�
, ms

n > 0. Using

that fbng+1n=0 is decreasing, fms
ng+1n=0 is increasing.

Part 2. The uniqueness of the solution to the ODE, (66), follows from Proposition 4 and

the fact that the right side of (66) is continuously di¤erentiable for all mn;t > �bn. Since

fms
ng+1n=0 is increasing, the condition m0 < m

s
0 guarantees that mn;0 = m0 < m

s
n for all n.

From Proposition 4, for all mn;0 2 (0;ms
n), _mn;t < 0 and mn;t ! 0 as t ! +1. Moving

backward in time, mn;t ! ms
n as t! �1.

12



Part 3. Under generalized CRRA preferences, L(xm0) = (xm0 + b)
�� � 1. Hence, from

(32),

Tn;� =

Z 1

�

1

��x(xm0 + bn)�� � (�+ � + ��)x
dx:

Hence, Tn;� increases in bn or, equivalently, decreases in n. As bn tends to 0, it approaches

T1;� =

Z 1

�

1

��(m0)��x1�� � (�+ � + ��)x
dx:

I adopt the change of variable u = x�. Then, dx = x1��du=� and

T1;� =
1

�

Z 1

�

1

��(m0)�� � (�+ � + ��)u
du:

A primitive of the integrand is

� ln [��(m0)
�� � (�+ � + ��)u]

�+ � + ��
:

Hence,

T1;� =
1

�(�+ � + ��)
ln

�
��(m0)

�� � �(�+ � + ��)
��(m0)�� � (�+ � + ��)

�
=

1

�(�+ � + ��)
ln

�
1 + (1� �) (�+ � + ��)

��(m0)�� � (�+ � + ��)

�
=

1

�(�+ � + ��)
ln

�
1 + (1� �) 1

(ms
1=m0)

� � 1

�
;

where to obtain the second equality I rearranged the terms between squared brackets and to

obtain the third equality I used that ms
1 = [��= (�+ � + ��)]

1
� .

Proof of Proposition 5. Under quadratic preferences, the ODE, mt obeys

(67) _mt = [�+ � + ��(1� A)]mt + ��" (mt)
2 :

The positive steady state solves _mt = 0 and mt > 0, which gives (41). In order for ms > 0,

��A > ��+ �+ �, which can be rewritten as (40). The ODE, (67), is a Bernoulli equation.

Assuming mt > 0, I adopt the change of variable xt = m�1
t . Then _xt = � _mt=(mt)

2.

Substitute _mt = � _xt(mt)
2 into (67) to obtain

_xt = � [�+ � + ��(1� A)]xt � ��":

13



The solution to this linear ODE is

xt = x
s + (x0 � xs)e[��(A�1)����]t;

where xs = ��"= [��(A� 1)� (�+ �)] = 1=ms. Using that mt = 1=xt, I obtain (42). It is

easy to check that for all m0 2 (0;ms), mt > 0 for all t > 0, as conjectured above.

From (32), using that L(ms) = (� + �)=(��), the time it takes for mt to reach �m0

starting from m0 is

T� =

Z 1

�

1

��x [L(xm0)� L(ms)]
dx:

Under quadratic preferences, L(m) = A� "m so that

T� =
1

��"

Z 1

�

1

x (ms � xm0)
dx:

The integrand can be reexpressed as:

1

x (ms � xm0)
=
1=ms

x
+

m0=ms

ms � xm0

:

A primitive is
1

ms
lnx� 1

ms
ln (ms � xm0) =

1

ms
ln

�
x

ms � xm0

�
:

It follows that T� can be rewritten as in (43).

Proof of Proposition 6. From Proposition 4, a necessary condition for T < +1 is

L(0) = +1. Hence, in order to establish that T = +1, it su¢ ces to show that L(0) < +1.

From (45),

L(m) =
u0 [y(m)]

p0 [y(m)]
� 1 = � fu0 [y(m)]� w0 [y(m)]g

�w0 [y(m)] + (1� �)u0 [y(m)] ;

where y(m) is the solution to p(y) = minfp(y�);mg with p(y) � �w(y)+ (1� �)u(y). Divide

the numerator and the denominator by w0 [y(m)]:

L(m) =
� fu0 [y(m)] =w0 [y(m)]� 1g
� + (1� �)u0 [y(m)] =w0 [y(m)]

� �u0 [y(m)] =w0 [y(m)]

� + (1� �)u0 [y(m)] =w0 [y(m)] :

14



The right side is increasing with the term u0=w0. So, an upper bound is obtained by taking

the limit as this term goes to in�nity. This gives:

L(m) � lim
x!+1

�x

� + (1� �)x =
�

1� � :

So, if � < 1, L(0) < +1.

Proof of Proposition 8. Part 1.

Steady states. From (55) with b = 0, _mt = f(mt) where

f(mt) � (�+ ��)mt + gt � ��(mt)
1��:

A steady-state equilibrium is a ms solution to f(ms) = 0, i.e.,

(68) ��(ms)1�� � (�+ ��)ms = g:

Since � 2 (0; 1), the left side of (68) is strictly concave, equal to 0 when eitherms = 0 orms =

[��= (�+ ��)]1=�. It reaches a maximum when ms = mmax � [�� (1� �) = (�+ ��)]1=�. The

right side is constant and equal to g > 0. Hence, if the left side when evaluated atms = mmax

is greater than g, i.e.,

g <

�
�� (1� �)
�+ ��

� 1
� � (�+ ��)

(1� �) ;

then there are two steady-state equilibria, 0 < ms
` < ms

h. Because the left side of (68) is

increasing in ms for all ms < mmax, an increase in g raises ms
` < mmax. By a symmetric

reasoning, an increase in g reduces ms
h.

Speculative equilibria. From (55), @ _mt=@mt = f
0(mt) < 0 for all mt < mmax. From the

result that ms
` < mmax and _mt = 0 when mt = m

s
`, it follows that _mt > 0 for all mt < m

s
`.

