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The supplemental appendices are organized as follows:

• Appendix B proves Lemma 1.
• Appendix C collects results pertaining to the the algorithm.
• Appendix D collects additional results for the common-score model.
• Appendix E collects results for the simultaneous search framework with independent success.
• Appendix F collects all examples and proofs for Section 4.1.
• Appendix G collects all examples and proofs for Section 4.2.

B Proof of Lemma 1

We proceed by induction on k. To simplify notation, we write G for G1 and H for H1. Observe that if
either P˚pk, Gq or P˚pk, Hq has fewer than k elements, the conclusion follows from Cases 1 and 2 of
the proof of Proposition 1, each of which was proven independently. Hence, we assume below that
|P˚pk, Gq| “ |P˚pk, Hq| “ k.

Base Step (k “ 1): Suppose P˚ p1, Hq “ tiu. Suppose towards a contradiction that P˚ p1, Gq “ tju
for some j ą i. Then both Colleges i and j are strictly preferred to the outside option and

p1´ Gpτiqqpui ´ uoq ă p1´ Gpτjqqpuj ´ uoq

p1´ Hpτjqqpuj ´ uoq ă p1´ Hpτiqqpui ´ uoq.

Multiplying the inequalities and dividing by pui ´ uoqpuj ´ uoq yields

p1´ Gpτjqqp1´ Hpτiqq ă p1´ Gpτiqqp1´ Hpτjqq.

However, since G ěLR H and j ą i, we have that

p1´ G pτiqq
`

1´ H
`

τj
˘˘

“
ÿ

l,pďi

µpl, Gqµpp, Hq `
ÿ

lďiăpďj

µpl, Gqµpp, Hq

ě
ÿ

l,pďi

µpl, Gqµpp, Hq `
ÿ

lďiăpďj

µpp, Gqµpl, Hq

“ p1´ H pτiqq
`

1´ G
`

τj
˘˘

,

resulting in a contradiction.

Inductive Step: We consider the following inductive hypothesis:

For an integer k ą 1, for all k1 P t1, . . . , k´ 1u, the top choice in the optimal k1-portfolio under
distribution G̃ is higher ranked than that under distribution H̃ whenever G̃ ěLR H̃.
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We prove that if the inductive hypothesis is satisfied, then it must also be true that the top choice in
the optimal k-portfolio under distribution G is higher ranked than that under H.

Suppose towards a contradiction that there is an integer k ą 1, and distributions G and H such
that G ěLR H, P˚

p1qpk, Gq is lower ranked than P˚
p1qpk, Hq, and for which the italicized statement above

is true. We denote P˚pk, Gq by P and P˚pk, Hq by R.
Observe that by (4), (5), and the inductive hypothesis, there exists m P t1, . . . , ku such that Ppjq ą

Rpjq for all j ď m and Ppjq ď Rpjq for all j ą m. Consider a chain of portfolios Q0, Q1, . . . , Qm in
which Q0 :“ R, and for i P t1, . . . , mu, Qi consists of tRuk´i along with rPz ptRuk´iqs

i. When P and
R are disjoint, Qi is the portfolio that comprises the top i colleges from portfolio P and the pi` 1q to
k top colleges from portfolio R. We erase repetitions on the chain of portfolios and re-index the se-
quence tQ0, . . . , Qm1u. Our argument uses this chain of portfolios to find a portfolio that outperforms
portfolio P under score distribution G, contradicting the optimality of P “ P˚pk, Gq.

Claim 1. For each j P t1, . . . , m1u, VpQj, Gq ă VpQ0, Gq.

Proof of Claim 1. We proceed by induction.

Base Step pj “ 1q: As R “ Q0 is uniquely optimal under distribution H, VpQ1, Hq ă VpQ0, Hq. Let
w be the index such that Q1

pwq “ Q1zQ0 (and recall that Q0
p0q “ Q0zQ1).27 Writing out each value

explicitly, canceling common terms, and re-arranging, one obtains

´

1´ HpτQ0
p1q
q

¯

puQ0
p1q
´ uQ1

p1q
q ą

´

H
´

mintτQ0
pwq

, τQ1
pw´1q

u

¯

´ HpτQ1
pwq
q

¯

puQ1
pwq
´ uQ1

pw`1q
q.

Because G ěLR H, and Q0
p1q “ Rp1q is higher ranked than Pp1q which, in turn is weakly higher ranked

than Q1
pwq, we have that

´

1´ GpτQ0
p1q
q

¯´

H
´

mintτQ0
pwq

, τQ1
pw´1q

u

¯

´ HpτQ1
pwq
q

¯

ě

´

G
´

mintτQ0
pwq

, τQ1
pw´1q

u

¯

´ GpτQ1
pwq
q

¯´

1´ HpτQ0
p1q
q

¯

.

Note that the RHS of the above inequality is strictly positive.28 Multiplying the two inequalities and
dividing each side by common terms (all of which are strictly positive), we obtain

´

1´ GpτQ0
p1q
q

¯

puQ0
p1q
´ uQ0

p1q
q ą

´

G
´

mintτQ0
pwq

, τQ1
pw´1q

u

¯

´ GpτQ1
pwq
q

¯

puQ1
pwq
´ uQ1

pw`1q
q

which implies that VpQ1, Gq ă VpQ0, Gq.

Inductive Step pj ą 1q: We assume that VpQ`, Gq ă VpQ0, Gq for all ` ă j ď m1, and show that this
inequality also holds for ` “ j.

For ` P t1, . . . , m1u and distribution D P tG, Hu, we denote Q`
pw`q

:“ Q`zQ`´1, Q`´1
pz`q :“ Q`´1zQ`,

W`
D :“

ˆ

D
ˆ

min
"

τQ`
pw`´1q

, τQ`´1
pz`q

*˙

´D
ˆ

τQ`
pw`q

˙˙ˆ

uQ`
pw`q

´ uQ`
pw``1q

˙

,

27To simplify notation, we abuse notation by omitting some braces.
28Were the first term equal to 0, replacing Q1

pwq with Rp1q would achieve a higher value under distribution G; the second

term is strictly positive as Rp1q “ Q0
p1q is rationalizable under distribution H.
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and
L`

D :“
ˆ

D
ˆ

τQ`´1
pz`´1q

˙

´D
ˆ

τQ`´1
pz`q

˙˙ˆ

uQ`´1
pz`q
´ uQ`

pz`q

˙

.

Then, for each ` P t1, . . . , m1u and D P tH, Gu, VpQ`, Dq ´VpQ`´1, Dq “ W`
D ´ L`

D.

We write q` :“
µpQ`´1

pz`q
,Gq

µpQ`´1
pz`q

,Hq
.29 Then,

L`
G

L`
H
“

G
ˆ

τQ`´1
pz`´1q

˙

´ G
ˆ

τQ`´1
pz`q

˙

H
ˆ

τQ`´1
pz`´1q

˙

´ H
ˆ

τQ`´1
pz`q

˙ ě q` ě
G
ˆ

min
"

τQ`
pw`´1q

, τQ`´1
pz`q

*˙

´ G
ˆ

τQ`
pw`q

˙

H
ˆ

min
"

τQ`
pw`´1q

, τQ`´1
pz`q

*˙

´ H
ˆ

τQ`
pw`q

˙ “
W`

G

W`
H

. (15)

As Q0 “ R is the uniquely optimal k-portfolio under distribution H, VpQj, Hq ă VpQ0, Hq and
therefore,

řj
`“1 L`

H ą
řj

`“1 W`
H.

Observe that

j
ÿ

`“1

L`
G “ Lj

G `

j´1
ÿ

`“1

´

L`
G ´W`

G `W`
G

¯

“ Lj
G `

j´1
ÿ

`“1

W`
G `

j´1
ÿ

`“1

´

L`
G ´W`

G

¯

ě qjL
j
H `

j´1
ÿ

`“1

W`
G `

j´1
ÿ

`“1

q`
´

L`
H ´W`

H

¯

“ qjL
j
H `

j´1
ÿ

`“1

W`
G `

j´1
ÿ

`“1

qj

´

L`
H ´W`

H

¯

`

j´1
ÿ

b“1

pqb ´ qb`1q

´

VpQ0, Hq ´VpQb, Hq
¯

ą qjL
j
H `

j´1
ÿ

`“1

W`
G `

j´1
ÿ

`“1

qj

´

L`
H ´W`

H

¯

“

j´1
ÿ

`“1

W`
G `

j
ÿ

`“1

qj

´

L`
H ´W`

H

¯

` qjW
j
H

“ qj

´

VpQ0, Hq ´VpQj, Hq
¯

`

j´1
ÿ

`“1

W`
G ` qjW

j
H ą

j´1
ÿ

`“1

W`
G ` qjW

j
H ě

j
ÿ

`“1

W`
G.

where the first inequality uses (15), the second inequality follows from qb being decreasing in b and
VpQ0, Hq ą VpQb, Hq, the third inequality uses VpQ0, Hq ą VpQj, Hq and that qj is nonnegative, and
the final inequality uses (15). Hence, we obtain that VpQj, Gq ´VpQ0, Gq “

řj
`“1 W`

G ´
řj

`“1 L`
G ă 0,

establishing the inductive step.

