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ONLINE APPENDIX

Fragile New Economy: Intangible Capital, Corporate Savings Glut, and
Financial Instability

Ye Li

A. Proofs and Solution Algorithm

A1. Proofs

Ruling out self-financing. If entrepreneurs’ investment projects can be self-
financed, entrepreneurs do not need to hold liquidity for investment and the liq-
uidity premium is zero. The equilibrium value of tangible capital is the production
value, i.e., 1/ (ρ+ δ + λ). If Assumption 1 holds, then even if entrepreneurs set
the intangible share of investment, θt, to zero, the external financing capacity,

κT qTt = κT
(

1
ρ+δ+λ

)
is still below 1, which is the cost of investment. This con-

tradicts that investment is self-financed. Therefore, under Assumption 1, the
investment project cannot be self-financed.

Proof of Proposition 3. First, I show that there exists an upper bound η (t)
such that ηt ≤ η (t). Note that qBt ≥ 1 in equilibrium because if qBt < 1, bankers
are better off consuming (worth 1) than retaining wealth (worth qBt ). As will be
shown later, qBt is a bivariate function, qBt = qB (ηt, t). Fixing t, let η (t) denote
that lowest value of ηt where bankers consume. Therefore, qB (η (t) , t) = 1 and
qBt > 1 at ηt < η (t). Suppose there exists η′ > η (t) such that ηt reaches η

′. This
leads to a contradiction – it is no longer optimal for bankers to consume at η (t)
because their marginal value of wealth will surely increase: at η (t), if ηt increases,
qBt will not decline because qBt ≥ 1, and if ηt decreases, qBt will surely increase
because, by definition of η (t), qBt > 1 for ηt < η (t). Therefore, ηt cannot increase
beyond η (t), the upper boundary given by bankers’ consumption optimality.
Next, I derive the law of motion of ηt in (0, η (t)). According to (10), bankers’

wealth satisfies the following law of motion in the region where bankers’ consump-
tion is zero, i.e., ηt ∈ (0, η (t)):

(A.1)
dNB

t

NB
t

= µNt dt+ σNt dZt ,

where

(A.2) µNt = rt + xBt
(
Et

[
drTt

]
− rt

)
,

and

(A.3) σNt = xBt
(
σTt + σ

)
.
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The expression of expected return of tangible capital holdings, Et

[
drTt

]
, can be

obtained from (9). By Itô’s lemma, the law of motion of ηt is given by

(A.4)
dηt
ηt

= µηt dt+ σηt dZ ,

where

(A.5) µηt = µNt − µKT
t − σNt σ + σ2 ,

(where µKT
t is the expected instantaneous growth rate of KT

t ) and

(A.6) σηt = xBt
(
σTt + σ

)
− σ .

According to (26), the expected instantaneous growth rate of KT
t is given by

µKT =

(
1

1−qTt κT (1−θt)

) [(
xBt − 1

)
NB

t −MH
t

]
(1− θt)κ

Tλ

KT
t

− δ

(A.7)

=

(
1

1− qTt κ
T (1− θt)

)[(
xBt − 1

)
ηt − α

(
ρ− rt
β (t)

)− 1
ξ

]
(1− θt)κ

Tλ− δ ,

where the second equation uses the definition of ηt and households’ aggregate
deposit demand given by (22). In A.2, qTt , rt, x

B
t , θt, Et

[
drTt

]
, σTt , and the rest

of variables in Proposition 3 are shown to be bivariate functions of ηt and t.

Proof of Proposition 1. First, I solve the investment problem of entrepreneurs
who are hit by the Poisson shocks, and then embed the solution to the en-
trepreneurs’ dynamic optimization. An investing entrepreneur solves the problem
summarized by the Lagrange function (11):
(A.8)
L = max

{it,θt}

[
qIκIt θt + qTt κ

T (1− θt)− F (θt)
]
it−it+πt

[
mE

t + qTt κ
T it (1− θt)− it

]
.

Given κt, q
T
t , m

E
t , q

I and κT , the entrepreneur chooses θt and it. The first-order
condition (F.O.C.) for θt is

(A.9) qIκIt − qTt κ
T (1 + πt)− F ′ (θt) = 0 ,

and the F.O.C. for it is (i.e., (13) in the main text)

(A.10) πt =
{[
qIκIt θt + qTt κ

T (1− θt)− F (θt)
]
− 1
}( 1

1− qTt κ
T (1− θt)

)
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The F.O.C. for θt equates the marginal value of investing in intangibles and the
marginal value of investing in tangibles (which includes both the value of tangible
capital and the shadow value from relaxing the liquidity constraint). The F.O.C.
for it solves the marginal value of liquidity as equal to the net profits of investment
multiplied by the leverage on liquidity holdings. The liquidity constraint binds
so the total investment is given by

(A.11) it =
mE

t

1− (1− θt)κT qTt
.

Next, I prove that θt is increasing in κI . First, note that, from (A.10),

∂πt
∂θt

=
[
qIκIt − qTt κ

T − F ′ (θt)
]( 1

1− qTt κ
T (1− θt)

)
(A.12)

−
{[
qIκIt θt + qTt κ

T (1− θt)− F (θt)
]
− 1
} qTt κ

T[
1− qTt κ

T (1− θt)
]2

=
qTt κ

Tπt

1− qTt κ
T (1− θt)

− qTt κ
Tπt

1− qTt κ
T (1− θt)

= 0 ,

where the second equation follows from (A.9) and (A.10). Differentiating (A.9)
with respect to (w.r.t.) κIt , I obtain

(A.13) qI − qTt κ
T ∂πt
∂θt

∂θt

∂κIt
− qTt κ

T ∂πt

∂κIt
− F ′′ (θt)

∂θt

∂κIt
= 0 .

Rearranging the equation and using (A.12), I solve

(A.14)
∂θt

∂κIt
=
qI − qTt κ

T ∂πt

∂κI
t

F ′′ (θt)
.

According to (A.10), the partial derivative of πt w.r.t. κ
I
t is

(A.15)
∂πt

∂κIt
=

qIθt

1− qTt κ
T (1− θt)

.

Using this equation to substitute out ∂πt

∂κI
t
in (A.14), I obtain

(A.16)

∂θt

∂κIt
=

1

F ′′ (θt)

[
qI − qTt κ

T qIθt

1− qTt κ
T (1− θt)

]
=

qI
(
1− qTt κ

T
)

F ′′ (θt)
[
1− qTt κ

T (1− θt)
] .

In equilibrium, qTt κ
T must be smaller than 1, because otherwise the entrepreneur

sets θt = 0 (i.e., investing all in tangible capital) and self-finances the project to
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achieve infinite profits. Therefore, the right side of (A.16) is positive, i.e., θt is
increasing in κIt .

The right side of (A.15) is positive, so πt is increasing in κIt . Finally, I prove
that πt is increasing in qTt . Differentiating (A.10) w.r.t. qTt , I obtain

∂πt

∂qTt
=

κT (1− θt)

1− qTt κ
T (1− θt)

−
{[
qIκIt θt + qTt κ

T (1− θt)− F (θt)
]
− 1
} [

−κT (1− θt)
][

1− qTt κ
T (1− θt)

]2
=

κT (1− θt)

1− qTt κ
T (1− θt)

+ πt
κT (1− θt)

1− qTt κ
T (1− θt)

=
κT (1− θt)

1− qTt κ
T (1− θt)

(1 + πt) > 0 .

(A.17)

Next, I solve (15), i.e., the optimality condition for entrepreneurs’ optimal liq-

uidity holdings. Entrepreneurs maximize the life-time utility, E
[∫ +∞

t=0 e
−ρtdcEt

]
given the following law of motion of wealth:

dwE
t = −dcEt + µwt w

E
t dt+ σwt w

E
t dZt +

(
ŵE
t − wE

t

)
dNt,

µwt w
E
t and σwt w

E
t are the drift and diffusion terms that depend on choices of

tangible capital and deposit holdings and will be elaborated later. dNt is the
increment of the idiosyncratic counting (Poisson) process. At the Poisson time,
an entrepreneur’s wealth jumps by the total profits from investment minus the
value of lost tangible capital holdings (denoted by kTE),

ŵE
t − wE

t =
{[
qIκIt θt + qTt κ

T (1− θt)− F (θt)
]
− 1
}( 1

1− qTt κ
T (1− θt)

)
mE

t − qTt k
TE
t

=πtm
E
t − qTt k

TE
t .

(A.18)

Note that wE
t does not contain the existing stock of intangible capital, because

when analyzing entrepreneurs’ decisions, the production flows from intangible
capital can be treated as goods that are directly consumed, given entrepreneurs’
indifference in the timing of consumption.

I conjecture that the value function is linear in wealth wE
t : v

E
t = ζEt w

E
t + vI ,

where ζEt is the marginal value of liquid wealth (i.e., without counting the value
of intangible capital), and vI is the present value of consumption from intangible
capital. Consider a generic equilibrium diffusion process for ζEt :

dζEt = ζEt µ
ζ
t dt+ ζEt σ

ζ
t dZt,

where ζEt µ
ζ
t and ζ

E
t σ

ζ
t are the drift and diffusion terms, respectively. Entrepreneurs’

marginal value of wealth, ζEt , is a summary statistic of their investment oppor-
tunity set, which depends on the overall industry dynamics, so it does not jump
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when an individual is hit by the Poisson shocks.

Under this conjecture, the Hamilton-Jacobi-Bellman (HJB) equation is

ρζEt w
E
t dt = max

dcE ,kTE
t ,mE

t

dcEt − ζEt dc
E
t + {wE

t ζ
E
t µ

ζ
t + wE

t ζ
E
t µ

w
t + wtζ

E
t σ

ζ
t σ

w
t + λζEt [ŵt − wt]}dt .

Note that the consumption flow from intangible capital and ρvIdt cancel each
other out, because, by definition, vI is the ρ-discounted present value of con-
sumption flow.

Entrepreneurs can choose any dcEt ∈ R, so ζEt must be equal to one, and thus,
I have also confirmed the value function conjecture. Since ζEt is a constant equal

to one, µζt and σζt are both zero. The HJB equation can be simplified:

(A.19) ρζEt w
E
t dt = max

kTE
t ≥0,mE

t ≥0
µwt w

E
t dt+ λdt

(
πtm

E
t − qTt k

TE
t

)
.

