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A Proofs

A.1 Proof of Proposition 1

Under full information, the objective function of the government is

sup
πt

E0

∞

∑
t=0

βtUt (πt, Et [πt+1|θt] , θt) .

Taking the FOC in πt, we have

0 = βt−1 ∂Ut−1

∂Et−1πt

∂Et−1πt

∂πt(θt)
f (θt−1) + βt ∂Ut

∂πt
f (θt)

From here, we have ∂Et−1πt
∂πt(θt)

= f (θt|θt−1), so that we have

0 =
∂Ut−1

∂Et−1πt
+ β

∂Ut

∂πt

from which the result follows.

A.2 Proof of Proposition 3

The proof strategy is as follows. First, we derive the relevant envelope condition associated with

local incentive compatibility, which defines necessary conditions on the value function associated

with an incentive compatible mechanism (as in e.g., Farhi and Werning 2013, Pavan et al. 2014). We

then show that the value function generated by our mechanism satisfies this envelope condition.

Envelope condition. Suppose that the central bank has a history θt−1 of reports and has a current

true type θt. Given a mechanism with transfer rule Tt and allocation rule πt, the value function of a

central bank that has truthfully reported in the past, assuming truthful reporting in the future, as a

function of its current report is given by equation (6),

Wt(θ
t−1, θ̃t|θt) = Ut

(
πt(θ

t−1, θ̃t), πe
t (θ

t−1, θ̃t), θt

)
+Tt(θ

t−1, θ̃t)+ βEt

[
Wt+1(θ

t−1, θ̃t, θt+1|θt+1)
∣∣∣θt

]
.

Recall that πe
t (θ

t−1, θ̃t) = Et
[
πt+1(θ

t−1, θ̃t, θt+1)|θ̃t
]

is a function of the reported type, not the true

type, at date t. Furthermore recall that Wt+1 is also a function of the reported type θ̃t but not the
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true type θt. As a result, the Envelope Condition, obtained by Envelope Theorem, in the true type

θt, evaluated at truthful reporting θ̃t = θt, is

∂Wt(θt)

∂θt
=

∂Ut (πt, πe
t , θt)

∂θt
+ β

∂Et

[
Wt+1(θ

t−1, θ̃t, θt+1)

∣∣∣∣θt

]
∂θt

∣∣∣∣
θ̃t=θt

where we have

∂Et

[
Wt+1(θ

t−1, θ̃t, θt+1)

∣∣∣∣θt

]
∂θt

=
∂

∂θt

∫ θ

θ
Wt+1(θ

t−1, θ̃t, θt+1) f (θt+1|θt)dθt+1

= Et

[
Wt+1(θ

t−1, θ̃t, θt+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
Substituting in and evaluating at truthful reporting, we obtain

∂Wt(θt)

∂θt
=

∂Ut (πt, πe
t , θt)

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
which provides a conventional envelope condition for incentive compatibility. For clarity, note

that ∂Ut(πt,πe
t ,θt)

∂θt
is the derivative of Ut in the direct type θt, but not including the Phillips curve

expectation, which is the derivative in the reported type.

Verifying the envelope condition. We now verify the value function under our mechanism

satisfies the envelope condition. Our mechanism has a transfer rule Tt(θt) = −νt−1(θ
t−1)(πt(θt)−

Et−1[πt|θt−1]) and an allocation rule given by the constrained efficient allocation of Proposition 1.

The value function associated with this mechanism is

Wt(θ
t) = −νt−1

(
πt − Et−1[πt|θt−1]

)
+ Ut (πt, Et [πt+1|θt] , θt) + βEt

[
Wt+1(θ

t+1)

∣∣∣∣θt

]
where νt−1, πt, Et−1[πt|θt−1] are the constrained efficient values associated with Proposition 1,

given the realized shock history. From here, recall that νt−1 and Et−1[πt|θt−1] are only functions of

θt−1. Therefore, ∂νt−1
∂θt

= ∂Et−1[πt|θt−1]
∂θt

= 0. Thus differentiating the value function in θt, we have

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

− νt−1
∂πt

∂θt
+

∂Ut

∂πt

∂πt

∂θt
+

∂Ut

∂Et [πt+1|θt]

dEt [πt+1|θt]

dθt
+ βEt

[
∂Wt+1(θ

t+1)

∂θt

∣∣∣∣θt

]
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The first line on the RHS are the terms associated with the envelope condition. The second line are

derivatives that arise because in equilibrium, the reported type equals the true type, and we have

evaluated the value function given truthful reporting. It therefore remains to show that the second

line sums to zero and hence our mechanism satisfies the required envelope condition.

It is helpful to write out the continuation value function Wt+1 in sequence notation. Iterating

forward, we obtain

Wt+1(θ
t+1) =− νt

(
πt+1 − Et[πt+1|θt]

)

− Et+1

[ ∞

∑
s=1

βsνt+s

(
πt+1+s − Et+s[πt+1+s|θt+s]

)∣∣∣∣θt+1

]

+ Et+1

[ ∞

∑
s=0

βsUt+1+s (πt+1+s, Et+1+s [πt+2+s|θt+1+s] , θt+1+s)

∣∣∣∣θt+1

]

The first two lines on the RHS are total expected discounted value arising from transfers. The third

line on the RHS is total expected discounted value arising from flow utility.

Notice from here that the second line is equal to zero. To see this, applying Law of Iterated

Expectations, when s ≥ 1 we have

Et+1

[
νt+sπt+1+s|θt+1

]
= Et+1

[
Et+s

[
νt+sπt+1+s

∣∣∣∣θt+s

]
|θt+1

]
= Et+1

[
νt+sEt+s

[
πt+1+s

∣∣∣∣θt+s

]
|θt+1

]
since νt+s is a function only of θt+s, and so is known at date t + s. As a result, the second line is

zero, and we can write

Wt+1(θ
t+1) =− νt

(
πt+1 − Et[πt+1|θt]

)

+ Et+1

[ ∞

∑
s=0

βsUt+1+s (πt+1+s, Et+1+s [πt+2+s|θt+1+s] , θt+1+s)

∣∣∣∣θt+1

]

Observe that this is an augmented Lagrangian at date t + 1: it is the date t + 1 lifetime value

(second line), plus an augmented penalty on date t + 1 inflation. The Ramsey solution is a critical

point of the augmented Lagrangian, which leads to a simple derivative. Formally from the Ramsey

solution of Proposition 1, we know that

dUt+1+s

∂Et+1+sπt+2+s
+ β

∂Ut+2+s

∂πt+2+s
= 0, s ≥ 0
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history by history. Therefore, we have

∂Wt+1(θ
t+1)

∂θt
= −∂νt

∂θt

(
πt+1 − Et[πt+1|θt]

)
− νt

(
∂πt+1

∂θt
− dEt[πt+1|θt]

dθt

)
+

∂Ut+1

∂πt+1

∂πt+1

∂θt

= −∂νt

∂θt

(
πt+1 − Et[πt+1|θt]

)
+ νt

dEt[πt+1|θt]

dθt

where the second line follows since νt =
∂Ut+1
∂πt+1

(Proposition 1).

Now substituting back into the expression for ∂Wt
∂θt

, we have

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

− νt−1
∂πt

∂θt
+

∂Ut

∂πt

∂πt

∂θt
+

∂Ut

∂Et [πt+1|θt]

dEt [πt+1|θt]

dθt

+ βEt

[
− ∂νt

∂θt

(
πt+1 − Et[πt+1|θt]

)
+ νt

dEt[πt+1|θt]

dθt

∣∣∣∣θt

]
The first term on the third line is zero, since

Et

[
− ∂νt

∂θt

(
πt+1 − Et[πt+1|θt]

)∣∣∣∣θt

]
= −∂νt

∂θt
Et

[
πt+1 − Et[πt+1|θt]

∣∣∣∣θt

]
= 0.

From here, we can rearrange terms to get

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

+

[
− νt−1 +

∂Ut

∂πt

]
∂πt

∂θt
+

[
∂Ut

∂Et [πt+1|θt]
+ βνt

]
dEt [πt+1|θt]

dθt

By Proposition 1, we have −νt−1 +
∂Ut
∂πt

= 0 and ∂Ut
∂Et[πt+1|θt]

+ βνt = 0.56 Thus, the entire second line

is zero, and we are left with

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
which is the required envelope condition. This concludes the proof.

56 For completeness, note that when considering the date 0 value function, we have ν−1 = 0 and have ∂Ut
∂πt

= 0 by
Proposition 1.
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A.3 Proof of Lemma 4

Global incentive compatibility implies equation (6) holds. Under a dynamic inflation target, the

transfer rule is

T(ϑt+s
t ) = −νt+s−1(ϑ

t+s
t )

(
πt+s(ϑ

t+s
t )− πe

t+s−1(ϑ
t+s
t )

)
.

Therefore, we have

Et

[
Wt+1(θ

t−1, θ̃t, θt+1|θt+1)

∣∣∣∣θt

]
=Et

[
− νt(ϑ

t
t)

(
πt+1(ϑ

t+1)− πe
t (ϑ

t
t)

)
+ Ut+1(πt+1(ϑ

t+1
t ), πe

t+1(ϑ
t+1
t ), θt+1)

∣∣∣∣θt

]

+ Et

[ ∞

∑
s=1

βsEt+1

[
− νt+s(ϑ

t+s
t )

(
πt+s+1(ϑ

t+s+1
t )− πt+s(ϑ

t+s
t )

)

+ Ut+s+1(πt+s+1(ϑ
t+s+1
t ), πe

t+s+1(ϑ
t+s+1
t ), θt+s+1)

∣∣∣∣θt+1

]∣∣∣∣θt

]

and using that along a one-shot deviation we have πe
t+s(ϑ

t+s
t ) = Et+s[πt+s+1(ϑ

t+s+1
t )|θt+s] for

s ≥ 1, we obtain

Et

[
Wt+1(θ

t−1, θ̃t, θt+1|θt+1)

∣∣∣∣θt

]
=− βνt(ϑ

t
t)

(
Et[πt+1(ϑ

t+1
t )|θt]− Et[πt+1(ϑ

t+1
t )|θ̃t]

)

+ Et

[ ∞

∑
s=1

βsUt+s(πt+s(ϑ
t+s
t ), Et+s[πt+s+1(ϑ

t+s+1
t )|θt+s]θt+s)

∣∣∣∣θt

]

Therefore, we obtain

Wt(θ
t−1, θ̃t|θt) =νt−1(θ

t−1)τt−1(θ
t−1) + Lt(ϑ

t
t |θt)

+ Ut

(
πt(θ

t−1, θ̃t), Et

[
πt+1(ϑ

t+1
t )

∣∣∣∣θ̃t

]
, θt

)
− Ut

(
πt(θ

t−1, θ̃t), Et

[
πt+1(ϑ

t+1
t )

∣∣∣∣θt

]
, θt

)

+ βνt(ϑ
t
t)

(
Et[πt+1(ϑ

t+1
t )|θ̃t]− Et[πt+1(ϑ

t+1
t )|θt]

)
Thus substituting into global IC obtains the result.