We complete the proof of Lemma 1 by noting that

V
`

tRp1q, Rp2q, . . . , Rpmq, Ppm`1q, . . . , Ppkqu, G
˘

´VpP, Gq

“

m
ÿ

`“1

´

L`
G ´W`

G

¯

`

´

GpτRpmqq ´ GpτPpmqq
¯´

uPpm`1q ´ uRpm`1q

¯

1măk

“
“

VpQ0, Gq ´VpQm, Gq
‰

`

´

GpτRpmqq ´ GpτPpmqq
¯´

uPpm`1q ´ uRpm`1q

¯

1măk.

Claim 1 establishes that the first term is strictly positive. By inspection, the second term is non-

29This expression is well defined since Q`´1
pz`q

P P˚pk, Hq, and so the denominator is greater than zero.
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negative.30 Therefore, the portfolio tRp1q, Rp2q, . . . , Rpmq, Ppm`1q, . . . , Ppkqu performs strictly better than
portfolio P under distribution G, yielding a contradiction.

C Algorithms for the Optimal Portfolio

C.1 Speeding up the Algorithm Using Proposition 1

The main text presents an algorithm for calculating the optimal portfolio in Opn3q computation steps,
where each step of the algorithm requires Opn2q computation steps and the algorithm comprises n
steps. We use Proposition 1 to reduce the number of computation steps required for each step of the
algorithm to Opn log nq. Therefore only Opn2 log nq computation steps are required in total.

We proceed with a faster routine for executing Step k of our algorithm. Recall that C: :“ C Y t0u,
where 0 is a fictitious college that rejects all applications (i.e., τ0 “ 1).

Stage 1. For i1 “ medianpC:q (throughout, when the median is not an integer, we round it down to
the nearest integer) find the optimal k-college portfolio following rejection from i:

j˚1 :“ argmax
jPC: s.t. tjuďAti1u

 

p1´ Fi1pτjqquj ` Fi1pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj˚1 , k´1q is solved in step pk´1q. The optimal k-college continuation following
i1 is then Cpi1, kq :“ tj˚1 u Y Cpj˚, k´ 1q.

Stage 2.1. For i2.1 “ median pt0, . . . , i1 ´ 1uq, find the optimal k-college portfolio following rejection
from i2.1:

j˚2.1 :“ argmax
jPC: s.t. tj˚1 uďAtjuďAtiu

 

p1´ Fi2.1pτjqquj ` Fi2.1pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj, k ´ 1q is solved in step pk ´ 1q. The restriction to colleges at least as
aggressive as j˚1 is justified by Proposition 1. The optimal k-college continuation following i2.1 is then
Cpi2.1, kq :“ tj˚2.1u Y Cpj˚2.1, k´ 1q.

Stage 2.2. For i2.2 “ median pti1 ` 1, . . . , nuq, find the optimal k-college portfolio following rejection
from i2.2:

j˚2.2 :“ argmax
jPC: s.t. tjuďAtj˚1 u

 

p1´ Fi2.2pτjqquj ` Fi2.2pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj, k ´ 1q is solved in step pk ´ 1q. The restriction of colleges no more ag-
gressive than j˚1 is justified by Proposition 1. The optimal k-college continuation following i2.2 is then
Cpi2.2, kq :“ tj˚2.2u Y Cpj˚2.2, k´ 1q.
...
30If m ă k, then Ppm`1q is a higher-ranked college than Rpm`1q. Thus, uPpm`1q ´ uRpm`1q ą 0. Moreover, college Rpmq is

higher ranked than Ppmq, and therefore, HpτRpmqq ´ HpτPpmqq ě 0.
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Stage m.1. For im.1 “ median
` 

0, . . . , ipm´1q.1 ´ 1
(˘

, find the optimal k-college portfolio following
rejection from im.1:

j˚m.1 :“ argmax
jPC: s.t. tj˚

pm´1q.1uďAtjuďAtiu

 

p1´ Fim.1pτjqquj ` Fim.1pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj, k´ 1q is solved in step pk´ 1q. The restriction of colleges no more aggres-
sive than j˚

pm´1q.1 is justified by Proposition 1. The optimal k-college continuation following im.1 is then
Cpim.1, kq :“ tj˚m.1u Y Cpj˚m.1, k´ 1q.

Stage m.2. For im.2 “ median
` 

ipm´1q.1 ` 1, . . . , ipm´1q.2 ´ 1
(˘

, find the optimal k-college portfolio
following rejection from im.2:

j˚m.2 :“ argmax
jPC: s.t. tj˚

pm´1q.2uďAtjuďAtj˚
pm´1q.1u

 

p1´ Fim.2pτjqquj ` Fim.2pτjqVpCpj, k´ 1q, Ftjuq
(

.

where the continuation Cpj, k ´ 1q is solved in step pk ´ 1q. The restriction of colleges no more
aggressive than j˚

pm´1q.2 and no less aggressive than j˚
pm´1q.1 is justified by Proposition 1. The optimal

k-college continuation following im.2 is then Cpim.2, kq :“ tj˚m.2u Y Cpj˚m.2, k´ 1q.
...

Stage m.2m´1. For im.2m´1 “ median
´!

ipm´1q.2m´2 ` 1, . . . , n
)¯

, find the optimal k-college portfolio
following rejection from im.2m´1 :

j˚m.2m´1 :“ argmax
jPC: s.t. tjuďAtj˚

pm´1q.2m´2u

!

p1´ Fim.2m´1 pτjqquj ` Fim.2m´1 pτjqVpCpj, k´ 1q, Ftjuq
)

.

where the continuation Cpj, k´ 1q is solved in step pk´ 1q. The restriction of colleges no less aggres-
sive than j˚

pm´1q.2m´2 is justified by Proposition 1. The optimal k-college continuation following im.2m´1 is
then Cpim.2m´1 , kq :“ tj˚m.2m´1u Y Cpj˚m.2m´1 , k´ 1q.

Note that by the m-th stage, the routine solves for 1` 2` ¨ ¨ ¨ ` 2m´1 “ 2m ´ 1 optimal k-college
continuations. Hence, the routine requires at most rlog2pn ` 1qs stages to complete Step k of the
algorithm. Furthermore, using Proposition 1 we restricted the arguments under the argmax to be
such that in each stage of the routine no more than 3n{2 options must be considered. For example,
in Stage 2.1 the routine only searches colleges that are at least as aggressive as j˚1 while in Stage 2.2 it
only searches colleges that are no more aggressive than j˚1 , and so j˚1 is considered twice and each of
the other n´ 1 colleges is considered at most once.

In sum, the routine requires only Opn log nq calculation steps for each step of the algorithm, bring-
ing the number of calculation steps required by all n steps of the algorithm to Opn2 log nq.

C.2 Accommodating Tier Constraints

Some education systems impose “tier constraints” that limit applicants to a certain number of schools
in each tier. For example, in Kenya, secondary schools applicants are restricted to rank two national
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schools, two provincial schools, and two district schools (Lucas and Mbiti, 2012). Similarly, applicants
in Ghana can rank four schools including at most one Option 3 school, up to two Option 2 schools,
up to four Option 1 schools, and up to four Option 4 and 5 schools (Ajayi, Friedman and Lucas, 2020).

The algorithm of Figure 8 accommodates such constraints. For example, consider a constraint that
no more than m colleges from C1 Ă C can be ranked. Then, Step k of the algorithm should consider
not only each i P C:, but rather each pi, jq P C:ˆt0, . . . mu (representing Ann’s score being lower than
τi and that she has previously ranked j schools from C1). Using this approach, the algorithm will
terminate within Opmn3q computation steps.

D Additional Results in the Common Score Framework

D.1 Uncertainty About Thresholds

The baseline analysis presumes that Ann is uncertain about her standing but knows perfectly the
thresholds used by colleges. Herein, we show that so long as the relative selectivity of colleges
remains unchanged, the optimal portfolio with uncertain thresholds coincides with that of known
thresholds where each threshold is the “certainty equivalent,” suitably defined.

Let τ̃i be the random variable that denotes College i’s threshold, with a support that is a subset
of rτi, τis. We denote the joint distribution on pτ̃1, . . . , τ̃nq by Z; thresholds may be drawn with ar-
bitrary correlation. We define the certainty-equivalent threshold for College i to be the τCE

i that solves
FpτCE

i q “ EZrFpτ̃iqs. This is the known threshold under which the probability of acceptance (under
score distribution F) coincides with the expected probability of acceptance by College i. A certainty
equivalent exists as F is continuous and increasing on its interval support.

We say that relative selectivity is known if for every pair of colleges i and j ą i, τi ą τ j: in
other words, the applicant always anticipates i to be more selective than lower-ranked College j. We
view this to be a reasonable assumption as it is consistent with the idea that schools have a known
“pecking order.” Lucas and Mbiti (2012) and Ajayi (2024) document that the relative selectivity of
schools is extremely stable in the context of school admissions in Kenya and Ghana, respectively.

Proposition 7. Suppose relative selectivity is known. Then the optimal k-portfolio with uncertain thresholds
coincides with the optimal k-portfolio in which the threshold of each College i is known to be its certainty-
equivalent threshold τCE

i .