Wealth drift includes production, the value change of tangible capital holdings,
and the deposit return:

µwt w
E
t dt = kTE

t dt+ Et

(
qTt+dtk

TE
t+dt − qTt k

TE
t

)︸ ︷︷ ︸
Et[drTt ]qTt kTE

t

+ rtm
E
t dt.

Let dψE
t denote the Lagrange multiplier of the budget constraint, qTt k

TE
t +mE

t ≤
wE
t . The first-order condition (F.O.C.) for optimal deposit holdings per unit of

capital is: mE
t ≥ 0, and

mE
t

(
rtdt+ πtλdt− dψE

t

)
= 0.

The F.O.C. for optimal tangible capital holdings is : kTE
t ≥ 0, and

kTE
t

(
−Et

[
drTt

]
+ dψE

t

)
= 0.

Substituting these optimality conditions into the HJB equation, we have

ρvEt dt = wE
t dψ

E
t .

Because ζEt = 1, vEt = wE
t , and dψE

t = ρdt. Substituting dψE
t = ρdt into the

F.O.C. for mE
t , we have

ρ− rt = λπt.

Substituting dψt = ρdt into the F.O.C. for kTE
t and rearranging the equation, we

have
Et

[
drTt

]
= ρdt ,

that is, when entrepreneurs hold tangible capital, they require an expected return
of ρ.
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Binding liquidity constraint. Consider the following inequalities:

max
θt

[
qIκIt θt + qTt κ

T (1− θt)− F (θt)
]
≥ qIκIt − F (1) ≥ qIκI0 − F (1) ,

where the first step follows qTt ≥ qI (due to the additional liquidity value of
tangible capital) and the optimality of θt, and the second step follows from κIt ≥
κI0. Therefore, as long as

(A.20) qIκI0 − F (1) > 1 ,

we have

πt =max
θt

{[
qIκIt θt + qTt κ

T (1− θt)− F (θt)
]
− 1
}( 1

1− qTt κ
T (1− θt)

)
≥
[
qIκI0 − F (1)− 1

]( 1

1− qTt κ
T (1− θt)

)
> 0

and the liquidity constraint binds. Note that
(

1
1−qTt κT (1−θt)

)
> 0 from Assump-

tion 1. The calibrated parameter values satisfy the condition given by (A.20).

Proof of Proposition 2. Conjecture that the bank’s value function takes the
linear form: vBt = qBt n

B
t . Consider the following generic equilibrium diffusion

process for qBt ,
dqBt = qBt µ

B
t dt− qBt γ

B
t dZt.

Define dyBt = dcBt /n
B
t , the consumption-to-wealth ratio of bankers. Under the

conjectured functional form, the HJB equation is

ρvBt dt = max
dyBt

{(
1− qBt

)
I{dyBt >0}n

B
t dy

B
t

}
+ µBt q

B
t n

B
t +

max
xB
t

{
rt + xBt

(
Et

[
drTt

]
− rt

)
− xBt γ

B
t

(
σTt + σ

)}
qBt n

B
t ,

Dividing both sides by qBt n
B
t , n

B
t is eliminated, which confirms the homogeneity

property,
(A.21)

ρ = max
dyBt

{(
1− qBt

)
qBt

I{dyBt >0}dy
B
t

}
+µBt +max

xB
t

{
rt + xBt

(
Et

[
drTt

]
− rt

)
− xBt γ

B
t

(
σTt + σ

)}
,

and the conjecture of linear value function. The indifference condition for xBt is

(A.22) Et

[
drTt

]
= rt + γBt

(
σTt + σ

)
.

Substituting the expression of Et

[
drTt

]
given by (9) and using (15), I obtain (18).
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Substituting the optimality conditions into the HJB equation, I obtain

(A.23) µBt = ρ− rt .

The result that γBt = 0 when bankers consume is given by the smooth-pasting
condition, ∂qB (ηt, t) /∂ηt = 0 (so by Itô’s lemma, γBt = 0), which is discussed
in more details in A.2. The upper boundary η (t) is given by the value-matching
condition of bankers’ consumption, qB (η (t) , t) = 1, and is jointly determined
with the function qBt = qB (ηt, t) in the solution of PDEs of qB (ηt, t) and q

T (ηt, t)
in A.2.

Conditional stationary distribution of ηt. Following Brunnermeier and San-
nikov (2014), I derive the conditional stationary probability density of ηt. Fixing
κIt and βt, the probability density of ηt at time t, p (η, t), satisfies the Kolmogorov
forward equation

∂

∂t
p (η, t) = − ∂

∂η
(ηµη (η) p (η, t)) +

1

2

∂2

∂η2

(
η2ση (η)2 p (η, t)

)
.

Note that, fixing κIt and βt, µ
η
t and σηt are functions of ηt as shown in A.2. A

stationary density is a solution to the forward equation that does not vary with
time (i.e. ∂

∂tp (η, t) = 0). So I suppress the time variable, and denote stationary
density as p (η). Integrating the forward equation over η, p (η) solves the following
first-order ordinary differential equation within the reflecting boundary:

0 = C − ηµη (η) p (η) +
1

2

d

dη

(
η2ση (η)2 p (η)

)
, η ∈ (0, η] .

The integration constant C is zero because of the reflecting boundary. The bound-
ary condition for the equation is the requirement that probability density is inte-

grated to one (i.e.
∫ η
η p (η) dη = 1).

A2. Solution Algorithm

The full solution of the model consists of two parts: first, the laws of motion
of state variables, and, second, the endogenous variables as functions of state
variables, for example, qTt = qT (ηt, t). The Markov equilibrium has four state
variable: time, ηt, K

I
t , andK

T
t . As shown in the main text, time has an exogenous

and autonomous law of motion, while the last three variables’ laws of motions
depend on the endogenous variables that are functions of these state variables.
To simplify the notation, I suppress the time subscripts in the following.
I construct a mapping from η, t, qB (η, t), qT (η, t), ∂qB (η, t) /∂η, ∂qT (η, t) /∂η ,

∂qB (η, t) /∂t and ∂qT (η, t) /∂t to the second-order derivatives with respect to η,
∂2qB (η, t) /∂η2 and ∂2qT (η, t) /∂η2, i.e., a system of second-order partial differ-
ential equations for qB (η, t) and qT (η, t). Once I solved these two functions, the
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rest of the price variables and KT -scaled aggregate quantities can be solved as
they will be shown to depend only on η, t, the levels and derivatives of qB (η, t)
and qT (η, t). This confirms the statement in Proposition 3 that these variables
are bivariate functions of η and t. After solving the price variables and KT -scaled
aggregate quantities, the laws of motion of KI

t , K
T
t , and ηt are given by (25),

(26), and (28), respectively.

Constructing PDEs for qB (η, t) and qT (η, t). Inputs are η, t (and thus,
κI (t) and β (t)), the levels and first derivatives of qB (η, t) and qT (η, t). Outputs
are ∂2qB (η, t) /∂η2 and ∂2qT (η, t) /∂η2. It is convenient to define the following
notations of elasticities:

ϵT ≡ ∂qT /qT

∂η/η
and ϵB ≡ ∂qB/qB

∂η/η
.

Step 1: Calculate ση, σT , γB, xB, and r.

Proposition 1 solves the optimal intangible share of investment, θ, and the
marginal value of liquidity, π, that entrepreneurs assign to deposits, as functions
of qI (constant, see (2)), qT , and κI (t) and the parameters. Given F (θt) =

ϕ
2 θ

2,
(A.9) implies a quadratic equation for θ when π is is substituted out using (A.10).
Once θ is solved, (A.10) solves π. In the following, I will discuss different cases,
but the values of these variables will not change across different cases.
First, consider the case where entrepreneurs do not hold any deposits. With

ME = 0, the deposit-market clearing condition (24) is

(A.24)
(
xB − 1

)
η =MH/KT = α

(
ρ− r

β (t)

)− 1
ξ

,

where the second equation is obtained from households’ aggregate deposit demand
(22). Within this case, there are two scenarios. First, bankers hold all tangible
capital, so qTKT = xBNB, i.e.,

(A.25) xB = qT /η ,

and then from (A.24), r is calculated. If r > ρ−λπ, then entrepreneurs prefer to
hold deposits, and I switch a different case where entrepreneurs hold deposits (to
be discussed below). If r ≤ ρ−λπ, I proceed to calculate ση, σT , and γB. Jointly
using ση = xB

(
σT + σ

)
−σ from (A.6) and σT = ϵTση from Itô’s lemma, I obtain

ση and σT . Using Itô’s lemma again, I obtain γB = −ϵBση. Now the bankers’
discount rate is given by r + γB

(
σT + σ

)
. If ρ < r + γB

(
σT + σ

)
, then the rest

of the economy has a lower discount rate than bankers, so bankers cannot hold
all tangible capital, and I switch to the scenario where entrepreneurs do not hold
deposits and bankers do not hold all tangible capital (to be discussed in the next
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paragraph). If ρ > r + γB
(
σT + σ

)
, this scenario is internally consistent and I

proceed to Step 2.

Now consider the scenario where entrepreneurs do not hold deposits and bankers
do not hold all tangible capital. In this scenario, xB is calculated as follows.
Given that the rest of the economy holds tangible capital, the expected return on
tangible capital is ρ, and from Proposition 2,

(A.26) ρ = r + γB
(
σT + σ

)
.

By Itô’s lemma,

(A.27) σT = ϵTση and γB = −ϵBση.

I substitute these expressions of σT and γB into (A.26) to obtain a quadratic
equation of ση, and the roots are

ση =
−ϵBσ ±

√
(ϵBσ)2 − 4ϵBϵT (ρ− r)

2ϵBϵT
.

I study a Markov equilibrium where ϵB ≤ 0 (i.e., bankers’ marginal value of
wealth declines in ηt), ϵ

T ≥ 0 (i.e., the value of tangible capital increases in ηt),
and ρ− r ≥ 0, so the only positive root is

(A.28) ση =
−ϵBσ −

√
(ϵBσ)2 − 4ϵBϵT (ρ− r)

2ϵBϵT
.