Thus, there are no equilibria where the value of money converges to 0. By a similar reasoning,

for all m0 2 (ms
`;m

s
h), _mt < 0. Hence, there are a continuum of equilibrium paths where mt

converges to ms
`. These dynamics are illustrated in the phase diagram in Figure 9.

Approximation. From (55),

@ _mt

@mt

����
mt=ms

`

= f 0(ms
`) = �+ �� � (1� �)��(ms

`)
��:

15
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Figure 9: Phase diagram of ODE (55)

I use this expression to linearize (55) in the neighborhood of ms
`:

_mt =
�
�+ �� � (1� �)��(ms

`)
��� (mt �ms

`):

Using that @ _mt=@mt < 0 at mt = ms
`, any solution to the linear ODE above converges to

ms
`. The closed-form solution is given by (58). Similarly, I linearize (55) in the neighborhood

of ms
h to obtain (57). Since mt diverges from ms

h when m0 6= ms
h, in order for mt to be in

the neighborhood of ms
h, m0 must also be in the neighborhood of ms

h.

Part 2. If u(y) = ln(y+b)� ln(b), with b 2 (0; 1), then the ODE for mt, (54), is rewritten

as

(69) _mt = f(mt; b) � (�+ ��)mt + g �
��mt

mt + b
:

Part 2a. A steady state, ms, solves f(ms; b) = 0, i.e.,

LHSz }| {
(�+ ��)ms + g =

RHSz }| {
��ms

ms + b
:

The left-hand side (LHS) is linear increasing in ms with a positive intercept. The right-hand

side (RHS) is a strictly increasing and strictly concave function of ms with a slope given by

@RHS

@ms
=

��b

(ms + b)2
:

So, @RHS=@msjms=0 = ��=b and @RHS=@m
sjms!+1 = 0. Moreover,

@RHS

@ms
=
@LHS

@ms
() ��b

(ms + b)2
= �+ ��:

16



The solution is ms = m̂ where

m̂ �

s
��b

�+ ��
� b:

Finally,

RHSjms=0 = 0 < LHSjms=0 = g

and

RHSjms=1�b = ��(1� b) < LHSjms=1�b = ��(1� b) + �(1� b) + g:

Hence, if a solution to f(ms; b) = 0 exists, then there are two solutions, ms
` 2 (0; m̂] and

ms
h 2 [m̂; 1� b). The determination of the steady states is represented graphically in Figure

10.

RH SLH S ,

sm

LHS

)( 0bRHS
)( 1bRHS)0( →nbRHS

sm l

s
hm

Figure 10: Determination of steady states under logarithmic preferences

Consider a decreasing sequence, fbng+1n=0, that converges to 0. As bn approaches zero,

RHS increases and approaches �� for all ms > 0, as shown in Figure 10. Hence, if g < ��,

there is a N � 0 such that for all n � N , there are two steady states, ms
`;n and m

s
h;n. Since

RHS is decreasing in b, it shifts upward as b decreases. Moreover, RHS intersects LHS

by below at ms
`. Hence, m

s
`;n is decreasing in n. By a similar logic, m

s
h;n is increasing in n.

Moreover, by the squeeze theorem, since 0 � ms
`;n � m̂(bn) and limb!0 m̂ = 0, it follows that

limn!+1m
s
`;n = 0. The high steady state converges to the solution to (�+ ��)m

s+g = ��,

i.e., (59).
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Part 2b. In the following, I abstract from the index, n. Suppose m0 2 (ms
`;m

s
h). Let T�

denote the time at which mt reaches �m0 + (1� �)ms
`, i.e.,

mT� = �m0 + (1� �)ms
`:

The ODE, _mt = f(mt; b), can be rewritten as

_mt

f(mt; b)
= 1:

Integrate both sides from t = 0 to t = T� to obtain

T� =

Z T�

0

_mt

f(mt; b)
dt:

Use that f(mt; b) � (�+ ��)mt + g � ��mt=(mt + b) and adopt the change of variable

m = mt:

T� =

Z m0

�m0+(1��)ms
`

m+ b

��m� [(�+ ��)m+ g] (m+ b)dm:

The denominator of the integrand, which is quadratic, can be rewritten as:

��m� [(�+ ��)m+ g] (m+ b) = (�+ ��) (ms
h �m)(m�ms

`);

where I used that f(ms
`; b) = f(m

s
h; b) = 0 and the coe¢ cient in front of the quadratic term

is � (�+ ��). Hence, the integrand can be rewritten as

I(m) � m+ b

��m� [(�+ ��)m+ g] (m+ b) =
m+ b

(�+ ��) (ms
h �m)(m�ms

`)
:

It can be checked that

m+ b

(ms
h �m)(m�ms

`)
=

1

ms
h �ms

`

�
b+ms

h

ms
h �m

+
ms
` + b

m�ms
`

�
:

Multiplying both sides of the equality above by (�+ ��)�1, the integrand can be rewritten

as:

I(m) =
1

(�+ ��) (ms
h �ms

`)

�
b+ms

h

ms
h �m

+
ms
` + b

m�ms
`

�
:

A primitive of the right side is:

z(m) =
� (b+ms

h) ln (m
s
h �m) + (ms

` + b) ln(m�ms
`)

(�+ ��) (ms
h �ms

`)
:
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It follows that:

T� = z(m0)�z(�m0 + (1� �)ms
`)

=
1

(�+ ��)

��
ms
h + b

ms
h �ms

`

�
ln

�
1 + (1� �)

�
m0 �ms

`

ms
h �m0

��
�
�
ms
` + b

ms
h �ms

`

�
ln (�)

�
:

The expression for T�;n given by (60) is obtained from T� above wherems
` = m

s
`;n, m

s
h = m

s
h;n,

and b = bn.