As the argument is straightforward, we offer it here. Observe that the expected value of a portfolio
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P with uncertain thresholds is

EZ

»

–

|P|
ÿ

i“1

´

F
´

τ̃Ppi´1q

¯

´ F
´

τ̃Ppiq

¯¯

maxtuPpiq , uou

fi

fl

“

|P|
ÿ

i“1

´

EZ

”

F
´

τ̃Ppi´1q

¯ı

´EZ

”

F
´

τ̃Ppiq

ı¯¯

maxtuPpiq , uous

“

|P|
ÿ

i“1

´

F
´

τCE
Ppi´1q

¯

´ F
´

τCE
Ppiq

¯¯

maxtuPpiq , uous,

which coincides with the expected value of a portfolio P under belief F and using the (deterministic)
certainty-equivalent threshold for each school. Although we emphasize uncertainty in score thresh-
olds, the result also applies when the applicant is uncertain about the utility of attending each college
so long as the relative attractiveness of colleges is known in advance.

D.2 The Marginal Benefit of An Additional Application

We show that the marginal benefit of an additional application falls in the number of applications.31

Proposition 8. For every k1 ě k ě 0, VpP˚pk1 ` 1qq ´VpP˚pk1qq ď VpP˚pk` 1qq ´VpP˚pkqq.

Proof. For every k ě 1, we establish that

VpP˚pk` 1qq ´VpP˚pkqq ď VpP˚pkqq ´VpP˚pk´ 1qq. (16)

If |P˚pk` 1q| ă k` 1, then VpP˚pk` 1qq ´VpP˚pkqq “ 0; as the RHS of (16) is always non-negative,
(16) would then hold trivially. So below, we assume that |P˚pk` 1q| “ k` 1.

Our approach below identifies two portfolios of k colleges, Q and Q1, such that

VpP˚pk` 1qq `VpP˚pk´ 1qq ď VpQq `VpQ1q. (17)

Let us first argue that once these portfolios are identified, then (16) holds. To see why, observe that as
both Q and Q1 have k colleges, each has a value no more than P˚pkq, the optimal k-college portfolio.
Therefore, VpQq `VpQ1q ď 2VpP˚pkqq. Hence (17) implies that

VpP˚pk` 1qq `VpP˚pk´ 1qq ď 2VpP˚pkqq,

which is equivalent to (16).
We now identify portfolios Q and Q1. Let ` ą 1 be the smallest index i such that P˚

piqpk ` 1q ď

31As our proof holds the utility profile U and the score distribution F fixed, we simplify our notation by omitting those
arguments from functions below. Moreover, if k “ 0, P˚pkq “ tu and therefore, VpP˚p0qq “ 0.
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P˚
pi´1qpk´ 1q; if this inequality never holds, then we set ` “ k` 1. We define

Q :“ rP˚pk` 1qs`´1
ď

tP˚pk´ 1quk´p`´1q,

Q1 :“ rP˚pk´ 1qs`´2
ď

tP˚pk` 1quk`1´p`´1q.

Observe that Q is a portfolio of k colleges that includes the `´ 1 best colleges in P˚pk ` 1q and the
pk´ `` 1qworst colleges in P˚pk´ 1q. Q1 is also a portfolio of k colleges but it includes the `´ 2 best
colleges in P˚pk´ 1q and the pk´ `` 2qworst colleges in P˚pk` 1q.32

To compress notation, we write P :“ P˚pk` 1q and P1 :“ P˚pk´ 1q. Observe that

VpQq `VpQ1q ´VpPq ´VpP1q

“

«

`´1
ÿ

i“1

´

FpτPpi´1qq ´ FpτPpiqq
¯

uPpiq `
´

FpτPp`´1qq ´ FpτP1
p`´1q

q

¯

uP1
p`´1q

`

k´1
ÿ

`

´

FpτP1
pi´1q

q ´ FpτP1
piq
q

¯

uP1
piq

ff

`

«

`´2
ÿ

i“1

´

FpτP1
pi´1q

q ´ FpτP1
piq
q

¯

uP1
piq
`

´

FpτP1
p`´2q

q ´ FpτPp`qq
¯

uPp`q `

k`1
ÿ

``1

´

FpτPpi´1qq ´ FpτPpiqq
¯

uPpiq

ff

´

k`1
ÿ

i“1

´

FpτPpi´1qq ´ FpτPpiqq
¯

uPpiq ´

k´1
ÿ

i“1

´

FpτP1
pi´1q

q ´ FpτP1
piq
q

¯

uP1
piq

“

´

FpτPp`´1qq ´ FpτP1
p`´1q

q

¯

uP1
p`´1q

`

´

FpτP1
p`´2q

q ´ FpτPp`qq
¯

uPp`q

´

´

FpτPp`´1qq ´ FpτPp`qq
¯

uPp`q `
´

FpτP1
p`´2q

q ´ FpτP1
p`´1q

q

¯

uP1
p`´1q

“

´

FpτP1
p`´2q

q ´ FpτPp`´1qq

¯´

uPp`q ´ uP1
p`´1q

¯

,

where in the first equality, the first line writes out VpQq, the second writes out VpQ1q, and the third
writes out VpPq and VpP1q; the second equality follows from canceling common terms; and the third
equality cancels common terms and re-arranges the remaining terms. We argue that this final expres-
sion is positive. Observe that the definition of ` implies two facts: (i) College Pp`q is higher ranked
than P1

p`´1q and hence the second term in the product is non-negative, and that (ii) College P1
p`´2q is

higher ranked than Pp`´1q, which implies that the first term is also non-negative.

E Additional Results in the Independent-Success Framework

Here, we establish some new results for the independent-success framework of Chade and Smith
(2006). These results are either referenced in the main text or used in our subsequent analysis.

So as to be self-contained, the set of college types C :“ t1, . . . , nu comprises n colleges. Being ac-
cepted by a college of type i generates utility ui, and obtaining her outside option generates utility uo.
If Ann applies to college of type i, then she is admitted by that college with probability αi indepen-
dently of her admissions at any other college. As before, we assume that higher indices yield lower
utility. However, with independent success, and unlike our framework, “replicas” are valuable for an

32The definition of ` guarantees that the unions in the definitions of Q and Q1 are of disjoint sets.
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applicant: if Colleges a and b are replicas, being rejected by College a is no longer informative about
the probability with which one is accepted by College b. As in Chade and Smith (2006), we allow
colleges to have replicas, and denote the replicas of type i college by i1, i2, . . . (we extend ă so that
ij ă ij`1 and assume that Ann breaks the indifference in favor of lower-indexed copies). Similarly,
colleges that are less desirable and more selective than another college are not ruled out.33 Finally, to
accommodate replicas, we require uniqueness only up to replacing replicas.

E.1 Upward Diversity

Section 5.2 of Chade and Smith (2006) alludes to how the optimal portfolio is upwardly diverse when
each college has replicas, but they establish it only for the case of two college types. Proposition 9
shows that this conclusion holds generally whenever there are replicas. We prove this result by first
obtaining a preliminary result about risk aversion in a setting in which outside options are stochastic.
In this setting, we show that having access to a higher number of stochastic outside options makes
the applicant more risk-loving.

To be clear about our stochastic outside option setting, let tũju
r
j“1 be independent random vari-

ables taking the value Lj with probability β j and 0 otherwise. Each random variable ũj specifies a
stochastic outside option. We do not assume that all the outside options are available to the appli-
cant: instead, we suppose that the set of available outside options is tũju

r
j“1 (where r P t1, . . . , ru). We

take r as a primitive, and refer to it as the portfolio problem with r stochastic outside options.34 We
contrast this with the baseline framework in which the outside option uo is deterministic.

Lemma 2 documents two facts. First, for each value of r, there exists a payoff-equivalent problem
in which the outside option is deterministic. Second, higher values of r lead to a more risk-loving
profile in the sense of Definition 3.

Lemma 2. For each portfolio problem with r stochastic outside options, there exists a payoff equivalent portfolio
problem in which the outside option is deterministic; i.e., there exists a utility profile Vr :“ pvr

0; vr
1, . . . , vr

nq

(with deterministic outside option vr
0) that generates the same expected payoff for each portfolio. Moreover, if

r1 ě r, then Vr1 ěRL Vr.

Proof. We prove the first part by construction. We set the outside option vr
o to be Ermaxjďr ũjs. Denote

by Gr the CDF of maxjďr ũj. We also set the utility of attending college i to be

vr
i “ βrpuiq :“ ui `

ż 8

0
maxtz´ ui, 0udGrpzq.

The term βrpuiq embodies the idea that if accepted by College i, the student has the option either to
attend that school or choose the best realized outside option (denoted by the variable z). She chooses
an outside option only if its realized payoff exceeds ui, and in that case, she accrues the marginal
improvement from the outside option. It follows from integration by parts and some algebra that
βrpuiq “ ui `

ş8

ui
p1´ Grpzqqdz. This setup establishes the first part of Lemma 2: a direct calculation

33In cases of a tie in utility, we label the dominated college with a higher index.
34We emphasize that r does not denote the number of outside options that mature.
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shows that this utility profile generates the same expected utility for each portfolio as the portfolio
problem with r stochastic options.

