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A Online Appendix: Theory - Main Model Extensions
and Illustrations

A.1 Illustration with real effort elicitation
Assume individuals value money and leisure. In the simplest setting their utility function
per period can be represented as E [ui(ci,t) + vi(hi,t)] , where ui(·) and yi,t are as in the
main body, and vi(·) is an increasing and convex utility-of-leisure function and hi,t is the
leisure in the given period. If individuals can choose between rτ units of time spent on a
real effort task in period τ, and rt units of real effort to spent on a task in period t > τ (and
they might get some additional payment in the first period as a show-up fee to make them
willing to take either one of these), their level of indifference is now given by

Evi(hi,τ − rτ ) + γi,τ,tEvi(yt) = Evi(hi,τ ) + γi,τ,tEvi(hi,t − r∗i,t). (1’)

In this simple example we obtain the analogous equation to (1), only that we are now
working with leisure time rather than income. So we can again derive the analogue to (2)

γi,τ,t =
Evi(hi,τ − rτ )− Evi(yi,τ )
E vi(hi,t − r∗i,t)− Evi(yi,t)

≈ rτ
r∗i,t

Ev′i(hi,τ )

Ev′i(hi,t)
, (2’)

where the third expression uses the Taylor approximation vi(hi,t − r) ≈ vi(hi,t)− v′i(hi,t)r.
Now a similar example as that in the main body goes as follows: Consider two individuals

A and B with identical utility-of-leisure functions vi(h) = log(h) and identical discount
factor, who differ only in their expectations about finding a job and associated changes in
leisure time: They are both unemployed in the early period with full leisure time hA,1 =
hB,1 = 1. In the late period individual A believes to have found a job that cuts her leisure
to hA,2 = 1/4, while individual B believes that she will stay unemployed with hB,2 = 1.
Assume real effort r1 is sufficiently small that the approximation in (2’) is valid and we get

γA,1,2 =
rτ
r∗A,t

Ev′i(1)

Ev′i(1/4)
=

rτ
4r∗A,t

= γB,1,2 =
rτ
r∗B,t

Ev′i(1)

Ev′i(1)
=

rτ
r∗B,t

,

where the two lines equal because of the assumption of identical discount factor across
individuals. So rτ

r∗A,t
= 4 rτ

r∗B,t
, and if one neglects the change in expected leisure time person

A appears as if she has a higher discount factor than person B. Person A also finds a job
more quickly. If one just took rτ/r∗i,t as a measure of patience, the more patient person here
finds the job more quickly. But truly they both hold the same discount factor and person
A only does effort early because she anticipate a reduced leisure endowment in the second
period.

A.2 Illustration of direct method elicitation
The direct method of Attema et al. (2016) asks questions of the kind: Do you want to get
10 Euro in each of the first X weeks, or would you rather get 10 Euro in each week after X
until some maximum week. Let the maximum week for simplicity be week ten. Clearly if
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X = 9 most people would like to be paid early since they would be paid nine periods while
they will only be paid in one period if they take the late payments. Similarly, if X = 1 most
people would presumable take the late payments as it will lead to nine payments and despite
discounting this will for most be preferred to a single early payment. Varying X elicits the
point where the individual is indifferent between early and late payment. The discount
factor can be recovered from versions of such questions when background consumption does
not change. People with identical discount factors have to answer the questions identically.

But now consider two people that have identical discount factors and preferences but
different job finding expectations. Person A expects to find a job in week 6. Person B does
not expect to find a job within the ten weeks. Both get low unemployment benefits during
unemployment and consume them. Upon finding a job person A gets a higher wage w.

Consider first individual B: If she does not discount at all, she would choose indifference
point X=5, as she would like to have the maximum number of periods payout. If she has
mild time preferences, she might choose X=4 because early payments are valued more. Now
consider individual A: Assume w is so high that the marginal utility u′(w) is close to zero.
So she essentially does not value additional money in periods after period 5. That means she
would choose X=2.5 if she does not otherwise discount, or with some mild discounting she
would choose X=2. So even with this method, it would look as if A is much more impatient.

A.3 Large Stakes in Multiple Price Lists Method
In this section we explore the role of large stakes under the multiple price lists (MPL)
method discussed in Section 3.

For MPL, we discussed that the discount factor is related to rewards via equation 2, and
equals the usual empirical counterpart rτ/r∗i,t only if background consumption is constant
and marginal utility is approximately constant between background consumption with and
without rewards. If reward rτ becomes large, also the reward r∗i,t becomes large. For given
distributions of background consumption yi,τ and yi,t we therefore obtain the approximation
when rτ becomes large that:

γi,τ,t =
Eui(yi,τ + rτ )− Eui(yi,τ )
Eui(yi,t + r∗i,t)− Eui(yi,t)

≈ ui(rτ )

ui(r∗i,t)
. (1)

This means that ui(rτ )/ui(r∗i,t) approximately identifies the discount factor, independently
of background consumption. Since γi,τ,t ≈ ui(rτ )

ui(rτ (r∗i,t/rτ ))
, also the probability ratio r∗i,t/rτ

is approximately tied down independently of background consumption. Just that now the
discount factor can no longer directly be equated to this probability ratio, but is identified
by the ratio of utilities ui(rτ )/ui(r∗i,t), and thus requires knowledge of the individual’s utility
function. So moving from small to large stakes changes more then just taking out background
consumption: going to large stakes also invalidates the second approximation in equation (2)
that rendered measurement at low stakes (in the absence of varying background assumption)
independent of details of each individual’s utility function.