Part 2c. Using that ms
`;n & 0 and ms

h;n % ms, for all m0 2 (0;ms), there is a ~N � 0

such that for all n � ~N , m0 2 (ms
`;n;m

s
h;n). From the expression for T�;n given by (60),

~T� � lim
n!+1

T�;n =
1

(�+ ��)
ln

�
1 + (1� �)

�
m0

ms �m0

��
:

Since f 2 C1 for all m > �b, it is locally Lipschitz continuous. By the theorem of Cauchy-

Lipschitz, the ODE, _mt = f(mt; bn), admits a unique solution, mn;t, given the initial con-

dition, m0, and it is such that mn;t converges to ms
`;n as t ! +1. Since f is continuously

di¤erentiable with respect to m and b for all (m; b) such that m + b > 0, by the theo-

rem of continuous dependence (see, e.g., Grant, 2014, page 20), the solution to the ODE is

continuous in bn. As bn ! 0, the ODE converges to

_mt = (�+ ��)mt + g � ��; for all mt > 0.

The solution to this linear ODE is ~mt given by (62) where T is de�ned by ~mT = 0 and

corresponds to ~T0. So, for all t 2 (0; T ), mn;t converges pointwise to ~mt as n! +1.

Proof of Proposition 9. The ODE (54) becomes

(70) _mt = ��"(mt)
2 � [��(A� 1)� �]mt + g:

The steady-state solutions to (70) are given by

ms
h =

��(A� 1)� �+
q
[��(A� 1)� �]2 � 4��"g
2��"

ms
` =

��(A� 1)� �
��"

�ms
h:

Note that the right side of (70) is equal to g > 0 when mt = 0. It implies that the two roots,

if they exist, are both positive or both negative. Two real, positive, and distinct solutions
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exist if and only if ��(A� 1)� � > 0, so that ms
h +m

s
` > 0, and

g <
[��(A� 1)� �]2

4��"
;

so that the discriminant associated with the quadratic equation is positive and the roots are

real and distinct.

The ODE (70) is a Ricatti equation that admits an explicit solution. Adopt the change

of variable, zt = mt �ms
`, to rewrite (70) as

_zt = ��"(zt +m
s
`)
2 � [��(A� 1)� �] (zt +ms

`) + g

= ��"(zt)
2 + 2��"ms

`zt � [��(A� 1)� �] zt

+��" (ms
`)
2 � [��(A� 1)� �]ms

` + g

By de�nition of ms
`, the last three terms on the right side add up to 0. Hence,

_zt = ��"(zt)
2 + f2��"ms

` � [��(A� 1)� �]g zt:

The ODE in zt is a Bernoulli equation. Using the change of variable xt = 1=zt, which implies

_xt = � _zt=(zt)2, it becomes

� _xt(zt)2 = ��"(zt)2 + f2��"ms
` � [��(A� 1)� �]g zt:

Suppose zt > 0. I divide both sides by �(zt)2 and I use that xt = 1=zt to obtain

_xt = ���"� f2��"ms
` � [��(A� 1)� �]gxt:

Using that ��"ms
` +��"m

s
h = ��(A� 1)��, the term between brackets can be rewritten as

2��"ms
` � [��(A� 1)� �] = ��" (ms

` �ms
h) :

Moreover, the steady state is

xs =
1

ms
h �ms

`

:

Hence, the solution is

xt =
1

ms
h �ms

`

+

�
x0 �

1

ms
h �ms

`

�
e��"(m

s
h�ms

`)t:

For all x0 2 (0; xs), the solution is such that xt > 0 for all t, and hence zt > 0 for all t. Using

that x0 = 1=(m0 �ms
`) and mt = 1=xt +m

s
`, the solution to (70) is (64).
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Proposition 10 (Speculative dollarization.) The steady-state monetary equilibrium is

such that ms = minfms
0;m

s
1g and as +ms = maxfms

0; !
s
1g where

ms
0 �

�
��

�� + �+ �

� 1
�

(71)

ms
1 �

�
���m

���m + ra + �

� 1
�

(72)

!s1 �
�

���2
�� ra + ���2

� 1
�

:(73)

There exists a continuum of speculative hyperin�ation equilibria indexed by m0 2 (0;ms).

The time at which the economy starts dollarizing, T0 � infft 2 R+ : at > 0g, is

T0 =
1

�(�� + �+ �)
ln

�
(ms

0)
� � (!s1)�

(ms
0)
� � (m0)

�

�
if !s1 < m0 < m

s
0(74)

= 0 otherwise.

The time at which the economy is fully dollarized is T0 + T1 � supft 2 R+ : mt > 0g where

(75) T1 =
ln [1� (mT0=m

s
1)
�]
�1

(���m + ra + �) �
;

and mT0 = minfm0; !
s
1g. The time-path for real balances is

mt =
�
(ms

0)
� � e�(��+�+�)t [(ms

0)
� � (m0)

�]
	 1
� I[0;T0](t)

+
�
(ms

1)
� � e�(���m+ra+�)(t�T0) [(ms

1)
� � (mT0)

�]
	 1
� I[T0;T0+T1](t):

The time-path for real holdings of dollars is

(76) at = (!
s
1 �mt) I[T0;+1)(t):

Proof of Proposition 10. Using that rt = _mt=mt � �, (47) can be rewritten as:

_mt

mt

= �+ � � ���m�0(mt)� ���2�0(mt + at):

From (48),

���2�
0(mt + at) = min f���2�0(mt); �� rag :
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Assuming u(y) = y1��=(1 � �) and w(y) = p(y) = y, �0(x) = x�� � 1 if x � 1. Substitute

�0(mt + at) by its expression into the ODE for mt, the equilibrium condition is

(77)
_mt

mt

= �+ � + ���m � ���m(mt)
�� �min

�
���2

�
(mt)

�� � 1
�
; �� ra

	
:

From the last term on the right side, if the domestic currency is the only means of payment,

i.e., at = 0, then its liquidity value in type-2 meetings cannot be greater than the holding

cost of dollars, � � ra. An equilibrium is a time-path, (mt; at), where mt solves (77) and,

given mt, at solves (48).

