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A Reduced-form Evidence: Additional Results

Figure A.1: Log Changes in Number of Workers by Workplace Relative to Number of
Workers by Residence, County-level
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Notes: Flood risk at the county level is measured by the percentage of the share of land areas within the 100-year floodplain.
In order to gather data on commuting flows between counties, we utilize two data sources: the Census for 2000 and the
2016-2020 5-Year ACS Commuting Flows for 2020. By aggregating these commuting flows, we calculate the number of
workers residing in each county (regardless of their workplace locations), as well as the number of workers employed within
each county (regardless of their residence locations), for both 2000 and 2020.
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Figure A.2: Change in Flood Risk, County-Level, 1998 (FEMA) and 2018 (First Street
Foundation)
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Notes: Flood risk at the county level is measured by the percentage of properties within the 100-year floodplain. The
map illustrates the changes in the proportion of properties within the 100-year floodplain between 1998 and 2018 for each
county. Blank areas on the map indicate regions without flood map coverage based on First Street Foundation’s maps
accessed in 2018. First-Street-Foundation (2018): v1.2.
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Table A.1: Summary Statistics

Panel A: Outcome Variables

(1) (2) (3) (4) (5)
log(Entry) log(Exit) log(Employment) log(Population) log(Real GDP)a

Year = 1998 4.27 4.13 9.09 9.93 13.65
(1.38) (1.36) (1.55) (1.19) (1.52)

Year = 2018 3.94 3.94 9.14 10.03 13.96
(1.51) (1.47) (1.64) (1.39) (1.54)

Panel B: Demographic and Economic Controls

(1) (2) (3) (4) (5)
Manufa. Share Female Share ∆China Import Pop per Sqkm Cum. Flood Share

Year = 1998 0.21 0.51 36.15 0.31
(0.15) (0.02) (167.02) (0.44)

Year = 2018 0.16 0.50 26.16 59.53 5.09
(0.12) (0.02) (10.83) (361.50) (3.13)

Panel C: Independent Variables

(1) (2)
Flood Risk Flood Shareb

Year = 1998 0.06 0.07
(0.11) (0.24)

Year = 2018 0.12 0.26
(0.13) (0.42)

Notes: a: As the BEA county-level GDP data commences from 2001, we consider 2001 as the initial year for
log(Real GDP), rather than 1998. b: For similar reasons, we focus on a balanced panel from 2001–2018 for results
on yearly flood events. We consider 2001 as the initial year for log(flood share), rather than 1998. Employment consists
of full and part-time paid employees. Population refers to “prime age” population between 15 to 64 years. The changes
in China import penetration is defined as changes in Chinese import exposure per worker in a region, where regional
imports are calculated according to its national industry employment share (Autor, Dorn and Hanson, 2013). Data
sources: Bureau of Economic Analysis, the U.S. Census data series, and Autor, Dorn and Hanson (2013). Standard
deviations are provided in parentheses.
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Table A.2: The Impact of Long-run Change in Flood Risk: Fixed Effects Estimates, Q3

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood Risk -0.341** -0.208 -0.327*** -0.225** -0.236*
(0.150) (0.159) (0.115) (0.105) (0.131)

Observations 2260 2260 2260 2260 2260
County FE Yes Yes Yes Yes Yes
State×Year Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes Yes

Notes: The sample is restricted to counties with available Q3 maps in 1998. Outcome variables are represented in log values. The
primary independent variable, Flood Riski,t, signifies the percentage of land area within FEMA’s special flood zones in county i and
year t. We are interested in the long-run impact of flood risk, so we focus on t being 1998 and 2018. All regressions account for locality
fixed effects, state-by-year fixed effects, and a comprehensive set of demographic and economic controls. Standard errors are clustered
at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.3: The Impact of Long-run Change in Flood Risk: Fixed Effects Estimates, Q3, Placebo

(1) (2) (3) (4)

log(Entry) log(Exit) log(Employment) log(Population)

Flood Risk -0.082 0.026 -0.091 -0.023
(0.129) (0.132) (0.088) (0.087)

Observations 2330 2330 2330 2330
County FE Yes Yes Yes Yes
State×Year Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes

Notes: The sample incorporates placebo tests with prior period outcome data in 1990 and 1998, and flood risk data in 1998 and
2018. The regressions include counties with available Q3 maps in 1998. Outcome variables are expressed in log values. The primary
independent variable, Flood Riski,t, signifies the percentage of land area within FEMA’s special flood zones in county i and year t.
All regressions account for locality fixed effects, state-by-year fixed effects, and a comprehensive set of demographic and economic
controls. Standard errors are clustered at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.4: The Impact of Long-run Change in Flood Risk: Fixed Effects Estimates, Fewer Controls