A.4 Proof of Proposition 7

We begin by describing the Ramsey allocation. Using νt−1 = ∂Ut
∂πt

and −βνt =
∂Ut
∂πe

t
, we obtain

νt−1 =
N

∑
n=1

∂Utn(xtn, θt)

∂xtn
ctn
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νt = −
N

∑
n=1

∂Utn(xtn, θt)

∂xtn
dtn

A.4.1 A Tractable Representation of Augmented Lagrangian

Becuase Utn is linear-quadratic in xtn, we can do an exact second order Taylor series expansion of

Utn around xtn(θt) to obtain for an alternate policy x̃tn

Utn(x̃tn, θt) = Utn(xtn(θ
t), θt)+

∂Utn(xtn(θt), θt)

∂xtn(θt)
(x̃tn − xtn(θ

t))+
1
2

∂2Utn(xtn(θt), θt)

∂xtn(θt)2 (x̃tn − xtn(θ
t))2

Observing that ∂2Utn(xtn(θt),θt)
∂xtn(θt)2 = −atn(θt), then we can write

Ut(xt(θ
t), θt)−Utn(x̃t, θt) = −

N

∑
n=1

∂Utn(xtn(θt), θt)

∂xtn(θt)
(x̃tn − xtn(θ

t)) +
N

∑
n=1

1
2

atn(θt)(x̃tn − xtn(θ
t))2

Thus, we can write the augmented Lagrangian gap as

L(θt|θt)−L(x̃|θt) =− νt−1

[
πt(θ

t)− π̃t

]
+ Et

∞

∑
s=0

βs
[ N

∑
n=1

∂Ut+s,n(xt+s,n(θt+s), θt+s)

∂xt+s,n(θt+s)
(xt+s,n(θ

t+s)− x̃t+s,n)

]

+ Et

∞

∑
s=0

βs
N

∑
n=1

1
2

at+s,n(θt+s)(x̃t+s,n − xt+s,n(θ
t+s))2

The key observation is that the first line sums to zero for any one shot deviation θ̃t in reporting

strategy. This follows from the fact that the Ramsey policy is a critical point of the augmented

Lagrangian (see also the proof of Proposition 3). Formally, observe that

xt+s,n(θ
t+s)− x̃t+s,n = ct+s,n(πt+s(θ

t+s)− π̃t+s) + βdt+s,n(π
e
t+s(θ

t+s)− π̃e
t+s),

which obtains a telescoping series. Therefore, we are left with the simple form of the augmented

Lagrangian,

L(θt|θt)−L(θt−1, θ̃t|θt) = Et

∞

∑
s=0

βs
N

∑
n=1

1
2

at+s,n(θt+s)(xt+s,n(ϑ
t+s
t )− xt+s,n(θ

t+s))2

Given the assumption atn(θt) ≥ 0, then this is weakly positive. This gives rise to the following

result.

Corollary 19. In the linear-quadratic model, if shocks are independent over time then the dynamic

inflation target is globally incentive compatible.

Proof. The result follows from the fact that L(θt|θt) − L(θt−1, θ̃t|θt) ≥ 0 and that the RHS of
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equation (9) is zero under independent shocks. ■

A.4.2 Right hand side of global IC

We define st ≡ θ̃t to be the reported type, for notational clarity in the analysis which follows.

Next, consider the right hand side of global IC, given by

RHS = Ut(π̃t, Et[π̃t+1|st], θt)− Ut(π̃t, Et[π̃t+1|θt], θt] + βνt(ϑ
t)

[
Et[π̃t+1|st]− Et[π̃t+1|θt]

]
Observe that the gap between xtn for these two allocations is given by

∆xtn ≡ βdtn

[
Et[π̃t+1|st]− Et[π̃t+1|θt]

]
Therefore using our usual Taylor series expansion, we can write

Ut(π̃t, Et[π̃t+1|θt], θt) = Ut(π̃t, Et[π̃t+1|st], θt)−
N

∑
n=1

∂Utn(π̃t, Et[π̃t+1|st], θt)

∂xtn
∆xtn −

N

∑
n=1

1
2

atn(θt)∆x2
tn

Thus substituting in above, we have

RHS =
N

∑
n=1

∂Utn(π̃t, Et[π̃t+1|st], θt)

∂xtn
∆xtn +

N

∑
n=1

1
2

atn(θt)∆x2
tn + βνt(ϑ

t)

[
Et[π̃t+1|st]− Et[π̃t+1|θt]

]

The key derivative is

∂Utn

∂xtn
= −atn(θt)

[
ctnπt(ϑ

t) + βdtnEt

[
πt+1(ϑ

t+1)|st

]]
+ btn(θt)

Using Assumption 6,

∂Utn

∂xtn
= −atn

[
ctnπt(ϑ

t) + βdtnEt

[
πt+1(ϑ

t+1)|st

]]
+ btn(θt)

= −atn

[
ctnπt(ϑ

t) + βdtnEt

[
πt+1(ϑ

t+1)|st

]]
+ btn(st) + btn(θt)− btn(st)

=
∂Utn(ϑt)

∂xtn
+ btn(θt)− btn(st)
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Thus substituting in above, we have

RHS =
N

∑
n=1

[
∂Utn(ϑt)

∂xtn
+ btn(θt)− btn(st)

]
βdtn

[
Et[π̃t+1|st]− Et[π̃t+1|θt]

]

+
N

∑
n=1

1
2

atn(θt)∆x2
tn + βνt(ϑ

t)

[
Et[π̃t+1|st]− Et[π̃t+1|θt]

]

Recall from here that

νt(ϑ
t) = −

N

∑
n=1

∂Utn(ϑt)

∂xtn
dtn

and therefore, we get

RHS = β
N

∑
n=1

[
btn(θt)− btn(st)

]
dtn

[
Et[π̃t+1|st]−Et[π̃t+1|θt]

]
+

N

∑
n=1

1
2

atn(θt)

(
βdtn

[
Et[π̃t+1|st]−Et[π̃t+1|θt]

])2

or rearranging,

RHS = β

(
Et[π̃t+1|st]−Et[π̃t+1|θt]

) N

∑
n=1

[
btn(θt)− btn(st)

]
dtn + β2

(
Et[π̃t+1|st]−Et[π̃t+1|θt]

)2 N

∑
n=1

1
2

atn(θt)d2
tn

A.4.3 Putting it together

Global IC therefore requires LHS ≥ RHS, or in other words

Et

∞

∑
s=0

βs
N

∑
n=1

1
2

at+s,n(θt+s)(x̃t+s,n − xt+s,n(θ
t+s))2

≥ β

(
Et[π̃t+1|st]− Et[π̃t+1|θt]

) N

∑
n=1

[
btn(θt)− btn(st)

]
dtn + β2

(
Et[π̃t+1|st]− Et[π̃t+1|θt]

)2 N

∑
n=1

1
2

atn(θt)d2
tn

Now, Assumption 6 along with time-invariant coefficients comes in, and we can btn = bn0 +

bn1θt and atn(θt) = an. We can use this to also show that the Ramsey solution is linear. In particular,

the Ramsey solution has

νt−1 =
N

∑
n=1

[
− anxtn + bn0 + bn1θt

]
cn

−νt =
N

∑
n=1

[
− anxtn + bn0 + bn1θt

]
dn

Thus using xtn = cnπt + βdnπe
t , we can write

νt−1 + πt

N

∑
n=1

anc2
n + πe

t

N

∑
n=1

βancndn =
N

∑
n=1

bn0cn + θt

N

∑
n=1

bn1cn
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−νt + πt

N

∑
n=1

ancndn + πe
t

N

∑
n=1

βand2
n =

N

∑
n=1

bn0dn + θt

N

∑
n=1

bn1dn

We therefore obtain linear solutions,

πt = γ0 + γ1νt−1 + γ2θt

νt = δ0 + δ1νt−1 + δ2θt

where the coefficients are obtained by coefficient matching in the above equations.

A key observation is that given this linear system, we can write

πt(ϑ
t
t) = πt(θ

t) + γ2(st − θt)

More generally at date t + s, the two policies differ only by the misreport at date t, which filters

through target flexibility. Thus more generally, we have

πt+s(θ
t+s)− πt+s(ϑ

t+s
t ) =

{
γ1δs−1

1 δ2(θt − st), s ≥ 1

γ2(θt − st), s = 0

Therefore, we have

Et+s

[
πt+s+1(θ

t+s+1)− πt+s+1(ϑ
t+s+1
t )

∣∣∣∣θt+s

]
= γ1δs

1δ2(θt − st)

From here, can can evaluate xt+s,n(θt+s)− x̃t+s,n for x̃t+s,n = xt+s,n(ϑ
t+s
t ). Substituting into the LHS

of global IC, we have

Et

∞

∑
s=0

βs
N

∑
n=1

1
2

an(x̃t+s,n − xt+s,n(θ
t+s))2

=
N

∑
n=1

1
2

an

[
(cnγ2 + βdnγ1δ2)

2(θt − st)
2 +

∞

∑
s=1

βsδ2s
1

(
cnγ1δ−1

1 δ2 + βdnγ1δ2

)2

(θt − st)
2
]

=
N

∑
n=1

1
2

an

[
(cnγ2 + βdnγ1δ2)

2 +
βδ2

1

1 − βδ2
1

(
cnγ1δ−1

1 δ2 + βdnγ1δ2

)2]
(θt − st)

2

Thus, the left hand side is a constant multiplied by (θt − st)2.

Conducting the parallel decomposition for the right hand side and noting that Et[π̃t+1|st]−
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Et[π̃t+1|θt] = γ2ρ(st − θt), we have

β

(
Et[π̃t+1|st]− Et[π̃t+1|θt]

) N

∑
n=1

[
bn(θt)− bn(st)

]
dn + β2

(
Et[π̃t+1|st]− Et[π̃t+1|θt]

)2 N

∑
n=1

1
2

and2
n

=
N

∑
n=1

[
− βγ2ρb1ndn + β2γ2

2ρ2 1
2

and2
n

]
(θt − st)

2

Thus, the RHS also scales in (θt − st)2. Thus substituting into global IC, it reduces down to a

condition on parameters of the model, given by

N

∑
n=1

1
2

an

[
(cnγ2 + βdnγ1δ2)

2 +
βδ2

1

1 − βδ2
1

(
cnγ1δ−1

1 δ2 + βdnγ1δ2

)2]
≥

N

∑
n=1

[
− βγ2ρb1ndn + β2γ2

2ρ2 1
2

and2
n

]

This equation defines our function Γ. Moreover, observe that the LHS is positive whereas the RHS

is zero at ρ = 0. Therefore, we obtain a threshold ρ∗, concluding the proof.