Alternative methods like the Convex Time Budget method of Andreoni and Sprenger
(2012) are designed to allow for curvature and to back out individual utility parameters.
They did not deal with changing background consumption if each individual can have his/her
own utility function and background consumption path. Allowing for large rewards in their
setting is likely to combine the benefits of eliciting the utility function and abstracting from
background consumption.

3



A.4 Setup with Savings after Lottery Win
Here we outline the setting where individuals can save after their lottery win. Recall that
individual i’s continuation value of consumption from period t onwards, evaluated with the
type preferences of the decision-maker at time t0 = 0, is given by utility

E

T∑
s=t

γi,t,s(t0)ui(ci,t) (2)

where the total life span T could be infinite. (Note that a decision-maker at time t1 might
have a different continuation value because she applies discount factors γi,t,z(t1).) Individuals
are hand-to-mouth unless they win the lottery (ci,t = yi,t). But in case of a lottery win they
can freely save or borrow at interest rate ι as long as their wealth W (i.e., the net present
value of past savings plus current and future income) stays weekly positive. So starting a
period with W allows consumption

c ∈ [0,W ] (3)

and next period wealth
W ′ = (1 + ι)(W − c). (4)

In particular, this means that individuals can use proceeds from lottery wins over many
periods. For ease of exposition also assume that the income stream is deterministic, though
possibly heterogeneous across individuals and time.

Here we focus only exponential discounters or quasi-hyperbolic discounters as defined in
the setup of the basic model. We assume δi(1 − ι) ≤ 1 so exponential discounters dis-save
after a lottery win. In the quasi-hyperbolic case, we follow the literature and distinguish
between naive individuals who believe that they will behave as exponential discounters in
the future, and sophisticated individuals who understand that in their future "selves" will
also have more interest in immediate consumption. Both exponential discounters and naive
quasi-hyperbolic individuals believe that any sequence of savings choices that is optimal is
temporary today will also be optimal for their future selves, so their savings problem after a
lottery win is simply an optimization problem: choose sequence ct, ct+1, ... to maximize (2)
subject to constraints (3) and (4). Sophisticates on the other hand understand that future
selves discount the future different from themselves and will take different actions from the
ones that the individual would like to commit to today. It plays a game with its future
selves, as, e.g., in Laibson (1996).

For finitely-lived individuals the savings problem has a unique solution. In the case of
sophisticates it is found by backward induction: under constant relative risk aversion an
individual with T − t remaining periods of life consumes a fraction λT−t of her wealth, and
this fraction is increasing in remaining lifetime (Laibson (1996)). Since individuals might
benefit from a lottery win for a long time, it will be useful to consider T large, and we use the
limit at T →∞ to capture infinitely-lived individuals. This has no restriction for exponential
discounters and naives. For sophisticates this constitutes a particular selection among all
possible markov equilibria in infinite settings. It implies that individuals consume fraction
λ∞ of wealth, and this fraction increases in an individual’s present-bias all else equal (see
equation (9) in Laibson (1996)). There exist other markov equilibria with different constant
savings rate in these infinite games, and our results apply as long as they inherit the same
comparative statics:

Assumption: Infinitely-lived sophisticated quasi-hyperbolic discounters have Bernoulli
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utility function with constant absolute risk aversion ρ ≥ 1, play an equilibrium markov
strategy in the savings game where consumption is a constant fraction λ of wealth, and λ is
increasing in impatience (β) all else equal.

A.5 Proof of Proposition 3
Consider an infinitely-lived person i who wins the lottery reward R at time τ and has no
other wealth. Consider her sequence of consumption choices C0, C1, C2, .. going forward,
i.e., in periods τ, τ + 1, τ + 2 etc. Now consider the same individual who wins the lottery
reward R at time t > τ and has no other wealth. If τ > 0, it is obvious that this person will
choose exactly the same consumption sequence going forward: She will choose C0, C1, C2, ..in
periods t, t+1, t+2 etc. The reason is that the environment going forward is exactly identical.
That also implies that their continuation utilities are identical, so that Ui,τ (R) = Ui,t(R).
This immediately establishes relationship (12) as a direct consequence of (11). This also
holds for exponential discounters when τ = 0 by the same logic.

It does not hold for quasi-hyperbolic discounters at τ = 0. Consider first a sophisticate.
At any point in time, this person is aware that her future selves are as present-biased as she
is currently. Given our assumption on Markov equilibria (for which the limit of the game of
finitely-lived players is a special case) the consumption sequence from time τ onwards rests
exactly the same as the consumption sequence from time t onwards. So that step from the
previous paragraph remains. But the discount factors that are applied differ when the sum
starts at zero compared to a future date:

Ui,0(R) = u(C0) + β
∑
s≥1

δsui(Cs) < u(C0) +
∑
s≥1

δsui(Cs) ≤ Ui,t(R) (5)

where in fact the last inequality holds with equality. By (11) it holds that ετ/ε∗i,t ≈
γi,t,τUi,t(R)/Ui,0(R), so the probability ratio overstates the true discount factor as stated
in the proposition.

To make the same statement for naive quasi-hyperbolics we will use a related but slightly
more sophisticated argument: let C0, C1, C2, ... be the optimal consumption sequence of a
naive quasi-hyperbolic after lottery with wealth R at time zero. Then Ui,0(R) can be
constructed with the same equality as in (5). Also the strict inequality in (5) still holds. But
now the weak inequality in fact holds strictly: from time t onwards the person could use the
same consumption choices, but in fact he might even find a better sequence of consumption
choices moving forward. Note that naives believe that their future selves will carry out
their optimal decisions, so this logic applies. Again we conclude that the probability ratio
understates the true discount factor as stated in the proposition.

