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For completeness, this Appendix includes the omitted derivations and proofs from the text. Belief evo-
lutions are standard, and the details are provided next.

Proof of the belief evolution in (2) and the belief trajectory

Before deriving belief evolution, we highlight that throughout, we follow the standard practice of drop-
ping terms of order o(dt). If xi,tbi,t = 0, the user belief about ✓i does not change. Next, we consider
xi,tbi,t = 1 and, for notational convenience, let us suppress subscript i. Then, by using Bayes’ rule, the
probability of ✓i = 1 is

µt+dt =
P[NBNt+dt | ✓ = 1]P[✓ = 1]

P[NBNt+dt]

= µt
P[NBNt+dt | NBNt, ✓ = 1]

P[NBNt+dt | ✓ = 1,NBNt]P[✓ = 1 | NBNt] + P[NBNt+dt | ✓ = 0,NBNt]P[✓ = 0 | NBNt]
(a)
=

µt

µt + (1� µt)P[NBNt+dt | ✓ = 0,NBNt]

=
µt

1� (1� µt)(1� �t)�dt

(b)
= µt (1 + (1� µt)(1� �t)�dt) (A1)

where (a) follows from

P[NBNt+dt | ✓ = 0,NBNt] =P[NBNt+dt | ✓ = 0,NBNt,↵t = 1]P[↵t = 1 | ✓ = 0,NBNt]

+ P[NBNt+dt | ✓ = 0,NBNt,↵t = 0]P[↵t = 0 | ✓ = 0,NBNt]

and (b) follows by using Taylor expansion of 1/(1 � x) around 0 and dropping the terms of the order
(dt)2. From (A1), we then have

dµt = µt+dt � µt = µt(1� µt)(1� �t)�dt.

Again, by using Bayes’ rule,

�t+dt = P[↵t+dt = 1 | ✓ = 0,NBNt+dt]

=
�tP[↵t+dt = 1 | ↵t = 1, ✓ = 0]P[NBNt+dt | ✓ = 0,NBNt,↵t+dt = 1]

P[NBNt+dt | ✓ = 0,NBNt]

(a)
=

�t(1� ⇢dt)

�t + (1� �t)(1� �dt)

(b)
= �t � �t⇢dt+ �t(1� �t)�dt (A2)

where (a) follows from

P[NBNt+dt | ✓ = 0,NBNt] =P[NBNt+dt | ↵t = 1, ✓ = 0,NBNt]P[↵t = 1 | ✓ = 0,NBNt]
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+ P[NBNt+dt | ↵t = 0, ✓ = 0,NBNt]P[↵t = 0 | ✓ =,NBNt]

and (b) follows by dropping the terms of the order (dt)2. From (A2), we now have

d�t = �t((1� �t)� � ⇢)dt.

Finally, given xi,tbi,t = 1, we have

P[Ii,t+dt = 0 | Ii,t = 1] = (1� µi,t) (1� �i,t) �dt.

This completes the proof of the evolution.
We next state the belief trajectory and some monotonicity properties in the pre-AI environment.
For any product i 2 N that has been offered for [0, t) with NBNi,t (no bad news), we have

�i,t =
(� � ⇢)�

�� + e(⇢��)t((1� �)� � ⇢))
,

and
µi,t =

µi,0(� � ⇢)

µi,0(� � ⇢) + (1� µi,0) (e�⇢t�� + e��t ((1� �)� � ⇢))
.

Moreover, µi,t is increasing in µi,0 and t and converges to 1 as t ! 1.
The above trajectories directly follow from solving the differential equations and evaluating its first-

order derivative. ⌅

Proof of the belief evolution in (3) and the belief trajectory

Similar to the proof of belief evolution in (2), if xi,tbi,t = 0, the user belief about ✓i does not change, and
when xi,tbi,t = 1, we let

µ(P )
i,t = P [✓ = 1 | ↵i,0 = 0,NBNt]

be the probability of a product being high quality if the initial glossiness state is zero, and no bad news
has arrived by time t, and

�(P )
i,t = P [↵i,t = 1 | ↵i,0 = 1,NBNt]

be the probability of the glossiness state being 1 if the initial glossiness state is 1, and no bad news has
arrived by time t. Again, to make the notation easier, in this proof, we drop the subscript i. Notice that
conditioning on ↵0 = 1, the platform knows the product is of low quality and therefore µ(P )

t = 0 for all
t. Also, conditioning on ↵0 = 0, the glossiness state remains at zero, and therefore �(P )

t = 0. We next
evaluate µ(P )

t conditioning on ↵0 = 0 and �(P )
t conditioning on ↵0 = 1.