A positive root is selected because bankers have levered positions in tangible
capital, so the shock impact is greater on NB than on KT , and thus, η responds
positively to the Brownian shock. Using ση = xB

(
σT + σ

)
− σ from (A.6), I

obtain

(A.29) xB =
ση + σ

σηϵT + σ
.

Using (A.29) to substitute out xB in (A.24), I obtain

(A.30)

(
ση + σ

σηϵT + σ
− 1

)
η = α

(
ρ− r

β (t)

)− 1
ξ

.

Using (A.28) to substitute out ση on the left side of (A.30), I obtain an equation
for r. Once r is solved, I use (A.28) to solve ση, use (A.29) to solve xB, and use
(A.27) to solve σT and γB. Proceed to Step 2.

Finally, consider the case where entrepreneurs hold deposits. From Proposition
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1, the equilibrium deposit rate is given by

(A.31) r = ρ− λπ .

Given r, the deposit demand of households (scaled by KT ) is given by (22), and
I obtain the aggregate deposit demand,

(
ME +MH

)
/KT . Next, consider the

scenario where bankers hold all tangible capital, i.e., xB = qT /η. From (A.29),
I solve ση, and from (A.27), I solve σT and γB. Now the bankers’ discount rate
is given by r + γB

(
σT + σ

)
. If ρ < r + γB

(
σT + σ

)
, then the rest of economy

have lower discount rate than bankers, so bankers cannot hold all tangible capital
and I switch to the scenario where entrepreneurs hold deposits and bankers do
not hold all tangible capital. If ρ ≥ r + γB

(
σT + σ

)
, this scenario is internally

consistent and I proceed to Step 2.

Now consider the scenario where entrepreneurs hold deposits and bankers do
not hold all tangible capital. The expected return on tangible capital is ρ, so from
Proposition 2,

(A.32) ρ = r + γB
(
σT + σ

)
.

Using (A.31) to substitute r with ρ− λπ, I obtain

(A.33) λπ = γB
(
σT + σ

)
.

Using Itô’s lemma, i.e., (A.27), I substitute σT and γB out with ϵTση and −ϵBση
respectively to obtain a quadratic equation of ση, and the roots are

ση =
−ϵBσ ±

√
(ϵBσ)2 − 4ϵBϵTλπ

2ϵBϵT
.

I study a Markov equilibrium where ϵB ≤ 0 (i.e., bankers’ marginal value of
wealth declines in ηt), ϵ

T ≥ 0 (i.e., the value of tangible capital increases in ηt),
and, as the shadow price of funding constraint on investment, π ≥ 0, so the only
positive root is

(A.34) ση =
−ϵBσ −

√
(ϵBσ)2 − 4ϵBϵTλπ

2ϵBϵT
.

Using Itô’s lemma again, i.e., (A.27), I solve σT and γB. Using ση = xB
(
σT + σ

)
−

σ from (A.6), I solve xB. Proceed to Step 2.

Step 2: Calculating the Second-Order Derivatives

The drift and diffusion of η are given in the proof of Proposition 3. Given qT ,
π, γB, and σT , (18) solves µT . The following equation, obtained by Itô’s lemma,
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solves ∂2qT

∂η2
:

(A.35) µT qT =
∂qT

∂t
+
∂qT

∂η
µηη +

1

2

∂2qT

∂η2
(σηη)2 .

According to (A.23), µBt = ρ − rt, so the following equation, obtained by Itô’s

lemma, solves ∂2qB

∂η2
:

(A.36) µBqB =
∂qB

∂t
+
∂qB

∂η
µηη +

1

2

∂2qB

∂η2
(σηη)2 .

Boundary conditions for PDEs for qB (η, t) and qT (η, t). Tangible capital
has constant cash flow, one unit of goods per unit of time, so what causes its
price to vary is the discount-rate changes. Close to η = 0, an absorbing state, the
banking sector is extremely small, so the discount rate (expected return) is fixed
at ρ to induce the rest of economy to own tangible capital and clear the market.
Thus, qT should not vary as η approaches zero:

(A.37) lim
η→0

∂qT (η, t)

∂η
= 0 .

Moreover, when bankers are extremely undercapitalized, their marginal value of
wealth approaches infinity,

(A.38) lim
η→0

qB (η, t) = +∞ ,

because qB is the present value of one unit of equity, and it increases when the
banking sector shrinks, widening the return spread between holding tangible cap-
ital and issuing deposits.

The upper boundary of η, η, where bankers consume, is a reflecting boundary,
so to rule out arbitrage (i.e., perfectly predictable variation of asset price),

(A.39)
∂qT (η, t)

∂η
= 0 .

For consumption to be optimal at η, bankers’ marginal value of wealth, qB, sat-
isfies the value-matching condition,

(A.40) qB (η, t) = 1 ,
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and the smooth-pasting condition

(A.41)
∂qB (η, t)

∂η
= 0 .

Finally, it is assumed that the linear trends of κI and β end at t = t. When
solving the model, I map t to 2010 in the data. When t reaches t and κI and
β no longer vary, the economy converges to a time-homogeneous Markov equi-
librium where the price variables and KT -scaled quantities are functions of ηt
only. Therefore, the boundary condition on the time dimension for qB (η, t) and
qT (η, t) is the convergence to qB (η) and qT (η) of the time-homogeneous Markov
equilibrium.
The functions, qB (η) and qT (η), of the time-homogeneous Markov equilibrium

at t can be solved by a system of ordinary differential equations (ODEs) that
are constructed following the same aforementioned procedure, except that at the
very last step, by Itô’s lemma, the second-order derivatives are solved by

(A.42) µBqB =
dqB

dη
µηη +

1

2

d2qB

dη2
(σηη)2 .

and

(A.43) µT qT =
dqT

dη
µηη +

1

2

d2qT

dη2
(σηη)2 .

The ODEs have the following conditions in analogy to (A.37) to (A.41):

� As η approaches zero: (1) lim
η→0

dqT (η)
dη = 0; (2) lim

η→0
qB (η) = +∞.

� At the upper reflecting boundary, η: (3) dqT (η)
dη = 0; (4) qB (η) = 1; (5)

dqB(η)
dη = 0.

Prices and KT -scaled quantities in Proposition 3. The solution procedure
has solved qTt , rt, x

B
t , θt as bivariate functions of ηt and t because they only depend

on ηt, t, q
T
t , ϵ

T , and ϵB. From (22), households’ aggregate deposit holdings,

MH
t /K

T
t , is α

(
ρ−rt
β(t)

)− 1
ξ
. Entrepreneurs’ aggregate deposit holdings (scaled by

KT
t ), M

E
t /K

T
t , is given by

(A.44)
ME

t

KT
t

=

(
xBt − 1

)
NB

t −MH
t

KT
t

=
(
xBt − 1

)
ηt − α

(
ρ− rt
β (t)

)− 1
ξ

.

The aggregate intangible investment (scaled by KT
t ) is θtM

E
t /K

T
t and the ag-

gregate tangible investment (scaled by KT
t ) is (1− θt)M

E
t /K

T
t . Now it has
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been proven that the price variables and KT
t -scaled aggregate quantities listed

in Proposition 3 are bivariate functions of ηt and t.

The hierarchy of state variables. Time has its autonomous law of motion.
The law of motion of ηt in the proof of Proposition 3 only depends on ηt and time
t. The law of motion of KT

t (i.e., (26) in the main text) only depends on ηt, time
t, and KT

t : using (A.7), I obtain

(A.45)
dKT

t

KT
t

=



(
xBt − 1

)
ηt − α

(
ρ−rt
β(t)

)− 1
ξ

1− qTt κ
T (1− θt)

κT (1− θt)λ− δ

 dt+ σdZt ,

where the drift is solved in the proof of Proposition 3 and the endogenous variables
on the right side are bivariate functions of ηt and t. Finally, rewriting (25) from
the main text, I obtain the law of motion of KI

t , which depends on all four state
variables,

dKI
t

KI
t

=
KT

t

KI
t

[(
xBt − 1

) NB
t

KT
t

− MH
t

KT
t

](
1

1− qTt κ
T (1− θt)

)
θtκ

I (t)λdt− (δdt− σdZt)

=

KT
t

KI
t


(
xBt − 1

)
ηt − α

(
ρ−rt
β(t)

)− 1
ξ

1− qTt κ
T (1− θt)

κI (t) θtλ− δ

 dt+ σdZt .

(A.46)

Solving the model with tradable intangibles. Allowing χ fraction of intan-
gible capital to be tradable among entrepreneurs and households only change the
optimality conditions for θ and i. The rest of solution algorithm is the same as
that of the main model. The F.O.C. for θt is

(A.47) qIκI (1 + χπ)− qTκT (1 + π)− F ′ (θ) = 0 .

In contrast to (A.9), the marginal benefit of creating intangible capital has an
additional component qIκIχπ from relaxing the financial constraint. The F.O.C.
for i is
(A.48)

π =
{[
qIκIθ + qTκT (1− θ)− F (θ)

]
− 1
}( 1

1− qTκT (1− θ)− χqIκIθ

)
Given that F (θ) = ϕ

2 θ
2, (A.47) implies a quadratic equation for θ when π is

substituted out by (A.48). Once θ is solved, (A.48) solves π.
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A3. Matlab Solution Verification

Matlab versions. The goal of “main.m” in the replication package is to solve the
system of differential equations (A.35) and (A.36) in Appendix A.2. It requires
Matlab 2017a. Runing the code in other versions of Matlab may generate errors.
Below I explain the reasons by describing how the numerical solution is computed.
The differential equations (A.35) and (A.36) are for qB(η, t) and qT (η, t). These

equations are obtained from the equilibrium conditions in the main text. The pro-
cedure is explained in Appendix A.2, following closely Brunnermeier and Sannikov
(2014). Solving differential equations (A.35) and (A.36) is a boundary value prob-
lem with the boundary conditions (A.37) to (A.41) in Appendix A.2. Given time
t, the problem is akin to that in Brunnermeier and Sannikov (2014), and I adopt
their shooting method, which involves searching for the initial conditions at the
left (lower) boundary of η such that the conditions at the right (upper) boundary
are satisfied.66 When implementing this method, ode45 of Matlab R2017a is used
to integrate from the left boundary to the right boundary.
As in Brunnermeier and Sannikov (2014), the right boundary of η, denoted by η,

is a free boundary that is determined by equilibrium conditions. There are three
right-boundary conditions (A.39), (A.40) and (A.41). One boundary condition,
for example, (A.39), can be used to pin down η, i.e., the rightmost point or
endpoint of integration (this endpoint of integration is specified in the “tspan”
argument of ode45), while the other two right-boundary conditions are satisfied
by adjusting the initial (left-) boundary conditions of the shooting method.67

Numerical integration by ode45 of Matlab R2017a starts from the leftmost point
of η and ends at the rightmost point η. However, when “main.m” is run on other
versions of Matlab, the numerical integration may be interrupted by errors. For
example,there may not exist a real-number solution (a real root) of the quadratic
equation for ση (see the solution for ση below eq.(A.33) in Appendix A.2).
In the following, I will discuss two issues: First, why the numerical integration

in Matlab 2017a and numerical integration in other versions of Matlab can differ
even though the integration starts from the same initial conditions. Second, I will
use the behavior of numerical integration in Matlab R2021b as an example.
What causes the numerical integration in Matlab R2017a and that in other

versions to behave differently? The way that ode45 computes numerical inte-
gration changes across Matlab versions. One of such changes is how integration
step sizes are determined.68 The difference in step size across versions is reflected

66The shooting method is a method for solving a boundary value problem by reducing it to an initial
value problem. It involves finding solutions to the initial value problem for different initial conditions
until one finds the solution that also satisfies the boundary conditions of the boundary value problem.