We are left to show that nevertheless the probability ratio ranks individuals correctly.
Consider two naive quasi-hyperbolic discounters i and j who only differ in respect to their
present-bias parameter βi > βj (i.e., they only differ in γi,0,t > γj,0,t for all t). We have to
show that βiδtUi,0(R)/Ui,t(R) is larger than βjδtUj,0(R)/Uj,t(R), i.e., that the probability
ratio as in (11) is higher for person i than for person j. Here we omit the person index on
the long-run discount factor because it is identical among them.

Clearly Ui,t(R) = Uj,t(R) because in the future (t > 0) they expect both to discount ex-
ponentially with identical long-run discount factor. So we have to show that Ui,0(R)/βi
is smaller than Uj,0(R)/βj . Analogous to the previous arguments, consider a sequence
of consumption choices C0, C1, C2, ... that is optimal for individual i at τ = 0. Clearly:
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Ui,0(R)
βi

= u(C0)
βi

+
∑
s>0 δ

su(Cs) <
u(C0)
βj

+
∑
s>0 δ

su(Cs) ≤ Uj,0
βj
, where the weak inequality

arises because individual j might choose an even better sequence. This establishes the result
for naives.

For sophisticates, we cannot use the same argument as they play a game rather than face
an optimally chosen sequence, so in particular the last inequality of the previous argument is
not obvious. So here we exploit brute-force the closed-form expression γi,0,tU0,τ (R)/Ui,t(R) =

βiδ
t
[
1− (1− βi)δ(1− ι)1−ρ(1− λi)(1−ρ)

]−1
when individuals save at rate λi, (see Laibson

(1996), equation (29) for Ui,0, and for Ui,t use the same equation but omit the present-bias).
We will simply take comparative statics with respect to βi directly, and indirectly through
the change in λi. Clearly the first is positive. For the second, since λi is increasing in βi, we
have to show that (1−λi)1−ρ is increasing in λi, or equivalently that ρ ≥ 1. This completes
the proof of Proposition 3.

A.6 Proof of Proposition 3
We want to show the following: Consider infinitely-lived naive quasi-hyperbolic discounters
with discount factors γi,τ,t = δt−τi if τ > 0 and γi,0,t = βiδ

t
i otherwise, who has a time-

varying income stream yi,t. She can save at person-specific interest rate τLi in any period
after winning our lottery and at rate τi otherwise. Fix any distance d, and fix a different
infinitely lived naive quasi-hyperbolic discounter j. For R sufficiently large, there exists an
open ball of winning probability around zero ετ such that for τ > 0: γk,τ,t − ετ/ε∗k,t < d
for each individual k ∈ i, j. Moreover, if both individuals are otherwise identical except for
their short-run discount factors γi,0,t and γj,0,t and their usual interest rates τi and τj , then
the probability ratio ranks correctly also relative to their short-run discount factor (i.e., if
γi,0,t < γj,0,t then ετ/ε∗i,t < ετ/ε

∗
j,t).

To show this, write agent k ∈ {i, j}’s problem in period t > 0 with net present value W
in the absence of our lottery as:

Uk,+(W, ι) = max
c
uk(c) + δkUk,+(W

′)

s.t. W ′ = (1 + ι)(W − c)
W ′ ≥ 0.

Note that it is independent of the exact time period t. In case t = 0 it is

Uk,0(W, ι) = max
c
uk(c) + βkδkUk,+(W

′)

s.t. W ′ = (1 + ι)(W − c)
W ′ ≥ 0.

Let Wk =
∑
s yk,s/(1 + ιk)

s be the net present value of person k’s income stream when
discounted at rate ιi. From this initial net present value, denote by Ck,0, Ck,1, Ck,2, ... the
sequence of consumption choices that maximize this recursive program. Standard arguments
for such a simple recursive problem establish that Uk,+(·) and Uk,0(·) are strictly increas-
ing, concave and differentiable. For ease of exposition write with slight abuse of notation
Uk,t(·) := Uk,+(·) when t > 0, even though the only variation in the continuation utility
arises relative to time zero.
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The ex-ante problem at time zero with a lottery that additionally pays R with probability
ε at time t > 0 is then

max
c0,c1,...,ct−1

uk(c0) + βi

t∑
s=1

δskuk(cs) + βiδ
t
k[(1− ε)Uk,t(W ′, ιk) + εUk,t(W

′ +R, ιLk )]

s.t. W ′ =Wk(1 + ιk)
t −

t∑
s=0

cs(1 + ιk)
t−s

W ′ ≥ 0,

Call the value of this program Uk(Wk, R, ε, t). Clearly Ck,0, Ck,1, ..., Ck,t−1 defined above are
maximizers of this program when ε = 0, and we can writeW ′k,t =Wk(1+ιk)

t−
∑t
s=0 Ck,s(1+

ιk)
t−s for the net present value from period t onward given this consumption path. If the

lottery is already at time time zero we have simply Uk(Wk, R, ε, 0) = (1− ε)Uk,0(Wk, ιk) +
εUk,0(Wk +R, ιLk ).

The envelope theorem (e.g., Theorem 7, ?)1 establishes:

dUk(Wk, R, ε, t)

dε

∣∣∣∣
ε=0

= Uk,t(W
′
k,t +R, ιLk )− Uk,t(W ′k,t, ιk).

That is, the (right-)derivative with respect to the winning probability can be computed as
if the actual choices of consumption are unchanged. Therefore, we can write as first order
Taylor approximation

Uk(Wk, R, ε, t) = Uk(Wk, R, 0, t) + ε[Uk,t(W
′
k,t +R, ιLk )− Uk,t(W ′k,t, ιk)] +O(ε2),

where O(ε2) is the Bachmann–Landau notation for a function that vanishes at least at
quadratic order when epsilon tends to zero, and W ′k,t is the continuation net present value
under the original consumption plan as defined above.