We prove the second step by induction, relying on the transitivity of ěRL. Let r1 “ r` 1. Denote

ψ pxq :“

$

&

%

ş8

0

´

1´ Gr1pzq
¯

dz if x ď
ş8

0 1´ Grpzqdz,

x`
ş8

invβrpxq Grpzq ´ Gr1pzqdz otherwise;
,

where we use the fact that the inverse of βrp¨q exists for values greater than
ş8

0 1´Grpzqdz since βrp¨q

is increasing for values greater than
ş8

0 1´ Grpzqdz. We note that vr1
i “ ψ

`

vr
i

˘

. Leibniz’s rule and the
Implicit Function Theorem imply that for values of x greater than

ş8

0 1´ Grpzqdz, we have

dψ

dx
“ 1´

Grpinvβr pxqq ´ Gr1pinvβr pxqq
Grpinvβr pxqq

“
Gr1pinvβr pxqq
Grpinvβr pxqq

.

Observe that Gr1{Gr is a non-decreasing step function with range in 0 to 1. Since ψ is constant for
values of x lower than

ş8

0 1´ Grpzqdz, this implies that ψ is convex.

Proposition 9. If each school has m replicas, then for each k ă m, the optimal pk ` 1q-portfolio is more
aggressive than the optimal k-portfolio.

Proof. Since the parameters of the problem are fixed throughout the proof, for each k, we denote the
optimal k-portfolio by Ppkq. We show that the conclusion obtains so long as Pp1qpkq has a replica that
is not included in Ppkq, which is implied by m ą k.

Chade and Smith (2006) show that there is an optimal portfolio of size pk ` 1q, Ppk ` 1q, such
that Ppk ` 1q “ Ppkq Y txu, unless we are in the trivial case that Ppk ` 1q “ Ppkq. Let x denote a
college such that Ppkq Y txu is an optimal pk ` 1q-portfolio. Let y denote a replica of Pp1qpkq that is
not included in Ppkq. Observe that if Ann must choose a portfolio of k colleges that includes the col-
leges in Ppkqz

 

Pp1qpkq
(

, and can choose an additional college in the set
 

x, y, Pp1qpkq
(

, Ppkq remains
optimal.35 This constrained problem is equivalent to the problem of choosing a single-college port-
folio from

 

x, y, Pp1qpkq
(

with a stochastic outside option distributed as the utility from the portfolio
Ppkqz

 

Pp1qpkq
(

. Both a choice of Pp1qpkq and y must be optimal single-college portfolios, because
Pp1qpkq P Ppkq and y is a replica of Pp1qpkq. Therefore, y must also be the optimal single-college portfo-
lio when the set of available schools is only tx, yu and the stochastic outside option is distributed as
the utility from the portfolio Ppkqz

 

Pp1qpkq
(

.
Using the same logic, it follows from txu Y Ppkq being an optimal pk` 1q-portfolio and y R Ppkq

that txu is an optimal single-college portfolio from the menu tx, yu with an outside option that is
distributed as the utility from the portfolio Ppkq. By Lemma 2, Ann is more risk loving with the
(stochastic) outside option from the portfolio Ppkq than with the (stochastic) outside option from the
portfolio Ppkqz

 

Pp1qpkq
(

. It then follows from Proposition 2 and the definition of x that txu ěA tyu,
and so Ppk` 1q ěA Ppkq.36

35In other words, an unconstrained optimal portfolio of k colleges must also be an optimal k-portfolio when chosen from a
smaller menu of portfolios that includes it; this property is the Weak Axiom of Revealed Preference or Sen’s α.

36We can invoke Proposition 2 because Ann is choosing a single-college portfolio in both cases and hence the correlation
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E.2 The Risk-Loving Effect with Independent Success

In Section 5 we claim that a result parallel to Proposition 2 holds in the independent-success frame-
work. Thus, even if admissions probabilities are stochastically independent, unequal outside options
lead to more aggressive applications and therefore segregation in the composition of schools.

Proposition 10. More risk-loving payoffs lead to a more aggressive portfolio: U1 ěRL U ñ P˚pk, U1, αq ěA

P˚pk, U, αq.

Lemma 3. Assume that U “ U1 “ 0 and that U1 ěRL U (i.e., there exists a convex nondecreasing ψ such
that ψp0q “ 0 and u1i “ ψpuiq for each i P C). If the agents U and U1 get access to a stochastic outside option
that gives them utility L ą 0 (respectively ψpLq) with probability α and zero otherwise, then their utility from
each portfolio can be described by the deterministic profiles W and W1 such that W “ W1 “ 0 and W1 ěRL W.

Proof. Direct calculation shows that

wi “

$

&

%

ui ´ αL if ui ą L

p1´ αq uipxq else,

and

w1i “

$

&

%

u1i ´ αψpLq if u1i ą ψpLq

p1´ αq u1ipxq else

are profiles as required by the statement. To see that W1 ěRL W observe that the function

βpxq “

$

&

%

p1´ αqψp x
1´α q if z ď p1´ αqL

ψpx` αLq ´ αψpLq else

maps W to W1 (in particular, βp0q “ 0). Since C is finite, we can assume without loss of generality
that ψ is smooth. With this assumption, it is straightforward to verify that β is nondecreasing and
convex (it is differentialble—including at p1´ αqL—with a nonegative increasing derivative).

Proof of Proposition 10. The proof proceeds by induction on k. The case of k “ 1 follows from Propo-
sition 2 (correlation between admissions decisions does not matter in choosing a single-college port-
folio). For k ą 1, if for some i, j ď k we have P˚

piqpk, U1, αq “ P˚
pjqpk, U, αq, we are done by the

inductive hypothesis and Lemma 3 (the rest of each portfolio is the optimal size k ´ 1 portfolio
from Cz

!

P˚
piqpk, U1, αq

)

with the stochastic outside option of P˚
piqpk, U1, αq “ P˚

pjqpk, U, αq). Otherwise,
P˚
pkqpk, U1, αq ‰ P˚

pkqpk, U, αq.
Assume that P˚

pkqpk, U1, αq ă P˚
pkqpk, U, αq (i.e., the lowest ranked choice of the more risk loving

agent is more aggressive). In that case, P˚
pkqpk, U, αq is available to U as a last (k-th) choice, which

implies that
αP˚
pkqpk,U,αqu

1
P˚
pkqpk,U,αq ď αP˚

pkqpk,U1,αqu
1
P˚
pkqpk,U1,αq.

structure between colleges’ admissions decisions is irrelevant.
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Imagine constraining U1 to include P˚
pkqpk, U, αq as the last choice in her portfolio. In that case, by

the inductive hypothesis and Lemma 3, she would choose a portfolio of k ´ 1 colleges that is more
aggressive than rP˚pk, U, αqsk´1 (i.e., the first k´ 1 choices on P˚pk, U, αq). Next, observe that since U1

prefers the “outside option” offered by her last choice P˚
pkqpk, U1, αq to P˚

pkqpk, U, αq she only becomes
more aggressive in her choosing the optimal k´ 1 colleges to add to this college.37

Finally, assume toward contradiction that P˚
pkqpk, U1, αq ą P˚

pkqpk, U, αq. Since P˚pk, U1, αq and
P˚pk, U, αq are disjoint, P˚

pkqpk, U1, αq is available to U as a last choice and P˚
pkqpk, U, αq is available to U1

as a last choice. Since rejections convey no information this means that the optimal portoflio of size 1
from the menu

!

P˚
pkqpk, U1, αq, P˚

pkqpk, U, αq
)

is P˚
pkqpk, U1, αq for U1 and P˚

pkqpk, U, αq for U, contradicting
the base case (and Proposition 2).

E.3 Algorithm for Solving for the Optimal Portfolio

Here, we adapt the algorithm of Section 3.4 to find the optimal portfolio for the Chade and Smith
setting. The key idea is that we build the optimal portfolio top-down, starting with Ann’s first choice.

Let P˚pk, U, α, cq denote the optimal portfolio with utility profile U and admission probabilities
α, where Ann is restricted to apply to colleges in tx P C | x ą cu. Since rejections from colleges in
tx P C | x ď cu convey no information about admissions at colleges tx P C | x ą cu, P˚pk, U, α, cq is
the optimal continuation of size k for any “history” where College c is the least aggressive choice that
has rejected Ann. We therefore have

V pP˚pk, U, α, iqq :“ max
jPC s.t. tiuąAtju

 

αjuj ` p1´ αjqV pP˚pk´ 1, U, α, jqq
(

. (18)

Using this dynamic program, one can run a routine analogous to Figure 8: we find the optimal
continuation where one has to find colleges less aggressive than the least aggressive college that
has rejected one thus far. The algorithm continues to be computationally efficient, since only n `
1 histories must be considered at any step, just as in our baseline framework. The routine from
Appendix C also remains valid, and so the algorithm can be sped up to n2 log n steps.

If application costs, φp¨q, depend only on the number of colleges, our algorithm requires more
computation steps than the Marginal Improvement Algorithm of Chade and Smith (2006). However,
as we discuss in Appendix C.2, our approach can expand the scope of their analysis by accommodat-
ing tier constraints, unlike that algorithm.

F Results for Section 4.1

F.1 Preliminaries

We denote by Φ (resp., φ) the CDF (resp., PDF) of the standard univariate normal distribution and by
Φkp¨, ¨, ρq (resp., φkp¨, ¨, ρq) the CDF (resp., PDF) of the standard multivariate normal distribution with
correlation ρ.