67The left-boundary conditions (A.37) and (A.38) pin down a subset of initial conditions for the
numerical integration. The rest of initial conditions are adjusted, so that, when the numerical integration
ends at the rightmost point η, all the right-boundary conditions are satisfied.

68Note that ode45 does not allow the users to specify the step size of numerical integration. The ode45
solver uses its own internal procedure to determine the step size (see the ode45 user manual on the official
website of Matlab at https://www.mathworks.com/help/matlab/ref/ode45.) This internal procedure can



VOL. NO. FRAGILE NEW ECONOMY 15

directly in the difference in how the interval of η is discretized. For example,
t = 20 (the terminal date of the model), ode45 of Matlab R2017a discretizes the
interval (specified in the “tspan” argument of ode45 in the codes) into 609 values,
while ode45 of Matlab R2021b discretizes the same interval into 621 values. The
difference in the integration step size affects the numerical solution: the solver
integrates from the left to right with the output of every step being an input for
the next step, so the step size, which is associated with numerical approximation
error (i.e., the solution being too high or too low relative to the true value), af-
fects the solver’s output.69 Therefore, since the step size of ode45 differs across
different versions of Matlab, the computation of numerical integration can differ.

Next, I use Matlab R2021b as an example to discuss the error message reported
when “main.m” is run on Matlab versions other than R2017a. In Matlab R2017a,
the solution has first derivative qTη (η, t) falling to zero (from positive values) as
the integration moves towards the endpoint η, consistent with the boundary con-
dition (A.39). As previously discussed, when the codes were developed in Matlab
R2017a, all the right-boundary conditions, including the condition (A.39) (i.e.,
qTη (η, t) = 0), are satisfied at η. However, when the code is run in other versions
of Matlab, as the integration moves towards η, the numerical solution may have
qTη (η, t) dip slightly below zero. A negative value of qTη (η, t) is inconsistent with
the equilibrium path and thus can cause a failure of solving ση using the equi-
librium conditions (there may not exist a real-number solution to the quadratic
equation that solves ση; see the solution for ση under eq.(A.33) in Appendix A.2).

In general, as ode45 computes numerical integration from the left to right
boundaries of η, it generates values of qB(η, t) and qT (η, t) and their first-derivatives
step-by-step, with output of each step being input of the next step. The output of
each step contains numerical errors that depend on the integration step size and
can cause the solutions to be too high or too low relative to the true values. Such
numerical errors may cause the ode45-computed values of qB(η, t) and qT (η, t)
and their first-derivatives to deviate from the true equilibrium values in certain
steps and thereby cause failure of computing certain variables in the next step
(which interrupts the numerical integration and generates error messages).

Theoretically, this can happen to any Matlab version. It didn’t happen in
Matlab R2017a, because the initial conditions for the shooting method (ode45)

vary across different Matlab versions, leading to different integration step sizes. Specifically, the “tspan”
argument specifies the starting and end points of integration but it cannot specify the steps of numerical
computation—when a user specifies more than two values in “tspan”, the points given by “tspan” are
where the solution is reported, not where the numerical integration is computed. The solution is first
computed by ode45 using an internal adaptive method to determine step size of numerical integration,
and then, the already computed solution is evaluated at the points specified in “tspan”.

69Numerical methods for solving differential equations, for example, the Runge-Kutta method used
in ode45, conduct piece-wise approximation of an integration. Each step introduces an approximation
error, which can be too high or too low relative to the true value. As the method progresses through
many steps (in case of ode45, the integration moves from the left to the right boundary of the integration
interval specified in the “tspan” argument), the errors introduced at each step accumulate. The way
these errors add up can vary significantly with the step size. Changes in step size can change the pattern
of how and where numerical approximations deviate from the true solution.
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were adjusted to make sure that the boundary conditions are satisfied and, at
the same time, the numerical integration can run from the left to right without
being disrupted by failure of computing certain endogenous variables. Such ad-
justment can be done for other versions of Matlab, but any adjustment would
be version-specific, as the numerical errors that cause the values of qB(η, t) and
qT (η, t) and their first-derivatives to deviate from their true equilibrium values
are version-specific, dependent on integration size and more generally the inter-
nal integration procedure of ode45 that can vary across versions. Therefore, the
meaningful exercise is to check whether the solution computed in Matlab R2017a
indeed satisfies the equilibrium conditions to a high precision, which is done by
“solution check.m” in the replication package and will be discussed in details.

One may argue that if the solution (including the initial conditions) computed
in Matlab R2017a is indeed the true solution, it should not be specific to Matlab
versions, and starting from these true initial conditions, numerical integration
by ode45 in other versions of Matlab should be able to run through smoothly
and finishes at η just as the numerical integration does in Matlab R2017a. How-
ever, this argument is flawed for two reasons. First, it can never be guaranteed
that the numerical solution (including the initial conditions) founded in Matlab
R2017a is exactly the true solution. A numerical solution is an approximation. As
previously emphasized, the meaningful exercise is to check whether the solution
computed in Matlab R2017a indeed satisfies the equilibrium conditions to a high
precision. Second, even if the solution and initial conditions computed in Matlab
R2017a happen to be exactly true without any approximation error, numerical
integration in other versions of Matlab still suffers from numerical errors in every
step of integration. Such errors depend on the integration step size, which can be
versions-specific, so, numerical integration may still encounter disruption in other
versions even though it delivers the exactly true solution in R2017a.

So far, I have explained why running “main.m” using other versions of Matlab
can generate error messages. Next, I will explain how to verify that the solution
computed by “main.m” in Matlab R2017a satisfies the equilibrium conditions
to a high precision. The goal of my paper is to characterize the equilibrium of
the economy specified in Section III. Once the equilibrium is computed and this
solution is shown to satisfy the equilibrium conditions, the equilibrium is found.
The verification procedure below supports the use of all versions of Matlab.

Verifying the solution. The solution generated by Matlab R2017a is saved in
the data file “solution.mat” in the replication package. It contains the functions,
qB(η, t) and qT (η, t), and their first derivatives. To verify that the solution indeed
solves the differential equations (A.35) and (A.36) in Appendix A.2. I provide
the code “solution check.m” that can be run using any version of Matlab. In the
following, I explain the rationale behind the procedure of solution verification in
“solution check.m” and the output of this program.

The system of second-order differential equations, given by equations (A.35)
and (A.36) in Appendix A.2, takes as inputs the level of the functions, qB(η, t)
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and qT (η, t), and their first-order derivatives to generate the second derivatives
with respect to η, i.e., qBηη(η, t) and q

T
ηη(η, t).

70 The solution to this system of dif-

ferential equations contains the levels and first derivatives of qB(η, t) and qT (η, t).
Mathematically, the solution is a fixed point of the following mapping (functional),
denoted by “T ”: first, the levels and first derivatives generate the second deriva-
tives (via the system of differential equations); second, these second derivatives
can be integrated to obtain the levels and first derivatives. Formally, this two-
step procedure reformulates a system of differential equations into an equivalent
system of integral equations. The mapping, T , is this system of integral equations.
The program, “solution check.m”, checks whether the solution—the functions—

qB(η, t) and qT (η, t), and their first derivatives in the file “solution.mat”—indeed
constitutes the fixed point of this mapping, i.e., y = T (y), where y represents the
functions, qB(η, t) and qT (η, t) and first derivatives.
First, the program takes as inputs the functions, qB(η, t) and qT (η, t), and their

first derivatives from the solution file, denoted by “y0”, and computes the second
derivatives using the system of differential equations (A.35) and (A.36). Second,
using these second derivatives, the program computes the numerical integral of
qBηη(η, t) and qTηη(η, t) to obtain the first derivatives, and then it computes the

numerical integral of these first derivatives to obtain the levels of functions qB(η, t)
and qT (η, t). Let “y1” denote these levels and first derivatives obtained from
numerically integrating the output, qBηη(η, t) and qTηη(η, t), from the first step.
Therefore, we have y1 = T (y0).
Finally, the program, “solution check.m”, generates figures that compare y1

and y0. These figures are saved in PDF formats in the Matlab working directory.
Each PDF file corresponds a time t, and the figures plot over η the levels and first
derivatives of qB(η, t) and qT (η, t). Since qB(η, t)—marginal value of wealth of
financial intermediaries—and its first derivative have values several magnitudes
larger when η is low (close to zero) than when η is high, the program reports their
logarithm values in the PDF figures.
In each figure, the blue solid lines represent y1 (labeled as “Equilibrium Map-

ping Image” in the legend), and the black dashed lines represents y0 (labeled as
“Matlab 2017a Solution” in the legend). When running the program, Matlab
command window reports the correlation between y0 and y1. Overall, when y0
and y1 are close, the program verifies that the functions, qB(η, t) and qT (η, t),
and their first derivatives in the data file “solution.mat” constitutes a fixed point
of the mapping T , and thus are indeed the solution to the system of differential
equations given by equations (A.35) and (A.36) in Appendix A.2. Figure A.3,
A.2, and A.1 illustrate the PDF figures at t = 20, 10, and 0 generated by Matlab
R2021b, and Figure A.4 illustrates the command-window output.
In summary, the program “main.m” solves differential equations (A.35) and

(A.36) in Appendix A.2. This program requires Matlab R2017a. The solution—

70As previously discussed, this system is constructed from the equilibrium conditions in the main text.
The procedure is explained in Appendix A.2 and follows that in Brunnermeier and Sannikov (2014).