Recall that our elicitation method fixes an early winning probability ετ at time τ and
elicits the winning probability ε∗k,t at time t that makes person k indifferent, i.e., such
that Uk(Wk, R, ετ , τ) = Uk(Wk, R, ε

∗
k,t, t). By the previous argument, for ετ close to zero

this implies that ε∗k, t has to be close to zero, and by the previous approximation this
indifference be written as

ετ [Uk,τ (W
′
k,τ +R, ιLk )− Uk,τ (W ′k,τ , ιk)] ≈ ε∗k,t[Uk,t(W ′k,t +R, ιLk )− Uk,t(W ′k,t, ιk)].

This means that we can use the indifference condition approximately as if the person had
a fixed consumption stream Ck,0, Ck,1, .... in the absence of a lottery win when the winning
probability is small. All remaining arguments proceed along the lines of the proof for
Proposition 3. This concludes the proof of Proposition 4.

A.7 Theory for Implementation via Lottery Tickets
Consider the implementation via lottery tickets discussed in Section 4.3. Lottery tickets
that pay out a reward R with probability ε̂. When we vary R, assume that the expected

1This particular envelope theorem is designed to accommodate parameters at the boundary of the domain;
in our case: evaluation of the derivative at ε = 0.
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value stays constant at some low value κ, so that κ = ε̂R.
Consider at most a finite number N of lottery tickets, and assume that the consumer is

indifferent between nτ lottery tickets at the early time τ , or n∗i,t lottery tickets at a later
time t.

Let P(m|n, ε̂) = n!
m!(n−m)! ε̂

k(1 − ε̂)n−k denote the Binomial probability of winning m
times the reward R for someone who receives n lottery tickets.

The period-τ utility of nτ lottery tickets is given by

(1−
nτ∑
m=1

P(m|nτ , ε̂))Eui(yi,τ ) + nτ ε̂(1− ε̂)nτ−1Eui(yi,τ +R)

+

nτ∑
m=2

P(m|nτ , ε̂)Eui(yi,τ +mR)

which lies strictly between the lower bound

(1− nτ ε̂(1− ε̂)nτ−1)Eui(yi,τ ) + nτ ε̂(1− ε̂)nτ−1Eui(yi,τ +R)

and the upper bound

(1− nτ ε̂(1− ε̂)nτ−1)Eui(yi,τ ) + nτ ε̂(1− ε̂)nτ−1Eui(yi,τ +R) + Eui(yi,τ + nτR)

nτ∑
m=2

P(m|nτ , ε̂),

where the upper bound is itself smaller than

(1− nτ ε̂(1− ε̂)nτ−1)Eui(yi,τ ) + nτ ε̂(1− ε̂)nτ−1Eui(yi,τ +R)

+ KnτR

nτ∑
m=2

P(m|nτ , ε̂)

for some K > u′(R).
We will show that the term KnτR

∑nτ
m=2 P(m|nτ , κ/R) vanishes for large R:

KnτR

nτ∑
m=2

P(m|nτ , ε̂)

= KnτR(1− (1− ε̂)nτ − nτ ε̂(1− ε̂)nτ−1)

= Knτ
1− (1− κ/R)nτ − nτκ/R(1− κ/R)nτ−1

1/R

where we used the relationsship κ = ε̂R to replace ε̂. Both numerator and denominator go
to zero for large R, so after applying L’Hopital’s rule we get equally

Knτ
nτ (nτ − 1)κ2/R3(1− κ/R)nτ−2

1/R2
→ 0.

So for large R the upper and lower bounds approximately coincide. Replacing the utility by
its lower bound, and doing the same for time τ , indifference along the same lines leading to
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(4) now means:

(1− nτ ε̂(1− ε̂)nτ−1)Eui(yi,τ ) + nτ ε̂(1− ε̂)nτ−1Eui(yi,τ +R) + γi,τ,tEui(yi,t)

≈ Eui(yi,τ ) + γi,τ,t

[
(1− n∗i,tε̂(1− ε̂)n

∗
i,t−1)Eui(yi,t) + n∗i,tε̂(1− ε̂)n

∗
i,t−1Eui(yi,t +R)

]
which can be rearranged to

γi,τ,t ≈
nτ (1− ε̂)nτ−1

n∗i,t(1− ε̂)
n∗
i,t−1

Eui(yi,τ +R)− Eui(yi,τ )
Eui(yi,t +R)− Eui(yi,t)

≈ nτ/n
∗
i,t︸ ︷︷ ︸

probability ratio

for large R or Eui(yi,t) ≈ Eui(yi,τ ), (6)

where the last approximation follows exactly the same steps as that for (4) with the addition
that ε̂→ 0 and therefore the terms involving it drops out.

A.8 Probability Weighting
Consider an individual who obtains yi,t in period t, unless she wins the lottery in which
case she obtains yi,t + R. We abstract from uncertainty in yi,t for illustrative purposes.
Such uncertainty would need to be taken into account with appropriate probability weights,
which does not alter the final result but significantly increases notational complexity. Let
w be a mapping from [0,1] onto [0,1] representing the probability weighting function, and
we adopt rank-dependence. Indifference between the early and late lottery now requires

[(1− w(ετ ))ui(yi,τ ) + w(ετ )ui(yi,τ +R)] + γi,τ,tui(yi,t)

= ui(yi,τ ) + γi,τ,t[(1− w(ε∗i,t))ui(yi,t) + w(ε∗i,t)ui(yi,t +R)],

where winning the lottery is always the most attractive outcome and is weighted by the
probability weight. For the less attractive outcome rank-dependence means that it is assessed
with 1− w(p). This reduces to

γi,τ,t =
w(ετ )

w(ε∗i,t)

ui(yi,τ +R)− ui(yi,τ )
ui(yi,t +R)− ui(yi,t)

.