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood Risk -0.186** -0.133* -0.231*** -0.127*** -0.288***
(0.082) (0.074) (0.056) (0.043) (0.071)

Observations 5072 5072 5072 5072 5072
County FE Yes Yes Yes Yes Yes
State×Year Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes Yes

Notes: Outcome variables are represented in log values. The primary independent variable, Flood Riski,t, signifies the percentage of
land area within FEMA’s special flood zones in county i and year t. We are interested in the long-run impact of flood risk, so we focus
on t being 1998 and 2018. All regressions account for county fixed effects, state-by-year fixed effects, the cumulative shares of actual
flooded areas between 1998–2018, the China import penetration ratio and population density. Given the concern that manufacturing
employment share and changes in female share could be endogenous outcomes, these variables are not included as controls. Standard
errors are clustered at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.5: The Impact of Long-run Change in Flood Risk: Fixed Effects Estimates, State-Level Clustering

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood Risk -0.169* -0.111 -0.199*** -0.130** -0.278***
(0.096) (0.086) (0.057) (0.059) (0.073)

Observations 5072 5072 5072 5072 5072
County FE Yes Yes Yes Yes Yes
State×Year Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes Yes

Notes: Outcome variables are represented in log values. The primary independent variable, Flood Riski,t, signifies the percentage of
land area within FEMA’s special flood zones in county i and year t. We are interested in the long-run impact of flood risk, so we focus
on t being 1998 and 2018. All regressions account for county fixed effects, state-by-year fixed effects, the cumulative shares of actual
flooded areas between 1998–2018, and a comprehensive set of demographic and economic controls. Standard errors are clustered at
the state level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.6: Impact of Long-run Change in Flood Risk: Property-weighted Measure from FEMA

(1) (2) (3) (4) (5)

∆log(Entry) ∆log(Exit) ∆log(Employment) ∆log(Population) ∆log(Output)

∆Flood Risk -0.562*** -0.530*** -0.610*** -0.403*** -0.462***
(0.142) (0.141) (0.097) (0.069) (0.155)

Observations 2812 2812 2812 2812 2812
State FE Yes Yes Yes Yes Yes
Other Controls & FE Yes Yes Yes Yes Yes
Flood Share Yes Yes Yes Yes Yes

Notes: Outcome variables are expressed in log changes. The main independent variable, ∆Flood Riski, indicates changes in the
percentage of properties within the 100-year floodplain in locality i between 1998 and 2018, determined using the historic Q3 and
current FEMA FIRM maps. All regressions control for state fixed effects, actual flooded area, and an extensive set of demographic
and economic controls. Standard errors are clustered at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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Table A.7: The Impact of Short-Run Actual Floods: Fixed Effects Estimates, Lagged Shocks

(1) (2) (3) (4) (5)

log(Entry) log(Exit) log(Employment) log(Population) log(Output)

Flood Share 0.001 0.003 -0.001 0.001*** -0.005***
(0.004) (0.004) (0.001) (0.000) (0.002)

L.Flood Share -0.004 0.005 0.000 -0.000 -0.001
(0.004) (0.004) (0.001) (0.000) (0.001)

Observations 49376 49376 49376 49376 49376
County FE Yes Yes Yes Yes Yes
State×Year FE Yes Yes Yes Yes Yes
Initial Controls & Trends Yes Yes Yes Yes Yes

Notes: Outcome variables are represented in log terms. The primary independent variable, Flood Sharei,t, denotes the percentage of
land area flooded in county i during year t. We are interested in the short-run impact of yearly floods, and the sample period covers
2001–2018. All regressions account for county fixed effects, state-by-year fixed effects, and a comprehensive set of initial controls with
year trends. Standard errors are clustered at the county level. Significance levels: * 10%, ** 5%, *** 1%.
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B Proofs

B.1 Labor Supply and Location Choices

We first obtain the optimal labor supply lm for individuals that stay in m. Individuals’
utility can be written as:

∑
s

Pr(s)Um(s) =
∑
s

Pr(s)vmBm(s)

[
Wm(s)

Pm(s)
lm − ψm

l
1+1/φL
m

1 + 1/φL

]
. (B.1)

Taking the first-order condition with regard to labor supply lm, we obtain:

∑
s

Pr(s)vmBm(s)
Wm(s)

Pm(s)
=
∑
s

Pr(s)vmBm(s)ψml
1/φL
m . (B.2)