By using Bayes’ rule, for the probability of ✓i = 1 when ↵0 = 0 we have

µ(P )
t+dt =

P[NBNt+dt | ✓ = 1,↵0 = 0]P[✓ = 1 | ↵0 = 0]

P[NBNt+dt | ↵0 = 0]
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(a)
=

µ(P )
t

µ(P )
t + (1� µ(P )

t )(1� �dt)

(b)
= µ(P )

t

⇣
1 + (1� µ(P )

t )�dt
⌘

(A3)

where (a) follows from

P[NBNt+dt | NBNt,↵0 = 0] =P[NBNt+dt | ✓ = 1,NBNt,↵0 = 0]P[✓ = 1 | NBNt,↵0 = 0]

+ P[NBNt+dt | ✓ = 0,NBNt,↵0 = 0]P[✓ = 0 | NBNt,↵0 = 0]

= µ(P )
t +

⇣
1� µ(P )

t

⌘
(1� �dt)

and (b) follows by dropping the terms of the order (dt)2. By using (A3),

dµ(P )
t = µ(P )

t+dt � µ(P )
t = µ(P )

t (1� µ(P )
t )�dt.

By using Bayes’ rule, when ↵0 = 1 we obtain

�(P )
t+dt = P[↵t+dt = 1 | ✓ = 0, NBNt+dt,↵0 = 1]

(a)
=

P[↵t = 1 | ✓ = 0,↵0 = 1]P[↵t+dt = 1 | ↵t = 1, ✓ = 0,↵0 = 1]P[NBNt | ✓ = 0,↵t+dt = 1,↵0 = 1]

P[NBNt | ✓ = 0,↵0 = 1]P[NBNt+dt | NBNt, ✓ = 0,↵0 = 1]

(b)
=

�(P )
t (1� ⇢dt)

�(P )
t + (1� �(P )

t )(1� �dt)
(c)
= �(P )

t � �(P )
t ⇢dt+ �(P )

t (1� �t)�dt, (A4)

where (a) follows from P[NBNt+dt | ✓ = 0,NBNt,↵t+dt = 1,↵0 = 1] = 1, (b) follows from

P[NBNt+dt | ✓ = 0,NBNt,↵0 = 1]

= P[NBNt+dt | ✓ = 0,NBNt,↵0 = 1,↵t = 1]P[↵t = 1 | ✓ = 0,NBNt,↵0 = 1]

+ P[NBNt+dt | ✓ = 0,NBNt,↵0 = 1,↵t = 0]P[↵t = 0 | ✓ = 0,NBNt,↵0 = 1],

and (c) follows by dropping the terms of the order (dt)2. By using (A4), we obtain

d�(P )
t = �(P )

t ((1� �(P )
t )� � ⇢)dt.

Finally, we have

P[ bad news at t | ↵0 = 0,NBNt] =P[ bad news at t | ↵0 = 0, ✓ = 0,NBNt]P[✓ = 0 | ↵0 = 0,NBNt]

+ P[ bad news at t | ↵0 = 0, ✓ = 1,NBNt]P[✓ = 1 | ↵0 = 0,NBNt]

=�dt
⇣
1� µ(P )

t

⌘
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and

P[ bad news at t | ↵0 = 1,NBNt] = P[ bad news at t | ↵0 = 1,NBNt, ✓ = 0] = �dt
⇣
1� �(P )

t

⌘
.