≈ w(ετ )

w(ε∗i,t)
for large R. (7)

The steps to show the approximation are identical to those used in (4). We assume that
ετR = K for some fixed K, and take limits as R becomes large.

Let ri = ετ/ε
∗
i,t ∈ (0, 1) be the limit of individual’s choices as R becomes large. We can
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then derive the following approximation around ri of unity:

ln

(
w(ετ )

w(ε∗i,t)

)
= ln

(
w(ε∗i,tri)

w(ε∗i,t)

)
= lnw(ε∗i,tri)− lnw(ε∗i,t)

≈ lnw(ε∗i,t) +
w′(ε∗i,t)

w(ε∗i,t)
(ε∗i,tri − ε∗i,t)− lnw(ε∗i,t)

≈ φ(ri − 1)

where the first approximation is simply a Taylor expansion and the second reflects that
w′(ε∗i,t)ε

∗
i,t/w(ε

∗
i,t) captures the elasticity of the weighting function around zero, which we

denote by φ. Therefore (7) can now be written as

γi,τ,t ≈ eφ(ri−1)

≈ 1 + φ(ri − 1)

where the second approximation reflects that standard approximation of exponential func-
tions around an argument of zero.

10



B Online Appendix: Calibration exercise
In the paper we provide a simple calibration example with log-utility, income levels based
on our job seeker survey and no savings. Here we show that our qualitative findings are
robust to various variations of the calibration exercise.

B.1 Baseline calibration: no saving
In Figure B.1 we reproduce our baseline calibration in panels (a) and (b) (the same as Figure
1 in the paper). Panel (a) depicts a job seeker with low (current) income of 668 per month
(τ = 0), and future (expected) income of 1440 per month (t = 2). The annual true discount
factor is 0.96 and the experimental reward (for MPL) is 10. In this scenario the MLL
estimate converges towards the true value for large enough headline prizes. Panel (b) shows
qualitatively similar results for the case where income levels are taken from the respondents
in the validation experiment on Prolific. The income level is substantially higher than that
of the job seekers, and the expected income fluctuation is smaller in relative terms. As a
result, the bias in the MPL preference estimate is smaller, but still substantial and MLL
still produces accurate results for a lottery prize exceeding 100,000. In panel (c) we find
that our results remain when using square-root utility instead of log utility. Panel (d) shows
results for CRRA utility (a = 2). Since utility is bounded in this case, we indeed find that
the MLL estimate only partly converges towards to the true value. Panel (e) reproduces the
baseline result from panel (a), but implements increasing experimental rewards for the MPL
estimates (see appendix A.3). In line with the theory, even with very large experimental
rewards MPL does not recover the true discount factor.

B.2 Saving after lottery win
For simplicity, these results consider an individual that cannot save. In particular when
considering a large lottery prize, this may be unrealistic. As an extension we therefore
consider the case where individuals can save only if they win the headline lottery prize.
Saving is allowed for an infinite number of periods. For simplicity we do not include savings
in the non-winning scenario, and as a result the benchmark MPL estimate is not affected.

Deriving optimal consumption dynamic requires additional parameters. We set the an-
nual interest rate at 3%. Furthermore we consider a quasi-hyperbolic discounter and show
results for the naïve case (with robustness for the sophisticated case). In the baseline cal-
ibration we set present-bias β to 0.97 and the long-run discount factor δ to 0.99751 per
period (0.97 annually). This reflects a scenario where individuals have constant savings
after winning the lottery, because δ(1 + ι) = 1. All other parameters are equal to those in
the case without saving.

We show results in Figure B.2. The y-axis now depicts the discount factor γ = βδt−τ ,
with τ = 0, t = 2 in this example. For a naïve decision-maker, the results are qualitatively
similar to the no-savings case, as our theory predicts (see section 4.1). The ability to save
does not alter the convergence of the MLL estimates towards the true discount factor. For
headline prizes exceeding 1,000, MLL outperforms MPL estimates and for prizes above
10,000 MLL estimates are very close to the true value. For very high prizes the MLL
estimate exceeds the true value, as proven in Proposition 3, since rewards are consumed not
only in the present but also in the future. As a result, MLL converges to a value above
βδt−τ closer to δt−τ . Where in this interval the discount factor converges depends on the
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Figure B.1: Calibration of time preference estimates without saving. Job seeker income
levels (current income is 668 per month, future (expected) income is 1440 per month). The
annual true discount factor is 0.96 and the experimental reward (for MPL) is 10.
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(b) Income levels from Prolific validation experi-
ment: low (current) income = 3567, high (future)
income = 4048
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(c) Square-root utility
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(d) CRRA (a=2) utility
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(e) Log-utility with increasing rewards for MPL
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number of periods N during which individuals can save (higher N tends to load more into
the future and we use the extreme case of infinite N here) and the level of the discount
factors (low discount factors imply more immediate consumption and more loadings on the
immediate period). In any case, the difference with the MPL estimate remains striking
as the MPL estimate is far from the true discount factor. Alternative calibrations such
as Prolific income levels (panel b), stronger discounting (panel c) or a dis-saving scenario
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(panel d) lead to qualitatively similar conclusions. In panel e we show estimates for the case
where the individual is sophisticated in the sense that they foresee their time-inconsistent
behavior. Again, MLL performs well compared to MPL, especially for larger headline prizes.
Finally, we compare MLL estimates for varying levels of present bias (β) in panel f. We find
that our method is able to correctly distinguish (rank) the various scenarios, although this
ability fades when the headline prize grows too large and savings are loaded into the future
so that the measurement overshoots towards the long-run discount factor. This is due to
the large δ and the large number of saving periods (N =∞) that underlie this calibration,
and would change if individuals only consider savings for a limited number of periods, in
analogue of the finite N underlying the equal-split assumption in Proposition 2.
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Figure B.2: Calibration of preference estimates with saving after a lottery win. Baseline
uses job seeker income levels, log utility, β = 0.97, δ = 0.99751 (0.97 annual) and ι = 0.0025
(3% annual)
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(b) Income levels from Prolific experiment. Low
(current) income = 3567, high (future) income =
4048
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(c) Long-run discount factor (δ)=0.9
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(d) Decreasing consumption (δ ∗ (1 + ι) < 1)
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(e) Decreasing consumption and sophisticated
time preferences
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(f) Various values of β
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C Online Appendix: Additional Material on the Valida-
tion Experiment