37This follows since the corresponding profiles V from Lemma 3 are ěRL-ranked.
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Lemma 4. For any ∆ ą 0, Rpxq :“ 1´Φpxq
1´Φpx`∆q is increasing.

Proof. Observe that

dR
dx

“
´φpxq p1´Φpx` ∆qq ` φpx` ∆q p1´Φpxqq

p1´Φpx` ∆qq2
“

1´Φpxq
1´Φpx` ∆q

ˆ

φpx` ∆q
1´Φpx` ∆q

´
φpxq

1´Φpxq

˙

The term of the product outside parentheses is the ratio of nonzero probabilities and hence positive.
The term in parentheses is also non-negative because it is the difference between two inverse Mills
ratios (which is an increasing function).38

Lemma 5. For any i ă j ă k, the ratio Prtaccepted at k, rejected at iu
Prtaccepted at j, rejected at iu increases with ρ.

Proof. Let B :“ Φ2pτi,8, ρq “ Φpτiq be the probability of rejection from school i; observe that B
is independent of ρ. Let gpρq :“ Φ2pτi, τj, ρq, and f pρq :“ Φ2pτi, τk, ρq, the probabilities of being
rejected from both i and j (resp. i and k). With this notation, our goal is to show that Hpρq :“
pB´ f pρqq{pB´ gpρqq is increasing. We will show that 9H ą 0.39

To begin with, note that 9H has the same sign as 9gpB´ f q´ 9f pB´ gq, and so it suffices to show that
pB´ f q
pB´gq ą

9f
9g . Conditional on Si “ x, the marginal distributions of Sj and of Sk are governed by the CDF

Φp y´ρx?
1´ρ2

q. Hence, by Fubini’s theorem,

pB´ f q
pB´ gq

“

şτi
´8

ˆ

1´Φ
ˆ

τk´ρx?
1´ρ2

˙˙

φpxqdx

şτi
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx

Lemma 4 implies that, on the domainp´8, τis, the ratio 1´Φ
ˆ

τk´ρx?
1´ρ2

˙

{1´Φ
ˆ

τj´ρx
?

1´ρ2

˙

is mini-

mized at x “ τi (since τj ą τk and ρ ě 0). Denote the minimal value by λ. We have

şτi
´8

ˆ

1´Φ
ˆ

τk´ρx?
1´ρ2

˙˙

φpxqdx

şτi
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx
ą

şτi
´8

λ

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx

şτi
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx
“ λ. (19)

Next, note that

1´Φ
ˆ

τk´ρτi?
1´ρ2

˙

1´Φ
ˆ

τj´ρτi?
1´ρ2

˙ ě

φ

ˆ

τk´ρτi?
1´ρ2

˙

φ

ˆ

τj´ρτi?
1´ρ2

˙ “
φ2pτi, τk, ρq

φ2pτi, τj, ρq

where the inequality uses again the monotonicity of the inverse Mill’s ratio.

38A straightforward way to see this is that φpx`∆q
1´Φpx`∆q ´

φpxq
1´Φpxq “ ErX|X ą x` ∆s ´ ErX|X ą xs.

39In line with the literature deriving these heat equations, we represent the derivative with respect to ρ as a dot.
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Finally, Plackett (1954) shows that

9φ2px, y, ρq “
B2φ2px, y, ρq

BxBy

which implies that 9g “ φ2pτi, τj, ρq and 9f “ φ2pτi, τk, ρq. Altogether, we obtain:

B´ f
B´ g

“

şτi
´8

ˆ

1´Φ
ˆ

τk´ρx?
1´ρ2

˙˙

φpxqdx

şτi
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx
ą λ “

1´Φ
ˆ

τk´ρτi?
1´ρ2

˙

1´Φ
ˆ

τj´ρτi?
1´ρ2

˙ ě
φ2pτi, τk, ρq

φ2pτi, τj, ρq
“

9f
9g

.

F.2 Proof of Proposition 3

We prove Proposition 3 using several intermediate results, Lemmas 6 to 8, established below.
First, we fix an ambient problem with a continuum of schools, and denote the optimal k-college

portfolio in this problem by Ppkq. Throughout our analysis, we assume that all schools place some
weight on the common component, ρ ą 0.

Lemma 6. If k ą 1, the lowest-ranked college in the optimal k-portfolio is a safety: Ppkqpkq ă m.

Proof. We start with the case of k “ 2 and then consider k ą 2.

Step 1 (k “ 2). We establish a stronger claim than that asserted: following rejection from a college whose
threshold is w P R, the optimal backup college is always a safety.

Denote by Upz, xq the expected utility from applying only to a college of quality z conditional on
receiving a score of x in another college. Since the correlation between scores is ρ we have that

Upz, xq “

˜

1´Φ

˜

τpzq ´ ρx
a

1´ ρ2

¸¸

upzq.

Define Vpz, wq :“
şw
´8

Upz, xqφpxqdx to be the (ex ante) expected marginal value from applying to
college z as a backup for a college whose threshold is w. Denote z˚pwq :“ argmaxz Vpz, wq to be the
best backup when rejected by a college with threshold w;40 by definition, z˚pwq then solves the first
order condition BV

Bz “ 0.
Observe that m “ z˚p8q: the match is the best backup for a school that rejects all scores (as that

rejection conveys no information). Furthermore, since u, τ, and Φ are all smooth,

BVpz, wq
Bz

“

ż w

´8

BU
Bz

φpxqdx,

40We assume for expositional simplicity that the solution is unique; if otherwise, the arguments apply with a tie-breaking
rule that selects the highest solution.
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and z˚p8q solves

BVpz,8q
Bz

“ lim
wÑ8

BVpz, wq
Bz

“ 0.

Below, we argue that for any finite w, z˚pwq ă z˚p8q “ m, which implies that the optimal backup
following any first choice is a safety school.

We first note that if ρ “ 0, then success is independent and then z˚pwq “ m: the optimal backup
for any w is the match m. By Lemma 5, increasing the correlation to ρ ą 0 implies that z˚pwq ď m.

First, we consider high values of w. Observe that the derivative of Upz, xqwith respect to z is

BU
Bz

“

˜

1´Φ

˜

τpzq ´ ρx
a

1´ ρ2

¸¸

du
dz
´

˜

φ

˜

τpzq ´ ρx
a

1´ ρ2

¸¸

upzq
dτ

dz
.

Fixing z, this expression is strictly positive for sufficiently large x given that ρ ą 0: as x Ñ 8, the
coefficient on the positive term, namely du

dz , increases to 1 and that on the negative term, namely
´upzqdτ

dz decreases to 0. Therefore, for sufficiently large ŵ, for any w̃ ě ŵ, BU
Bz |z“m,x“w̃ ą 0.

It then follows that

0 “
BV
Bz

ˇ

ˇ

ˇ

z“m,w“8
“

ż 8

´8

BUpz, xq
Bz

ˇ

ˇ

ˇ

z“m
φpxqdx “

ż w̃

´8

BUpz, xq
Bz

ˇ

ˇ

ˇ

z“m
φpxqdx`

ż 8

w̃

BUpz, xq
Bz

ˇ

ˇ

ˇ

z“m
φpxqdx

ą

ż w̃

´8

BUpz, xq
Bz

ˇ

ˇ

ˇ

z“m
φpxqdx “

BV
Bz

ˇ

ˇ

ˇ

z“m,w“w̃
,

where the equalities follow from z˚p8q “ m and the strict inequality follows from w̃ ě ŵ. The
expression above shows that for any w̃ ě ŵ, z˚pw̃q ‰ m. As we have from before that z˚pw̃q ď m, it
follows that z˚pw̃q ă m.

To complete the proof, consider a two-college portfolio in which the top choice has a threshold
w lower than ŵ. We compare z˚pwq with z˚pŵq. Observe that the former corresponds to choosing
a single-college portfolio after being rejected by school with threshold w and the latter to a single-
college portfolio after being rejected by a school with higher threshold ŵ. Since the former has lower
beliefs in an LR-sense (Karlin and Rinott, 1980), Proposition 1 implies that for any w ă ŵ, z˚pwq ď
z˚pŵq. This completes the proof as we have shown above that z˚pŵq is strictly less than m.

Step 2 (k ą 2). The proof for the case k ą 2, is nearly identical. We define

Vpz; w1, . . . , wk´1q “

ż w1

´8

. . .
ż wk´1

´8

Upz; x1, . . . , xk´1qφpk´1qpxqdx1 . . . , dxk´1

where
Upz; x1, . . . , xk´1q “

ˆ

1´Φ
ˆ

τpzq ´ α
ř

xi

β

˙˙

upzq,

for the appropriate positive α, β.41 Vpz; w1, . . . , wk´1q is the expected added value from applying to
college z as a backup after being rejected by colleges whose thresholds are w1, . . . , wk´1. We denote

41Positivity follows from the covariance matrix being positive semi-definite.
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z˚pw1, . . . , wk´1q :“ argmaxVpz; w1, . . . , wk´1q.
We assume, by induction, that for any w :“ pw1, . . . , wk´2q P Rk´2 we have z˚pwq ă m. The base

case of this inductive argument was established in Step 1. Observe that

z˚p8, w2, . . . , wk´1q “ z˚pw2, . . . , wk´1q ă m

in which the equality follows from the property that being rejected by a school whose threshold is8
is completely uninformative and does not change the optimal backup; the inequality follows from the
inductive hypothesis. Finally, observe that for w1 ă 8, z˚pw1, w2, . . . , wk´1q ď z˚p8, w2, . . . , wk´1q:
being rejected by a school with threshold w1 ă 8 leads to LR-lower beliefs than a school with thresh-
old8 (Karlin and Rinott, 1980), and hence, Proposition 1 implies that the optimal single-college with
the former beliefs is a lower-ranked school than those with the latter.