After some arrangement of the equation, we can obtain labor supply in equation (9). By
plugging equation (B.2) into equation (B.1), we obtain:

∑
s

Pr(s)Um(s) =
∑
s

Pr(s)vmBm(s)ψm
l
1+1/φL
m /φL
1 + 1/φL

. (B.3)

For ease of notation, denote xm =
∑

s Pr(s)Bm(s)ψm
l
1+1/φL
m /φL

1+1/φL
. Thus, a worker would choose

location m if vmxm ≥ vnxn ∀ n. Note that location preference vm follows Fréchet distribution
Gm(vm) = exp(−v−φMm ) and is i.i.d. across locations. Therefore,

Λm =

∫ ∞
0

∏
n 6=m

Gn

(
vmxm
xn

)
gm(vm)dvm

=

∫ ∞
0

exp

(
−
∑
n

(
xm
xn

)−φM
v−φMm

)
φMv

−φM−1
m dvm

=
xφMm∑
n x

φM
n

.

(B.4)

The first equality defines the probability of choosing location m, which is a weighted average
of the probability to choose location m under location preference vm,

∏
n6=mGn

(
vmxm
xn

)
,32

32Under location preference vm, the probability of vn such that vmxm ≥ vnxn is Gn
(
vmxm

xn

)
.
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over the distribution of location preference vm. The second equality uses the cumulative and
density probability of Gm. The third equality computes the integral of the equation. After
plugging xm =

∑
s Pr(s)Bm(s)ψm

l
1+1/φL
m /φL

1+1/φL
into the equation, we obtain equation (10).

The average expected utility of individuals in nationwide is given by:

∑
m

ΛmE

[∑
s

Pr(s)Um(s)
∣∣∣choose region m

]

=
∑
m

Λm

∫∞
0
vmxm

∏
n6=mGn

(
vmxm
xn

)
gm(vm)dvm∫∞

0

∏
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(
vmxm
xn

)
gm(vm)dvm

=
∑
m

Λm

∫∞
0
xmvm exp
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−
∑

n

(
xm
xn

)−φM
v−φMm

)
φMv

−φM−1
m dvm

Λm

=
∑
m

Λm

xm
∫∞

0

(∑
n

(
xm
xn

)−φM)1/φM

y−1/φM exp (−y) 1∑
n(

xm
xn

)
−φM dy

Λm

=
∑
m

Λm

(∑
n

xφMn

)1/φM ∫ ∞
0

y−1/φM exp(−y)dy = Γ

(
1− 1

φM

)(∑
n

xφMn

)1/φM

.

(B.5)

Γ(·) is the gamma function. The first equality follows from the definition of average utility for
individuals in region m, and the second equality uses the distribution of location preferences
as well as the formula for location choices in equation (B.4). The third equality applies the

exchange of variables y =
∑

n

(
xm
xn

)−φM
v−φMm , and the final line simplifies the formula. By

plugging xn into equation (B.5), we complete the proof.

B.2 Proof of Proposition 1

Note from equation (9), Lm ∝ Λmlm, and Nm(s) ∝ Lm(1 − κ(s)), we can solve lm as a
function of Λm up to a constant.

lm ∝ (Λm)

φL
σ−1

1− φL
σ−1 (B.6)
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Plugging lm into equation (10), we obtain:

Λm =
Cm (Λm)

φM (1+φL)

σ−1−φL∑
m′ Cm′ (Λm′)

φM (1+φL)

σ−1−φL

(B.7)

where Cm is a region-specific constant and also captures damages of floods. For ease of
notation, let δ = φM (1+φL)

σ−1−φL
.

We are interested in whether equation (B.7) yields a unique solution of {Λm}. To make
progress, define xm,1 = Λm and xm,2 =

∑
m′ Cm′ (Λm′)

δ. Then equation (B.7) can be refor-
mulated by a system of equations:

xm,1 = Cmx
δ
m,1x

−1
m,2, (B.8)

xm,2 =
∑
m′

Cm′x
δ
m′,1. (B.9)

Then we can apply Theorem 1 in Allen, Arkolakis and Li (2015) to show the unique of the
equilibrium. Specifically, define:

Γ =

[
1 0

0 1

]

B =

[
δ −1

0 δ

]
Theorem 1 in Allen, Arkolakis and Li (2015) shows that if the largest eigenvalue of |BΓ−1|
is smaller or equal to 1, which means that |δ| ≤ 1, there is at most one strictly positive
solution. After solving {Λm}, all other variables are uniquely pinned down. In particular, lm
is uniquely determined by equation (B.6), and aggregate output is determined by equation
(14).