18 THE AMERICAN ECONOMIC REVIEW

the functions, qB(η, t) and qT (η, t), and their first derivatives—is saved in the
data file “solution.mat”. The program “solution check.m” verifies that the solu-
tion is indeed a fixed point of the equilibrium mapping, i.e., the system of integral
equations equivalent to the system of differential equations (A.35) and (A.36) in
Appendix A.2. Solving the equilibrium and verifying the equilibrium takes differ-
ent procedures, but both “main.m” and “solution check.m” are based upon the
same set of equilibrium conditions.

Figure A.1. : PDF Figure Output of solution check.m for t = 20.
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Figure A.2. : PDF Figure Output of solution check.m for t = 10.

Figure A.3. : PDF Figure Output of solution check.m for t = 0.
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Figure A.4. : Command Window Output of solution check.m
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B. Risk Aversion and Finite EIS

In this section, I extend the model to incorporate risk-averse preferences and
finite EIS (elasticity of intertemporal substitution) showing that the solution of
the extended model can be achieved by making two modifications to the solution
of the model in the main text. First, the functions of endogenous variables, such
as qT (ηt, t), can be derived by the procedure in A.2 with the time discount rate
ρ replaced by a function ρ (ηt, t). The functional form of ρ (ηt, t) depends on the
risk-averse utility functions in the extended model.

Second, the laws of motion of state variables in the solution of the main model
become the laws of motion under the risk-neutral measure in the extended model
with risk aversion. To characterize the dynamics under the physical measure
(probability measure of data generating process), a change of measure shall be
performed using Girsanov’s Theorem. The Markov equilibrium has four state
variable: time, ηt, K

I
t , and K

T
t . A change of measure affects the laws of motion

of the last three by adjusting their drifts. The adjustments depend on (1) the
state variables’ loadings of the aggregate shock (i.e., their diffusions) and (2)
the consumers’ price of risk implied by the risk-averse utility functions and the
equilibrium process of aggregate consumption. This method of incorporating risk-
averse preferences can be applied to other macro-finance models with risk-neutral
preferences, (e.g., Brunnermeier and Sannikov, 2014).

After establishing these results, I characterize the conditions under which the
equilibrium of the main (risk-neutral) model serves as an adequate approximation
to the equilibrium of the extended model. The model solution has two parts,
first, the endogenous variables as functions of state variables, for example, qTt =
qT (ηt, t), and, second, the laws of motion of state variables. I show that the
first part of the solution is an adequate approximation if the expected growth
rate of consumption is stable, which holds in the model and is consistent with
the theories and evidence on long-run consumption risk (Bansal and Yaron, 2004;
Hansen, Heaton, and Li, 2008). I also show that ignoring risk aversion has little
impact on the laws of motion of state variables under the standard risk aversion
parameter in the asset pricing literature.

Incorporating preferences with risk aversion and finite EIS. Next, I intro-
duce risk-averse preferences to the household sector. Entrepreneurs and bankers
are reinterpreted as firms that maximize the present value of payouts to house-
hold shareholders, so households are the ultimate consumers in this economy. It
is assumed that households face a complete market. For households, the relevant
shock is the aggregate Brownian shock dZt. The market is complete if households
can trade tangible capital and risk-free assets.71 No arbitrage and complete mar-

71For risk-free assets, it is assumed that households can lend to and borrow from each other (in
equilibrium, at the risk-free rate ρt), i.e., the negative drift of SDF in (B.1), and unlike deposits, such
risk-free assets do not bring deposit-in-utility for households or relax entrepreneurs’ liquidity constraints.
They may represent personal IOUs.
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kets imply the existence of a unique stochastic discount factor (SDF), denoted
by Λt, which, in equilibrium, is determined by the households’ marginal value of
wealth (Duffie, 2001). The following analysis takes the equilibrium process of Λt

as given,

(B.1)
dΛt

Λt
= −ρtdt− γHt dẐt ,

where ρt is the households’ time discount rate in equilibrium and γHt is the house-
holds’ price of risk. The endogenous discount rate ρt replaces the parameter ρ in
the main text. After analyzing the entrepreneurs’ and banks’ problems, I spec-
ify the households’ preferences and solve Λt. The stochastic process Ẑt is the
cumulative aggregate shock under the physical measure.

By Girsanov’s Theorem, we know the following connection between the aggre-
gate shock to capital stock, dZt, under the risk-neutral measure and dẐt, the
shock under the physical measure,

(B.2) dZt = dẐt + γHt dt .

The idiosyncratic Poisson shocks do not affect the change of measure because they
are not priced in the SDF. Entrepreneurs’ information filtration under the phys-
ical measure is generated by Ẑt and the idiosyncratic Poisson shocks that trigger
investment needs. Their information filtration under the risk-neutral measure is
generated by Zt and the same idiosyncratic Poisson shocks. For bankers, idiosyn-
cratic risks are diversified away, so the relevant information filtration is generated
by Zt under the risk-neutral measure and Ẑt under the physical measure.

Girsanov’s Theorem implies a connection between objective functions under the
physical and risk-neutral measures: a representative entrepreneur i maximize

(B.3) E
[∫ ∞

t=0
e−ρttdcEi,t

]
= Ê

[∫ ∞

0

Λt

Λ0
dcEi,t

]
,

and

(B.4) E
[∫ ∞

t=0
e−ρttdcBi,t

]
= Ê

[∫ ∞

0

Λt

Λ0
dcBi,t

]
,

where Ê [·] is the rational-expectation operator under the physical measure, dis-
tinguished from E [·], the rational-expectation operator under the risk-neutral
measure, and, following the notations in Appendix A, cEi,t and cBj,t denotes the
cumulative payout of non-financial firms and banks.

The full solution of the model consists of two parts: first, the endogenous
variables as functions of state variables, for example, qTt = qT (ηt, t), and, second,
the laws of motion of state variables. The next proposition states the connection
between an extended model with power utility and the model in the main text.
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The proof is at the end of this section. This method of incorporating risk-averse
preferences into an originally risk-neutral model applies to any utility function. I
use power (CRRA) utility as an example.

PROPOSITION B.1: Households have power utility over consumption and deposit-
in-utility introduced in (19) and maximize

(B.5) E

[∫ ∞

t=0
e−δH t

((
cHt
)1−γ

H

1− γ
H

dt+ βt

(
mH

t /w
H
t

)1−ξ

1− ξ

)]
,

where δH and γ
H

are the parameters for discount factor and relative risk aver-

sion, respectively, and cHt denote the rate of consumption (instead of cumulative
consumption).

The solutions of endogenous variables as functions of state variables can be
obtained by the procedure in A.2 with the parameter ρ replaced by the following
function:

ρ (ηt, t) = δH + γ
H
µKT (ηt, t) + γ

H
ϵC̃1 (ηt, t)

[
µη (ηt, t) +

1

2
ϵC̃2 (ηt, t)σ

η (ηt, t)
2 + ση (ηt, t)σ

]

+
1

2

(
γ2
H
− γ

H

) [
ϵC̃1 (ηt, t)σ

η (ηt, t) + σ
]2
,

(B.6)

where µη (ηt, t), σ
η (ηt, t), and µKT (ηt, t) are given by (A.5), (A.6), and (A.7)

respectively in A.1, and ϵC̃1 (ηt, t) is the elasticity of KT
t -scaled aggregate con-

sumption, C̃H
t ≡ CH

t /K
T
t , to ηt,

(B.7) ϵC̃1 (ηt, t) ≡
∂C̃H (ηt, t)

∂ηt

ηt

C̃H (ηt, t)
,

and ϵC̃2 (ηt, t) is the elasticity of ∂C̃H(ηt,t)
∂ηt

to ηt,

(B.8) ϵC̃2 (ηt, t) ≡
∂2C̃H (ηt, t)

∂η2t

ηt(
∂C̃H(ηt,t)

∂ηt

) .
By Girsanov’s Theorem, the laws of motion of ηt, K

T
t , and KI

t are given by
(A.4), (A.45), and (A.46) respectively with dZt, the Brownian shock under the
risk-neutral measure, replaced by

(B.9) dẐt + γH (ηt, t) dt

where dẐt is the Brownian shock under the physical measure, and γH (ηt, t) is
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given by

(B.10) γH (ηt, t) = γ
H

[
ϵC̃1 (ηt, t)σ

η (ηt, t) + σ
]
,

which is the households’ price of risk in equilibrium.

Comparing risk-neutral and risk-averse models. In the comparison be-

tween the risk-neutral and risk-averse models, a key object is ϵC̃1 (ηt, t), the the

elasticity of KT
t -scaled aggregate consumption, C̃H

t ≡ CH
t /K

T
t , to ηt. Given

CH
t = C̃H

t K
T
t , by Itô’s lemma, the volatility of consumption growth, σCt is given

by

(B.11) σCt = ϵC̃1 (ηt, t)σ
η (ηt, t) + σ .

The constant return-to-scale technology implies that the volatility of capital
growth, σ, is the volatility of output growth. Empirically, consumption growth is
less volatile in data than output growth (e.g., Blanchard and Simon, 2001).
Therefore, if the preference parameters are calibrated to match consumption
volatility (as typically done in the asset-pricing literature (Cochrane, 2005a)),
we have

(B.12) ϵC̃1 (ηt, t) < 0 .

