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A Other Practical Concerns with Shift-Share IVs

In this appendix we discuss some questions which come up frequently in shift-share instrumental
variable (IV) designs. These twelve questions are: What if shares are observed in a panel? What
kind of local average treatment effect does the shift-share IV estimate? Do the “shares” have to
really be shares, between zero and one? Should the shares be normalized to add up to one? Can
shift-share instruments be constructed by apportioning national changes to units? Can the shifts
be unit-specific? Can one take a shift-share average of shift-share IVs? What if a log, or another
transformation, of a shift-share variable is used? Can one use multiple shift-share instruments?
What about interaction terms in shift-share regressions? Should the instruments in Card (2009)
and Bartik (1991), which measure the shifts as the national growth of some equilibrium outcome
(industry employment or total migration by origin), be viewed through the lens of exogenous shifts
or exogenous shares? And what is the role of leave-one-out construction of shifts?

A.1 What if shocks are observed over multiple periods in a panel?

While our main discussion considered a single cross-section (typically, with first-differenced out-
comes), in many applications researchers have access to shifts gkt happening in multiple periods t.
In a panel of units i over periods t = 1, . . . , T , one may consider an IV specification

yit = βxit + γ′wit + εit, (1)

with a shift-share IV zit =
∑

k siktgkt and some controls wit, potentially including unit and period
fixed effects. Here we indexed the shares sikt by the period when they are used, not when they are
measured: for instance, sikt can be time-invariant, fixed in an early “base” period.

The panel setting offers new possibilities. In the exogenous shifts approach, if a natural ex-
periment generates exogenous shifts in several periods, “stacking” them provides more estimation
power. Moreover, panels with many periods make it possible to apply the many exogenous shifts
approach even when K is small, thanks to the time-series variation in the shifts. In the simplest
case, there may be just one shift in each period and heterogeneous unit exposure to this shift, such
that zit = sitgt (where sit is often time-invariant). When many periods are observed, exogeneity of
the time series variation in gt is sufficient for consistent estimation. Exposure-robust inference also
follows from the time-series properties of the shifts. The shift-level equivalent IV regression in this
case is just a time-series regression regardless of the number of units in the panel, and standard
errors should correspondingly be clustered in a time-series way (e.g., by period or allowing for serial
correlation in the shifts). Below we provide a detailed illustration of these points in the setting of
Nunn and Qian (2014).

In the exogenous shares approach, the number of available instruments is also larger in a panel,
as primitive instruments are individual shares interacted with period dummies, all assumed to
be valid. Correspondingly, Rotemberg weights are computed for each pair of k and t, although
Goldsmith-Pinkham et al. (2020) recommend reporting their sums over time for clarity.

A2



Panel data also pose new challenges. We focus on the exogenous shifts approach in this discus-
sion. First, the shifts may have different means in different periods. In conventional panel models,
time-varying means are addressed by including period fixed effects (FEs), γt. Correspondingly, in
shift-share designs, time-varying shift means are addressed by a share-weighted aggregate of period
FEs:

∑
k siktγt. With complete shares, i.e. when

∑
k sikt = 1, this control coincides with the period

FEs. But in the incomplete shares case, the sum of shares control needs to be interacted with period
FEs. The setting of Autor et al. (2013) discussed in the main text illustrates this point.

Second, shifts can be serially correlated, in which case each period cannot be viewed as a
separate natural experiment. Then, as mentioned in Step 4 of the exogenous shifts checklist, the
static specification in (1) suffers from an omitted variables bias problem when there are dynamic
causal effects, i.e. if lagged shifts affect current outcomes (Jaeger et al., 2017). Intuitively, the
estimated coefficient for the treatment in specification (1) is biased because it also includes the
dynamic causal effect of past treatments. Moreover, if the shares can respond to past shifts which
are correlated with contemporaneous shifts, the shares cannot be viewed as measured before the
natural experiment in shifts began (see footnote 5).

There are two solutions to the problems of serial correlation in shifts. One involves estimating
richer specifications which include the relevant lagged treatments, as well as lagging the shares
underlying the shift-share IV further. The shares need to be measured at a date before the sequence
of serially correlated shifts began if such a date exists. Jaeger et al. (2017), for instance, show that
migration rates by country of origin are very serially correlated since 1970s, but not correlated
with those from earlier decades. Thus, year 1970 can be viewed as the beginning of the natural
experiment in their setting.

An alternative solution is based on isolating the unpredictable component of the contempora-
neous shifts before constructing the shift-share IV. For instance, if the shifts follow a first-order
autoregressive process, one can control for the lagged shifts (by controlling for a share-aggregated
version of them at the unit level). If the shift-share IV leverages the idiosyncratic component
of shifts, the issues stemming from serial correlation disappear.1 This approach only yields the
contemporaneous effect but does not require a correct specification of the dynamic effects.

Example of shift-share IV with time-series variation Nunn and Qian (2014) study the
impact of US food aid on conflicts in a long panel of recipient countries. Simple ordinary least
square (OLS) estimates, or even those with country fixed effects, are subject to several potential
biases: the presence of conflict may increase the demand for food aid; there might be many omitted
variables—such as political and economic crises—affecting both conflict and food aid; or donors
may decide to reduce food aid to countries engaged in conflict.