Lemma 7. If k ą 1, the highest-ranked college in the optimal k-portfolio is a reach: Pp1qpkq ą m.

Proof. Using Ppkq to denote the optimal portfolio, we write P̃ :“ pPp2qpkq, . . . , Ppkqpkqq to denote the
backups if Ann’s top choice Pp1qpkq rejects her. For a school i, we denote qi to be its quality.

Define Wpqiq :“ E
”

maxtjPP̃:Sjěτpqjqu
upqjq | Si ă τpqiq

ı

to be the expected payoff from the portfolio

P̃ conditional on being rejected by College i. The interpretation of Wpqiq is that if Ann selects College i
to be her top choice and the portfolio P̃ as her pk´ 1q backup options, her conditional expected payoff
following rejection from College i is Wpqiq. Observe that W is differentiable and strictly increasing in
its argument, and hence W1pqq ą 0 for every quality q.42

The optimal top choice Pp1qpkq chooses a quality q to maximize

p1´Φ pτpqqqq upqq
loooooooooomoooooooooon

Accepted by top choice

` Φ pτpqqqWpqq.
loooooooomoooooooon

Continuation P̃ after rejection

(20)

Taking the first-order condition yields that for a solution q˚

p1´Φ pτpq˚qqq u1pq˚q ´ φ pτpq˚qq τ1pq˚qupq˚q ` φ pτpq˚qq τ1pq˚qWpq˚q `Φ pτpzqqW1pq˚q “ 0 (21)

Observe that the third and fourth terms of the LHS are strictly positive for every value of q.
We argue that q˚ must be strictly higher than the quality of the match, m. Suppose towards a

contradiction that q˚ ď m. By definition, College m maximizes p1´Φ pτpqqqq upqq. Thus, setting
q˚ “ m in the LHS of (21) would result in the first two terms equaling zero but the third and fourth
terms remaining strictly positive, invalidating m as an optimal choice. Now suppose that q˚ ă m.
Relative to q˚, College m achieves a strictly higher payoff—by definition, the first term of (20) is
strictly higher, and the second term is as well since Φ and Wp¨q are strictly increasing—contradicting
that any q˚ ă m is optimal.

42To see why it is strictly increasing, suppose that College i is of strictly lower quality than College ` (qi ă q`). Because
College i is less selective than College `, being rejected by it is worse news for Ann’s scores Sj for j P P̃ in a likelihood-ratio
and thus in the first-order stochastically dominance sense (Karlin and Rinott, 1980). Therefore, Ann’s expected payoff
from P̃ is strictly lower if she is rejected by College i than if she is rejected by College `.
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Our results establish that given a continuum of qualities, every optimal portfolio of two or more
colleges includes a safety and reach. We now show that optimal portfolios chosen from any suffi-
ciently fine grid share these properties.

Lemma 8. For any k and δ ą 0, there exists ε̄ ą 0 such that max1ďiďk

!ˇ

ˇ

ˇ
Pε
piqpkq ´ Ppiqpkq

ˇ

ˇ

ˇ

)

ă δ whenever
ε ă ε̄.

Proof. Assume towards a contradiction that this is not the case. Then, since r0, 1sk is compact, there
is a sequence of positive values εn Ñ 0 such that Pεnpkq Ă r0, 1sk that converges to Q P r0, 1sk, with
Q ‰ Ppkq. Since VpPq is continuous in P, the expected utility from portfolios in this subsequence
converges to VpQq. Since we assumed that Q is not optimal from the continuum menu, VpQq ă
VpPpkqq. Since Cεn is increasingly fine, one can construct a sequence of k-college portfolios Tn Ă Cεn ,
such that Tn Ñ Ppkq. But, by continuity of V, this implies that for sufficiently large n, Tn achieves
strictly higher utility than Pεnpkq, contradicting the optimality of Pεnpkq.

F.3 Proof of Proposition 4

The proof comprises two parts. Lemma 9 shows that the number of College 1 replicas in the optimal
k-college portfolio approaches infinity as k Ñ8; the main idea is that if this were not to happen, then
an additional application to College 1 would accrue a higher marginal benefit than an additional
application to colleges that feature often in the k-college portfolio, suggesting a profitable deviation.
Lemma 10 establishes that the number of College m replicas in the optimal k-college portfolio also
approaches infinity as k Ñ 8; this argument is considerably more involved, where we compare the
rates of bad-news generated by rejections to show that if it were otherwise, there is a greater marginal
benefit from applying to more replicas of College m then the least selective school that features often
in the optimal k-portfolio. Throughout our analysis, we denote the optimal k-portfolio by Ppkq. We
also assume that there are multiple rationalizable college types (m ą 1) because otherwise, the result
holds trivially.

Lemma 9. The number of College 1 replicas in Ppkq approaches infinity as k approaches infinity.43

Proof. Towards a contradiction, suppose that lim inf |tx P Ppkq | x is a replica of College 1u| “ k̃ ă 8.
Then, there is an increasing sequence of portfolio sizes tkiu

8
i“1 such that in each portfolio Ppkiq, the

number of replicas of College 1 is at most k̃. By the Pigeonhole Principle, for this sequence, there
exists i ą 1 such that lim sup |tx P Ppkq | x is a replica of College iu| “ 8. Let ` ą 1 be the lowest
such index.

Take a subsequence of portfolio sizes such that the number of replicas of College ` increases to
infinity and the number of replicas of each higher-ranked college remains constant along the sub-
sequence.44 For a sufficiently large portfolio in this sequence, admission to a replica of College ` is

43Our argument allows for the case of independent success (ρ “ 0); for that model, Lemma 9 combined with Proposition 9
implies that there exists finite integers M and k such that for all k1 ą k, the optimal k1-portfolio has at least pk1 ´ Mq
replicas of College 1.

44This is possible as, by construction, the number of replicas of such colleges is uniformly bounded across all portfolio sizes
in the sequence.
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nearly guaranteed, even when conditioning on all better schools rejecting one’s application.45 There-
fore, the marginal benefit of an additional application to a replica of College ` is vanishing.

Next, observe that since the number of applications to replicas of Colleges 1, . . . , p`´ 1q is constant
on the subsequence, there exists K P p0, 1q such that, for any portfolio in the subsequence, Ann is
rejected from all replicas of Colleges 1, . . . , p`´ 1qwith probability K. Furthermore, there exists ∆ ą 0
such that, conditional on being rejected from all replicas of Colleges 1, . . . , p`´ 1q, Ann believes that
she will be admitted to College 1 with probability ∆.46 Hence, for sufficiently large portfolios in
the subssequence, Ann strictly prefers to replace a replica of College ` with a replica of College 1,
contradicting the optimality of Ppkq.

Lemma 10. The number of College m replicas in Ppkq approaches infinity as k approaches infinity.

As the proof for this result is intricate, we first sketch the intuition. The key idea is that if
Lemma 10 were false, then most of the applicant’s backup options are schools more selective than
m. These backup options are useful only if an applicant is rejected by all other schools, which con-
veys bad news about her common score. We show under this bad news, the applicant obtains a much
higher marginal benefit from applying to a less selective rationalizable school than the least selective
one that features often in her portfolio, resulting in a contradiction. Our argument is notationally in-
tensive because making these comparisons requires comparing and bounding the relative likelihood
of various tail events.

Proof. Suppose towards a contradiction that there exists an increasing sequence of portfolio sizes,
tkju8j“1 Ñ 8 and finite integer k̃ ă 8 such that the number of College m replicas in Ppkjq is lower
than k̃ for each kj. Let ` ă m denote the largest index such that

lim sup
ˇ

ˇ

ˇ

!

x P Ppkjq | x is a replica of College `
)ˇ

ˇ

ˇ
“ 8,

where the existence of such an ` is guaranteed by the Pigeonhole Principle. The sequence tkju8j“1

has a subsequence such that i) the number of College ` replicas is positive and increasing along the
sequence, and ii) the number of applications to replicas of each college in t`` 1, . . . , mu is constant
along the sequence. Without loss of generality, we assume that tkju8j“1 has these properties.

For a portfolio of k schools, let k1, k2, . . . k` denote the number of applications to replicas of Col-
leges 1, 2, . . . , `, respectively. In what follows, we will show that, for sufficiently large portfolios,

45Recall that, on the subsequence, the number of copies of each of Colleges t1, . . . , `´ 1u is fixed. Conditional on being
rejected from all these colleges, Ann’s beliefs about her score are distributed on R, with full support. For every ε ą 0 there
exists a sufficiently low s˚ such that she believes that her score is above s˚ with probability higher than

?
1´ ε. Observe

that there exists k̃ such that if Ann conditioned on the common component of her score being some s ě s˚, she would
be accepted by a replica of College ` with probability higher than

?
1´ ε if she were to submit k̃ applications to schools

of that type. Hence, conditional on S ą s˚ admission occurs at least with probability
?