A.4.4 Cost Push Shock Example

In the cost push shock model, suitable reduction in the above equation yields the condition

ρ − 1
2

βγ1ρ2 ≤ 1
2

γ1

αβ

[
1 +

(
1 + α

[
1 − βγ1

]2)
β(1 − γ1)

2

1 − βγ2
1

+ α

[
1 − β(γ1 − 1)

]2]

where the right hand side is invariant to ρ. We can therefore define ρ∗(α, β) as the lower root of the

quadratic equation ρ − 1
2 βγ1ρ2 − 1

2
γ1
αβ

[
1 +

(
1 + α

[
1 − βγ1

]2)
β(1−γ1)

2

1−βγ2
1

+ α

[
1 − β(γ1 − 1)

]2]
= 0,

and by convention set ρ∗(α, β) = 1 if this lower root lies above 1.

A.5 Proof of Proposition 8

Consider reduced-form preferences,

Ut(πt, Etπt+1, θt) = −1
2

π2
t −

1
2

α

(
πt − βEtπt+1

)2

+ v(Etπt+1 + θt)

where for notational convenience we use α in place of α̂ = α
κ2 in the derivations. Thus, we have

derivatives
∂Ut

∂πt
= −πt − α

(
πt − βEtπt+1

)
∂Ut

∂Etπt+1
= αβ

(
πt − βEtπt

)
+ v′(i∗t )
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Under the usual definitions of νt, we then have

νt−1 = −πt − α

(
πt − βEtπt+1

)
(23)

νt = −α

(
πt − βEtπt+1

)
− v1 + v2Etπt+1 + v2θt (24)

where we have used v′(it) = βv1 − βv2it and i∗t = Etπt+1 + θt.

We now guess and verify a linear solution of the form

νt = γ0 + γ1νt−1 + γ2θt.

Rearranging equation (23), we get

βEtπt+1 =
1
α

νt−1 +
1 + α

α
πt, (25)

and substituting into equation (24) we get

νt = −v1 +
(αβ + v2)(1 + α)− α2β

αβ
πt +

αβ + v2

αβ
νt−1 + v2θt.

From here, we denote 1
ζ ≡ (αβ+v2)(1+α)−α2β

αβ > 0. Thus rearranging the above equation, we have

1
ζ

πt = νt + v1 −
αβ + v2

αβ
νt−1 − v2θt (26)

We now lead this equation forward one period and take expectations,

1
ζ

Etπt+1 = Etνt+1 + v1 −
αβ + v2

αβ
νt − v2Etθt+1

and now, we can use the guess for νt along with the property Etθt+1 = ρθt to obtain

1
ζ

Etπt+1 = γ0 + v1 +

(
γ1 −

αβ + v2

αβ

)
νt + (γ2 − v2)ρθt.

Now, equations (25) and (26) jointly imply

1
ζ

Etπt+1 =
1
ζ

1
αβ

νt−1 +
1 + α

αβ

(
νt + v1 −

αβ + v2

αβ
νt−1 − v2θt

)
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and so substituting in, we obtain

γ0 + v1 +

(
γ1 −

αβ + v2

αβ

)
νt + (γ2 − v2)ρθt =

1
ζ

1
αβ

νt−1 +
1 + α

αβ

(
νt + v1 −

αβ + v2

αβ
νt−1 − v2θt

)
which rearranges and simplifies to(

γ1 −
1 + α + αβ + v2

αβ

)
νt =

(
1 + α − αβ

αβ
v1 − γ0

)
− 1

β
νt−1 −

(
1 + α − αβρ

αβ
v2 + γ2ρ

)
θt.

The LHS is linear, so using our guess νt = γ0 + γ1νt−1 + γ2θt and coefficient matching, we have

the system

γ0 =

1+α(1−β)
αβ v1 − γ0

γ1 − 1+α+αβ+v2
αβ

γ1 = − 1
β

1

γ1 − 1+α+αβ+v2
αβ

γ2 =

−
(

1+α(1−βρ)
αβ v2 + γ2ρ

)
γ1 − 1+α+αβ+v2

αβ

The second equation rearranges to a quadratic βγ2
1 −

1+α+αβ+v2
α γ1 + 1 = 0 in γ1. We choose the

non-explosive lower root to maintain consistency with the transversality condition, which yields

γ1 =

1 + α(1 + β) + v2 −

√(
1 + α(1 + β) + v2

)2

− 4α2β

2αβ

From here, the equation for γ0 can be rewritten as γ0 = −βγ1

(
1+α(1−β)

αβ v1 − γ0

)
, and rearranging

yields

γ0 = −γ1
1 + α(1 − β)

α(1 − βγ1)
v1

Similarly, the equation for γ2 is rewritten as γ2 = βγ1

(
1+α(1−βρ)

αβ v2 + γ2ρ

)
, which rearranges to

γ2 =
1
α

1 + α(1 − βρ)

1 − βγ1ρ
γ1v2

Thus, we have our solution for νt. Now recalling that bt = −νt, then we have

bt = −γ0 + γ1bt−1 − γ2θt.
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Recall that γ0 < 0, γ1 > 0, and γ2 > 0, then we can define

bt = δ0 + δ1bt−1 − δ2θt

where δ0 = −γ0, δ1 = γ1, and δ2 = γ2 are all nonnegative.

From the derivations above, inflation is given by

1
ζ

πt = νt −
αβ + v2

αβ
νt−1 + v1 − v2θt.

Now, recall from above that we have Etπt+1 = 1
αβ νt−1 +

1+α
αβ πt. Thus we can substitute in for

inflation and substitute in the rule for νt to obtain

τt =
1

αβ
νt−1 + ζ

1 + α

αβ

[
γ0 + γ1νt−1 + γ2θt −

αβ + v2

αβ
νt−1 + v1 − v2θt

]

=
1

αβ
νt−1 + ζ

1 + α

αβ

(
γ0 + v1

)
+ ζ

1 + α

αβ

(
γ1 −

αβ + v2

αβ

)
νt−1 + ζ

1 + α

αβ
(γ2 − v2)θt

= ζ
1 + α

αβ

(
γ0 + v1

)
+ ζ

1 + α

αβ

(
γ1 +

1
ζ(1 + α)

− αβ + v2

αβ

)
νt−1 + ζ

1 + α

αβ
(γ2 − v2)θt

where is readily re-expressed as τt = χ0 − χ1νt−1 − χ2θt. To show that χ2 > 0, we need only show

that γ2 < v2. Substituting in the definition of γ2, this is equivalent to

1
α

1 + α(1 − βρ)

(1 − βγ1ρ)
γ1v2 < v2

γ1 + αγ1 − αβργ1 < α − αβγ1ρ

γ1 <
α

1 + α
.

Substituting in the definition of γ1 and rearranging, we have

αβ + v2 + 1 + α

α
− 2

αβ

1 + α
<

√(
αβ + v2 + 1 + α

α

)2

− 4β

Squaring both sides (since if the LHS is negative we are already done), we get

(
αβ + v2 + 1 + α

α

)2

+ 4
(

αβ

1 + α

)2

− 4
αβ + v2 + 1 + α

α

αβ

1 + α
<

(
αβ + v2 + 1 + α

α

)2

− 4β

α

1 + α
< 1 +

1
αβ

v2

which necessarily holds. Therefore, we have χ2 > 0.
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We can next show that χ0 > 0, which follows since we have

γ0 + v1 = γ0 + v1 =
α − (1 + α)γ1

α(1 − βγ1)
v1 > 0

since we just showed that γ1 < α
1+α .

Finally for χ1, using the definition of ζ we have

χ1 = −ζ
1 + α

αβ

[
γ1 +

1
ζ(1 + α)

− αβ + v2

αβ

]

= −ζ
1 + α

αβ

[
γ1 −

α

1 + α

]
> 0

which follows again since γ1 < α
1+α . Lastly substitute in bt−1 = −νt−1 to get

τt = χ0 + χ1bt−1 − χ2θt

concluding the proof.

Parameters v0, v1, v2. Finally, we briefly derive the parameters of v. Given v(i∗t ) = −
∫ ϵ

i∗t
[λ0 −

λ1(i∗t − ϵ)] 1
ϵ−ϵ dϵ, then we have

v(i∗t ) = − 1
ϵ − ϵ

[
(λ0 − λ1i∗t )(ϵ − i∗t ) +

1
2

λ1(ϵ
2 − i∗2

t )

]

= − 1
ϵ − ϵ

(
λ0ϵ +

1
2

λ1ϵ2
)
+

(λ0 + λ1ϵ)

ϵ − ϵ
i∗t −

1
2

λ1

ϵ − ϵ
i∗2
t

so that we have v0 = 1
ϵ−ϵ

(
λ0ϵ + 1

2 λ1ϵ2
)

, v1 = 1
β
(λ0+λ1ϵ)

ϵ−ϵ , and v2 = 1
β

λ1
ϵ−ϵ .

A.6 Proof of Proposition 9

Given reduced form preferences Ut = − 1
2 π2

t + θt
πt−βEtπt+1

κ , then we have

∂Ut

∂πt
= −πt +

1
κ

θt

∂Ut−1

∂Et−1πt
= −β

κ
θt−1
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Thus substituting in the definitions,

νt−1 = −πt +
1

κ/θt

νt−1 =
1

κ/θt−1

Thus putting them together, we get πt =
1

κ/θt
− 1

κ/θt−1
. Finally, using Etθt+1 = 1 − ρ + ρθt we get

Etπt+1 =
Etθt+1 − θt

κ
= (1 − ρ)

1
κ
− (1 − ρ)

θt

κ

which gives the result.

A.7 Proof of Proposition 10

Consider the Ramsey problem,

max
π

∞

∑
t=0

βtUt(πt, Et[πt+1|θt], ..., Et[πt+K|θt], θt)

It is expositionally helpful to extend the sum to include U−1, ..., U−K = 0. Under this extended sum,

differentiating in πt(θt) for t ≥ 0, we have

0 =
t−1

∑
s=t−K

βs ∂Us

∂Es[πt|θs]

∂Es[πt|θs]

∂πt(θt)
f (θs) + βt ∂Ut

∂πt
f (θt).