The ODE (77) can be rewritten as

_mt

mt

= max f�0(mt);�1(mt)g ;

where

�0(m) � (�� + �+ �)� ��m��

�1(m) � (���m + ra + �)� ���mm��:

From (71), ms
0 is the unique solution to �0(m

s
0) = 0. From (72), ms

1 is the unique solution

to �1(ms
1) = 0. Both �0(mt) and �1(mt) are increasing functions that intersect once at

m = !s1 =

�
���2

���2 + �� ra

� 1
�

:

For all m < !s1, �0(m) < �1(m) and for all m > !s1, �0(m) > �1(m). Hence,

_mt

mt

= �0(mt)Ifmt�!s1g + �1(mt)Ifmt<!s1g:

The right side of the ODE is increasing in mt with

lim
mt&0

_mt

mt

= �1 and
_mt

mt

����
mt=1

= �+ � > 0:

Hence, there exists a unique positive steady state, ms 2 (0; 1). The two candidates are

ms
0 and m

s
1. Since max f�0(ms);�1(m

s)g = 0, ms = minfms
0;m

s
1g. To see this, suppose

ms = ms
0. Then, �0(m

s) = 0 � �1(m
s). Using that �1 is increasing and �1(ms

1) = 0,

ms � ms
1. I illustrate these arguments graphically in Figure 11 where I represent the functions

�0(mt) and �1(mt) and the determination of ms
0, m

s
1, and m

s.

22



Characterization of speculative hyperin�ations. For all mt < m
s, _mt < 0. Hence, there

are a continuum of speculative hyperin�ation equilibria indexed by m0 2 (0;ms) and such

that mt decreases over time with limt!+1mt = 0. From (48),

at

(
=

>
0 if ���2

�
(mt)

�� � 1
�( <

>
�� ra:

In words, it is optimal to hold a positive amount of dollars if the liquidity premium in type-2

matches when a = 0 is greater than the holding cost of dollars. Equivalently, using the

de�nition of !s1 in (73), i.e., ���2 [(!
s
1)
�� � 1] = �� ra,

at

(
=

>
0 if mt

(
>

<
!s1:

Since mt is decreasing over time and approaches zero asymptotically, if m0 > !
s
1 then there

is a T0 > 0 such that for all t < T0, at = 0 and for all t > T0, at > 0. If m0 � !s1 then T0 = 0.

It follows that the ODE (77) can be rewritten as

_mt

mt

= �0(mt) for all t 2 (0; T0)

= �1(mt) for all t > T0:

This ODE is solved by backward induction. For all t > T0, the ODE _mt=mt = �1(mt) is

identical to (23) where �� has been replaced with ���m and � has been replaced with ra.

The initial condition is mT0 = minfm0; !
s
1g < ms

1. Hence, from Corollary 3, the solution is

mt =
�
(ms

1)
� � e�(���m+ra+�)(t�T0) [(ms

1)
� � (mT0)

�]
	 1
� I[T0;T0+T1](t);

where, from (30) by replacing �� with ���m and � with ra,

T1 =
ln [1� (mT0=m

s
1)
�]
�1

(���m + ra + �) �
:

From (48) at equality, at +mt = !
s
1 for all t > T0.

For all t < T0, the ODE _mt=mt = �0(mt) is identical to (23). Hence, from Corollary 3,

the solution is

(78) mt =
�
(ms

0)
� � e�(��+�+�)t [(ms

0)
� � (m0)

�]
	 1
� I[0;T0](t) for all t < T0.
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Figure 11: Representation of the functions �0 and �1

T0 = 0 versus T0 > 0. As shown in the right panel of Figure 11, if ms
1 < ms

0, then

ms = ms
1 < !s1. The condition m

s
1 < !s1 is equivalent to ra > �m� � �2�. From (48),

as +ms = !s1 and the steady-state holdings of dollars are

(79) as1 =

�
���2

�� ra + ���2

� 1
�

�
�

���m
���m + ra + �

� 1
�

:

For all m0 < m
s, m0 < !

s
1. Hence, at > 0 for all t, i.e., T0 = 0.

As shown in the left panel of Figure 11, if ms
0 < ms

1, then m
s = ms

0 > !s1 and a
s = 0.

The condition ms
0 > !

s
1 is equivalent to ra < �m� � �2�. For all m0 2 (!s1;ms), T0 > 0. If

m0 � !s1, then T0 = 0.

Determination of T0. Suppose ms = ms
0 > !

s
1 and m0 2 (!s1;ms) so that T0 > 0. From

(77), T0 is the solution to

���2
�
(mT0)

�� � 1
�
= �� ra;

or, equivalently,

mT0 = !
s
1 =

�
���2

���2 + �� ra

� 1
�

:

Using the expression for mt given by (78), T0 is the solution to

�
(ms

0)
� � e�(��+�+�)T0 [(ms

0)
� � (m0)

�]
	 1
� = !s1.
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Solving for T0,

T0 =
1

�(�� + �+ �)
ln

�
(ms

0)
� � (!s1)

�

(ms
0)
� � (m0)

�

�
;

which corresponds to (74).
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Appendix S1: The role of continuous time

The observation that the breakdown of backward induction hinges on time being uncount-

able raises the question of the robustness of continuous-time monetary equilibria. In order

to address this concern, I will show that equilibria in continuous time are the limits of equi-

libria in discrete time, for which backward induction holds, when the length of the period

approaches zero. It means that for any T 2 (0;+1) and any small " > 0, one can �nd a

period length small enough in the discrete-time model so that there exist equilibria where

the value of money is less than " at time T .

The Shi-Trejos-Wright model

In discrete time, the model can be rewritten as:

V1;n� = ��
�
���(1�M)

�
u(y(n+1)�) + V0;(n+1)� � V1;(n+1)�

�
+ V1;(n+1)�

	
V0;n� = ��

�
���M

�
�y(n+1)� + V1;(n+1)� � V0;(n+1)�

�
+ V0;(n+1)�

	
;

where n 2 N0 and � 2 R+ is the length of time period. The take-it-or-leave-it o¤er by sellers

gives

y(n+1)� = V1;(n+1)� � V0;(n+1)�:

Hence, an equilibrium of the STW model in discrete time as a sequence, fyn�g+1n=0, solution

to

(80) yn� = ��
�
���(1�M)

�
u(y(n+1)�)� y(n+1)�

�
+ y(n+1)�

	
:

The length of a period, �, a¤ects both the discount factor, �� = e
���, and the arrival rate

of meetings, �� = 1�e���. It can be checked that the di¤erence equation (80) converges to

the di¤erential equation (4) as � approaches zero. To see this, denote t = n�, and rearrange

(80) as follows: �
1� ��
��

�
yt = ���(1�M) [u(yt+�)� yt+�] + yt+� � yt.