The initializations follow by using Bayes’ rule, completing the proof of the belief evolution.
We next state the belief trajectory and some monotonicity properties in the post-AI environment.
For any product i 2 N that has been offered for [0, t) with NBNi,t (no bad news), the dynamics of

µi,t and �i,t are the same as the pre-AI environment, and additionally:

• If ↵i,0 = 0, then

µ(P )
i,t =

µi,0

µi,0 + e��t(1� �)(1� µi,0)
, �(P )

i,t = 0, P[NBNi,t | ↵i,0 = 0] =
µi,0 + e��t(1� �)(1� µi,0)

1� �(1� µi,0)
,

and

P[Ii,t+dt = 0, Ii,t = 1 | ↵i,0 = 0] =
e��t(1� �)(1� µi,0)

1� �(1� µi,0)
�dt.

• If ↵i,0 = 1, then

µ(P )
i,t = 0, �(P )

i,t =
� � ⇢

� � e(⇢��)t⇢
, P[NBNi,t | ↵i,0 = 1] =

e�⇢t� � e��t⇢

� � ⇢
,

and

P[Ii,t+dt = 0, Ii,t = 1 | ↵i,0 = 1] =

�
e�⇢t � e��t

�
⇢

� � ⇢
�dt.

The above statements directly follow from solving the differential equations and evaluating its first-
order derivative. ⌅

An additional lemma

We next state and prove a lemma we used in the proof of Theorem 4.

Lemma A1. The expected user utility increases for large enough ⇢ after performing a helpful swap.

Proof: It suffices to prove that in the limit of ⇢ ! 1, the expected user utility after performing a
helpful swap increases by some quantity which is strictly positive (and does not depend on ⇢). This
establishes the existence of large enough ⇢ for which the statement holds. For any j 2 N , we let ⌧j be the
stochastic time at which bad news occurs for product j given ✓j = 0. Notice that in the limit of ⇢ ! 1,
for both a product with ↵j,0 = 1 and a low-quality product with ↵j,0 = 0, the platform knows that bad
news arrive with rate �. We let

Aj , E

�
Z ⌧j

0
re�rtµj,tdt

�
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for j = n, n � 1, i. Using this notation, and that for j = n, n � 1, . . . , i + 1, � , Et⇠⌧j [e
�rt] < 1, the

expected utility before the swap is

U1 ,
i+1X

j=n

Aj�
n�j + �n�i

✓
µ(P )
i,0

Z 1

0
re�rt(1� µi,t)dt+ (1� µ(P )

i,0 )Ai

◆

+�n�i+1(1� µ(P )
i,0 ) (Expected utility from products i� 1, . . . , 0) , (A5)

where µ(P )
i,0 = µi,0

µi,0+(1��)(1�µi,0)
when ↵i,0 = 0. The expected utility after the swap is

U2 ,µ(P )
i,0

Z 1

0
re�rt(1� µi,t)dt+ (1� µ(P )

i,0 )Ai + �(1� µ(P )
i,0 )

i+1X

j=n

Aj�
n�j

+�n�i+1(1� µ(P )
i,0 ) (Expected utility from products i� 1, . . . , 0)

(a)
>�n�iµ(P )

i,0

Z 1

0
re�rt(1� µi,t)dt+ (1� µ(P )

i,0 )Ai + �(1� µ(P )
i,0 )

i+1X

j=n

Aj�
n�j

+�n�i+1(1� µ(P )
i,0 ) (Expected utility from products i� 1, . . . , 0)

=U1 +Ai

⇣
(1� µ(P )

i,0 )� �n�i(1� µ(P )
i,0 )

⌘
+

i+1X

j=n

Aj

⇣
�n+1�j(1� µ(P )

i,0 )� �n�j
⌘

(b)
�U1 +Ai

⇣
(1� µ(P )

i,0 )� �n�i(1� µ(P )
i,0 )

⌘
+

i+1X

j=n

Ai

⇣
�n+1�j(1� µ(P )

i,0 )� �n�j
⌘

=U1 � µ(P )
i,0 Ai

0

@
n�i+1X

j=0

�j

1

A (c)
> U1 (A6)

where (a) follow from µ(P )
i,0

R1
0 re�rt(1�µi,t)dt > 0 and 1 > �n�i, (b) follows from Aj < Ai and �n+1�j(1�

µ(P )
i,0 )� �n�j < 0 for j = n, n� 1, i+ 1, and (c) follows from Ai < 0, completing the proof of lemma. ⌅
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