The model solution has two parts: first, the endogenous variables as functions
of state variables, for example, qTt = qT (ηt, t), and, second, the laws of motion of
state variables. Therefore, according to Proposition B.1, a potential misspecifi-
cation from ignoring risk aversion has two consequences. First, in the algorithm
that solves the functions of endogenous variables in A.2, ρ should be replaced by
ρ (ηt, t). Second, the laws of motions of state variables are in fact risk-neutral
dynamics. The dynamics under the physical measure require an adjustment of
drifts by replacing dZt with dẐt + γH (ηt, t) dt (see B.2).
To analyze the impact of ignoring risk aversion on the functions of endogenous

variables, I examine whether ρ (ηt, t) can be approximated by a constant. The
expression of ρ (ηt, t) in (B.6) can be simplified with the consumption growth
volatility in (B.11):

ρ (ηt, t) = δH + γ
H
µKT (ηt, t) + γ

H
ϵC̃1 (ηt, t)

[
µη (ηt, t) +

1

2
ϵC̃2 (ηt, t)σ

η (ηt, t)
2 + ση (ηt, t)σ

]

+
1

2

(
γ2
H
− γ

H

) (
σCt
)2
.

(B.13)

Let O
(
σ2
)
denote the terms that involve the squared volatilities of growth rates

(which all contain σ2). Because volatilities and expectations of growth rates
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are of similar magnitudes in this model where aggregate quantities are driven
by geometric Brownian motions, these volatility-squared terms tend to be small.
Therefore, I use the following expression

(B.14) ρ (ηt, t) = δH + γ
H
µKT (ηt, t) + γ

H
ϵC̃1 (ηt, t)µ

η (ηt, t) +O
(
σ2
)
.

The first and second terms are standard in asset pricing models. Given the
constant return-to-scale technology, the capital growth rate, µKT (ηt, t), is the
growth rate of aggregate output. In an endowment economy, the aggregate output
(agents’ endowments) is equal to the aggregate consumption in equilibrium, so,
in these consumption-based models, the equilibrium risk-free rate only contains
the first two terms on the right side of (B.14) (e.g., Lucas, 1978).

The third term is unique to this model. The drift of ηt, µ
η (ηt, t), is the expected

growth rate of the ratio of bankers’ wealth to tangible capital value. Because
bankers hold a leveraged position in tangible capital, and the expected return on
tangible capital is positive, bankers’ wealth grows faster than tangible capital in

expectation, and µη (ηt, t) is positive. Given that ϵC̃1 (ηt, t) < 0 (see (B.12)), the
third term on the right side of (B.14) is negative.

The economy becomes more intangible-intensive over time, and firms hold more
cash, which leads to an upward trend in investment and output growth. The coun-
teracting force is also getting stronger. As the economy becomes more intangible-
intensive, the liquidity premium on deposits, ρt − rt, becomes larger, which in-
creases bankers’ return on wealth, and thus, pushes up µη (ηt, t).

Assuming ρ (ηt, t) is a constant in the main model is equivalent to assuming

that these two forces, γ
H
µKT (ηt, t) > 0 and γ

H
ϵC̃1 (ηt, t)µ

η (ηt, t) < 0, cancel
each other out. The first force is from output growth. The second is from the
fact that consumption is less volatile than output growth and, due to leverage,
bankers’ expected return on wealth is greater than tangible capital. Empirically,
this assumption means that the expected consumption growth rate is stable. A
stable consumption growth rate is consistent with the findings of highly persis-
tent expected consumption growth in the literature on long-run risk (Bansal and
Yaron, 2004; Hansen, Heaton, and Li, 2008). approximating ρ (ηt, t) by a constant
does not cause significant misspecification. When this approximation is adequate,
the functions of endogenous variables, for example, qTt = qT (ηt, t), that are solved
in A.2 and presented in Section 4.2, are adequate approximations to the functions
from the risk-averse model.

Next, I examine the impact of ignoring risk-aversion on the laws of motion of
state variables. According to Proposition B.1, the dynamics of capital stocks
given by (A.45) and (A.46) should be adjusted by replacing the Brownian shock
under the risk-neutral measure, dZt, by the Brownian shock under the physical
measure (i.e., the real shock that drives the data generating processes), dẐt, plus
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a drift adjustment γH (ηt, t) dt:
(B.15)

dKT
t

KT
t

=



(
xBt − 1

)
ηt − α

(
ρt−rt
β(t)

)− 1
ξ

1− qTt κ
T (1− θt)

κT (1− θt)λ− δ

 dt+σγH (ηt, t) dt︸ ︷︷ ︸
risk adjustment

+σdẐt ,

and

dKI
t

KI
t

=

KT
t

KI
t


(
xBt − 1

)
ηt − α

(
ρt−rt
β(t)

)− 1
ξ

1− qTt κ
T (1− θt)

κI (t) θtλ− δ

 dt+ σγH (ηt, t) dt︸ ︷︷ ︸
risk adjustment

+ σdZt .

(B.16)

Consider a relative risk aversion γ
H

= 5, which is a common value in the asset

pricing literature (Cochrane, 2005a). Given that ϵC̃1 (ηt, t) < 0 and ση (ηt, t) > 0
(see (A.6)), I obtain the following upper bound on the households’ price of risk:
from (B.34),

(B.17) γH (ηt, t) = γ
H

[
ϵC̃1 (ηt, t)σ

η (ηt, t) + σ
]
≤ γ

H
σ = 0.1 ,

where the last equation substitutes in the value of γ
H

and σ. Given that σ =

0.02 and γH (ηt, t) < 0.1, the risk adjustment term is bounded above by 0.002.
Therefore, ignoring risk aversion understates the expected growth rate of capital
(and output), and the wedge is bounded above by 0.2%. The physical-measure
dynamics feature higher growth rates than those of the risk-neutral dynamics
because, when changing from the physical measure to the risk-neutral measure,
probability mass shifts towards the relatively worse states of the world, i.e., the
risk-averse attitude is reflected by probability re-weighting. A similar calculation
can be applied to the law of motion of ηt. The risk adjustment increases the drift
of ηt, and, averaging over time t and ηt on the simulated paths, such an increase
is less than 6% of the drift, (i.e., < 0.06× µηt ).

In the main text, I report the model’s solutions in two ways: (1) the values of
endogenous variables at different points in time, averaged over ηt (e.g., Section
4.2) and (2) endogenous variables as functions of ηt (e.g., Section 4.3). The impact
of ignoring risk aversion on the laws of motion of state variable only affects (1),
and (2) depends on whether replacing ρ (ηt, t) with a constant ρ is an adequate
approximation, as previously discussed.

This concludes the discussion on the consequences of model misspecification
from ignoring risk aversion. Next, I derive the equations in Proposition B.1.

Proof of Proposition B.1. First, I solve the entrepreneurs’ problem and the
bankers’ problem under the risk-neutral measure, taking as given the stochastic
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discount factor (SDF). After specifying the households’/consumers’ risk-averse
utility function, I solve the SDF and perform the change of measure to obtain
the physical-measure dynamics of the extended model. This method of solving
models under the risk-neutral measure and then analyzing the physical-measure
dynamics by applying Girsanov’s Theorem is often used in settings of complete
markets (Duffie, 2001).

The entrepreneurs’ investment problem stays intact as it is a static problem
happening only at idiosyncratic Poisson times. Therefore, the Lagrange function
defined by (11) still summarizes the investment problem, and the marginal value
of liquidity for the investment projects, πt, is given by (13). Because the time
discount rate changes from ρ to ρt, (15) in Proposition 1 is now

(B.18) rt = ρt − λπt .

The rest of Proposition 1 hold.

Given the homogeneity property of the bankers’ problem, their value function
is still qBt n

B
t , where the marginal value of equity, qBt = qB (ηt, t), has the law of

motion (16) under the risk-neutral measure. Proposition 2 can still be used to
characterize the valuation of tangible capital and the bankers’ required expected
return on tangible capital holdings under the risk-neutral measure. Note that
if bankers can also access complete markets as households can, their marginal
value of wealth, qBt , will be pinned to one, and their price of risk, γBt , to zero.
Being able to freely trade the aggregate shock with households is equivalent to
being able to freely raise equity from households (Di Tella, 2017). Therefore, it
is assumed that bankers cannot hedge the aggregate shock.72

Bankers’ required expected return under the risk-neutral measure is (17) in
Proposition 2. Under the physical measure, by Girsanov’s Theorem, it becomes

(B.19) Êt

[
drTt

]
= rt + γBt

(
σTt + σ

)
+ γHt

(
σTt + σ

)
.

Under the physical measure, banks require risk compensations not only due to
the equity issuance constraint, γBt

(
σTt + σ

)
, but also on behalf of the household

shareholders, γHt
(
σTt + σ

)
.

The valuation equation (18) for tangible capital in Proposition 2 still holds.
The derivation in Appendix A applies under the risk-neutral measure. Equation
(18) can also be derived under the physical measure but the law of motion of qTt
and the stochastic depreciation of capital holdings have to be adjusted by the

72Imperfect hedging can be easily incorporated. For example, bankers can only hedge a fraction χB of
aggregate risk due to agency friction and the need to keep “skin in the gamme” (He and Krishnamurthy,
2013). Note that given that hedging is free and bankers are effectively risk averse, bankers will hedge
as much as they can. Then bankers’ risk exposure for one dollar of holdings of tangible capital is(
1− χB

) (
σT
t + σ

)
in equilibrium, i.e., scaled down by χB fraction. Bankers’ required expected return

under the risk-neutral measure becomes rt +γB
t

(
1− χB

) (
σT
t + σ

)
. After the scaling, the same solution

procedure still applies. Because the scaling reduces bankers’ discount rate and increase the value of
tangible capital and entrepreneurs’ leverage on liquidity holdings, it amplifies the feedback mechanism.
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change of measure. Under the risk-neutral measure:

(B.20)
dqTt
qTt

= µTt dt+ σTt dZt ,

and, given (B.2), under the physical measure

(B.21)
dqTt
qTt

=
(
µTt + γHt σ

T
t

)
dt+ σTt dẐt ,

where the price of risk γHt is multiplied by the quantity of risk σTt . When moving
from (B.21) to (B.20), the drift is adjusted downward, reflecting a risk adjustment
via the shift of probability mass towards relatively worse states of the model. Risk
aversion is reflected in the adjustment of the probability mass. The stochastic
depreciation rate of capital under the physical measure is

(B.22)
(
δ − γHt σ

)
+ σdẐt .