Divide by � and take the limit as �! 0 to obtain (4).
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The Lagos-Wright model

Suppose that competitive markets (CMs) open infrequently at times n� for n 2 N0. So, �

is the length of time between two consecutive CMs. Time can be continuous but the times at

which the CMs open are countable. Between CMs, each agent meets a trading partner with

probability ��. This description corresponds to the discrete-time model of Lagos and Wright

(2003). Under a constant money supply (� = 0) and CRRA preferences, the time-path for

real balances, fmn�g+1n=0, solves

(81) mn� = ��m(n+1)�

liquidity factorz }| {h
1 + ���

�
m��
(n+1)� � 1

�i
; 8n 2 N0;

where the discount factor, �� = e
���, and the probability of a meeting between two consec-

utive CMs, �� = 1 � e���, depend on �. The value of money at time n� is equal to the

discounted value of money at time (n+ 1)�, multiplied by a liquidity factor.

The di¤erence equation (81) converges to the di¤erential equation (23) as � approaches

zero. To see this, denote t = n�, and rearrange (81) as follows:

(82) mt

�
1� ��
��

�
= ���mt+�

�
m��
t+� � 1

�
+mt+� �mt:

Divide by � and take the limit as � ! 0 and use that ��=� ! 0, (1 � ��)=� ! � and

�� ! 1 to obtain (23). It suggests that the dynamics of the model in discrete time when

CMs open at high frequency approach the dynamics in continuous time.

I con�rm this point in Figure 12. In the top panel, I plot the solution to (81) for di¤erent

values of �.29 The time-paths in discrete time converge to the equilibrium time-path in

continuous time as � goes to zero. In the bottom panel, I plot real balances at some

arbitrary date, t = 10, for di¤erent frequencies of CM openings, n = 10=�. As n increases,

� decreases in order to keep t = n� constant. The value of money decreases toward 0

as n becomes large, i.e., lim�!0,�n!10m10 = 0. Even though money does not die, for any

arbitrary " > 0, one can �nd a �" > 0 such that if � < �" then the value of money at

t = 10 is less than ".

29The value, mt, is computed asmn� where n is the integer part of t=�. The parameter values are � = 0:5,
� = 5, � = 0:2, � = 0:01, and the initial value is m0 = 0:85.
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Figure 12: Top panel: Time-paths for real balances in the discrete-time model for di¤erent
� and in the continuous-time model. Bottom panel: Value of real money balances at time
t = n� = 10 as � vanishes.
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Appendix S2: When credit dies

So far I studied speculative hyperin�ation in economies with �at monies. As the use of �at

money in developed economies recedes, do speculative hyperin�ations become less relevant?

I now describe a phenomenon similar to speculative hyperin�ations in a pure credit economy

with limited commitment, as in Kehoe and Levine (1993).30

I maintain the assumption from the pure currency economy that there is no technology

to enforce the repayment of debts, i.e., repayment has to be self-enforcing. In order for credit

arrangements to be incentive feasible, there is a record-keeping technology that keeps track

of transactions and repayments. In equilibrium, buyers will have incentives to repay their

debts in order to maintain their access to credit. I assume that the record-keeping technology

is imperfect in the following sense. A default event is recorded with probability � 2 [0; 1].

Hence, there is a probability 1� � that an agent who defaulted is not reported publicly and

hence is not excluded from future credit.31

Credit transactions take place as follows. At times Tn, n 2 N, a buyer receives oppor-

tunities to consume by being matched bilaterally with sellers. While she cannot produce in

the match, she can promise to repay her debt as soon as the meeting is over, at time T+n .

The maximum amount a buyer can promise to repay at time t expressed in the numéraire,

called debt limit, is denoted dt. This real payment capacity, which is analogous to mt in the

monetary economy, is endogenous.

The expected lifetime utility of a buyer solves the following HJB equation:

(83) �V bt = ���(dt) +
_V bt :

The interpretation is similar to (16) where mt is replaced with dt. The debt limit is de�ned

as the highest amount of debt that a buyer would repay willingly knowing that if she defaults

she will be excluded from future transactions with probability �, in which case her lifetime

utility is 0 (under the assumption that u(0) = 0). It solves

(84) dt = �V
b
t :

30Such equilibria have been described in a discrete-time competitive economy by Bloise, Reichlin, and
Tirelli (2013).
31This model is a version of Gu, Mattesini, Monnet, and Wright (2013). A characterization of the perfect

Bayesian equilibria of such a pure credit economy is provided in Bethune, Hu, and Rocheteau (2018).
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By defaulting, the buyer saves the cost of repayment, dt, but incurs the cost of being excluded

from future credit, V bt , with probability �. Substitute dt by its expression given by (84) into

(83) to obtain

(85) �dt = ����(dt) + _dt:

An equilibrium is a time-path, dt, solution to (85).

In order to solve for equilibria in closed form, I make the following assumptions. Buyers

make take-it-or-leave-it o¤ers to sellers, i.e., p(y) = y, and preferences are of the type u(y) =

y1�� with � 2 (0; 1). In order to keep the analysis succinct, I focus on the region in the

parameter space where the debt limit at the steady state, ds, is less than y�, which requires

�y� > ��� [u(y�)� y�]. This condition holds is agents are su¢ ciently impatient. The ODE

(85) can be rewritten as:

(86) _dt = (�+ ���) dt � ���(dt)1��:

This ODE is formally identical to the ODE in the STW model, (6), where 1�M has been

replaced with �. By the same logic as in Proposition 1, I obtain the following proposition.