To resolve these issues, the authors leverage exogenous time variation in US wheat production
1There are different ways of extracting the idiosyncratic component of shifts. Instead of controlling for lagged shifts,

another natural approach could be to control for the time-invariant component of shifts. Implementing this strategy is
easy when time-invariant shares are used: then including unit fixed effects in the control vector wit implicitly removes
any shift-level confounders αk, since the corresponding share-aggregated control

∑
k siktαk is time-invariant.
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over time. Due to price stabilization policies requiring the US government to buy wheat from US
farmers at a set price, the US government accumulates excess reserves in high production years,
which is shipped to developing countries as food aid. The shift-share design leverages these time
series shifts, using as exposure weights a country’s likelihood of being a US food aid recipient.
Specifically, the quantity of wheat aid shipped from the US to recipient i in year t is instrumented
by zit = sigt, where gt is the amount of US wheat production in the previous year and si is the
fraction of years that recipient country i receives a positive amount of US food aid during the sample
period, 1971–2006.

How can one follow our exogenous shifts checklist in this context? For steps 1–2, the researcher
would clarify whether all time series variation in wheat production is considered as-good-as-random.
This requires an exclusion restriction, that US wheat production affects conflict in other countries
only through US aid. Moreover, if US wheat production is correlated with key economic indicators
such as oil prices, which can have a direct effect on conflict, the researcher would need to control
for these variables interacted with si. Indeed, the interaction of the oil price with si is one of the
controls Nunn and Qian (2014) include. They also include other controls, such as dummies for six
geographic regions of the world interacted with year dummies. For step 3, the incomplete share
control here is simply si, the time-invariant exposure to US aid, since each observation is exposed
to only one shift; in Nunn and Qian’s regression it is absorbed by country fixed effects. For step
4, one would measure si before, rather than during, the sample period. For step 5, it would be
useful to plot the time series of wheat prices, which serves as identifying variation. Christian and
Barrett (2024, Fig. 3) finds strong serial correlation and an inverse U-shaped trend in wheat prices.
In this case, it may be appropriate to analyze dynamic causal effects or extract an unpredictable
component of the time series of US wheat production. For step 6, one can check whether the time
series of wheat production is correlated with potential confounders, such as the aforementioned oil
prices. At the country-by-year level, an IV regression with lagged conflict as the outcome would
constitute a standard pre-trend test. Finally, for step 7, one can cluster standard errors at the level
of identifying variation, i.e. by year (rather than by country, which is more conventional in panel
regressions). Given the shifts (and, likely, errors) are serially correlated, heteroskedasticity and
autocorrelation-consistent standard errors may be more appropriate. Indeed, Christian and Barrett
(2024) show that conventional standard errors can lead to spuriously significant relationships in this
setting. These standard errors are easier to obtain from the time-series regression equivalent to the
original panel regression.

A.2 Does shift-share IV estimate a LATE when the effects are heterogeneous?

With many exogenous shifts, yes, and different units and shifts receive a different weight in shift-
share IV regressions. Otherwise, a local average treatment effect (LATE) interpretation is more
challenging.

Provided the shifts are as-good-as-randomly assigned and mutually uncorrelated, as if arising
from a lottery, Adão et al. (2019) and Borusyak et al. (2022) prove that shift-share regressions
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(both IV and OLS) identify convex averages of heterogeneous treatment effects under a monotonic-
ity condition similar to the one imposed by Imbens and Angrist (1994) to establish identification
of LATEs in standard IV regressions. Note that as-good-as-random assignment here is formally
stronger than the necessary condition on shift exogeneity described in the main text. For example,
it requires the shifts to be independent of treatment effect heterogeneity as well.

What makes the shift-share setting unique is that effect heterogeneity can arise in two di-
mensions: across units i and shifts k. Thus, the shift-share IV estimate can be interpreted as
averaging across both dimensions, with certain weights. We derive and interpret these weights in
a heterogeneous-effects causal model inspired by the decomposition formula (3).2 For concreteness,
we consider our labor supply example. The model is as follows:

xik = πikgk + uik,

xi =
∑
k

sikxik,

yi =
∑
k

βiksikxik + εi.

Here xik are changes in employment by region and industry—the local shifts. They are affected by
the industry subsidies gk with a coefficient of πik. Regional employment growth xi is an aggregate
of industry-by-region growth rates xik weighted by regional employment shares sik, as in equation
(3). But the effects of xik on the wage change yi are not necessarily proportional to sik, as captured
by the heterogeneous effects βik. Variation in βik across i captures the idea that the local labor
supply elasticity may depend on the region. In turn, variation in βik across k reflects the scenario in
which employment changes coming different industries (say, tradable and nontradable ones) would
have different wage impacts through labor supply.

Following the logic of Adão et al. (2019) and Borusyak et al. (2022), it is easy to show that,
when the shifts gk have mean zero, variance σ2k, and no mutual correlation conditional on all other
sources of unobserved heterogeneity (uik, εi, πik, βik), the shift-share IV estimand equals

β =

∑
i

∑
k πiks

2
ikσ

2
k · βik∑

i

∑
k πiks

2
ikσ

2
k

.