The expected depreciation rate is adjusted upward when moving from the physical
measure, δ−γHt σ, to the risk-neutral measure, δ, as the probability mass is shifted
towards relatively worse states of the world to reflect risk aversion encoded in the
SDF. The expected return of tangible capital holdings consists of the dividend
yield, 1/qTt , the expected price appreciation, µTt + γHt σ

T
t , the expected capital

depreciation,
(
δ − γHt σ

)
+ λ (counting both the normal-time depreciation and

idiosyncratic Poisson destruction), and the quadratic covariation σTt σ from Itô’s
calculus, which does not change due to the volatility-invariance property of change
of measure Duffie (2001). In equilibrium, the expected return is equal to bankers’
required expected return in (B.19):

rt + γBt
(
σTt + σ

)
+ γHt

(
σTt + σ

)
=

1

qTt
+
(
µTt + γHt σ

T
t

)
−
[(
δ − γHt σ

)
+ λ

]
+ σTt σ .

Note that γHt
(
σTt + σ

)
shows up on both sides. Rearranging the equation, we

obtain (18).

For any stochastic process, its dynamics under the risk-neutral measure can be
adjusted to obtain the dynamics under the physical measure. For instance, under
the risk-neutral measure,

(B.23)
dqBt
qBt

= µBt dt− γBt dZt ,

so, (B.2) implies that the law of motion of qBt under the physical measure is given
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by

(B.24)
dqBt
qBt

=
(
µBt − γBt γ

H
t

)
dt− γBt dẐt ,

where the diffusion stays the same (i.e., the standard diffusion-invariance result)
and the drift of qBt is “risk-adjusted”. Note that qBt is high in the relatively worse
states of the world where banks are undercapitalized. The expected appreciation
of qBt is adjusted upward when moving from (B.24) to (B.23) because, when
changing from the physical measure to risk-neutral measure, more probability
mass is shifted towards the relatively worse states of the world.

Given the function ρ (ηt, t), the procedure in A.2 can be used to solve all the
variables listed in Proposition 3, and then, the laws of motion of ηt, K

T
t , and

KI
t can be derived. These laws of motion are under the risk-neutral measure, so

a change of measure needs to be performed to obtain the physical-measure laws
of motion. As I have shown for qTt and qBt , change of measure simply entails
substituting out the Brownian shock under the risk-neutral measure, dZt, using
(B.2).

Using the procedure in A.2 to solve the model’s dynamics under the risk-neutral
measure only requires the function ρ (ηt, t). It does not require the households’
utility function. To perform the change of measure, I need to have the price of
risk, γHt , as a function of the state variables.

Next, I solve the SDF, linking ρt and γHt to households’ consumption (and
wealth) dynamics. Specifically, I confirm that ρt only depends on ηt and time t,
i.e., ρt = ρ (ηt, t), and solve the functional form. I also solve the households’ price
of risk, γHt , as a function of these state variables.

In the following, I consider the standard time-separable power utility as an ex-
ample. In this case, the stochastic discount factor is the time-discounted marginal
utility of consumption (Cochrane, 2005b):

(B.25) Λt = e−δH t
(
cHt
)−γ

H .

In equilibrium, given that there is a unit mass of households, individual consump-
tion is equal to the aggregate consumption, CH

t . Denote the equilibrium law of
motion of aggregate consumption under the physical measure by

(B.26)
dCH

t

CH
t

= µCt dt+ σCt dẐt .

By Itô’s lemma, the law of motion of the SDF, Λt, is given by

(B.27)
dΛt

Λt
= −

[
δH + γ

H
µCt − 1

2
γ
H

(
γ
H
+ 1
) (
σCt
)2]

dt− γ
H
σCt dẐt .
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To solve µCt and σCt , consider the goods market-clearing condition:

(B.28) CH
t dt+

ME
t

1− qTt κ
T (1− θt)

λdt = (1 + α)KT
t dt .

The left side is the sum of households’ consumption and the goods invested by
the λdt measure of entrepreneurs who are hit by the Poisson shock. The right
side is the goods produced by tangible capital and labor. For simplicity, the
goods produced by intangibles are assumed to be consumed directly by the en-
trepreneurs, who run the firms, as compensation for their human capital (Hart
and Moore, 1994; Bolton, Wang, and Yang, 2019). Adding intangibles’ output to
(B.29) expands the dimension of state variables in ρt from two (i.e., ηt and t) to
four, because both KT

t and KI
t show up in (B.29), and, given their distinct laws

of motion, they have to be tracked separately. Dividing both sides of (B.29) by
KT

t dt and rearranging it, we have

(B.29) C̃H
t = 1 + α− λM̃E

t

1− qTt κ
T (1− θt)

.

Following the notations in the main text, I denote KT
t -scaled values by “ ·̃ ”.

The procedure in A.2 solves the endogenous variables on the right side of (B.29)
as functions of ηt and time t. Therefore, KT

t -scaled aggregate consumption,

(B.30) C̃H
t = C̃H (ηt, t) ,

is a known function of ηt and t. so I can obtain ϵC̃1 (ηt, t) and ϵC̃2 (ηt, t). Note
that under the risk-neutral measure, by Itô’s lemma, I obtain

dCH
t

CH
t

=
dC̃H (ηt, t)

C̃H (ηt, t)
+
dKT

t

KT
t

+ ϵC̃ (ηt, t)σ
η (ηt, t)σdt ,

(B.31)

=

{
ϵC̃1 (ηt, t)

[
µη (ηt, t) +

1

2
ϵC̃2 (ηt, t)σ

η (ηt, t)
2 + ση (ηt, t)σ

]
+ µKT (ηt, t)

}
dt

+
[
ϵC̃1 (ηt, t)σ

η (ηt, t) + σ
]
dZt

(B.32)

where the risk-neutral measure dynamics, µη (ηt, t), σ
η (ηt, t), and µ

KT (ηt, t) are
given by (A.5), (A.6), and (A.7) respectively in A.1. To change the measure,
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using (B.2) to substitute dZt with dẐt + γHt dt, I obtain

dCH
t

CH
t

=

{
ϵC̃1 (ηt, t)

[
µη (ηt, t) +

1

2
ϵC̃2 (ηt, t)σ

η (ηt, t)
2 + ση (ηt, t)σ

]
+ µKT (ηt, t)

}
dt

+
[
ϵC̃1 (ηt, t)σ

η (ηt, t) + σ
]
γHt dt+

[
ϵC̃1 (ηt, t)σ

η (ηt, t) + σ
]
dẐt

(B.33)

According the law of motion of Λt given by (B.27), the price of risk is

(B.34) γHt = γ
H
σCt = γ

H

[
ϵC̃1 (ηt, t)σ

η (ηt, t) + σ
]
.

I substitute out γHt in the drift term of (B.33) with the solution (B.34) and obtain

µCt = µC (ηt, t)

(B.35)

= ϵC̃1 (ηt, t)

[
µη (ηt, t) +

1

2
ϵC̃2 (ηt, t)σ

η (ηt, t)
2 + ση (ηt, t)σ

]
+ µKT (ηt, t)

+ γ
H

[
ϵC̃1 (ηt, t)σ

η (ηt, t) + σ
]2

Substituting the solutions of µCt and σCt into the drift term of (B.27), I obtain

ρt = ρ (ηt, t)

(B.36)

= δH + γ
H
µKT (ηt, t) + γ

H
ϵC̃1 (ηt, t)

[
µη (ηt, t) +

1

2
ϵC̃2 (ηt, t)σ

η (ηt, t)
2 + ση (ηt, t)σ

]
+

1

2

(
γ2
H
− γ

H

) [
ϵC̃1 (ηt, t)σ

η (ηt, t) + σ
]2
.
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C. The Implications of Zero Lower Bound

While the model does not feature any nominal variables, it is important to
discuss the implications of zero lower bound and examine the robustness of re-
sults in the broader context of New Keynesian models. As shown in Table 3, the
equilibrium outcome matches data well except a lower and more negative interest
rate in the later sample periods. The rise of intangible capital over time increases
firms’ demand for liquid assets and thereby exerts downward pressure on the (nat-
ural) real rate. As discussed in Section IV, this trend widens the wedge between
the natural real rate and real rate under nominal price rigidity and zero lower
bound, exacerbating output loss due to the liquidity trap (Eggertsson and Wood-
ford, 2003; Christiano, Eichenbaum, and Rebelo, 2011; Eggertsson and Krugman,
2012; Fischer, 2016; Korinek and Simsek, 2016; Caballero and Farhi, 2017; Guer-
rieri and Lorenzoni, 2017; Caballero and Simsek, 2020; Caballero, Farhi, and
Gourinchas, 2021). In the following, I will discuss in more details how nominal
frictions and zero lower bound interact in the shock amplification mechanism with
a particular focus on the cyclical dynamics.
The feedback mechanism in my model emphasizes a discount rate channel of

asset-price variation. The bankers have low discount rates (or cost of capital)
because firms attach a liquidity premium to their debts as assets that hedge the
intangible investment needs. Following positive shocks, the bankers become richer
via a leveraged position in tangible capital, and as these low discount-rate agents
acquire more assets, they push up asset prices. Higher asset prices imply stronger
investment-driven liquidity needs, further reducing the bankers’ discount rate
and causing asset prices to rise more. An increasing liquidity premium means a
widening discount-rate gap between the bankers and entrepreneurs. This implies
that reallocation of assets away from the bankers, triggered by negative shocks,
will cause a large decline in asset price.
There are two ways to think about how ZLB affects the mechanism. The first

is to simply assume that rt cannot be negative because there exists an exogenous
supply of liquid assets that is perfectly elastic at rt = 0. This certainly dampens
the mechanism because the key to the mechanism is (liquid) asset shortage and
the endogenous supply of assets by risk-taking financial intermediaries. However,
where does the unlimited liquidity supply come from? This triggers the second
way to think about ZLB, which is more in line with the New Keynesian tradition.
I will argue that ZLB does not kill the discount-rate channel of financial instabil-
ity but introduces a new asymmetric cash-flow channel at ZLB. Specifically, the
mechanism in the model dampens the New Keynesian mechanism on the upside
(i.e., in response to positive shocks) but does not necessarily interfere it on the
downside, generating asymmetric output cycles.
Following Caballero and Simsek (2020), let us assume extremely sticky (con-