Proposition 11 (Speculative debt limits.) Consider a pure credit economy under limited

commitment. The positive steady state is

(87) ds =

�
���

�+ ���

� 1
�

:

In addition, there are a continuum of nonstationary equilibria, indexed by d0 2 (0; ds), such

that

(88) dt =
�
(ds)� � [(ds)� � (d0)�] e�(�+���)t

	 1
� I[0;T ](t)

where

(89) T =
� ln [1� (d0=ds)�]
� (�+ ���)

:

Along those speculative equilibria, the real borrowing capacity of buyers goes to zero in

�nite time. The rate at which dt diverges from its steady-state value, � (�+ ���), increases

with the reliability of the record-keeping technology.
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Appendix S3: Time since take-o¤ in the Solow growth
model

The representation of the equilibrium of a macroeconomic model by a Bernoulli equation is

not unique to the STW model. Indeed, the equilibrium of the textbook model of economic

growth from Solow (1956) can also be represented by a Bernoulli equation. In the following,

I show the analogy between the two equilibrium conditions and I establish a little-known

result for the Solow growth model that mirrors the result from the STW model according to

which money loses its value in �nite time.

Under a Cobb-Douglas production function, the capital stock per worker obeys the fol-

lowing di¤erential equation,

(90) _kt = sk
a
t � �kt;

where s 2 (0; 1) is the savings rate, � > 0 is the rate of depreciation. (Without loss, I

omit technological progress and population growth.) The phase line is the mirror image of

the phase line of the STW model relative to the horizontal axis. There is an active and an

inactive steady state, the active steady state is dynamically stable. By the same logic as

above, using the change of variable x = k1�a, the closed form solution is

kt =
h�
k1�a0 � s

�

�
e��(1�a)t +

s

�

i 1
1�a
:

As time goes to in�nity, kt approaches its steady state, (s=�)1=(1�a), asymptotically.32 Given

any k0 < (s=�)1=(1�a), we can compute the �nite time at which the economy started to grow:

(91) T =
�1

�(1� a) ln
�

s

s� �k1�a0

�
> �1.

So, just like the steady state nonmonetary equilibrium is reached in �nite time in the STW

model, the inactive steady state is reached in �nite �backward time�in the Solow model.

Corollary 6 Consider the Solow growth model and suppose k0 = 0. There exists a contin-

uum of equilibria indexed by T 2 R+ such that the economy takes o¤ at time T and reaches

the active steady state asymptotically.
32Sato (1963) is the �rst to identify the ODE of the Solow growth model under Cobb-Douglas production

function as a Bernoulli equation and to provide a closed-form solution.
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Figure 13: Solutions to the Solow growth model

The solution to the equilibrium ODE of the Solow growth model is not unique when

k0 = 0. There is a solution where the capital stock remains at zero forever. But there are

also a continuum of solutions indexed by the time at which the economy takes o¤.33

How can the economy take o¤without capital? In the discrete-time Solow growth model,

if k0 > 0, then kn� > 0 for all n 2 Z, where � represents the length of a period. By the same

reasoning as the one in Appendix S1, kn� approaches 0 as � tends to 0 and n� ! t < T ,

where T is de�ned by (91). So, along a sequence of discrete-time economies indexed by �

and such that � goes to zero, capital stocks before the take-o¤date are positive but converge

to 0. The in�nitesimal capital before the take-o¤ combined with an in�nite marginal product

allows the economy to take o¤ at time T .34 By viewing the continuous-time economy as the

limit of discrete-time economies, one can see that it would be misleading to interpret the

result from the corollary above as suggesting that the economy can take o¤ spontaneously.

33A version of this corollary was proven in Hakenes and Irmen (2008).
34There is a parallel with the Friedmann equations in physical cosmological physics that govern the expan-

sion of space. These equations show that the universe is of �nite age, and had its origin in a mathematical
singularity. See https://ned.ipac.caltech.edu/level5/Peacock/Peacock3_2.html
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Appendix S4: Convertible money

I have been focusing in this paper on �at monies de�ned as intrinsically useless, inconvertible

objects that serve as media of exchange. In this appendix, I explore a model variant where

money is temporarily convertible. Until time TC > 0, each unit of money can be exchanged

on demand from the government for k > 0 units of numéraire. After TC , money loses its

convertibility and becomes a pure �at money.

The government prints money at a constant rate, � > 0, and it balances its budget at

each point in time with lump-sum transfers or taxes to buyers. Consequently, the quantity

of money issued up to time t is At = A0e�t. Under the assumption that money is convertible,

the quantity of money in circulation, Mt � At, is endogenous. I examine equilibria where

Mt is continuously di¤erentiable almost everywhere (allowing for a countable number of

discontinuities). I assume CRRA preferences, u(y) = y1��=(1��), with � 2 (0; 1), w(y) = y,

and buyers make take-it-or-leave-it o¤ers to sellers, p(y) = y.

Money is always convertible (TC = +1).

I start by characterizing equilibria under the assumption that money is always convertible.

At any point in time, an agent can acquire units of money at price �t and redeem them for k

units of numéraire. If �t < k, the demand for money driven by pro�t opportunities becomes

unbounded so that the money market cannot clear. Therefore, in any equilibrium, the price

of money has a lower bound, �t � k, and speculative equilibria where money dies do not

exist.

Proposition 12 (Convertible money.) Suppose money is always convertible, TC = +1.

The time-path for real balances is

mt =
�
(ms

�)
� + [(ms

0)
� � (ms

�)
�] e��(�+�+��)(��t)

	 1
� 8t < �(92)

= ms
0 8t � � ;

where

ms
� �

�
��

�� + �+ �

� 1
�

< ms
0 �

�
��

�� + �

� 1
�

;
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and the time at which �t � k binds is

(93) � =
1

�
max

�
1

�
ln

�
��

�� + �

�
� ln (A0k) ; 0

�
:

Along an equilibrium path with convertible money, �t decreases over time until it reaches

its lower bound, k, at time � . For all t > � , the price of money is equal to k and its real rate

of return is equal to rt = 0. According to (92), aggregate real balances increase until they

reach the value consistent with a constant money supply, ms
0. At that point, agents convert

the units of money issued by the government, �At, in order to keep the money in circulation

constant. The equilibrium is analogous to the nonspeculative equilibrium of a �at money

economy where the government commits at time 0 to reduce the money growth rate at time

� from � > 0 to 0.

tm

smπ

sm 0

kA 0

keA tπ
0

Figure 14: Time-path of real money balances, mt, when money is convertible.