That is, heterogeneous effects βik are averaged with weights proportional to: (1) the strength of the
first-stage effect πik, (2) the local share sik squared, and (3) the shift variance σ2k. Evidently, the
weights are non-negative under a monotonicity condition πik ≥ 0 (which holds trivially in shift-share
OLS regressions, which correspond to πik = 1, uik = 0).

To gain more intuition for the weights, suppose πik ≡ π and σ2k ≡ σ2. Then, if all heterogeneity
2This formulation generalizes Proposition 2 of Adão et al. (2019) to IV, rather than reduced-form regressions.

Footnote 16 in Adão et al. (2019) considers IV regression but does not allow the effects βik to vary by k. The analysis
in Appendix A.1 of Borusyak et al. (2022) is very general, allowing further for nonlinear effects, but they do not
discuss the intuition for the resulting LATE. One limitation of our formulation is that employment growth in industry
k is not allowed to be affected by subsidies to other industries; the model in Appendix A.7 of Borusyak et al. (2022)
relaxes that assumption but does not study heterogeneous effects.
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is by region (βik = βi), the weight on βi is equal to the Herfindahl–Hirschman index of local industry
concentration,

∑
k s

2
ik. A region exposed to many different industry shifts will not be useful for the

regression because the law of large numbers eliminates most variation in the shift-share instrument.
Conversely, when all heterogeneity is by industry (βik = βk), the weight on βk is equal to

∑
i s

2
ik.3

Naturally, this weight is higher for larger industries. More interestingly, it is also higher when the
local shares of this industry are very unequal across regions. For instance, tradable industries will
play a larger role than nontradable industries of a similar national size, as typical tradable industries
concentrate in a small number of regions while nontradable ones are present in every region with
relatively homogeneous shares.

The heterogeneous-effect interpretation of shift-share IVs without as-if random shifts is less
established. de Chaisemartin and Lei (2023) raise concerns of non-convex weighting of unit-specific
causal effects when shift-share IVs are justified by parallel trend assumptions, with respect to
either shares (as in the exogenous shares approach) or shifts (i.e., with a weaker restriction on the
shift exogeneity), adding to a large literature noting similar issues for popular two-way fixed effect
specifications (e.g. de Chaisemartin and D’Haultfoeuille (2020) and Borusyak et al. (2023)). Part
of this issue is apparent in the Goldsmith-Pinkham et al. (2020) Rotemberg weight decomposition
since, as Goldsmith-Pinkham et al. (2020) note, some weights may be negative. To the best of our
knowledge, the case of heterogeneous causal effects across shifts has not—to our knowledge—been
studied without as-if random shifts.

A.3 Do the “shares” have to really be shares?

No, they can be any exposure weights.
In most applications sik is non-negative and typically they are some initial shares; notably this

is the case when the shift-share IV follows from the decomposition (3). But econometric results go
through when sik are any weights that measure the exposure of observation i’s treatment to the
shift gk.

As an example, consider the Miguel and Kremer (2004) study of spillover effects of deworming.
In their OLS specification, the key explanatory variable zi is the number of student i’s neighbors
who have received a randomized deworming treatment. Upon inspection, one may notice that this
is a shift-share variable: zi =

∑N
k=1 sikgk where k indexes all students, sik is a dummy that equals

one if students i and k are neighbors, and gk is a dummy that student k has been selected for
deworming. Here the exposure weights are not shares of anything: they take values of zero and one
and their total is the number of neighbors student i has. There is no problem with this, as long as
the sum of shares (i.e., the number of student’s neighbors) is controlled for.

A.4 Should I normalize the shares to add up to one?

You could, but controlling for the sum of shares is probably a better solution.
3Note that this is not a Herfindahl–Hirschman index because the shares add up to one across industries, not regions.

A6



From our earlier discussion of how the incomplete shares case requires extra care (specifically,
picking appropriate controls in the many exogenous shifts approach), one might conclude that this
case is something to be avoided. This can be done by constructing the instrument using shares
normalized to add up to one. For instance, while Autor et al. (2013) define sik as employment
shares of manufacturing industry k relative to total employment in labor market i, one could
consider redefining the shares to have local manufacturing employment in the denominator.

Such a conclusion would be misguided, however. First consider IV regressions, where the treat-
ment xi is given by the economic question. Then the researcher needs to choose the best shift-
share IV zi, and in particular the shares, to maximize instrument strength. Whether identification
leverages exogenous shifts or exogenous shares, power is maximized when the shares reflect the
relationship between the treatment and the shifts, e.g. following the treatment decomposition (3).
For example, in the Autor et al. (2013) setting, using the local manufacturing employment in the
denominator would reduce power because the shift-share instrument would exhibit large variation
even in areas where manufacturing is a low share of total employment and the treatment (import
competition) is close to zero. Including appropriate controls is a better way to avoid OVB while
retaining statistical power, compared to modifying the shares.

Second, consider OLS shift-share analyses, such as spillover regressions, where the researcher is
deciding on the right-hand side variable xi = zi. This choice is about specifying the most plausible
functional form for how the shifts affect the outcome, such that the coefficient is economically
meaningful. Again, this is achieved by setting the shares to reflect the exposure of observations
to the exogenous shifts. For example, the fraction of treated friends, as in Cai et al. (2015), is a
shift-share variable with the shares adding up to one, while the number of treated friends, as in
Miguel and Kremer (2004), is an incomplete shares example. Still, if the researcher believes that
the outcome is determined by the number of treated friends, they should use that specification, and
include appropriate controls to avoid bias.