From here, note that we have

∂Es[πt|θs]

∂πt(θt)
f (θs) = f (θt|θs) f (θs) = f (θt)

Thus rearranging and dividing through, we have

∂Ut

∂πt
= −

t−1

∑
s=t−K

βs−t ∂Us

∂Es[πt|θs]
.

Substituting in the definition of νt−k,t gives the result.
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A.8 Proof of Proposition 12

The proof strategy parallels that of Proposition 3. Defining πe
t,t+k(θ

t−1, θ̃t) ≡ Et[πt+k(θ
t−1, θ̃t, θt+1, . . . , θt+k|θ̃t],

then we have

Wt(θ
t−1, θ̃t|θt) = Ut

(
πt(θ

t−1, θ̃t), πe
t (θ

t−1, θ̃t), . . . , πe
t,t+k(θ

t−1, θ̃t), θt

)
+ Tt(θ

t−1, θ̃t)

+ βEt

[
Wt+1(θ

t−1, θ̃t, θt+1|θt+1)
∣∣∣θt

]
.

Global incentive compatibility is given by Wt(θt|θt) ≥ Wt(θt−1, θ̃t|θt) for all t, θt, θ̃t. By Envelope

Theorem and the same steps as in the proof of Proposition 3, we obtain the Envelope Condition

∂Wt(θt)

∂θt
=

∂Ut (πt, Et [πt+1|θt] , ..., Et[πt+K|θt], θt)

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
What now remains is the verify the Envelope condition holds for the K-horizon dynamic inflation

target.

Verifying the Envelope Condition. Our mechanism has a transfer rule

Tt = −
K

∑
k=1

νt−k,t(πt − Et−kπt)

and an allocation rule given by the constrained efficient allocation of Proposition 10. Recall the

definition v̄t−1 = ∑K
k=1 νt−k,t. The value function evaluated at truthtelling and the Ramsey allocation

is

Wt(θ
t) =−

K

∑
k=1

νt−k,t(πt − Et−kπt) + Ut (πt, Etπt+1, ..., Etπt+K, θt) + βEt

[
Wt+1(θ

t+1)

∣∣∣∣θt

]

Differentiating in θt, we have

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

− ν̄t−1
∂πt

∂θt
+

∂Ut

∂πt

∂πt

∂θt
+

K

∑
k=1

∂Ut

∂Etπt+k

dEtπt+k

dθt
+ βEt

[
∂Wt+1(θ

t+1)

∂θt

∣∣∣∣θt

]

First from Proposition 10, we have −ν̄t−1 +
∂Ut
∂πt

= 0, leaving the second line with only the latter

two terms.
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Expanding out the continuation value Wt+1(θ
t+1), we have

Wt+1(θ
t+1) = Et+1

∞

∑
s=0

βs
[
−

K

∑
k=1

νt+1+s−k,t+1+s(πt+1+s − Et+1+s−k[πt+1+s|θt+1+s−k]) + Ut+1+s

]

Observe that by Law of Iterated Expectations for s ≥ k,

Et+1

[
νt+1+s−k,t+1+s

(
πt+1+s − Et+1+s−k[πt+1+s|θt+1+s−k]

)]

= Et+1

[
νt+1+s−k,t+1+sEt+1+s−k

[
πt+1+s − πt+1+s

∣∣∣∣θt+1+s−k

]∣∣∣∣θt+1

]
= 0

So we are left with

Wt+1(θ
t+1) = −Et+1

K−1

∑
s=0

βs
[

∑
s<k≤K

νt+1+s−k,t+1+s

(
πt+1+s − Et+1+s−k[πt+1+s|θt+1+s−k]

)]
+ Et+1

∞

∑
s=0

βsUt+1+s

Observe that, as in the proof of Proposition 3, this is also an augmented Lagrangian. For s ≥ K, we

have history by history
K

∑
k=1

βs−k ∂Ut+1+s−k

∂πe
t+1+s−k,t+1+s

+ βs ∂Ut+1+s

∂πt+1+s
= 0

which follows from Proposition 10. Likewise for 0 ≤ s < K, we have

−βs ∑
s<k≤K

νt+1+s−k,t+1+s +
s

∑
k=1

βk ∂Ut+1+s−k

∂πe
t+1+s−k,t+1+s

+ βs ∂Ut+1+s

∂πt+1+s
= 0

which follows from Proposition 10 and the definitions of ν. Thus we obtain

∂Wt+1(θ
t+1)

∂θt
= −Et+1

K−1

∑
s=0

βs
[

∑
s<k≤K

∂νt+1+s−k,t+1+s

∂θt

(
πt+1+s − Et+1+s−k[πt+1+s|θt+1+s−k]

)]

+ Et+1

K−1

∑
s=0

βs
[

∑
s<k≤K

νt+1+s−k,t+1+s
dEt+1+s−k[πt+1+s|θt+1+s−k]

dθt

]

Lastly observe that νt+1+s−k,t+1+s is a date t + 1 + s − k adapted constant and so, for s < k, depends

only on θt when k = s + 1. Thus we have

∂Wt+1

∂θt
= −Et+1

K

∑
s=1

βs−1 ∂νt,t+s

∂θt

(
πt+s − Et[πt+s|θt]

)
+ Et+1

K

∑
s=1

βs−1νt,t+s
dEt[πt+s|θt]

dθt
,
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which reorders the indexation for clarity. By Law of Iterated Expectations,

EtEt+1

K

∑
s=1

βs−1 ∂νt,t+s

∂θt

(
πt+s − Et[πt+s|θt]

)
=

K

∑
s=1

βs−1 ∂νt,t+s

∂θt
Et

(
πt+s − Et[πt+s|θt]

)
= 0

and so substituting back into the equation for ∂Wt/∂θt we obtain

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

+
K

∑
k=1

∂Ut

∂Etπt+k

dEtπt+k

dθt
+ βEt

[ K

∑
s=1

βs−1νt,t+s
dEt[πt+s|θt]

dθt

∣∣∣∣θt

]

The second line is zero from the definitions of νt,t+s (Proposition 10), leaving only the first line

remaining, which is the required envelope condition. This concludes the proof.

A.9 Proof of Proposition 14

Recall that we have

πt = κyt + (βγ + β̃)Etπt+1 + β̃Et

[ ∞

∑
s=1

δ̃sπt+1+s

]
.

From Proposition 10 for k ≥ 1,

νt,t+k = − 1
βk

∂Ut

∂yt

∂yt

∂Etπt+k
.

Thus, we can write for k > 1,

νt,t+k =
1

βk−1

∂yt
∂Etπt+k

∂yt
∂Etπt+1

νt,t+1 =
1

βk−1
β̃δ̃k−1

βγ + β̃
νt,t+1 = β∗δ∗(k−1)νt,t+1

where δ∗ = δ̃
β and β∗ = β̃

βγ+β̃
, completing the proof.

Now, consider the final part of the proposition. First, we have

∂δ∗

∂γ
=

1
β

ζβ(ε − 1)γε−2 > 0

Next, we have

∂β∗

∂γ
=

∂β̃
∂γ (β̃ + βγ)− ( ∂β

∂γ + β)β̃

(β̃ + βγ)2
=

∂β̃
∂γ γ − β̃

(β̃ + βγ)2
β

From the definition of β̃, we have

∂β̃

∂γ
= β(1 − ζγε−1)(ε − 1)− (γ − 1)βζ(ε − 1)γε−2(ε − 1) = β̃

[
1

(γ − 1)
− (ε − 1)ζγε−2

(1 − ζγε−1)

]
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and therefore substituting above,

∂β∗

∂γ
=

[
1

γ−1 −
(ε−1)ζγε−2

(1−ζγε−1)

]
γ − 1

(β̃ + βγ)2
β̃β =

1
γ−1 −

(ε−1)ζγε−1

1−ζγε−1

(β̃ + βγ)2
β̃β

The first step of the commitment curve is β∗δ∗, so differentiating,

∂(β∗δ∗)

∂γ
=

∂β∗

∂γ
δ∗ + β∗ ∂δ∗

∂γ

=

[ 1
γ−1 −

(ε−1)ζγε−1

1−ζγε−1

β̃ + βγ
β +

(ε − 1)
γ

]
β∗δ∗

=

[(
1

γ − 1
− (ε − 1)ζγε−1

1 − ζγε−1

)
βγ

β̃ + βγ
+ (ε − 1)

]
1
γ

β∗δ∗

which is positive for γ not too large, giving the result.

A.10 Proof of Proposition 15

Lemma 29 in Appendix E.1 proves a counterpart of Lemma 4: the K-horizon dynamic inflation

target is globally incentive compatible if

Lt(θ
t|θt)−Lt(ϑ

t|θt) ≥Ut(πt(ϑ
t), Et[πt+1(ϑ

t+1
t )|θ̃t], . . . , Et[πt+K(ϑ

t+K
t )|θ̃t], θt)

− Ut(πt(ϑ
t), Et[πt+1(ϑ

t+1
t )|θt], . . . , Et[πt+K(ϑ

t+K
t )|θt], θt)

+
K

∑
k=1

βkνt,t+k(ϑ
t
t)

(
Et[πt+k(ϑ

t+k
t )|θ̃t]− Et[πt+k(ϑ

t+k
t )|θt]

)

where the augmented Lagrangian is given by

Lt(ϑ
t|θt) =− Et

[ K−1

∑
k=0

βkVt−1,t+kπt+k(ϑ
t+k
t )

∣∣∣∣θt

]

+ Et

[ ∞

∑
s=0

βsUt+s(πt+s(ϑ
t+s), Et+s[πt+s+1(ϑ

t+s+1
t )|θt+s], . . . , Et+s[πt+s+K(ϑ

t+s+K
t )|θt+s], θt+s)

∣∣∣∣θt

]

The vector Vt−1,t+k ≡ ∑ℓ≥0 νt−1−ℓ,t+k is cumulative historical commitments made at date t − 1 and

before to target flexibility at date t + k (see also Appendix D).
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A.10.1 Simplifying the LHS of Global IC (Augmented Lagrangian)

Observe that the Ramsey solution of Proposition 10 is a critical point of the augmented Lagrangian,

which follows as in the proof of Proposition 7 but here with Vt−1,t+k encoding all prior commitments

inherited for date t + k (in the baseline model, we only had an inherited commitment for date t).

Thus we can replicate the exact second order Taylor series expansion from the proof of Proposition

7, which relied on the allocation rule being the Ramsey solution, to obtain

L(θt|θt)−L(ϑt
t |θt) = Et

∞

∑
s=0

βs
N

∑
n=1

1
2

an(xt+s,n(ϑ
t+s
t )− xt+s,n(θ

t+s))2.