Figure 14 plots the time-path of real money balances, mt. From t = 0 to � = � , real

money balances, which are between ms
� and m

s
0, increase until they reach m

s
0. From �

onwards, mt is constant. The time at which agents start exercising the convertibility option,

� , is determined at the intersection of the supply of money, At, valued at the convertibility

price, k, and the demand for money when its rate of return is r = 0, ms
0. From (93), � = 0 if

ms
0 < A0k, in which case mt = m

s
0 for all t. Under this condition, agents convert a discrete

amount of the initial money supply so that M0k = m
s
0.
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Money is temporarily convertible (TC < +1).

I now consider the case where the convertibility of money is transitory.

Proposition 13 (Temporary convertibility) Suppose money is convertible until time

TC < +1 and ceases to be convertible afterwards. There are three types of equilibria.

1. Convertibility is not binding. If A0k < e��TCms
�, then there exists a continuum of

equilibria indexed by T 2 (T0;+1), where T0 2 (TC ;+1), such that: �t > k for all

t � TC;

(94) mt = m
s
�

�
1� e��(��+�+�)(T�t)

� 1
� 8t 2 (0; T );

mt = 0 for all t > T ; and Mt = At for all t � 0.

2. Convertibility is binding. If A0k > e��TCms
0, then there exists a continuum of equilibria

indexed by mT+C
2 [0;ms

�] where: �t = k for all t 2 (� ; Tc) where � < TC is given by

(93);

(95) mt =

8>>>><>>>>:

�
(ms

�)
� + [(ms

0)
� � (ms

�)
�] e��(�+�+��)(��t)

	 1
�

ms
0

ms
�

�
1� e��(��+�+�)(T�t)

� 1
�

0

8t 2

8>>><>>>:
(0; �)

[� ; TC ]

(TC ; T )

[T;+1)

where MT+C
k = mT+C

and T solves

(96) T = TC �
1

�(�� + �+ �)
ln

�
1�

�
mT+C

ms
�

���
:

3. Convertibility only binds at TC. If A0k � e��TCms
0, there exists a continuum of equi-

libria indexed by mT+C
� minfms

�; e
�TCA0kg such that: �t > k for all t < TC and

�TC = k;

(97)

mt =

8>><>>:
�
(ms

�)
� �1� e��(��+�+�)(TC�t)�+ e��(�+��+�)(TC�t)e�TC (A0k)�	 1

�

ms
�

�
1� e��(��+�+�)(T�t)

� 1
�

0

8t 2

8><>:
[0; TC ]

(TC ; T )

[T;+1);

where MT+C
k = mT+C

and T solves (96).
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Proposition 13 distinguishes three types of equilibria. There are equilibria where the

convertibility constraint is never binding. They correspond to the speculative equilibria

studied in the main text. Along such equilibria, the value of money is decreasing over time

and real money balances are nonincreasing. This requires the convertibility value, k, to be

small and the period of convertibility, TC , to be short.

There is a second type of equilibrium where agents exercise the convertibility option

before TC . In that case, the equilibrium path from t = 0 to t = TC is analogous to the one

described in Proposition 12. Real money balances increase initially until they reach ms
0 at

time � . Over the time interval, (� ; TC), mt remains constant as agents convert the units of

money they receive from the government. At time TC , agents convert a discrete quantity of

money so that the real balances at time T+C , MTC+
k, correspond to the initial condition of

an equilibrium of a pure currency economy. While real money balances can be discontinuous

at time TC , the price of money is continuous.

Finally, there is a third type of equilibrium where agents only exercise the option to

convert some of their units of money at time TC . Ifms
� < e

�TCA0k, then real money balances

increase until they reach e�T
C
A0k at time T�C . If m

s
� > e

�TCA0k, then real money balances

decrease until they reach e�T
C
A0k at time T�C . Agents convert some amount of money at

time TC . From T+C onward, the equilibrium time-path corresponds to an equilibrium of the

economy with �at money.

The di¤erent equilibria are represented in Figure 15. The top left panel plots an equi-

librium where the convertibility option is never exercised. The top right panel corresponds

to an equilibrium where the convertibility option is exercised over the time interval, (� ; TC).

The bottom panels correspond to equilibria when the convertibility option is only exercised

at time t = TC . In the left panel, ms
� is smaller than ATCk and hence mt increases over time.

In the right panel, ms
� is larger than ATCk and mt decreases over time.

Proofs of propositions

Proof of Proposition 12. First, I rule out equilibria where Mt is discontinuous at any

time t > 0. Suppose a contrario that agents convert a discrete amount of money at some

time, � > 0. If it is the case, �� = k and M�� > M�+ . Using that �t � k for all t, _��� � 0
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Figure 15: Time-paths for real money balances. Top left panel: no conversion along the
equilibrium path. Top right panel: conversion occurs during time interval [� ; TC ]. Bottom
panels: conversion occurs at time TC .

and _��+ � 0. The value of money must be nonincreasing the instant before it reaches its

lower bound, k, and nondecreasing the instant after. Equivalently, r�� � 0 � r�+. From the

�rst-order condition, (20), m�� = ��M�� � m�+ = ��M�+. A contradiction.

Second, suppose the constraint �t � k binds over some nonempty time interval, (� ; � 0) �

R+, i.e., �t = k for all t 2 (� ; � 0). It follows that rt = _�t=�t = 0 for all t 2 (� ; � 0). From

the �rst-order condition, (20), u0(mt) = 1 + �=��, i.e., mt = m
s
0 � [��= (�� + �)]

1
� for all

t 2 (� ; � 0). Thus, both mt and �t are constant. Since mt = Mt�t, the money in circulation

is constant, Mt = m
s
0=k for all t 2 (� ; � 0). Equivalently, �̂t = 0 for all t 2 (� ; � 0), where �̂t is

the growth rate of Mt.