A.5 Can shift-share instruments be constructed by apportioning national changes
to units?

Yes, and in fact Bartik (1991), Card (2009), and Autor et al. (2013) all derived their instruments
this way. However, to apply the tools from this paper correctly, the resulting instruments must be
rewritten with different shares and shifts, as in equation (2).

We illustrate the apportioning logic with the labor supply example. Recall that the percent
change in regional employment is an aggregate across industries: xi = (

∑
k ∆Xik) /Xi0. The re-

searcher can then replace the local industry employment change (in levels), ∆Xik, with a prediction
that allocates the national change in the industry employment, ∆Xk, to regions proportionally to
the initial regional composition of the industry, Xik0

Xk0
. Region i therefore “gets” Xik0

Xk0
·∆Xk workers

in industry k. Adding up such predictions and rescaling them by the initial regional employment
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yields the instrument:

zi =

∑
k

Xik0
Xk0

·∆Xk

Xi0
. (2)

While this expression looks different from the shift-share instrument
∑

k
Xik0
Xi0

· ∆Xk
Xk0

that follows
from the decomposition of xi in equation (3), a simple rearrangement of terms shows that they are
actually the same: ∑

k
Xik0
Xk0

∆Xk

Xi0
=

∑
kXik0 · ∆Xk

Xk0

Xi0
=
∑
k

Xik0

Xi0
· ∆Xk

Xk0
. (3)

This rearranging step is crucial for applying the theoretical results and taking the practical
steps in both exogenous shifts and exogenous shares approaches. The left-hand side of (3) is based
on employment shares relative to the industry total, whereas the shares on the right-hand side
are relative to the regional total. The left-hand side suggests that the national shifts are industry
employment changes in levels, ∆Xk, although this leaves the denominator unaccounted for by either
shares or shifts; on the right-hand side of (3), the shifts are relative changes in national industry
employment.

Both conceptual and practical issues arise if the apportioning formula (2) is used without rewrit-
ing it as in (3). In the exogenous shifts approach, assuming ∆Xk is as-good-as-randomly assigned
is untenable, as larger industries of course get larger employment changes on average (provided
national employment is growing).4 This assumption is also not sufficient because the denominator
Xi0 in (2) is ignored, while it affects the identification conditions. Measuring shifts in relative terms
instead makes their as-if random assignment a more plausible assumption. In the exogenous shares
approach, using the shares relative to the industry total, Xik/Xk, as instruments is the same as
using initial employment levels Xik, since the share denominators in (2) do not vary across ob-
servations. Thus, variation in the local industry size is used instead of the local composition of
industries that is usually intended in shift-share IV designs. Moreover, since the remaining terms
in the summation, ∆Xk/Xi0, vary across i, zi cannot be viewed as pooling variation in the shares
(relative to the industry total).

More practically, applying the checklists above to the wrong shares and shifts would lead to incor-
rect controls (e.g., incomplete share controls) and diagnostic tests (e.g., based on wrong Rotemberg
weights). In (2), it looks like there is an incomplete share problem, while (3) makes it clear there is
not (since

∑
k

Xik0
Xk0

̸= 1 while
∑

k
Xik0
Xi0

= 1).

A.6 Can the shifts be unit-specific?

Yes.
While we introduced shift-share variables as combining heterogeneous shares with a common

set of shifts, the econometric framework also nests settings where each unit is exposed to a distinct
4In Appendix A.11 we argue that the exogenous shifts lens may not be appealing for the Bartik (1991) instrument.

However, the issues we discuss here are not specific to that application, and they arise similarly with the Autor et al.
(2013) instrument.
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set of shifts. One can define k to index the shifts to all observations and redefine the shares such
that the exposure of a unit to another unit’s shift is zero.

A set of examples is considered by Borusyak and Kolerman-Shemer (2024) who study “regression
discontinuity aggregation” designs in which a shift-share treatment aggregates policy discontinuities
defined at smaller geographic units. For instance, Clots-Figueras (2011) estimates the effect of the
fraction of women in state legislatures in India, using the fraction of women who won against a man
in a close election as the IV. Although each state has a distinct set of constituencies, this instrument
is a shift-share where each state has non-zero exposure only to its own constituencies’ shifts.

A.7 Can I take a shift-share average of shift-share IVs?

Yes, and the result is also a shift-share IV, with the same shifts but more complicated shares.
This situation commonly arises when studying spillovers from treatments (or instruments) that

already have a shift-share structure. Adão et al. (2023), for instance, study spatial spillovers from
regional import competition with China. Let zi =

∑
k sikgk be the Autor et al. (2013) instrument,

capturing direct exposure of commuting zone i to Chinese imports based on industry shifts gk and
local employment shares sik. Slightly simplifying, Adão et al. (2023) define the indirect exposure
of commuting zone j as the inverse-distance weighted average of direct exposures of all other com-
muting zones: z∗j =

∑
i s

∗
jizi, where the shares s∗ji decay with the distance between j and i (and

s∗jj = 0). One can see that this variable can be rewritten as z∗j =
∑

k s
∗∗
jkgk with compound shares

s∗∗jk =
∑

i s
∗
jisik and original shifts gk.