C.1 Preference estimation
Below we describe how we estimate the preference parameters β and δ from the responses
in the validation experiment.

The premise underlying the CTB approach is that individuals have “beta-delta” prefer-
ences, where each individual i is characterized by tuple (βi, δi). The second entry δ denotes
the long-run discount factor and the first entry β the present bias. An individual who consid-
ers an early period t1 and a late period t2 discounts the time between them at factor δt2−t1i if
the early period is in the future, but discounts it with factor βiδt2−t1i if the early time period
includes the present. Andreoni and Sprenger (2012) propose a regression model to generate
a point estimate (β̂i, δ̂i) for each individual i (equation (6) in their paper). We apply their
method to our CTB data for individuals in treatments (2), (3) and (4) to generate these point
estimates for each individual i, and call them (β̂i,CTB , δ̂i,CTB). For treatment (1) we apply
their method separately to the answers elicited before prompting (β̂i,CTB−NP , δ̂i,CTB−NP )

and to the answers elicited after prompting (β̂i,CTB−P , δ̂i,CTB−P ).2
For the MLL data we also construct estimates of (βi, δi). To do this, consider participant

i who chooses between a 0.5 chance to get a lottery ticket at the early time t1 or a higher
probability of obtaining a lottery ticket at a later time t2. In our questions, t1 can be zero
or two months, and t2 can be two, four or six months. Define Pi(t1, t2) as the highest late
probability such that the individual chooses the early option whenever the late probability
is weakly lower. Define Qi(t1, t2) as the lowest late probability such that the individual
chooses the late option whenever the late probability is weakly higher. Set Pi(t1, t2) = 0.5 if
the individual never chooses the early ticket. We set Qi(t1, t2) = 1.2 if the individual always
chooses the early ticket.

Define the ratio of the early winning probability and the midpoint between P and Q as
Di(t1, t2) =

0.5
Pi(t1,t2)+0.5(Qi(t1,t2)−Pi(t1,t2)) . This is our empirical counterpart of the discount

factor between the early and late period for individual i. We then define as the present bias:

βi,MLL = 0.5
[Di(0, 2)

Di(2, 4)
+
Di(0, 4)

Di(2, 6)

]
(8)

Each ratio defines how much the individual additional discounts when the early answer is
in the present compared to when both answers are in the future. The first ratio does this
when answer periods are two months apart. The second ratio when periods are four months
apart. We average both ratios.

We define the long-run (monthly) discount factor as:

δi,MLL = 0.5
[
Di(2, 4)

1/2 +Di(2, 6)
1/4
]

(9)

It uses only the discounting between periods that do not involve the present period. For
two-month discounting it takes the square root to get a monthly discount factor. For four-
month discounting it takes the forth root to get the monthly discount factor. It then takes

2Following Andreoni and Sprenger (2012) we use Tobit regression if a respondent picked at least two
interior choices. If not, we used OLS. If all tokens were always placed on the late option, we set β = δ = 1
and if all tokens were always placed on the early option we set β = 1, δ = 0.5.
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the average.

C.2 Additional tables and figures

Table C.1: Question parameters

Convex budget set (CTB ) questions Lottery ticket (MLL) questions
τ t− τ aτ at 1 + r τ t− τ aτ at 1 + r

early delay early late early delay early prob. late prob.
period rate rate period of ticket of ticket

Within 3 days 2 months 0.1 0.11 1.1 Within 3 days 2 months 50% 55% 1.1
Within 3 days 2 months 0.1 0.12 1.2 Within 3 days 2 months 50% 60% 1.2
Within 3 days 2 months 0.1 0.15 1.5 Within 3 days 2 months 50% 75% 1.5
Within 3 days 2 months 0.1 0.18 1.8 Within 3 days 2 months 50% 90% 1.8
Within 3 days 2 months 0.1 0.2 2 Within 3 days 2 months 50% 100% 2
Within 3 days 4 months 0.1 0.11 1.1 Within 3 days 4 months 50% 55% 1.1
Within 3 days 4 months 0.1 0.12 1.2 Within 3 days 4 months 50% 60% 1.2
Within 3 days 4 months 0.1 0.15 1.5 Within 3 days 4 months 50% 75% 1.5
Within 3 days 4 months 0.1 0.18 1.8 Within 3 days 4 months 50% 90% 1.8
Within 3 days 4 months 0.1 0.2 2 Within 3 days 4 months 50% 100% 2