1´ ε, and since the conditional
probability that S ą s˚ is greater than

?
1´ ε, Ann’s believes, conditional on rejections from all higher ranked colleges,

that she will be admitted to College ` with probability greater than 1´ ε.
46To see this, note that for sufficiently low ε ą 0, there is a probability higher than ε that the common component of

Ann’s score ρS P rτ`, τ` ` 1s but, for all of the independent draws for replicas of Colleges 1, . . . , p` ´ 1q are such that
´

a

1´ ρ2
¯

εc ă ´1. Conditional on this positive probability event, Ann’s probability of admission to College ` is greater
than 1{2. This allows us to set ∆ “ ε{2.
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replacing an application to a replica of College ` in Ppkq with an application to a replica of Col-
lege p`` 1qwill be strictly beneficial to Ann (contradicting the optimality of this portfolio).

To simplify notation, we denote the CDF of the common component, ρS, by G, and its PDF by g,
and similarly, the CDF of schools specific component,

a

1´ ρ2εc by F and the PDF by f . Without loss
of generality, we also normalize the outside option to zero. Using this notation, for any k P tkju8j“1,
the benefit from the k`-th application to a replica of College ` is bounded above by

ż 8

´8

gpzq

˜

`´1
ź

i“1

pFpτi ´ zqqki

¸

pFpτ` ´ zqqk`´1 p1´ Fpτ` ´ zqq u`dz. (22)

The expression (22) is an upper bound on the value of the marginal application to a replica of Col-
lege `: this application is beneficial if Ann is rejected by all (weakly) preferred colleges, and it is an
upper bound as it ignores the fact that if Ann is rejected by all these colleges, she may still be accepted
by a college in her portfolio that is lower ranked than `.

Let k denote the total number of applications to colleges of types in tl` 1, . . . , mu in the sequence
of optimal portfolios. The marginal benefit from an application to College p`` 1q is no less than

ż 8

´8

gpzq

˜

`´1
ź

i“1

pFpτi ´ zqqki

¸

pFpτ` ´ zqqk`´1 p1´ Fpτ``1 ´ zqq u``1pFpτm ´ zqqkdz. (23)

The expression (23) offers a lower bound because it stipulates that Ann benefits from the additional
application to a college of type p`` 1q only if she is rejected by all other colleges, including colleges
that are less selective, and assuming that all colleges of type t`` 1, . . . , mu use the threshold of college
m. Our argument below shows that (23) exceeds (22) for sufficiently large portfolios.

Let κ :“
ř`

i“1 ki ´ 1 be the number of applications submitted to schools of type 1, . . . , `, excluding

the marginal application to a school of type `. Define F̂κpzq :“
”´

ś`´1
i“1 pFpτi ´ zqqki

¯

pFpτ` ´ zqqk`´1
ı1{κ

as the geometric mean. Observe that for each z P R, Fpτ` ´ zq ď F̂κpzq ď Fpτ1 ´ zq. Furthermore, F̂κ is
strictly decreasing and continuous, and therefore invertible. Hence, for each x P r0, 1s,

τ` ´ F´1pxq ď F̂´1
k pxq ď τ1 ´ F´1pxq. (24)

Using a change-of-variables (x “ F̂κpzq), we can rewrite (22) as

´

ż 1

0
gpF̂´1

κ pxqqxκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
1

F̂1κ
´

F̂´1
κ pxq

¯dx (25)

and the lower bound (23)

´

ż 1

0
gpF̂´1

κ pxqqxκ
´

1´ Fpτ``1 ´ F̂´1
κ pxqq

¯

u``1Fkpτm ´ F̂´1
κ pxqq

´1

F̂1κ
´

F̂´1
κ pxq

¯dx. (26)

Our argument proceeds by showing that the ratio of (26) to (25) approaches infinity, which implies
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that the marginal benefit of applying to a replica of College p`` 1q is significantly higher than apply-
ing to a replica of College `.

To this end, we consider a lower bound for (26). By (24), as x approaches 1 we have that F̂´1
κ pxq

approaches ´8. Hence, the positive expressions 1´ Fpτ``1 ´ F̂´1
κ pxqq and 1´ Fpτ` ´ F̂´1

κ pxqq both
approach 0 as x approaches 1. Therefore, for any M ą 0, there exists 0 ă εM ă 1{4 such that in the
interval p1´ εM, 1qwe have

1´ Fpτ``1 ´ F̂´1
κ pxqq “ 1´ F

´

pτ``1 ´ τ`q ` τ` ´ F̂´1
κ pxq

¯

ą M
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

.47

Furthermore, using (24) and the monotonicity of F and F̂κ, we get that for any x ě 1´ εM,

Fkpτm ´ τ1 ` F´1p1´ εMqq ď Fkpτm ´ F̂´1
κ p1´ εMqq ď Fkpτm ´ F̂´1

κ pxqq.

Restricting the domain of integration in (26) to r1´ εM, 1s yields the following lower bound on (26)

ż 1

1´εM

gpF̂´1
κ pxqqxκ

´

1´ Fpτ``1 ´ F̂´1
κ pxqq

¯

u``1Fkpτm ´ F̂´1
κ pxqq

´1

F̂1κ
´

F̂´1
κ pxq

¯dx

which, using the inequalities we developed for the domain r1´ εM, 1s, provides us with the following
relaxed lower bound on (26):

´

ż 1

1´εM

gpF̂´1
κ pxqqxκ M

´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u``1Fkpτm ´ τ1 ` F´1p1´ εMqq
1

F̂1κ
´

F̂´1
κ pxq

¯dx. (27)

We now consider an upper bound for (25). Our approach uses a concentration argument in which
we show that in large portfolios, when conditions on her marginal application being relevant—i.e.,
many weakly more desirable schools have rejected her—then her beliefs are concentrated on very
low values of the common score.

First, we consider the integral from (25) restricted to low beliefs (x ě 1{2). Observe that

ż 1

1
2

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx ą
ˆ

3
4

˙κ ż 1

3
4

´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx.

Additionally, by (24) we have

ˆ

3
4

˙κ ż 1

3
4

´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx ą
ˆ

3
4

˙κ ż 1

3
4

´

1´ FpF´1pxqq
¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx.

47To see this, write ∆ “ τ` ´ τ``1 ą 0 and z “ τ` ´ F̂´1
κ pxq, and observe that p1´ Fpz´ ∆qq { p1´ Fpzqq approaches infinity

as z approaches infinity (by Lemma 4).
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Similarly, we obtain

ż 1
2

0
xκ

´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx ă
ˆ

1
2

˙κ ż 1
2

0

´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx

and by (24)

ˆ

1
2

˙κ ż 1
2

0

´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx ă
ˆ

1
2

˙κ ż 1
2

0

´

1´ Fpτ` ´ τ1 ` F´1pxqq
¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx.

Combining these inequalities, we obtain

ş1
1
2

xκ
`

1´ Fpτ` ´ F̂´1
κ pxqq

˘

u`
´gpF̂´1

κ pxqq
F̂1κpF̂

´1
κ pxqq

dx

ş

1
2
0 xκ

´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq
F̂1κpF̂

´1
κ pxqq

dx
ą
p3{4qκ

p1{2qκ

ş1
3
4

`

1´ FpF´1pxqq
˘

u`
´gpF̂´1

κ pxqq
F̂1κpF̂

´1
κ pxqq

dx

ş

1
2
0 p1´ Fpτ` ´ τ1 ` F´1pxqqq u`

´gpF̂´1
κ pxqq

F̂1κpF̂
´1
κ pxqq

dx
.

As the RHS above approaches infinity as m Ñ8,48 we obtain that for sufficiently large m,

2
ż 1

1
2

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx ą
ż 1

0
xκ

´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx.

Observe that we can write the LHS above as

2
ż 1´εM

1
2

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx` 2
ż 1

1´εM

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx.

As the expression ´gpF̂´1
κ pxqq

F̂1κpF̂
´1
κ pxqq

is uniformly bounded above by some L ą 0 in the domain r 1
2 , 1´ εMs, it

follows that

ż 1´εM

1
2

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx ď Lu`

ż 1´εM

1
2

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

dx

ď
p1´ εMq

κ`1

κ` 1
Lu`.

Similarly, the expression
`

1´ Fpτ` ´ F̂´1
κ pxqq

˘ ´gpF̂´1
κ pxqq

F̂1κpF̂
´1
κ pxqq

is uniformly bounded below by some ∆ ą 0

48The right hand side grows to infinity since p 3
4 {

1
2 q

κ approaches infinity, while the ratio of integrals is bounded below by a
positive number. To see this, note that the integrals depend on m only through the vector pk1{κ, k2{κ, . . . , pkl ´ 1q{κq, and
the values of these integrals are continuous in this vector. Thus, they attain a minimum and a maximum in the `-simplex.
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in the domain r1´ εM, 1´ εM{2s. Thus,

ż 1

1´εM

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx ą
ż 1´ 1

2 εM

1´εM

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx

ě
εM∆u`

2
p1´ εMq

κ.