Representing the shift-share instrument with the resulting shares and shifts, in one step, makes
it clear that exogeneity of gk is still sufficient for identification. It also yields appropriate incomplete
share and other share-aggregated controls, and correct standard errors.

A.8 What if I take logs of a shift-share?

A log — or any other nonlinear transformation — of a shift-share variable is not a shift-share
variable. This may or may not complicate IV exogeneity.

In the exogenous shares approach, which views the shift-share IV as a particular function of
the shares (where the shifts serve as weights), a nonlinear function of a shift-share IV is just
another function of the same shares. If all individual shares are exogenous instruments, i.e.
E [εi | si1, . . . , siK ] = 0, then any function of them is exogenous, too.

On the contrary, shift exogeneity does not imply exogeneity of nonlinear transformations of
the shift-share IV, such as taking the log; such transformations can lead to a new type of bias.
To see this, imagine the shares add up to one and the exogenous shifts are assigned in a lottery
with positive values. Then, regardless of how the shares are correlated with the error term, the
share-weighted average of the lottery shifts zi =

∑
k sikgk is not correlated with the error. That

logic fails for log zi: because of Jensen’s inequality, units with dispersed shares will on average have
a higher log zi than units with concentrated shares, potentially leading to bias. Similar issues arise
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with other transformations of shift-share IVs, e.g. using a dummy that a shift-share variable is in
the lowest quartile of its distribution, as in Greenstone et al. (2020).

There are two ways to avoid this bias. First, Borusyak and Hull (2023) propose a “recentering”
adjustment to the nonlinear instrument, such as log zi, based on rerandomizing the shifts, e.g.
by permuting them. Second, putting the log inside the sum, i.e. replacing log

∑
k sikgk with∑

k sik log gk, yields an actual shift-share IV with shares sik and shifts log gk.
For a concrete example, Berman et al. (2015) estimate the effects of log firm exports on the

log of its domestic sales to measure returns to scale. While our discussion so far has focused on
outcomes and treatments measured as changes, consistent with the decomposition (3), Berman et
al. (2015) perform the analysis in logs of levels, using a panel of firms and controlling for firm fixed
effects. They instrument log exports with zit = log

∑
k sikGkt, where k denotes product-by-country

pairs, sik is the share of this pair in firm’s exports (on average across periods), and Gkt is the total
world exports of this product to this country. Leveraging exogeneity of Gkt, or the log-changes in
Gkt over time, would require the corrections discussed above.

Borusyak and Hull (2021, footnote 82) show an additional problem with this IV: it implicitly
uses shares that are not the sik and may not capture the intended economic intuition. For instance,
one may think that for firm i that has 50% of initial exports in a certain product-country cell k
(sik = 0.5), a 10% increase of world exports in that cell raises zit by approximately 0.05. This is
not the case. To see the issue, suppose changes in Gkt over time are sufficiently small and consider
how zit = log

∑
k sikGkt changes in response, relative to some base period 0 (recalling that, with

firm fixed effects, changes over time play the key role). It is easy to show that

zit − zi0 ≈
∑
k

sikGk0∑
k′ sik′Gk′0

(logGkt − logGk0) ̸=
∑
k

sik (logGkt − logGk0) . (4)

Thus, the response of zit to a 10% shift to Gkt is determined not only by the share of k in firm i’s
initial exports but also by the world supply of k in the initial period — which was presumably not
intended when constructing the instrument. To avoid this issue, one can replace log

∑
k sikGit with∑

k sik logGkt.

A.9 What if I have multiple shift-share instruments?

This is fine, both when multiple shift-share variables instrument for a single treatment and when
multiple IVs are necessitated by multiple treatments. One should just perform the relevant steps for
each of the shift-share IVs: e.g., include incomplete share controls in the exogenous shifts approach
and check sensitivity to how shares are combined in the exogenous shares approach.

Getting exposure-robust standard errors may be more challenging in this case. When the shares
are the same but there are several sets of exogenous shifts, Borusyak et al. (2022) show how the
shift-level equivalent IV regression extends in this case, yielding correct standard errors. Appendix
B.1 below extends this result by allowing for several shift-share IVs that use different shares and
different shifts, as long as all shifts are defined at the same “level” k. We derive an equivalent
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shift-level representation of the estimator in terms of a set of moment conditions (but no longer as
a simple IV). This equivalence result yields exposure-robust standard errors. A Stata example is
available in our GitHub repository, https://github.com/borusyak/shift_share_jep.

We give two examples. First, Dauth et al. (2014) consider the impacts of two import compe-
tition shifts in Germany, originating from the growth of China and from the accession of Eastern
European countries into the European Union. Both are shift-share variables that combine the local
employment shares of different industries with two national industry import competition shifts.

Second, including both direct and spillover effects of a certain treatment in the same specifica-
tion can be viewed as using two shift-share variables with the same shifts but different shares. For
instance, the right-hand side variables in Miguel and Kremer (2004) are the student i’s own de-
worming dummy and the number of her dewormed friends. We explained above how their spillover
treatment is a shift-share IV that uses deworming dummies as the shifts gk and the patterns of
friendship as exposure weights. Mechanically, one’s own deworming status is also a shift-share with
the exposure weight being one for i = k and zero otherwise.

A.10 What if I have interaction terms in a shift-share regression?