2 months 2 months 0.1 0.11 1.1 2 months 2 months 50% 55% 1.1
2 months 2 months 0.1 0.12 1.2 2 months 2 months 50% 60% 1.2
2 months 2 months 0.1 0.15 1.5 2 months 2 months 50% 75% 1.5
2 months 2 months 0.1 0.18 1.8 2 months 2 months 50% 90% 1.8
2 months 2 months 0.1 0.2 2 2 months 2 months 50% 100% 2
2 months 4 months 0.1 0.11 1.1 2 months 4 months 50% 55% 1.1
2 months 4 months 0.1 0.12 1.2 2 months 4 months 50% 60% 1.2
2 months 4 months 0.1 0.15 1.5 2 months 4 months 50% 75% 1.5
2 months 4 months 0.1 0.18 1.8 2 months 4 months 50% 90% 1.8
2 months 4 months 0.1 0.2 2 2 months 4 months 50% 100% 2

Each row is one question, and specifies τ (the early period), t− τ (delay, the difference between the early and late
period in months), aτ (token exchange rate early period for CTB, probability of receiving an early period lottery
ticket for MLL), at (same for late period) and 1 + r (implied exchange rate).

Table C.2: Balance table

(1) (2) (3) (4) (1)-(2) (1)-(3) (1)-(4) (2)-(3) (2)-(4) (3)-(4)
Treatment 1 Treatment 2 Treatment 3 Treatment 4 Pairwise t-test

Variable Mean/(SE) Mean/(SE) Mean/(SE) Mean/(SE) P-value P-value P-value P-value P-value P-value

Female 0.49 0.47 0.48 0.48 0.81 0.86 0.88 0.94 0.93 0.98
(0.06) (0.06) (0.06) (0.06)

Age 35.22 35.04 35.52 35.32 0.93 0.89 0.96 0.82 0.89 0.92
(1.52) (1.49) (1.52) (1.35)

Expenditures (pre-prompting) 2986.69 3347.43 4020.41 7685.38 0.72 0.33 0.03** 0.61 0.05* 0.11
(462.63) (900.40) (980.37) (2014.37)

Number of observations 77 76 73 79 153 150 156 149 155 152

Columns (1)-(4) shows means for the four treatment groups. 7 respondents are excluded because they did not report their age.
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Figure C.1: Expenditure estimates before and after prompting
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Figure C.2: Mean expenditure estimates
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Table C.3: First-stage tests (hypotheses 0.1 and 0.2): alternative approach to deal with
outliers

Pre-prompting Post-prompting P-value one-sided t-test

Hyp. 0.1 (between)
Expenditures, mean 2,584.61 3,200.24 0.012
Standard error mean 113.38 248.67
Observations 141 139

Hyp. 0.2 (within)
Expenditures, mean 2,584.61 3,070.09 0.000
Standard error mean 113.38 130.93
Observations 141 141

Excluding respondents for whom the ratio of the pre-prompting response to the post-prompting
response was below 1/3 or above 3.

Table C.4: First-stage tests (hypotheses 0.1 and 0.2): alternative approach to deal with
outliers

Pre-prompting Post-prompting P-value one-sided t-test

Hyp. 0.1 (between)
Expenditures, mean 3,175.67 3,445.35 0.313
Standard error mean 490.81 250.16
Observations 157 155

Hyp. 0.2 (within)
Expenditures, mean 2,542.74 3,141.29 0.000
Standard error mean 100.15 117.49
Observations 137 137

The highest and lowest 5% of expenditure responses were trimmed.

Table C.5: Summary statistics of preference estimates

Mean St.error Min Max Obs
delta (MLL), no prompting 0.899 0.00618 0.748 0.982 151
delta (MLL), prompting 0.908 0.00576 0.748 0.982 152
delta (CTB), no prompting 0.860 0.0146 0.500 1.500 157
delta (CTB), prompting 0.903 0.0147 0.500 1.500 155
beta (MLL), no prompting 0.987 0.0120 0.500 1.500 148
beta (MLL), prompting 0.980 0.0107 0.500 1.339 148
beta (CTB), no prompting 1.005 0.0197 0.500 1.500 157
beta (CTB), prompting 0.997 0.0194 0.500 1.500 155

Only the first responses are included for treatment groups 1 and 2. Estimates
are censored to the 0.5 - 1.5 (as we do in all baseline analysis).
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Figure C.3: Distribution of preference estimates (with δ the monthly discount factor and
β the present-bias factor). The box plot shows the lower adjacent value, the first quartile,
the median, the third quartile, the upper adjacent value and outside values. Estimates are
censored to the 0.5 - 1.5 (as we do in all baseline analysis).
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Table C.6: Core hypotheses: parameter estimates censored to 0.3-2.0

No prompting Prompting P-value one-sided t-test

Hyp. 1.1 (between)
Beta (CTB estimates), mean 1.020 1.014 0.436
Standard error mean 0.025 0.025
Observations 157 155

Hyp. 1.2 (between)
Beta (MLL estimates), mean 0.987 0.980 0.326
Standard error mean 0.012 0.011
Observations 148 148

Hyp. 2.1 (within)
Beta (CTB estimates), mean 1.055 1.013 0.195
Standard error mean 0.036 0.036
Observations 79 79

Hyp. 2.2 (within)
Beta (MLL estimates), mean 0.982 0.978 0.426
Standard error mean 0.021 0.021
Observations 71 71

All t-tests are one-sided. β̂ in all cases censored to values in the range 0.3-2.0 (replacing more extreme
values with these limits).
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Table C.7: Core hypotheses: parameter estimates censored to 0.6-1.4

No prompting Prompting P-value one-sided t-test

Hyp. 1.1 (between)
Beta (CTB estimates), mean 1.003 0.996 0.396
Standard error mean 0.018 0.017
Observations 157 155

Hyp. 1.2 (between)
Beta (MLL estimates), mean 0.988 0.981 0.319
Standard error mean 0.011 0.010
Observations 148 148

Hyp. 2.1 (within)
Beta (CTB estimates), mean 1.034 0.973 0.024
Standard error mean 0.025 0.022
Observations 79 79

Hyp. 2.2 (within)
Beta (MLL estimates), mean 0.982 0.980 0.453
Standard error mean 0.019 0.019
Observations 71 71

All t-tests are one-sided. β̂ in all cases censored to values in the range 0.6-1.4 (replacing more extreme
values with these limits).