Since for sufficiently large values of κ we have

εM∆u`

2
p1´ εMq

κ ě
p1´ εMq

κ`1

κ` 1
Lu`,

we obtain that for sufficiently large values of k

ż 1

1
2

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx ă 2
ż 1

1´εM

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx.

The above offers the following upper bound on the marginal benefit of the k`-th application to a
school of type `:

4
ż 1

1´εM

xκ
´

1´ Fpτ` ´ F̂´1
κ pxqq

¯

u`
´gpF̂´1

κ pxqq

F̂1κ
´

F̂´1
κ pxq

¯dx. (28)

To complete the proof, observe that taking the ratio of (27) to the (28), we obtain

Mu``1FBpτm ´ τ1 ` F´1p1´ εMqq

4u`
. (29)

The numerator of (29) increases to infinity as M increases to infinity, and the denominator is inde-
pendent of M. Thus, for sufficiently large values of M, (29) is greater than 1. As the numerator is a
lower bound for the marginal benefit of sending the k`-th application to a college of type p`` 1q and
the denominator is an upper bound of the marginal benefit of sending it to a college of type `, we
obtain a strict improvement, contradicting that portfolio Ppkq is optimal.

F.4 Proof of Proposition 5

We write the payoff from a two-college portfolio in which College i is the top choice and College j is
the backup:

Vpij, ρq :“ p1´Φpτiqq ui
looooooomooooooon

College i accepts

`
`

Φpτiq ´Φ2pτi, τj, ρq
˘

uj.
looooooooooooooomooooooooooooooon

College i rejects, College j accepts

Let ij be the optimal pair under correlation ρ and i1 j1 be that under correlation ρ1 ą ρ, where in each
case, we write the top choice first.

Suppose towards a contradiction that i ă i1 ă j1 ă j. By definition, Vpij, ρq ě Vpij1, ρq and
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Vpi1 j1, ρ1q ě Vpi1 j, ρ1q. Re-arranging these inequalities yields

Φpτi1q ´Φ2pτi1 , τj, ρ1q

Φpτi1q ´Φ2pτi1 , τj1 , ρ1q
ď

uj1

uj
ď

Φpτiq ´Φ2pτi, τj, ρq

Φpτiq ´Φ2pτi, τj1 , ρq
. (30)

By Lemma 5,

Φpτiq ´Φ2pτi, τj, ρq

Φpτiq ´Φ2pτi, τj1 , ρq
ă

Φpτiq ´Φ2pτi, τj, ρ1q

Φpτiq ´Φ2pτi, τj1 , ρ1q
.

Thus, to reach a contradiction to (30), it suffices to show that

Φpτiq ´Φ2pτi, τj, ρ1q

Φpτiq ´Φ2pτi, τj1 , ρ1q
ď

Φpτi1q ´Φ2pτi1 , τj, ρ1q

Φpτi1q ´Φ2pτi1 , τj1 , ρ1q
.

For τ ě τj1 , let

Λpτq :“
Φpτq ´Φ2pτ, τj, ρ1q

Φpτq ´Φ2pτ, τj1 , ρ1q

denote the relative odds under correlation ρ1 of being accepted by College j, rather than j1, and re-
jected by a College whose threshold is τ. As College j is less selective than College j1, observe that
Λpτq is greater than 1. We show that dΛ

dτ ă 0 for any τ ą τj1 ; intuitively, the bad news effect from
being rejected by the top choice attenuates as the top choice becomes more selective. Observe that

Λpτq “

şτ
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx

şτ
´8

ˆ

1´Φ
ˆ

τj1´ρx
?

1´ρ2

˙˙

φpxqdx
.

Taking the derivative with respect to τ, dΛ
dτ then has the same sign as

˜

1´Φ

˜

τj ´ ρτ
a

1´ ρ2

¸¸

φpτq

ż τ

´8

˜

1´Φ

˜

τj1 ´ ρx
a

1´ ρ2

¸¸

φpxqdx´

˜

1´Φ

˜

τj1 ´ ρτ
a

1´ ρ2

¸¸

φpτq

ż τ

´8

˜

1´Φ

˜

τj ´ ρx
a

1´ ρ2

¸¸

φpxqdx,

which in turn has the same sign as

şτ
´8

ˆ

1´Φ
ˆ

τj1´ρx
?

1´ρ2

˙˙

φpxqdx

şτ
´8

ˆ

1´Φ
ˆ

τj´ρx
?

1´ρ2

˙˙

φpxqdx
´

ˆ

1´Φ
ˆ

τj1´ρτ
?

1´ρ2

˙˙

φpτq
ˆ

1´Φ
ˆ

τj´ρτ
?

1´ρ2

˙˙

φpτq

which is negative by Equation (19).

23



F.5 Effect of Increasing Weight on Common Component: Examples

This subsection illustrates how increasing the weight on the common component, ρ, can induce the
optimal two-college portfolio to become less or more aggressive.

Example 1. Let C “ t1, 2, 3, 4u, u1 “ 1.0099, u2 “ 1, u3 “ 0.5, and u4 “ 0.2, and admission thresholds
implicitly defined by Φpτ1q “ 65{81, Φpτ2q “ 0.8, Φpτ3q “ 0.5, and Φpτ4q “ 0.01. If ρ “ 1, the optimal
2-college portfolio is t2, 4uwhereas if ρ “ 0, the optimal 2-college portfolio is t1, 3u.

Example 2. Let C “ t1, 2, 3u, u1 “ 1, u2 “ 0.5, and u3 “ 0.48, and admission thresholds implicitly
defined by Φpτ1q “ 0.99, Φpτ2q “ 0.5, Φpτ3q “ 0.49. If ρ “ 1 the optimal 2-college portfolio is t1, 2u
whereas if ρ “ 0, the optimal 2-college portfolio is t2, 3u.

G Results for Section 4.2

Proof of Proposition 6. First, we show that the utility from the optimal p2k ´ 1q-portfolio is an upper
bound for that achieved by the optimal k-strategy. Any k-strategy details one project to attempt first
(corresponding to the “start here” label in Figure 9), two projects to attempt next (in case of success
and failure), and generally 2j projects in the j-th step. Thus, any strategy can attempt at most 2k ´ 1
projects. Since the optimal p2k ´ 1q-portfolio chooses the best such set of projects, it guarantees at
least as much utility.49

We next show that there exists a k-strategy that attains this upper bound (and is therefore optimal).
Ann first attempts the median project in the optimal p2k ´ 1q-portfolio. If it succeeds, she does not
gain from attempting any lower-ranked projects; similarly, if it fails, she has no reason to attempt any
higher-ranked project. Based on this observation, Ann attempts the median project among the top
2k´1 ´ 1 projects of the optimal p2k ´ 1q-portfolio if her first attempt succeeds (the first blue arrow
in Figure 9) and the median project among the bottom 2k´1 ´ 1 projects if her first attempt fails (the
first red arrow in Figure 9). Generally, in each Step j she attempts the median project among the
remaining 2k´j`1 ´ 1 relevant projects. In this way, she is guaranteed to choose the same project as if
she attempted all projects in the optimal p2k ´ 1q-portfolio simultaneously.

This analysis compares the optimal k-strategy with optimal k-portfolio. Alternatively, one might
be interested in sequential search with a constant marginal cost of each attempt. We highlight some
contrasts below using an example.

Example 3. Let C “ t1, 2, 3u and assume that s is distributed uniformly on r0, 1s, with τ1 “ 0.9,
τ2 “ 0.5, and τ3 “ 0. Furthermore, let u1 “ 1.1, u2 “ 0.5, and u3 “ 0.1. We assume a constant
marginal cost of each attempt, i.e., φpxq :“ cx for some c ą 0. We will consider two specific values of
c: c1 “ 0.051 and c2 “ 0.01.

We begin by considering Ann’s dynamic search strategy. First, we observe that Project 2 is so
attractive that she will not stop searching without trying Project 2 unless she is successful with
Project 1. There are other strategies that can be easily ruled out. For example, strategies where

49We note that this upper bound is independent of the correlation in project outcomes.
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Ann tries Project 3 and, if successful, then tries Project 1. Ann can save search costs by first trying
Project 1, and only trying Project 3 in case of failure.

The values of c we consider are low enough that Ann is willing to try Project 1 even after success
in Project 2, and is willing to try Project 3 even after failure in Project 2. This leaves us with two
reasonable strategies: Top to Bottom (first try Project 1, Project 2 if failure, Project 3 if that too fails),
or Middle Out (first try Project 2, Project 1 if success, Project 3 if failure). The expected cost from Top
to Bottom is c ˆ p1` 0.9` 0.5q “ 2.4c. The cost for Middle Out is 2c; either way Ann attempts two
projects. Hence, this latter strategy is optimal.

Let us now compare the static portfolio to the dynamic strategy. For c “ 0.051, the optimal static
portfolio is t1, 2u. This is weakly (and sometime strictly) more aggressive than the set of colleges
searched by Ann (either t1, 2u or t2, 3u). For c “ 0.01, the optimal static portfolio includes all three
colleges but Ann only searches two in the dynamic setup.

These results contrast with those from independent success: Chade and Smith (2006) show that
agents stop searching after the first success and that sequential search, relative to the simultaneous
problem, opts for more aggressive projects.
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