This is similar to having multiple shift-share variables.
There can be two types of interaction terms in shift-share regressions. A more conventional one

interacts zi with some unit-level variable ai. For instance, in the Autor et al. (2013) context, one
may be interested in understanding whether labor market responses to import competition vary by
the share of college graduates in the region. This interaction can be written as a shift-share IV with
the same shifts and different exposure weights: aizi =

∑
k(aisik)gk.

The second type — albeit not exactly an interaction — aims to identify the heterogeneous
responses to different groups of shifts. For instance, Bombardini and Li (2020) consider the health
effects of two treatments: regional exposure to the national industry growth of exports for all
industries and for pollution-intensive industries in particular. The former is a standard shift-share
variable zi =

∑
k sikgk while the latter can be written as z′i =

∑
k sik(bkgk) where bk is industry’s

pollution intensity.5 This z′i is a shift-share IV with shares sik and shifts bkgk.6We refer the reader
to Appendices A.9 and B.1 for a discussion of incomplete share and other appropriate controls, as
well as exposure-robust standard errors with multiple shift-share instruments.

5Note that z′i is not the same as the interaction of zi with the regional share of pollution-intensive industries, which
would be an interaction term of the first type.

6It can also be viewed as a shift-share with shares sikbk and shifts gk. Both interpretations lead to the same
practical conclusions, in different ways. For instance, with as-good-as-random gk, one needs to control for

∑
k sikbk.

In the former interpretation this follows because the shifts gkbk can be considered as-good-as-random only controlling
for bk (while the shares add up to one). In the latter interpretation this follows because the shares sikbk add up to∑

k sikbk (while the shifts are already as-good-as-random).
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A.11 Can the instruments in Bartik (1991) and Card (2009) be valid without
exogenous shares?

This depends on the underlying model, but probably not. We consider shift-share instruments with
shifts constructed as national averages of endogenous local shifts correlated with the error terms,
as in Bartik (1991) and Card (2009). The researcher might argue that these shifts proxy for some
latent exogenous shifts. Here we show that the proxy error in the shifts is innocuous when the
local shares are exogenous (and if there are many more observations than shifts), while otherwise
the proxy error typically makes the instrument invalid. Thus, there is little value in focusing on
the shifts for justifying the validity of Bartik (1991) and Card (2009) type instruments, except in a
special case discussed below.

For concreteness, we illustrate the general insight in the setting of Bartik (1991); we discuss
Card (2009) at the end. Bartik (1991) estimated the (inverse) elasticity of local labor supply by
using a shift-share instrument that combined local employment shares of different industries with the
national growth rate of employment in each industry (see Table 1). For the Bartik (1991) instrument
to be valid, it has to capture labor demand conditions. Interestingly, Blanchard and Katz (1992)
focus on the exogeneity of the shifts, rather than local employment shares, when introducing the
Bartik (1991) instrument: “This series will be valid for our purposes [of isolating a labor demand
shift] as long as the national growth rates are not correlated with labor supply shifts in the state”
(p. 25). Is the exogenous shifts approach appropriate in this setting? In particular, is it a problem
that the shifts are equilibrium outcomes which may also be affected by labor supply factors?

We give intuition before the formal analysis. Suppose high net migration—internal or foreign—
into a region makes employment in all local industries grow. Then, industries that are concentrated
in regions with growing net migration will systematically have higher employment growth in most
regions, and therefore nationally. That, however, is precisely the situation when the industry growth
rate shifts are econometrically endogenous. The main (although not the only) case when this does
not happen is if no industry is concentrated in regions with growing or falling net migration. But
that corresponds to the case where the local shares of all industries are exogenous with respect to
the local net migration rate. It is further required that industries are not too concentrated in a
small number of regions, such that random local migration shocks do not have a big impact on
national industry growth rates.

We now formally characterize how labor supply shocks affect national industry growth rates.
We model employment growth by region and industry as

xik = g∗k + uik,

where g∗k is the latent national industry labor demand shock and uik captures labor supply factors.7

Since labor demand conditions are unobserved, Bartik (1991) proxy for them by the national in-
dustry employment growth rate gk when constructing the shift-share instrument. Denoting by Eik,

7The results extend directly to the case where labor demand shifts vary across regions.
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Ei, and Ek the initial employment levels by region-industry, region, and industry respectively, we
have:

gk =
∑
i

Eik

Ek
xik = g∗k + g̃k,

where the proxy error is given by
g̃k =

∑
iEikuik
Ek

. (5)

We consider a favorable case where the labor demand conditions g∗k are exogenous, and thus the
only concern is whether g̃k affects the exogeneity of the instrument.

As discussed in the main text, the necessary and sufficient condition for the shift-share in-
strument to be valid is that the measured shifts gk have no covariance with a particular industry
confounder. Specifically, provided the regional analysis is performed with initial employment Ei as
importance weights, as is commonly done, this confounder is the average of regional error terms εi
weighted by initial employment in industry k:8

ε̄k =

∑
iEikεi
Ek

. (6)

The expressions for the proxy noise (5) and the confounder (6) exhibit a striking similarity: if
some labor supply conditions in εi affect employment local in all industries (uik), we may expect
employment-weighted averages of those shocks to be correlated, too. Indeed, in the simple model of
local labor markets in Appendix A.7 of Borusyak et al. (2022), regional labor supply shocks affect
industry employment growth rates equally, such that uik = γεi for some γ > 0. In that model, g̃k
and ε̄k would be perfectly correlated.