We thus obtain a nonnegative left hand side of global incentive compatibility. This in turn allows

us to replicate Corollary 19 in this setting (global incentive compatibility under iid shocks).

A.10.2 Simplifying the RHS of Global IC

Using Assumption 6, we can write

Ut(xt1, . . . , xtN , θt) = Ut(xt1, . . . , xtN , st) +
N

∑
n=1

bn1xtn(θt − st)

when the policies x are held fixed. Therefore, we can write

Ut(πt(ϑ
t), Et[πt+1(ϑ

t+1
t )|θ̃t], . . . , Et[πt+K(ϑ

t+K
t )|θ̃t], θt)− Ut(πt(ϑ

t), Et[πt+1(ϑ
t+1
t )|θt], . . . , Et[πt+K(ϑ

t+K
t )|θt], θt)

= Ut(πt(ϑ
t), πe

t,t+1(ϑ
t), . . . , πe

t,t+K(ϑ
t), θ̃t)− Ut(πt(ϑ

t), Et[πt+1(ϑ
t+1
t )|θt], . . . , Et[πt+K(ϑ

t+K
t )|θt], θ̃t)

+
N

∑
n=1

bn1[xtn(ϑ
t)− xtn(ϑ

t|θt)](θt − θ̃t)

Observe that, as in the proof of Proposition 7, the exact second order Taylor series expansion of

the second line has first order terms that cancel out with the second term on the RHS of global IC,

∑K
k=1 βkνt,t+k(ϑ

t
t)

(
Et[πt+k(ϑ

t+k
t )|θ̃t]− Et[πt+k(ϑ

t+k
t )|θt]

)
. Therefore we are left with

RHS =
1
2

N

∑
n=1

an

(
xtn(ϑ

t)− xtn(ϑ
t|θt)

)2

+
N

∑
n=1

bn1[xtn(ϑ
t)− xtn(ϑ

t|θt)](θt − θ̃t)

A.10.3 Linear Solutions to the Ramsey Problem

It is easy to observe that given the linear-quadratic form, given the solution of Proposition 10,

and given Assumption 6, we obtain linear solutions in (Vt−1, θt), where Vt−1 ∈ RK again encodes

inherited commitments. It is therefore helpful to give a vector form representation to the system,
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that is πt = γ0 + γ1Vt−1 + γ2θt and Vt = δ0 + δ1Vt−1 + δ2θt, where γ0, γ2 ∈ R, γ1, δ0, δ2 ∈ RK, and

δ1 is a K × K matrix. Therefore, we can write

πt+s(θ
t+s)− πt+s(ϑ

t+s
t ) =

{
γ2(θt − θ̃t), s = 0

γ1δs−1
1 δ2(θt − θ̃t), s ≥ 1

where we note that γ1δs−1
1 δ2 is a scalar.

Therefore, for any s ≥ 0 and any k = 1, . . . , K

Et+s

[
πt+s+k(θ

t+s+k)− πt+s+k(ϑ
t+s+k
t )

∣∣∣∣θt+s

]
= γ1δs+k−1

1 δ2(θt − θ̃t)

Thus we have for s ≥ 1

xt+s,n(θ
t+s)− xt+s,n(ϑ

t+s
t ) = cn(πt+s(θ

t+s))− πt+s(ϑ
t+s
t )) +

K

∑
k=1

βkdknEt+s

[
πt+s+k(θ

t+s+k)− πt+s+k(ϑ
t+s+k
t )

∣∣∣∣θt+s

]

= cnγ1δs−1
1 δ2(θt − θ̃t) +

K

∑
k=1

βkdknγ1δs+k−1
1 δ2(θt − θ̃t)

= γ1

[
cnδs−1

1 +
K

∑
k=1

βkdknδs+k−1
1

]
δ2(θt − θ̃t)

Therefore we have

xt+s,n(θ
t+s)− xt+s,n(ϑ

t+s
t ) =

{ γ1

[
cnδs−1

1 + ∑K
k=1 βkdknδs+k−1

1

]
δ2(θt − θ̃t), s ≥ 1[

cnγ2 + γ1 ∑K
k=1 βkdknδ2

]
(θt − θ̃t), s = 0

We next construct Et[πt+k(ϑ
t+k
t )|θ̃t]− Et[πt+k(ϑ

t+k
t )|θt]. For k = 1, we obtain

Et[πt+1(ϑ
t+1
t )|θ̃t]− Et[πt+1(ϑ

t+1
t )|θt] = γ2ρ(θ̃t − θt)

For k > 1, we have

Et[πt+k(ϑ
t+k
t )|θ̃t]− Et[πt+k(ϑ

t+k
t )|θt]

= γ1

(
Et

[
Vt+k−1(ϑ

t+k−1
t )

∣∣∣∣θ̃t

]
− Et

[
Vt+k−1(ϑ

t+k−1
t )

∣∣∣∣θt

])
+ γ2(Et[θt+k|θ̃t]− Et[θt+k|θt])

= γ1

(
Et

[
Vt+k−1(ϑ

t+k−1
t )

∣∣∣∣θ̃t

]
− Et

[
Vt+k−1(ϑ

t+k−1
t )

∣∣∣∣θt

])
+ γ2ρk(θ̃t − θt)
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From here, observe that we can write Vt+1 = δ0 + δ1Vt + δ2θt+1, or more generally

Vt+k =
k−1

∑
ℓ=0

δℓ1δ0 + δk
1Vt +

k−1

∑
ℓ=0

δk−1−ℓ
1 δ2θt+1+ℓ

Therefore for any k > 1, we can write

Et[πt+k(ϑ
t+k
t )|θ̃t]− Et[πt+k(ϑ

t+k
t )|θt]

= γ1

k−2

∑
ℓ=0

δk−2−ℓ
1 δ2ρ1+ℓ(θ̃t − θt) + γ2ρk(θ̃t − θt)

=

[
γ1

k−2

∑
ℓ=0

δk−2−ℓ
1 δ2ρℓ + γ2ρk−1

︸ ︷︷ ︸
≡ζk

]
ρ(θ̃t − θt)

Therefore, we can write

xtn(ϑ
t)− xtn(ϑ

t|θt) =
K

∑
k=1

βkdkn

(
Et

[
πt+k(ϑ

t+k
t )

∣∣∣∣θ̃t

]
− Et

[
πt+k(ϑ

t+k
t )

∣∣∣∣θt

])
=

[ K

∑
k=1

βkdknζk

]
ρ(θ̃t − θt)

A.10.4 Completing the Argument

Thus putting it all together, we have

LHS = L(θt|θt)−L(ϑt
t |θt) =

1
2
(θt − θ̃t)

2Φ

where Φ = ∑N
n=1 an

[(
cnγ2 + γ1 ∑K

k=1 βkdknδ2

)2

+ ∑∞
s=1 βs

(
γ1

[
cnδs−1

1 + ∑K
k=1 βkdknδs+k−1

1

]
δ2

)2]
is

a positive constant. Analogously, we can write

RHS =
1
2

N

∑
n=1

an

([ K

∑
k=1

βkdknζk

])2

ρ2(θt − θ̃t)
2 −

N

∑
n=1

bn1

[ K

∑
k=1

βkdknζk

]
ρ(θt − θ̃t)

2

Thus global IC requires LHS ≥ RHS, or

1
2

Φ ≥ 1
2

N

∑
n=1

an

([ K

∑
k=1

βkdknζk

])2

ρ2 −
N

∑
n=1

bn1

[ K

∑
k=1

βkdknζk

]
ρ

We are thus left with a single condition on parameters of the model that needs to be checked.

Moreover the RHS is positive whereas the LHS is zero at ρ = 0. Therefore, we obtain a threshold

ρ∗. This concludes the proof.
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A.11 Proof of Proposition 16

Given a penalty function −γtPt(θt) augmenting the dynamic inflation target, we have a value

function under truthtelling (given informed and uninformed firms have the same expectation)

given by

Wt(θ
t) = Ut

(
πt(θ

t), πe
t (θ

t), θt
)
− νt−1

(
πt(θ

t)− Et−1[πt|θt−1]

)
− γPt(θ

t) + βEt

[
Wt+1(θ

t+1)
∣∣∣θt

]
.

Observe that this value function differs from the one in the proof of Proposition 3 only by the

additional penalties. Thus from the proof of Proposition 3, we have

∂Wt(θt)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣θt

]
− γ

∂Pt

∂θt
− γEt

[ ∞

∑
k=1

βk ∂Pt+k

∂θt

∣∣∣∣θt

]

where the second line follows from the presence of the penalties. We will now construct penalties

Pt so that the second line is exactly equal to the unaccounted for information rent, −γωt, from the

Envelope Condition (equation 18). Thus we require

∂Pt

∂θt
+ Et

[ ∞

∑
k=1

βk ∂Pt+k

∂θt

∣∣∣∣θt

]
= ωt.

Totally differentiating the recursive formulation of Pt, we have

∂Pt

∂θt
=

∂Pt

∂θt
+ βEt[

∂Pt+1

∂θt
|θt] + βEt[Pt+1

∂ f (θt+1|θt)/∂θt

f (θt+1|θt)
|θt].

Thus combining the two equations,

∂Pt

∂θt
= ωt + βEt[Pt+1

∂ f (θt+1|θt)/∂θt

f (θt+1|θt)
|θt].

The final expression comes from integrating. Thus we have constructed the required penalty

function to satisfy the envelope condition, completing the proof.

A.12 Proof of Proposition 17

Integrating the Envelope Condition (equation 7), we obtain integral incentive compatibility

Wt(θ
t) =

∫ θt

θ

∂Ut(θt−1, st)

∂st
dst + β

∫ θt

θ
Et

[
Wt+1

∂ ft(θt+1|st)/∂st

ft(θt+1|st)
|st

]
dst (27)
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where recall we have normalized the date 0 outside option to zero. From here, we can re-express

the value function Wt as follows (see also Pavan et al. 2014).

Lemma 20. The value function Wt can be represented as

Wt(θ
t) = Et

[
∞

∑
s=0

βsBs
t (θ

t+s)

∣∣∣∣∣ θt

]
∀t,

where Bs
t is given by

Bs
t (θ

t+s) =
s−1

∏
k=0

1
ft+k(θt+k+1|θt+k)

×

∫
st≤θt,...,st+s≤θt+s

∂Ut+s(θt−1, st, ..., st+s)

∂st+s

s−1

∏
k=0

∂ ft+k(θt+k+1|st+k)

∂st+k
dst+s...dst.