stant) prices, so rt ≥ 0 because the nominal rate (= rt) cannot be negative. And,
let us adopt the AK technology and variable capital utilization as in Caballero
and Simsek (2020). Moreover, to model the aggregate demand channel, we need
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to introduce a different preference and endogenize ρt, the agents’ required return
or discount rate which will depend on consumption growth in equilibrium. The
wedge between ρt and the interest rate on liquid assets (bankers’ debts in partic-
ular), rt, is the liquidity premium. In equilibrium, ρt−rt is driven by households’
liquidity demand and firms’ liquidity demand that depends on the intangible in-
vestment productivity and asset price (present value of capitalizable output of
tangible capital), just as in the main text.
Consider positive shocks at rt = 0. The standard wealth effect drives up the ag-

gregate demand and, through variable capital utilization, output increases. How-
ever, the mechanism in my model generates a counteracting force. As the bankers
become richer through their leveraged position, these low discount-rate agents ac-
quire more assets. The asset price rises and raises the liquidity premium, ρt − rt
(see Proposition 1). Given that rt cannot fall below zero, what has to adjust is ρt,
the agents’ required savings rate that depends on the consumption growth rate
in equilibrium. ρt must increase and this weakens the aggregate demand. So the
mechanism in my model counteracts the standard New Keynesian mechanism in
response to positive shocks.
Next, consider negative shocks at rt = 0. The aggregate demand and output

decline through the wealth effect. The asset price decline reduces the liquidity
premium ρt−rt. Because rt can rise above zero, a lower ρt−rt does not necessarily
require a lower ρt (and a higher consumption growth), so my model does not
generate a counteracting force against the standard New Keynesian mechanism
in response to negative shocks. Therefore, incorporating my model into a New
Keynesian setting with ZLB generates asymmetric cycles with dampened upside
relative to a standard New Keynesian model but similar downside. What differs
from the standard New Keynesian model is that here ZLB is applied to rt, the
interest rate on liquid assets, rather than ρt. Moreover, the wedge, ρt−rt, depends
on the endogenous variation in asset prices.
It is worth noting that the discount-rate channel of financial instability is still

at work. The discount-rate gap between the bankers and the rest of economy
still widens following positive shocks, and this implies an increasingly strong re-
sponse to negative shocks that trigger asset reallocation from low discount-rate
bankers to high discount-rate households/consumers. The existence of ZLB does
not kill this mechanism. It simply infuses this mechanism into the aggregate de-
mand channel of New Keynesian models through the endogenous ρt (consumers’
discount rate or required savings return), and it does so in an asymmetric fash-
ion by dampening the upside and but not necessarily interfering the downside.
What the New Keynesian setup does to my model is to bring in a new cash-
flow channel. Specifically, it makes the cash flow per unit of assets/capital (i.e.,
the output) variable through utilization, and, due to the asymmetry in output
cycle, the shock amplification through the cash-flow channel is also asymmetric
(stronger for negative shocks).
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D. Additional Tables and Figures

Table D.1—: Summary Statistics for Firm Cash and Leverage Regressions

Variable Below Median Intan./Asset Above Median Intan./Asset
Mean Median Std. Mean Median Std.

Cash/Assets (%) 12.395 5.759 16.758 24.521 15.597 24.682
Intangible Investment/Investment 0.434 0.427 0.302 0.802 0.840 0.156
Intangible Investment/Total Assets 0.043 0.042 0.029 0.238 0.178 0.270
PPE/Total Assets 0.364 0.315 0.261 0.194 0.156 0.152
Leverage (%) 29.388 27.127 22.415 18.078 12.170 20.327
Asset-backed Loans/Total Assets (%) 10.771 2.891 16.564 7.964 1.314 13.674
Cashflow-backed Loans/Total Assets (%) 20.288 15.972 23.055 12.639 0.591 24.402
Acquisitions/Total Assets 0.027 0.000 0.067 0.015 0.000 0.048
Cashflow/Total Assets 0.049 0.063 0.122 -0.056 0.051 0.287
Dividend Dummy 0.398 0.000 0.489 0.227 0.000 0.419
EBITDA/Total Assets 0.103 0.115 0.518 -0.034 0.087 0.524
Inventory/Total Assets 0.120 0.067 0.148 0.177 0.147 0.163
Net Cash Receipts/Total Assets 0.091 0.100 0.468 -0.036 0.061 0.557
Net Working Capital/Total Assets 0.071 0.053 0.182 0.107 0.113 0.229
Log Real Assets (Size) 5.827 5.789 2.109 4.538 4.407 1.967
Tobin’s Q 1.452 1.241 0.746 1.961 1.595 1.180

Table D.2—: Summary Statistics for Household Liquidity Holdings Regressions

Panel A: Summary Statistics for Time Series Regression
Variable Mean Std. p20 p40 p60 p80
Liquid Holdings/GDP 0.505 0.066 0.435 0.496 0.541 0.570
Average EV/EBITDA 10.364 2.793 7.479 9.652 11.170 13.027
Tangible EV/EBITDA 8.888 2.154 7.102 8.165 9.207 10.450
Average Tobin’s Q 1.823 0.342 1.526 1.693 1.903 2.055
Tangible Tobin’s Q 1.414 0.185 1.256 1.394 1.496 1.534
Price/Rent Ratio 1.27 0.129 1.177 1.201 1.250 1.333

Panel B: Summary Statistics for Panel Data Regression
Variable Mean Std. p20 p40 p60 p80
Cash/Income 0.205 0.584 0 0.011 0.052 0.180
∆ ln (Housing Price Index) 0.064 0.128 -0.038 0.059 0.098 0.139
Age 45.296 16.390 30 38 48 59
Couple Status 0.693 0.791 0 0 1 1
Education Level 13.124 2.657 12 12 14 16
Home ownership Status 0.551 0.497 0 0 1 1
Household Size 2.641 1.483 1 2 3 4
∆ ln (Household Income) 0.036 1.390 -1.073 -0.286 0.364 1.144
∆ ln (Wealth excluding Home Equity) -0.034 6.808 -4.879 -0.870 0.862 4.623
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Table D.3—: Asset Tangibility, Capital Valuation, and Corporate Cash Holdings

Panel A: EV/EBITDA & Intangible-Driven Corporate Cash Holdings

Cash
Assets (1) (2) (3) (4) (5) (6) (7) (8)

PPE/Assets -0.496 -0.223 -1.699*** -1.441*** -0.846** -0.400 -1.909*** -1.476***
(decile) (0.372) (0.336) (0.315) (0.282) (0.412) (0.399) (0.313) (0.303)

Ave. EV/EBITDA 1.848*** 1.020***
(0.275) (0.244)

PPE/Assets× -0.259*** -0.281*** -0.136*** -0.153***
Ave. EV/EBITDA (0.034) (0.032) (0.027) (0.025)
Tan. EV/EBITDA 1.825*** 0.882***

(0.331) (0.273)
PPE/Assets× -0.267*** -0.307*** -0.141*** -0.174***
Tan. EV/EBITDA (0.040) (0.041) (0.031) (0.031)

Controls No No Yes Yes No No Yes Yes
Year FE No Yes No Yes No Yes No Yes
Observations 152,801 152,801 133,632 133,632 152,801 152,801 133,632 133,632
Adjusted R2 0.1795 0.1859 0.3096 0.3164 0.1745 0.1838 0.3076 0.3159

Panel B: Tobin’s Q & Intangible-Driven Corporate Cash Holdings

Cash
Assets (1) (2) (3) (4) (5) (6) (7) (8)

PPE/Assets -0.533 0.021 -1.752*** -1.280*** 0.927 1.297* -1.125** -0.836
(decile) (0.632) (0.621) (0.415) (0.415) (0.837) (0.735) (0.555) (0.519)

Ave. Tobin’s Q 9.908*** 4.836**
(2.587) (1.800)

PPE/Assets× -1.483*** -1.729*** -0.776*** -0.961***
Ave. Tobin’s Q (0.327) (0.332) (0.211) (0.214)
Tan. Tobin’s Q 20.213*** 10.620***

(4.560) (3.152)
PPE/Assets× -2.937*** -3.136*** -1.430*** -1.555***
Tan. Tobin’sQ (0.577) (0.513) (0.373) (0.347)

Controls No No Yes Yes No No Yes Yes
Year FE No Yes No Yes No Yes No Yes
Observations 152,801 152,801 133,632 133,632 152,801 152,801 133,632 133,632
Adjusted R2 0.1726 0.1827 0.3072 0.3155 0.1732 0.1823 0.3077 0.3151

Firm-year clustered standard errors in parentheses
* p < 0.1 ** p < 0.05 *** p < 0.01

Table D.4—: Intangible Investment, Tobin’s Q, and Corporate Cash Holdings

Cash
Assets (1) (2) (3) (4) (5) (6) (7) (8)

Intan./Assets -2.724 -3.372 -1.629 -2.272 -8.200*** -8.730*** -5.672** -6.244***
(quintile) (2.219) (2.227) (1.761) (1.783) (2.650) (2.532) (2.117) (2.070)

Ave. Tobin’s Q -5.072*** -4.586***
(0.981) (0.682)

Intan./Assets× 4.993*** 5.326*** 3.729*** 3.963***
Ave. Tobin’s Q (1.215) (1.235) (0.958) (0.983)
Tan. Tobin’s Q -10.064*** -7.866***

(1.568) (1.253)
Intan./Assets× 10.317*** 10.669*** 7.648*** 7.925***
Tan. Tobin’s Q (1.923) (1.856) (1.530) (1.512)

Controls No No Yes Yes No No Yes Yes
Year FE No Yes No Yes No Yes No Yes
Observations 152,826 152,826 133,632 133,632 152,826 152,826 133,632 133,632
Adjusted R2 0.1843 0.2038 0.2671 0.2831 0.1880 0.2057 0.2699 0.2842

Firm-year clustered standard errors in parentheses
* p < 0.1 ** p < 0.05 *** p < 0.01
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Figure D.1. : Tangible Capital Valuation and Cash Holdings by Intangibility

Figure D.2. : Tobin’s Q and Cash Holdings by Intangibility
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Figure D.3. : Decomposing Households’ Holdings of Liquid Securities

Figure D.4. : Households’ Holdings of Intermediary Debts