B.3 Proof of Proposition 2

We first take a log-linearization of equation (16) and then take the full derivative of it:

dΛ̂m = φM

[
(1 + 1/φL)dl̂m − ηdrm

]
. (B.10)
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Thus, we obtain equation (18). Noting that Lm ∝ Λmlm and Nm(s) ∝ Lm(1 − κ(s)) and
given that annual exit rate k̄ is small in reality, we can also easily obtain dL̂m = dΛ̂m + dl̂m

and dÊNm = dL̂m − κ̄δκdrm as in equations (19)–(20). We then take a log-linearization of
equation (15) and take the full derivative around rm = 0:

dl̂m = −φL
(
δ +

1

σ − 1
κ̄δκ

)
drm +

φL
σ − 1

dN̂m

= −φL
(
δ +

1

σ − 1
κ̄δκ

)
drm +

φL
σ − 1

(
dΛ̂m + dl̂m

)
= −φL

(
δ +

1

σ − 1
κ̄δκ

)
drm +

φL
σ − 1

(
(φM(1 + 1/φL) + 1) dl̂m − φMηdrm

)
.

(B.11)

The first equality is the result of log-linearization and full derivation. The second equality
uses dN̂m = dL̂m and dL̂m = dΛ̂m+dl̂m. The third equality uses dΛ̂m = φM

[
(1 + 1/φL)dl̂m − ηdrm

]
.

Noting that there is only one unknown dl̂m in equation B.11, we can solve dl̂m as an equation
of drm in equation (17).

Finally, from equation (14) and the damage equation of flooding, we obtain the average
output:

EYm ∝
∑
s

Pr(s)Am(s)Nm(s)
1

σ−1Lm. (B.12)

Taking the log-linearization and full derivation around rm = 0, we obtain:

dÊY m = −δdrm + dL̂m +
1

σ − 1
dÊNm. (B.13)

Therefore, we obtain equation (21).

B.4 Two-sector Model

We now extend the model to consider two sectors—traded and non-traded sectors j ∈
{T,NT}. For each sector in region m, there is a composite good composed of differenti-
ated varieties (firms) sourced from different origins, according to the CES technology,

Y j
m(s) =

(∑
n

∫
Ωjnm(s)

y(v, s)
σ−1
σ dv

) σ
σ−1

(B.14)
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where Ωj
nm(s) is the set of firms that trade from origin n in state s. For the nontradable

sector that does not source from other regions, ΩNT
nm (s) = ∅ ∀ n 6= m. For the traded sector,

the iceberg trade costs from n to m are assumed to be τnm = (distnm)γ ≥ 1 ∀n 6= m and
τnm = 1 ∀n = m, where γ is the elastcity of trade costs with regard to physical distance,
and there are no fixed marketing costs (Krugman, 1980). The free-entry conditions of firms
in both sectors are identical as in Section 6.3.1. Workers in each region consume traded and
non-traded goods with expenditure shares β and (1− β) respectively.

We calibrate β = 0.3 to match the share of employment in the non-traded sector from the
Population Census in 2000.33 We calibrate γ to match the elasticity of good flows with regard
to distance estimated from the Commodity Flow Survey (Allen and Arkolakis, 2014).34 We
recalibrate all internally calibrated parameters following the procedure in Section 5.2.

B.5 Capital and Housing

We now extend the production function in region m to allow for capital and structures
(housing):

ym(s) = Am(s)
[
(ldm(s))β(kdm(s))1−β]1−θ hdm(s)θ (B.15)

where θ is the share of costs spent on housing. The parameters β(1− θ) and (1− β)(1− θ)
are the cost shares of labor and capital in the production, respectively. We also modify the
worker’s utility to incorporate housing:

Um(s) = vmBm(s)

(
cm(s)1−ζhm(s)ζlm − ψm

l
1+1/φL
m

1 + 1/φL

)
,

s.t. Pm(s)cm(s) + Pm,h(s)hm(s) ≤ Wm(s).

(B.16)

where hm(s) is the individual’s demand for housing per unit of labor and Pm,h(s) is the price
per unit of housing. ζ is the share of housing costs in individuals’ expenditures.

We consider that capital can be rented at the real return R from the global market.
We model housing supply following Serrato and Zidar (2016): housing is supplied locally
at an amount Hm(s) = Dm(Pm,h(s))

ψ in each region, whereas the elasticity ψ captures the
33Following Fajgelbaum (2020), the following sectors are included in the non-traded sector: construction,

retailer, hotels and restaurants, real estate, education, health and social work.
34In the traded sector, the elasticity of trade flows with regard to distance is (σ − 1)γ.