Proof. Iterating the Envelope Condition forward one period,

Wt(θ
t) =

∫ θt

θ
Et

[
∂Ut(θt−1, st)

∂st
dst

+
∂ ft (θt+1|st) /∂st

ft (θt+1|st)
β

[∫ θt+1

θ

∂Ut(θt−1, st, st+1)

∂st+1
+ Et+1

[
Wt+2

ft+1(θt+2|st+1)/∂st+1

ft+1(θt+2|st+1)
|st+1

]] ]
dst

Define B0
t (g, θ) =

∫ θ
θ gdst, with g0

t = ∂Ut(θt−1,st)
∂st

yielding B0
t (g0

t , θ) as the first term in the infinite

series defining Wt. We then define B1
t (g, θ) =

∫ θ
θ Et

[
∂ ft(θt+1|st)/∂st

ft(θt+1|st)
g
∣∣∣ st

]
dst, consider the function

g1
t =

∫ θt+1
θ

∂Ut+1(θ
t−1,st,st+1)

∂st+1
dst+1, and obtain βB1

t
(

g1
t , θt

)
as the second term. Next consider a function

gs
t that is a date t + s adapted function, and define B2

t
(

g2
t , θt

)
= B1

t
(
B1

t+1

(
g2

t , θt+1
)

, θt
)
. Thus we

have

B2
t
(

g2
t , θt

)
=

∫ θt

θ
Et

[
∂ ft(θt+1|st)/∂st

ft(θt+1|st)

∫ θt+1

θ
Et+1

[
∂ ft+1(θt+2|st+1)/∂st+1

ft+1(θt+2|st+1)
g2

t (st+1, θt+2)

∣∣∣∣ st+1

]
dst+1

∣∣∣∣ st

]
dst

Using g2
t (st, st+1, θt+2) =

∫ θt+2
θ

∂Ut+2(θt−1,st,st+1,st+2)
∂st+2

dst+2 and multiplied by β2 gives us the next term

in the infinite series characterizing Wt. Continuosly defining these recursive operators as such, and

defining functions gs
t (st, ..., st+s−1, θt+s) =

∫ θt+s
θ

∂Ut+s(θt−1,st,...,st+s)
∂st+s

dst+s, we obtain the infinite series

that characterizes Wt.
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To then simplify from here, for B1
t (g, θt) we have

B1
t (g, θt) =

∫ θt

θ
Et

[
∂ ft(θt+1|st)/∂st

ft(θt+1|st)
g (st, θt+1)

∣∣∣∣ st

]
dst

=
∫ θt

θ

∫
θt+1

∂ ft(θt+1|st)

∂st
g(st, θt+1)dθt+1dst

=
∫

θt+1

[∫ θt

θ

∂ ft(θt+1|st)

∂st
g(st, θt+1)dst

]
dθt+1

=
∫

θt+1

[∫ θt
θ

∂ ft(θt+1|st)
∂st

g(st, θt+1)dst

]
ft(θt+1|θt)

ft(θt+1|θt)dθt+1

= Et

[
1

ft(θt+1|θt)

[∫ θt

θ

∂ ft(θt+1|st)

∂st
g(st, θt+1)dst

]∣∣∣∣ θt

]

In particular, as applied to the function g1
t =

∫ θt+1
θ

∂Ut+1(θ
t−1,st,st+1)

∂st+1
dst+1, we obtain:

B1
t (g, θt) = Et

[
1

ft(θt+1|θt)

[∫ θt

θ

∫ θt+1

θ

∂Ut+1(θ
t−1, st, st+1)

∂st+1

∂ ft(θt+1|st)

∂st
dst+1dst

]∣∣∣∣ θt

]
Next considering B2

t (g, θt) = B1
t
(
B1

t+1 (g, θt+1) , θt
)
, note we have along history (θt−1, st)

B1
t+1 (g, θt+1) = Et+1

[
1

ft+1(θt+2|θt+1)

[∫ θt+1

θ

∂ ft+1(θt+2|st+1)

∂st+1
g(st, st+1, θt+2)dst+1

]∣∣∣∣ θt+1

]
which then yields

B2
t (g, θt) = Et

[
1

ft(θt+1|θt)

[∫ θt

θ

∂ ft(θt+1|st)

∂st
B1

t+1 (g, θt+1) dst

]∣∣∣∣ θt

]

= EtEt+1

[
1

ft(θt+1|θt)

[∫ θt

θ

∂ ft(θt+1|st)

∂st

[
1

ft+1(θt+2|θt+1)

[∫ θt+1

θ

∂ ft+1(θt+2|st+1)

∂st+1
g(st, st+1, θt+2)dst+1

]∣∣∣∣ θt+1

]
dst

]∣∣∣∣ θt

]

= Et

[
1

ft(θt+1|θt)

1
ft+1(θt+2|θt+1)

[∫ θt

θ

∫ θt+1

θ

∂ ft(θt+1|st)

∂st

∂ ft+1(θt+2|st+1)

∂st+1
g(st, st+1, θt+2)dst+1dst

]∣∣∣∣ θt

]

and substituting in g2
t =

∫ θt+2
θ

∂Ut+2(θt−1,st,st+1,st+2)
∂st+2

dst+2, we get the next expression from the Lemma.

From here, the result follows from repeated iteration. ■

Thus given Lemma 20, we can construct the required transfer rule Tt = Wt − Ut − βEt[Wt+1|θt]

to achieve that value function. This gives rise to the followed relaxed problem (i.e., requiring the

envelope condition but not global incentive compatibility).
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Lemma 21. The relaxed problem is

max
{πt(θt)}

E−1

[
∞

∑
t=0

βt
[
− κ

1 + κ
Bt

0 + Ut

]]
,

where Bt
0 is given as in Lemma 20.

Proof. Since central bank welfare is W0 = E0 ∑∞
t=0

[
βtUt + Tt

]
, then

−E0

∞

∑
t=0

Tt = E0

∞

∑
t=0

βtUt −W0

Since government welfare is E−1

[
∑∞

t=0 βtUt − κTt

]
, then substituting in

E−1

[
− κW0 +

∞

∑
t=0

βt(1 + κ)Ut

]
,

The result obtains by substituting in W0 from Lemma 20. ■

We can now solve the relaxed problem of Lemma 21.57 Denote the realized value of Bt
0 by:

Bt
0(θ

t) =
t−1

∏
k=0

1
fk(θk+1|θk)

∫
s0≤θ0,...,st≤θt

∂Ut(s0, ..., st)

∂st

t−1

∏
k=0

∂ fk(θk+1|sk)

∂sk
dst...ds0

so that Bt
0(θ

t) is a random variable derived from the history θt of shocks. From here the relaxed

problem is

max
{πt}

E−1

[
∞

∑
t=0

βt
[
− κ

1 + κ
Bt

0(πt, πt+1, θt|θt−1) + (1 + κ)Ut(πt, πt+1, θt)

]]

Consider the optimal choice of inflation πt(zt), for a realized history θt = zt of shocks. Note that

the solution can be written in the form (for t ≥ 1):

∂Ut−1

∂πt(zt)
f (zt−1) + β

∂Ut

∂πt(zt)
f (zt) =

κ

1 + κ
E−1

t

∑
s=t−1

βs−(t−1) d
dπt(zt)

Bs
0(πs, πs+1, θs|θs)

so what remains is to characterize the derivatives of Bs
0 with respect to πt(zt). When s = t, we have:

d
dπt(zt)

Bt
0(θ

t) =
d

dπt(zt)

[
t−1

∏
k=0

1
fk(θk+1|θk)

∫
s0≤θ0,...,st≤θt

∂Ut(s0, ..., st)

∂st

t−1

∏
k=0

∂ fk(θk+1|sk)

∂sk
dst...ds0

]

57 We characterize the optimal allocation assuming that πt is interior.
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Note that πt(zt) appears in ∂Ut(s0,...,st)
∂st

only along the path given by s0 = z0, s1 = z1, ... , st = zt, so

we have
d

dπt(zt)
Bt

0(θ
t) = 1z0≤θ0,...,zt≤θt

t−1

∏
k=0

1
fk(θk+1|θk)

∂2Ut

∂zt∂πt(zt)

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk

Note the subtlety that the θ’s are preserved, as the realization of the random history, whereas the

s’s are replaced by z’s, as the path under the integrals that leads to the history zt under the integrals.

It is worth remembering then, when we substitute into the expectation, that θt is a random variable,

and zt is (fixed) the history being differentiated along, and so is not a random variable.

Note that by exactly the same logic, we obtain ∀t ≥ 2

d
dπt(zt)

Bt−1
0 (θt−1) = 1z0≤θ0,...,zt−1≤θt−1

t−2

∏
k=0

1
fk(θk+1|θk)

∂2Ut−1

∂zt−1∂πt(zt)

t−2

∏
k=0

∂ fk(θk+1|zk)

∂zk

As a result, the right-hand side of the first-order condition becomes ∀t ≥ 2

1 + κ

κ
RHS = E−1

t

∑
s=t−1

d
dπt(zt)

Bs
0(πs, πs+1, θs|θs)

= E−1

[
1z0≤θ0,...,zt−1≤θt−1

t−2

∏
k=0

1
fk(θk+1|θk)

∂2Ut−1

∂zt−1∂πt(zt)

t−2

∏
k=0

∂ fk(θk+1|zk)

∂zk

]

+ βE−1

[
1z0≤θ0,...,zt≤θt

t−1

∏
k=0

1
fk(θk+1|θk)

∂2Ut

∂zt∂πt(zt)

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk

]

=
∂2Ut−1

∂zt−1∂πt(zt)
E−1

[
1z0≤θ0,...,zt−1≤θt−1

t−2

∏
k=0

1
fk(θk+1|θk)

∂ fk(θk+1|zk)

∂zk

]

+
∂2Ut

∂zt∂πt(zt)
βE−1

[
1z0≤θ0,...,zt≤θt

t−1

∏
k=0

1
fk(θk+1|θk)

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk

]

where recall that zt is a specific history and so comes out of the expectation.
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Now, consider these two expectations. Now, we define Ωt(zt) by:

Ωt(zt) ≡ E−1

[
1z0≤θ0,...,zt≤θt

t−1

∏
k=0

1
fk(θk+1|θk)

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk

]

=
∫ θ

zt

∫ θ

zt−1

...
∫ θ

z0

t−1

∏
k=0

∂ fk(θk+1|zk)

∂zk
f (θ0)dθt...dθ0

=
∫ θ

zt

∂ fk(θt|zt−1)

∂zk

[∫ θ

zt−1

...
∫ θ

z0

t−2

∏
k=0

∂ fk(θk+1|zk)

∂zk
f (θ0)dθt−1...dθ0

]
dθt

=
∫ θ

zt

∂ fk(θt|zt−1)

∂zt−1
Ωt−1(zt−1)dθt

= Ωt−1

(
zt−1

) ∫ θ

zt

∂ fk(θt|zt−1)

∂zt−1
dθt

which is well-defined for all t ≥ 1. However, it requires an initial condition Ω0(z0). It is helpful to

define this initial condition in the date 1 FOC. Note that at date 1, we have:

Bt−1
0 (θt−1) = B0

0(θ
0) =

∫ θ0

θ

∂U0

∂s0
ds0

so that we have d
dπt(zt)

Bt−1
0 (θt−1) = 1z0≤θ0

∂U0
∂π1(z1)

. In particular then, the expectation is simply:

E−1 [1z0≤θ0 ] =
∫ θ

z0

f (θ0)dθ0 = 1 − F(z0)

so the initial condition is Ω0(z0) = 1 − F(z0). This gives us a state space reduction property, where

we can fully determine Ωt from Ωt−1 and zt−1 by a recursive sequence, where the initial value is

Ω0(z0) = 1 − F(z0).