There are, however, some special cases in which the problem does not arise, both linked to the
properties of the local employment shares. First, if the shares of all industries are exogenous with
respect to the regional error term εi and the number of industries is small, ε̄k

p→ 0 for each k. In
this case, the exogeneity of the shifts is not required so any proxy noise is fine (Goldsmith-Pinkham
et al., 2020).9

Second, if for each industry the share sik is exogenous with respect to the local employment
change in that industry due to labor supply, uik, the proxy noise will average out: g̃k

p→ 0. This is
the case, in particular, for labor supply shocks that induce reallocation of workers across domestic
regions in the sample without changing industry. Naturally, such reallocation does not affect the
national industry employment growth. However, it seems unlikely that this scenario constitutes
the only source of local shift endogeneity, particularly since industry switching (or, similarly, inter-
national migration or mobility out of unemployment or non-employment) is necessary to generate
nontrivial national industry growth rates to begin with. In that case, the Bartik (1991) instrument

8The weights in this averaging combine the shares underlying the instrument, sik = Eik/Ei, and importance
weights Ei.

9One can see is that ε̄k is the weighted covariance between sik and εi weighted by Ei and rescaled by Ek; see
Appendix A.2 in Borusyak et al. (2022) for further details on how ε̄k

p→ 0 constitutes the relevant notion of share
exogeneity.
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cannot be valid without shares being exogenous (with respect to εi) too.
Analogous issues are likely present in Card (2009), who constructs the shifts as the national

growth rate of migration from origin country k which are aggregates of local migration rates from
that country. Here problems arise if the local migration rates by origin are endogenous, i.e. cor-
related with the error term—which for Card (2009) reflects the relative demand for migrant vs.
native labor. As long as the local migration rates from all origins respond to the same local relative
demand conditions, the resulting national shifts cannot be viewed as exogenous without the local
shares of migration from different origins being exogenous, too.

We close by noting that our discussion here concerned problems with shifts constructed as
national averages of endogenous local shifts, but in practice researchers often use leave-one-out
averages.We discuss the role of leave-one-out adjustments in the next section.

A.12 What is the role of leave-one-out construction of shifts?

This is a useful way of mitigating bias when pooling variation from many exogenous share instru-
ments. It is an open question whether this practice can help to extract exogenous latent shifts when
the shares are endogenous.

In settings like Bartik (1991) where, as explained above, the shifts can be mechanically con-
founded by the errors, it is common since Autor and Duggan (2003) to use “leave-out” constructions
of shift-share instruments: zi =

∑
k sikgk,−i, where gk,−i is, say, the industry growth rate in all re-

gions except i (or perhaps except nearby regions, too).10 With many exogenous shares, Borusyak et
al. (2022, Appendix A.6) show that using leave-one-out means to construct the national growth rates
is useful to address the finite sample bias that can mechanically arise when using own-observation
information. This approach is similar to how jackknife instrument variable estimators avoid bias of
2SLS in presence of many instruments (Angrist et al., 1999).

In practice, Autor and Duggan (2003) observed that including own region in shift construction
made the IV substantially stronger, raising concerns about the mechanical relationship. Other
authors (e.g., Goldsmith-Pinkham et al. (2020)) found that the leave-out correction is empirically
minor when the measured shifts average over sufficiently many observations.

It is an open question whether leave-one-out constructions can help address the problem of proxy
bias in the shifts discussed in Appendix A.11 when the shares are endogenous. On the one hand, the
leave-one-out construction can be viewed as similar to jackknife instrumental variable estimation
which Kolesar et al. (2015) show can be consistent under a particular orthogonality condition even
when there are many invalid instruments. On the other hand, the error terms of observations with
shares similar to i can be correlated with εi, in which case leaving out i may not suffice. In a Monte
Carlo simulation available by request, we confirm that leave-one-out need not fully eliminate the
bias when the shares are endogenous.

We finally note that the leave-out constructions of shift-shares are distinct from a practice of
10Strictly speaking, such zi is not a shift-share as defined by equation (2), since gk,−i has some variation across

units.
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measuring the shifts from entirely different data, e.g. in different countries. Autor et al. (2013), for
instance, instrument regional exposure to Chinese imports in the US using industry shifts measured
in other developed countries; Hummels et al. (2014) and Aghion et al. (2022) use similar approaches
when instrumenting firm-level imports. Unlike leave-out constructions, here the shifts gk are the
same for all units in the sample. Moreover, the mechanical correlation between the error term
and the shifts does not arise, such that the exogenous shifts approach can be applied under the
appropriate assumptions (e.g., that import demand shifts in the US and other developed economies
are uncorrelated in the Autor et al. (2013) context).11

B Theoretical Results

In this appendix, we present three new theoretical results.

B.1 Exposure-Robust Standard Errors for Shift-Share IV Regressions with Mul-
tiple Treatments

We derive exposure-robust standard errors for a IV (or OLS) regression with multiple shift-share
instruments, by recasting the estimator as a method of moments estimator at the level of shifts.
This result builds on Borusyak et al. (2022), Proposition 5.