60



responses of housing supply to housing price. To close the model, we assume that both capital
income and housing income are spent on final goods in the local area. In the recalibration, we
obtain the housing share in the U.S. production θ = 0.06 from Caselli and Coleman (2001)
and β = 2/3 such that the labor share in the total income is roughly two thirds. We consider
ζ = 0.3 for the share of housing costs in individuals’ expenditures. We set ψ = 3.1 according
to Serrato and Zidar (2016)’s estimate and region-specific {Dm} such that the amount of
housing supply in each region is proportional to its land areas in the calibrated economy. We
set R = 0.08 according to the real internal rate of return in the U.S. from the Penn World
Table. We recalibrate all internally calibrated parameters following the procedure in Section
5.2.

B.6 Heterogeneity in Firm Productivity

In our baseline model, we assumed homogeneity among firms in each location. We now
introduce a model extension in which firms exhibit heterogeneous productivity levels, with
smaller firms being more susceptible to flood shocks.

We follow the methods of Melitz (2003) and Chaney (2008) to model the firm sector in
each region. Assuming that a firm entering region m draws an idiosyncratic productivity
z from a Pareto distribution F (z) = 1 − z−θ, we can modify the production function in
equation (5) as follows:

ym(s) = Am(s)z ldm(s). (B.17)

The profits of the firm, as shown in equation (6), can be adjusted as follows (with dependence
on productivity in this instance):

πm(z, s) =
1

σ

(
σ̃
Wm(s)

Am(s)z

)1−σ

Pm(s)σYm(s). (B.18)

Besides entry costs, we assume that firms must also employ f om(s) units of labor to actively
produce in regionm, accounting for some overhead expenses. Specifically, we assume f om(s) =

f̄ om exp(δfξm(s)), where δf > 0 indicates that fixed operational costs can be higher in the
event of a flood. A firm will actively produce if and only if πm(z, s) ≥ f om(s). In contrast
to our baseline model with exogenous exits, this framework implies that only unproductive
(small) firms will discontinue operations due to their reluctance to bear the fixed operational
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costs.

The free entry condition in equation (7) can be adjusted as follows:

∑
s

Pr(s)Wm(s)

[
fm + f om(s)

∫
I{πm(z,s)≥fom(s)}dF (z)

]
=
∑
s

Pr(s)
∫
I{πm(z,s)≥fom(s)}πm(z, s)dF (z).

(B.19)
In this context, I{πm(z,s)≥fom(s)} functions as an indicator variable signifying whether a firm is
actively producing or not. The left-hand side includes the total expected costs for a potential
entrant, consisting of both entry costs and operational costs associated with active operation.
On the other hand, the right-hand side depicts the expected profits generated by a potential
entrant in an actively producing state. At equilibrium, free entry ensures that the total
expected costs are equal to the expected profits for a potential entrant.

In the recalibration process, we assign the shape parameter of the firm productivity
distribution as θ = 4.5, which is a widely accepted value in the literature (Simonovska and
Waugh, 2014). We select f̄ om and δf for each region to ensure that the annual exit rate is
0.08 in every location, and floods lead to a 0.3% increase in exits, aligning with our baseline
calibration. We recalibrate all other internally calibrated parameters following the procedure
in Section 5.2.
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C Quantitative Analyses: Additional Results

C.1 Special Flood Zones and Actual Flood Risk

Figure C.1: Relationship between Annual Share of Flooding Areas and Share of Special
Flood Zones, across Counties
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(b) Relationship in 2018
Notes: We group counties into 20 bins (fewer for 1998 due to a lot of zeros) ranked by the share of land in flood zones.

C.2 Additional Tables

Table C.1: Targeted Moments in the Data and Model

Targeted Moments Data Model Corr.

Regional real GDP (national total normalized to 1) 4e-4 (2e-3) 4e-4 (2e-3) 1.00
Regional population (national total normalized to 1) 4e-4 (1e-3) 4e-4 (1e-3) 1.00
Regional employment-to-population ratio 0.45 (0.20) 0.45 (0.20) 1.00
Regional firm count (national total normalized to 1) 4e-4 (1e-3) 4e-4 (1e-3) 1.00

Notes: For each moment, we present the averages across all counties using the actual data and the model-
generated data. The standard deviations are in parentheses. The last column presents the cross-county corre-
lation between actual moments and model-generated moments.
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