From here, we can substitute back into the FOCs:

(1 + κ)

[
∂Ut−1

∂πt(zt)
f (zt−1) + β

∂Ut

∂πt(zt)
f (zt)

]
= κ

[
Ωt−1(zt−1)

∂2Ut−1

∂zt−1∂πt(zt)
+ βΩt(zt)

∂2Ut

∂zt∂πt(zt)

]
From here, it is helpful to divide through by f (zt−1):

(1+ κ)

[
∂Ut−1

∂πt(zt)
+ β

∂Ut

∂πt(zt)
f (zt|zt−1)

]
= κ

[
Ωt−1(zt−1)

f (zt−1)

∂2Ut−1

∂zt−1∂πt(zt)
+ β

Ωt(zt)

f (zt)

∂2Ut

∂zt∂πt(zt)
f (zt|zt−1)

]
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And from here, we define Γt(zt) = Ωt(zt)
f (zt)

. Note that we have:

Γt(zt) =
Ωt(zt)

f (zt)
=

Ωt−1(zt−1)

f (zt−1)

∫ θ
zt

∂ fk(θt|zt−1)
∂zk

dθt

f (zt|zt−1)
= Γt−1(zt−1)

∫ θ
zt

∂ fk(θt|zt−1)
∂zk

dθt

f (zt|zt−1)

which is itself a recursive sequence with initial condition Γ0 = 1−F(z0)
f (z0)

. The characterization from

the lemma follows from recalling that ∂Ut−1
∂πt(zt)

= ∂Ut−1
∂πe

t−1
f (zt|zt−1).

Lastly, we can evaluate the FOC for π0, which from the steps above yields

∂U0

∂π0
=

κ

1 + κ
Γ0(z0)

∂2U0

∂z0∂π0

This concludes the proof.

A.12.1 Second best with Average Transfers

In Section 5.2, we assumed the outside option was W0(θ0) ≥ 0. We might alternatively have

expressed this in the form ∫
θ0

W0(θ
0) f (θ0|θ−1)dθ0 ≥ 0 (28)

Intuitively, one can think of the former as a participation constraint when the central bank already

knows θ0, while the latter is a participation constraint when the central bank does not yet know

θ0. Under this structure, we can show a dynamic inflation target is optimal under costly transfers.

Intuitively, the principal and agent have the same preferences (apart from transfers) and so agree

that the Ramsey allocation maximizes total surplus. The average participation constraint allows

the principal to extract full surplus without distorting the allocation rule.

Proposition 22. Under an average participation constraint (28), the dynamic inflation target of Proposition

3 is an optimal mechanism.

Proof. Lemma 20 still holds. Using Tt(θt) = Wt − Ut − βEt [Wt+1|θt], we have from equation (28)

0 = E−1W0 = E−1

∞

∑
t=0

βt(Ut + Tt).

Thus substituting into the principal’s problem, we have the relaxed problem

max
{πt}

E−1

∞

∑
t=0

βt(1 + κ)Ut

so the principal’s allocation rule is the Ramsey allocation, and hence is implemented by the
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dynamic inflation target (along with a date 0 lump sum transfer to achieve a binding participation

constraint). ■

A.13 Proof of Corollary 18

The proof follows immediately from the definition of Γt, which is equal to zero if θt ∈ {θ, θ}. When

Γt = 0, the allocation rule is constrained efficient for all Γt+k, k ≥ 1, so the optimal mechanism

reverts to constrained efficiency, which is implemented by the dynamic inflation target.
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B Applications Continued

This Appendix develops several additional applications as well as extensions of those presented in

the main text. In Appendix B.1, we develop a canonical application of persistent cost-push shocks.

In Appendix B.2, we characterize the dynamic inflation target response during lower bound spells.

In Appendix B.3, we generalize the declining r∗ application presented in Section 3.1 of the main

text to the case where σ > 0. In Appendix B.4, we revisit our main applications allowing for

costly mechanism transfers. Finally in Appendix B.5, we discuss how Rogoff (1985)’s classical

conservative central banker relates to our dynamic inflation target mechanism.

B.1 Cost-Push Shocks

In this application, we study a persistent cost-push shock both with and without costly transfers.

This revisits the related full-information environment of Svensson and Woodford (2004) and

studies the properties of the dynamic inflation target. Social welfare is characterized by a New

Keynesian loss function around a non-distorted steady state, Ut(πt, yt, θt) = − 1
2 π2

t − 1
2 α(yt − θt)2.

For simplicity, we set the slope of the Phillips curve to be κ = 1. Internalizing the NKPC (11) into

the loss function yields reduced-form preferences

U(πt, Etπt+1, θt) = −1
2

π2
t −

1
2

α(πt − βEtπt+1 − θt)
2. (29)

Note that θt is a cost-push shock in the usual sense: higher θt means higher current inflation

is needed in order to maintain the same output loss. We assume the cost-push shock satisfies

Etθt+1 = ρθt, where 0 ≤ ρ ≤ 1 is its persistence. The following result characterizes the dynamic

inflation target.

Proposition 23. The dynamic inflation target that implements the full-information Ramsey allocation is

bt = γ1bt−1 − γ2θt

τt = (1 − γ1)γ1bt−1 + γ2(γ1 − 1 + ρ)θt,

where 0 ≤ γ1 ≤ 1 does not depend on ρ, and γ2 ≥ 0 increases in ρ. Optimal inflation sets πt = −bt + bt−1.

Proposition 23 specializes the dynamic inflation target of Proposition 3 to the cost-push shock

application. In response to a positive and persistent innovation in the shock, i.e., a high θt realization,

the central bank updates both parameters of the target for the next period. First, the target flexibility

decreases in the sense that bt falls. This happens because the cost-push shock leads to a larger output

gap today, increasing the inflationary bias of the central bank.

OA-31



Second, the response of the target level is ambiguous and depends on the shock persistence.

When shocks are not persistent, a cost-push shock is followed by a lower target level. As shocks

become more persistent, there is a critical level ρ∗ = 1 − γ1 after which the central bank raises

the target level instead. This result reflects the common intuition of the cost-push shock model:

The central bank would like to promise low future inflation to improve the contemporaneous

inflation-output trade-off; as shocks become more persistent, however, it also wants to promise

higher future inflation to mitigate future expected cost-push shocks.

The target also rises as the previous period’s target flexibility parameter bt−1 rises. This reflects

the history dependency: a high past inflationary bias leads to a desire for low inflation today, which

in turn leads to a desire for low inflation tomorrow. This means that the decrease in bt serves

as a force for future deflationary pressures. Finally, contemporaneous inflation unambiguously

rises in response to a positive cost-push shock. It is interesting to note that the target flexibility

is always more responsive to a contemporaneous cost-push shock than its level, since we have

−1 < γ1 − 1 + ρ < 1.

B.1.1 Proof of Proposition 23

Given reduced from preferences are

U(πt, Etπt+1, θt) = −1
2

π2
t −

1
2

α(πt − βEtπt+1 − θt)
2

then we have
∂Ut

∂πt
= −πt − α(πt − βEtπt+1 − θt)

∂Ut−1

∂Et−1πt
= βα(πt−1 − βEt−1πt − θt−1).

By definition, we have

νt−1 = − 1
β

∂Ut−1

∂Et−1πt
= −α(πt−1 − βEt−1πt − θt−1).

Therefore, we can write the FOC for the full-information Ramsey allocation, ∂Ut
πt

= νt−1, equivalently

as

−πt − νt = νt−1

or in other words, πt = νt − νt−1. Combined with the definition of νt−1 and the initial condition

ν−1 = 0, this gives us a complete system.

Suppose that Etθt+1 = ρθt, where ρ = 1 corresponds to full persistence. We thus think of cost
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push shocks as reverting towards zero. We guess and verify a linear solution

νt = γ1νt−1 + γ2θt.

Given this conjecture, we know from the FOC that

πt = (γ1 − 1)νt−1 + γ2θt.

Using the definition of νt,

νt = −απt + αβEtπt+1 + αθt,

we substitute in the expression for πt and our conjecture for νt+1 to obtain

νt = −α

(
νt − νt−1

)
+ αβ

(
(γ1 − 1)νt + γ2Etθt+1

)
+ αθt.

Now using that Etθt+1 = ρθt and rearranging, we get

νt =
α

1 + α + (1 − γ1)αβ
νt−1 +

α

(
βγ2ρ + 1

)
1 + α + (1 − γ1)αβ

θt

Thus coefficient matching, we have the system of equations

α

1 + α + (1 − γ1)αβ
= γ1

α

(
βγ2ρ + 1

)
1 + α + (1 − γ1)αβ

= γ2

The first equation is defined solely in terms of γ1. Thus taking it and rearranging, we obtain the

quadratic

αβγ2
1 − γ1(1 + α + αβ) + α = 0.

This quadratic has two roots, with the upper root being explosive since β < 1 implies γ+
1 > 1. Thus

selecting the non-explosive root gives 0 ≤ γ1 ≤ 1, where

γ1 =
1 + α + αβ −

√
(1 + α + αβ)2 − 4α2β

2αβ
.