Third, I establish that in any equilibrium where �t = k over some nonempty time interval,

(� ; � 0), then � 0 = +1. I showed above that �̂t = 0 if �t = k and �̂t = � > 0 if �t > k.
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Hence, for all s > t, �̂(s)� �̂(t) � 0, where �̂(t) =
R t
0
�̂sds is the cumulative growth of Mt.

From (26), aggregate real balances are given by the nonspeculative solution,

(98) mt =

�
���

Z +1

t

e����(s�t)e��[�(s�t)+�̂(s)��̂(t)]ds

� 1
�

;

Thus, mt � ms
0. Divide both sides by Mt to rewrite the inequality as �t � ms

0=Mt. From

the constraint, �t � k, it follows that Mt � ms
0=k. As shown above this upper bound for Mt

is achieved for all t 2 (� ; � 0). Using that Mt is nondecreasing, it must be that � 0 = +1 so

that �̂t = 0 and �t = k for all t > � .

Fourth, I compute the entire path for mt from (98) and the result that �̂t = �Ift<�g. For

all t � � , �̂t = 0. Hence, mt = m
s
0. For all t < � :

mt =

�
��

�� + �+ �

�
1� e��(��+�+�)(��t)

�
+

��

�+ ��
e��(��+�+�)(��t)

� 1
�

:

The terms between brackets can be rearranged to obtain (92). Assuming � > 0, � solves

�� = k where �� = m�=A� . Since there is no conversion before � , the quantity of money in

circulation at the time where �t � k starts binding is equal to the total amount of money

issued by the government, A� . Using that m� = m
s
0 and A� = A0e

�t, the condition can be

rewritten as A0e��k = ms
0. Solving for � , one obtains

� =
1

�

�
1

�
ln

�
��

�� + �

�
� ln (A0k)

�
:

If the right side is negative, then � = 0. Hence, (93).

Finally, if � = 0, then mt = m
s
0 for all t � 0. The price of money is �t = k and the initial

supply of money in circulation is M0 � A0 so that M0k = m
s
0.

Proof of Proposition 13. I consider equilibria with the following properties: �t = k

for all t 2 (� ; TC) and �t > k for all t < � . The interval (� ; TC) can be empty. For all

t 2 (� ; TC), rt = 0 and mt = ms
0 = A�k. The money in circulation, Mt, is constant over

(� ; TC). I allow Mt to be discontinuous at times 0 and TC . In the following, I distinguish

three types of equilibria.

Type-1 equilibria: �t > k for all t � TC . The option to convert units of money into the

numéraire is never exercised on the equilibrium path, i.e., Mt = At for all t. The time-path

38



for mt is given by the solution to the ODE,

_mt = (�� + �+ �)mt � ��m1��
t :

Use the change of variable, xt = m
�
t , to rewrite this ODE as

_xt = �(�� + �+ �)xt � ���:

The solution such that xT = 0 is

xt =
��

�� + �+ �

�
1� e��(��+�+�)(T�t)

�
;

which, from mt = (xt)
1
� , gives (94). This time-path constitutes an equilibrium if �t > k for

all t � TC . Since _mt < 0 and _Mt > 0, �t = mt=Mt decreases over time. So, a necessary and

su¢ cient condition is �TC > k or, equivalently, mTC > MTCk = ATCk. Using the closed-form

solution for mt given by (94), this condition can be rewritten as

(99) k <
1

e�TCA0

�
��

�� + �+ �

� 1
� �
1� e��(��+�+�)(T�TC)

� 1
� :

The right side is equal to 0 when T = TC and it is increasing in T . Hence, there exist an

interval of values for T > TC such that (99) holds if the right side evaluated at T = +1 is

greater than the left side, i.e., k < e��TCms
�=A0. Under that condition, the minimum value

for T consistent with (99) is T0 given by

(100) T0 = TC �
1

�(�� + �+ �)
ln

�
1� �� + �+ �

��

�
e�TCA0k

���
:

Type-2 equilibria: �t = k for all t 2 (� ; TC) 6= ? . The equilibrium path from t = 0 to

t = T�C is as characterized in Proposition 12: m� = m
s
0, and for all t < TC , mt is given by

(92). The expression for � is given by (93). Thus, the condition, � < TC , can be rewritten

as
1

�
ln

�
��

�� + �

�
� ln (A0k) < �TC :

It can be rearranged as k > e��TCms
0=A0. The money in circulation at time TC can jump

downward, MT�C
�MT+C

. From T+C onwards, the equilibrium path corresponds to the one of

a �at-money economy. Thus, �T+CMT+C
=MT+C

k is no greater than ms
�, i.e., mT+C

=MT+C
k �
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ms
�. Note that �T+C = 0 is also an equilibrium, in which case agents convert all their money

at time TC . The time at which money dies, T , solves

ms
�

�
1� e��(��+�+�)(T�TC)

� 1
� = mT+C

:

This equation can be solved for T .

Type-3 equilibria: �t > k for all t < TC and �TC = k. Since �t > k for all t < TC , agents

do not exercise the option to convert units of money before TC and Mt = At for all t < TC .

It follows that mT�C
= ATCk. Real balances solve the ODE

_mt = (�� + �+ �)mt � ��m1��
t :

By the same logic as above,

mt =

�
��

�� + �+ �

�
1� e��(��+�+�)(TC�t)

�
+ e��(�+��+�)(TC�t) (ATCk)

�

� 1
�

:

Since �t > k for all t < TC , _�T�C � 0 and rT�C � 0. The condition rT�C � 0 is equivalent

to mT�C
� ms

0, which can be rewritten as k � e��TCms
0=A0. At time T

+
C , real balances

must satisfy MT+C
k � ms

� in order to be part of an equilibrium where money is no longer

convertible. It follows that MT+C
k � minfms

�;MT�C
kg = minfms

�; e
�TCA0kg.
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