Table C.8: Secondary hypotheses: regressions with MLL estimates as dependent variables

(1) (2) (3) (4)
Delta (MLL) Delta (MLL) Beta (MLL) Beta (MLL)

Delta (CTB) 0.204∗∗∗ 0.107∗∗∗
(0.030) (0.030)

Beta (CTB) 0.153∗∗∗ 0.114∗∗
(0.048) (0.044)

Constant 0.724∗∗∗ 0.811∗∗∗ 0.835∗∗∗ 0.867∗∗∗
(0.026) (0.028) (0.049) (0.045)

Sample No prompting Prompting No prompting Prompting
(Treatment 1,2) (Treatment 3,4) (Treatment 1,2) (Treatment 3,4)

Observations 151 152 148 148
Standard errors in parentheses
All parameters censored to (.5 - 1.5).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.9: Secondary hypotheses: regressions with CTB estimates as dependent variables

(1) (2) (3) (4)
Delta (CTB) Delta (CTB) Beta (CTB) Beta (CTB)

Delta (MLL) 1.163∗∗∗ 0.723∗∗∗
(0.171) (0.204)

Beta (MLL) 0.428∗∗∗ 0.389∗∗
(0.134) (0.149)

Constant -0.185 0.246 0.572∗∗∗ 0.612∗∗∗
(0.154) (0.185) (0.134) (0.148)

Sample No prompting Prompting No prompting Prompting
(Treatment 1,2) (Treatment 3,4) (Treatment 1,2) (Treatment 3,4)

Observations 151 152 148 148
Standard errors in parentheses
All parameters censored to (.5 - 1.5).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table C.10: Exploratory analysis

(1) (2)
Beta (MLL, pre-prompting) Beta (CTB, pre-prompting)

Beta (MLL, post-prompting) 0.566∗∗∗
(0.098)

Beta (CTB, post-prompting) 0.197
(0.125)

Constant 0.428∗∗∗ 0.846∗∗∗
(0.097) (0.125)

Sample Treatment group 2 Treatment group 1
Observations 71 79
Standard errors in parentheses
All parameters censored to (.5 - 1.5).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The difference between the coefficients in column (1) and (2) is statistically significant with p-value 0.037.
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D Online Appendix: Computation of Preference Param-
eters Job Seekers

We calculated time preference parameters in analogous way to our validation experiment.
Time preferences were elicited using the MLL method. Job seekers were asked three

sets of questions involving a choice between receiving 5 lottery tickets at an early date vs a
higher number (6, 7, 8, 9 or 10) at a later point. The dates involved in each of these choices
were as follows:

1. Today vs in a week (first set)

2. Today vs in 4 weeks (second set)

3. 8 weeks vs 12 weeks (third set)

We use the choice data to construct estimates of (βi, δi). To do this, consider participant
i who chooses between reciving 5 lottery tickets at the early time t1 or a higher number of
tickets at a later time t2.

Define Mi(t1, t2) as the number of tickets corresponding to the ’last early choice’, and
set to 5 if no early choice was taken. The individual always chooses the late option whenever
the late choice involves a strictly higher number of tickets. That is, the individual always
chooses the late choice when the late option involves at least Qi(t1, t2) = Mi(t1, t2) + 1
lottery tickets (as long as Mi(t1, t2) + 1 ≤ 10 so that at least the highest number of late
lottery tickets induces a late choice). Similarly, define Ni(t1, t2) as the number of tickets
corresponding to the ’first late choice’, and set it to 11 if no late choice was taken. The
individual chooses the early option whenever the late number of tickets is strictly smaller.
That is, the individual always chooses early when the late choice involves weakly less than
Pi(t1, t2) = Ni(t1, t2) − 1 lottery tickets (as long as Ni(t1, t2) − 1 ≥ 6 so that the lowest
number of lottery tickets induces an early choice). If an individual is consistent and switches
only once, Pi(t1, t2)=Qi(t1, t2)− 1. But if the individual switches multiple times, this is not
necessarily the case.

If an individual picks the early option even at the maximum number of tickets for the late
lottery (i.e., Mi(t1, t2) + 1 ≤ 10), we do not know the level above which this person would
choose the late option consistently. In analogy to our validation experiment we set it 20%
above the highest late ticket number, so that Qi(t1, t2) = 12. Conversely, if an individual
picks the early option even at the lowest number of late tickets, we do not know how low
that number would have to be for them to consistently choose the early option. We set this
lower bound to Pi(t1, t2)=5.

We then compute the mid-point between Pi(t1, t2) and Qi(t1, t2). The discount factor
between the early and later period corresponds to Di(t1, t2) =

5
0.5(Pi(t1,t2)+Qi(t1,t2))

.
We then define as the present bias:

βi,MLL =
Di(0, 4)

Di(8, 12)
(10)

Note that we only use the data for the second and third set of choices (today vs in 4
weeks, and 4 weeks vs 8 weeks).
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Figure D.1: Distribution of preference estimates for job seekers (with δ the monthly discount
factor and β the present-bias factor). The box plot shows the lower adjacent value, the first
quartile, the median, the third quartile, the upper adjacent value and outside values.
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