Consider a just-identified shift-share IV regression:

yi = β1x1i + · · ·+ βRxRi + γ′wi + εi (7)

where x1i, . . . , xRi are instrumented with a set of shift-shares z1i, . . . , zRi for zri =
∑K

k=1 srikgrk.
Both the shares and the shifts can differ across r but we require the shifts to vary at the same level
for all r (and thus with the same number of shifts K). Assuming the shifts grk are as-good-as-
randomly assigned after controlling for some vector of shift-level controls qrk (which can vary across
r), we require the vector of controls wi to include

∑
k srikqrk for each r. The vector wi further

includes the intercept and possibly other controls.
The IV estimator β̂ for β = (β1, . . . , βR)

′ in (7) satisfies a system of R equations:

1

N

∑
i

y⊥i −
R∑

j=1

β̂jx
⊥
ji

 zri = 0, r = 1, . . . , R,

where for any variable vi we let v⊥i denote the in-sample projection of vi on wi. Expanding the
expression for zri, exchanging the order of summation, denoting ṽ(r)k = 1

N

∑
i srikv

⊥
i , and combining

11In settings like Hummels et al. (2014), the researcher may therefore entertain two options: to measure the shifts
in a different country and follow the exogenous shifts approach, or to measure the shifts in the country of interest in
a leave-out way and follow the exogenous shares approach.
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terms yields a set of R shift-level moment conditions satisfied by β̂:

∑
k

ỹ(r)k −
R∑

j=1

β̂j x̃
(r)
jk

 grk = 0, r = 1, . . . , R.

Letting g̃rk be the projection of grk on qrk weighted by srk = 1
N

∑
i srik and noting that

∑
k ṽ

(r)
k qrk =

0 since wi includes
∑

k srikqrk, we further have a set of R equations on the residualized shifts:

∑
k

ψ̃
(r)
k = 0, for ψ̃(r)

k =

ỹ(r)k −
R∑

j=1

β̂j x̃
(r)
jk

 g̃rk.

In matrix form, this can be rearranged as

Ωβ̂ =M,

where Ωrj =
∑

k x̃
(r)
jk g̃rk and Mr =

∑
k y

(r)
k g̃rk. Thus, β̂ = Ω−1M . Moreover, since (7) implies

ỹ
(r)
k −

∑R
j=1 βj x̃

(r)
jk = ε̃

(r)
k for true β, we also have

β̂ − β = Ω−1E for Er =
∑

k
ε
(r)
k g̃rk.

We assume that the appropriate relevance condition holds and suppose that vectors of shift
residuals g̃k = (g̃1k, . . . , g̃Rk)

′ are asymptotically independent across some shift clusters c. Letting
ψ̃k =

(
ψ̃
(1)
k , . . . ψ̃

(R)
k

)′
, we then have an asymptotic approximation of the exposure-robust variance-

covariance matrix of β̂:

Var
[
β̂ − β

]
≈ Ω−1Var [E] (Ω−1)′

≈ Ω−1

(∑
c

(∑
k∈c

ψ̃k

)(∑
k∈c

ψ̃k

)′)
(Ω−1)′. (8)

We note that the derivation here simplifies if the shares are the same for all shift-share instru-
ments (and qrk are also the same) and only the shifts vary across r. In this case, the coefficients and
exposure-robust standard errors can be obtained by an IV estimator at the shift-level, as shown by
Borusyak et al. (2022). This includes instruments constructed as

∑
k sikbkgk for different “interac-

tion” variables bk, as discussed in Appendix A.10.

B.2 Visual IV weights with Share Exogeneity

In this appendix, we show the shift-share IV estimate equals the slope of the regression line through
the points on the visual IV graph for the exogenous shares approach, without intercept and with
appropriate weights.

Let β̂k be the share-IV estimate for industry k and let ωk denote the Rotemberg weights, which
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Figure 1: Visual IV for Exogenous Shares, Applied to Card (2009)
A: High-school graduates B: College graduates
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Notes: The visual IV graph in the setting of Card (2009) using the replication data from Goldsmith-Pinkham et al.
(2020), estimating the relationship between the log wage gap between immigrant and native workers (as the outcome)
and the ratio of immigrant to native hours worked (as the treatment). Card (2009) instruments the local ratio of
immigrant to native hours with a shift-share instrument, leveraging immigration patterns from 38 countries. We
plot the reduced-form coefficient against the first-stage coefficient for each share IV, using the immigration shares
from each of the 38 countries one at a time as instruments. Panel A focuses on high-school graduates while Panel B
considers college graduates. The shift-share IV estimate is visualized as the slope of the ray through the origin.

sum to one and are such that the shift-share IV coefficient is β̂ =
∑

k ωkβ̂k.12 Write β̂k = ρ̂k/π̂k,
where ρ̂k and π̂k are reduced-form and first-stage estimates for the kth share-IV. Then we have:

β̂ =
∑
k

ωk
ρ̂k
π̂k

=

∑
k(ωk/π̂

2
k)ρ̂kπ̂k∑

k(ωk/π̂
2
k)π̂

2
k

,

which is the slope from a regression of ρ̂k on π̂k, with no intercept and with weights ωk/π̂
2
k (which

are not necessarily convex since Rotemberg weights can take negative values).
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