Note that to see why this root lies between 0 and 1, the quadratic above equals α > 0 for γ1 = 0

and equals −1 < 0 when γ1 = 1.
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Given that 0 ≤ γ1 ≤ 1, we can solve for γ2 using the second equation, which gives

γ2 =
γ1

1 − βργ1
,

which is positive since βργ1 ≤ 1. Thus we have our solution. Given this solution, the parameters

of the target are

νt = γ1νt−1 + γ2θt

and

τt = Etπt+1

= (γ1 − 1)νt + γ2ρθt

= −(1 − γ1)γ1νt−1 + γ2(γ1 − 1 + ρ)θt

B.2 Lower Bound Spells: Target Adjustments as Unconventional Policy

When the economy is at the effective (zero) lower bound, which we refer to as a “lower bound spell”,

the central bank loses its conventional policy instrument (short-term interest rates). Historically,

central banks have then resorted to unconventional policy, focusing largely on forward guidance

and asset purchases. Some commentators have explicitly raised the question whether changes

in the targeting framework could and should be seen as a potential additional unconventional

monetary policy instrument. Our theory provides a natural framework to ask this question.58

Zero lower bound spells are commonly represented by a constraint it ≥ 0 (Eggertsson and

Woodford, 2003; Werning, 2011). Consider a canonical loss function at a distorted steady state,

U (πt, yt) = − 1
2 π2

t − 1
2 αy2

t + λyt. When explicitly accounting for the zero lower bound constraint,

it ≥ 0, social welfare can be associated with the Lagrangian E ∑∞
t=0 βt[U (πt, yt) + ϑtit

]
. The

Lagrange multiplier ϑt can be interpreted as the shadow value of being able to set negative nominal

rates. In other words, when the economy falls into a liquidity trap, the shadow value on policies that

push the economy away from the constraint rises—for example by raising inflation expectations,

lowering current output, or raising future expected output.

In this application, we represent the mechanism design problem directly over the reduced-

form loss function Ut(πt, yt) + θtit, which encodes θtit as a reduced form utility benefit/cost of the

nominal interest rate. A positive innovation to θt qualitatively captures the same economics as an

explicit lower bound spell ϑt: a higher θt increases the utility value of higher nominal interest rates,

consistent with a lower bound spell. We associate a persistent lower bound spell with a persistently

58 Crucially, we implicitly abstract from asset purchases: That is, we do not allow the central bank to use any other
unconventional tool that would allow it to make the lower bound constraint slack again. We assume that instruments
are incomplete to such an extent that the economy experiences a lower bound spell.
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high value θt.

We assume that Etθt+1 = ρθt for 0 ≤ ρ ≤ 1. We associate ρ = 0 with a transitory liquidity

trap, where the lower bound constraint is expected not to bind in the following period. In this

application, we abstract from shocks to the slope of the Phillips curve, κt = κ, innovations in the

natural rate, r∗t = r∗, and demand shocks, ϵt = 0. Substituting the NKPC (11) into the dynamic IS

equation (12) then implies

it = Etπt+1 + r∗ +
σ

κ

[
− πt + (1 + β)Etπt+1 − βEtπt+2

]
. (30)

This means that, after substituting out for it and yt in preferences Ut(πt, yt) + θtit, we can represent

reduced-form preferences by Ut(πt, Etπt+1, Etπt+2, θt). Since Etπt+2 appears in this implementabil-

ity condition, the resulting time consistency problem has a horizon of more than one period. We

study longer-horizon time consistency problems in Section 4. In this application, we set σ = 0 so

that the time consistency problem reverts to a single period. We can then rewrite the reduced-form

utility function as

Ut(πt, Etπt+1, θt) = −1
2

π2
t −

1
2

α̂

(
πt − βEtπt+1

)2

+ λ̂

(
πt − βEtπt+1

)
+ θt

(
Etπt+1 + r∗

)

where α̂ = α
κ2 and λ̂ = λ

κ .59 We now characterize the dynamic inflation target of Proposition 3 when

the economy experiences a lower bound spell.

Proposition 24. The dynamic inflation target that implements the full-information Ramsey allocation is

bt = −γ0 − γ1θt + γ2bt−1

Etπt+1 = γ0 − (γ2 − 1)bt +

(
γ1 +

1
β

)
ρθt

where γ0 =
λ̂
α̂ γ2

1−βγ2
> 0, where γ1 = γ2

1−γ2βρ

[
ρ− 1+α̂

α̂
1
β

]
< 0, and where γ2 =

1+α̂(1+β)−
√

(1+α̂(1+β))2−4α̂2β

2α̂β

with 0 < γ2 < 1. Optimal inflation sets πt = −bt + bt−1 +
1
β θt.

To illustrate the economic forces that govern the dynamic inflation target mechanism, consider

the following exercise: We initialize the economy at its risky steady state.60 Formally, we consider

59 In both this application and the ones that follow, the proof shows that there are two linear solutions that satisfy the
first order conditions of the optimum, and we take the non-explosive solution to remain consistent with the transversality
condition.

60 We define the risky steady state of the economy under a dynamic inflation target as comprising the allocation,
prices, and target parameters (τ, ν) that the model converges to if a shock sequence of θt = 0 for all t is realized. This is
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a particular realization of the stochastic process where θt = 0 for sufficiently many periods such

that the economy and the mechanism asymptotically converge. It is straightforward to see that the

target flexibility converges to bt → b = − γ0
1−γ2

= − 1
1−γ2

γ2
1−βγ2

κλ < 0 in this limit. In the language

of Svensson (1997), the distorted steady state λ > 0 implies that there is an average inflationary bias,

which b < 0 corrects. Similarly, the target level converges to τt = Etπt+1 → τ = γ0 − (γ2 − 1)b = 0

in the risky steady state limit. This reflects a common Ramsey intuition: with a distorted steady

state, the central bank achieves a better inflation-output trade-off today by promising lower

inflation tomorrow, and subsequently achieves a better inflation-output trade-off tomorrow by

promising future lower inflation, and so on. This pushes optimal inflation under commitment

towards zero in the long run, absent shock innovations. Formally, the allocation rule implies

πt = −bt + bt−1 +
1
β θt → b − b = 0. Our dynamic inflation target implements the long-run Ramsey

allocation in the risky steady state of this economy with a target level of τ = 0 and a positive target

flexibility ν > 0 that exactly offsets the central bank’s time inconsistent incentive to respond to the

steady state distortion.61

We now initialize the economy at this risky steady state and consider a positive realization of

the shock, θ0 > 0. Intuitively, we consider the economy as having entered a lower bound spell of

uncertain duration at date 0. We plot the resulting impulse response functions (IRFs) under the

dynamic inflation target mechanism in Figure 4.

Suppose first that the ZLB spell is purely transitory, and hence E0θ1 = 0. We consider a

realization of the shock path such that θt = 0 for all t ≥ 1. The red-dashed line in Panel (a) of Figure

4 plots the dynamics of the target flexibility under this path.

The dynamic inflation target becomes more flexible at the lower bound, i.e., b0 rises since

γ1 < 0. Intuitively, the transitory lower bound spell increases the value of future inflation and calls

for a lower future inflation penalty. Even though the economy escapes from the lower bound at

date 1, the added target flexibility is persistent and decays only at the rate γ2 < 1. This endogenous

persistence in the target response captures the standard intuition that optimal monetary policy

in a liquidity trap makes long-lived promises to keep interest rates low even after the economy

moves away from the lower bound (Werning, 2011). Intuitively, promising high inflation at date 1

means that unless the central bank also promises high inflation at date 2, the economy experiences a

significant output contraction at date 1. The central bank therefore smooths the output contraction

by promising to maintain higher inflation for longer.

The associated increase in inflation expectations is also reflected in an upwards adjustment of

distinct from the standard deterministic steady state because agents understand that the environment is stochastic. It is
also distinct from the stochastic steady state, which describes the random variables that allocation, prices, and target
parameters converge to in distribution as the model is simulated for a sufficiently long period of time under the ergodic
stochastic process {θt}.

61 Similarly, we have it → r∗ and yt → 0. The allocation in the risky steady state is therefore the same as in the
deterministic steady state of this model. This follows from certainty equivalence under a first-order linearization.
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Figure 4. Impulse Responses: Lower Bound Spell

Note. Figure 4 plots the impulse responses of inflation and the dynamic inflation target after a lower bound shock
θ0 > 0. Panels (A) through (D) show target flexibility, target level, inflation, and the shock, respectively. Our illustrative
calibration closely follows Galí (2015), except we focus on the limit of a vanishing EIS, σ = 0. The blue solid line
corresponds to a persistent shock (ρ = 0.6) and the red dashed line to a transitory shock (ρ = 0). In each case, we
initialize the economy at the risky steady state and consider a shock at time 0.

the target level—see panel (b) of Figure 4. This reflects the success of the central bank in using the

increased target flexibility to raise inflation expectations. It manifests in a higher inflation level in

the next period. Coinciding with the gradual decay in target flexibility, the target level and realized

inflation also both remain above zero even after the shock has phased out. A persistent shock,

ρ > 0, leads to qualitatively similar but more persistent dynamics.

B.2.1 Proof of Proposition 24

Using reduced form preferences, our two key equations are

νt−1 = −πt − α̂

(
πt − βEtπt+1

)
+ λ̂

νt = −α̂

(
πt − βEtπt+1

)
+ λ̂ − 1

β
θt

Summing the two equations, we get νt = νt−1 + πt − 1
β θt. Guessing and verifying a linear solution

νt = γ0 + γ1θt + γ2νt−1 and using our key equation, we get

πt = νt − νt−1 +
1
β

θt
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Leading one period and taking expectations,

Etπt+1 = γ0 + (γ2 − 1)νt +

(
γ1 +

1
β

)
ρθt

Now, substituting back in to the equation for νt and rearranging,(
1 + α̂ − α̂β(γ2 − 1)

)
νt = α̂βγ0 + λ̂ +

[
α̂β

(
γ1 +

1
β

)
ρ − 1 + α̂

β

]
θt + α̂νt−1

Now, we solve by coefficient matching. Coefficient matching on γ2, we have

0 = α̂βγ2
2 −

(
1 + α̂ + α̂β

)
γ2 + α̂

and so the non-explosive root is

γ2 =

1 + α̂ + α̂β −

√(
1 + α̂ + α̂β

)2

− 4α̂2β

2α̂β

Now, we can coefficient match on the constant, γ0 = α̂
1+α̂−α̂β(γ2−1)

α̂βγ0+λ̂
α̂ , giving

γ0 =
γ2

1 − βγ2

λ̂

α̂

Finally, coefficient mathcing on γ1,

γ1 =
α̂

1 + α̂ − α̂β(γ2 − 1)

[
α̂β

(
γ1 +

1
β

)
ρ − 1+α̂

β

]
α̂

γ1 =
γ2

1 − γ2βρ

[
ρ − 1 + α̂

α̂

1
β

]

B.3 r∗ Revisited and the Commitment Curve

We revisit the application to persistent changes in the natural interest rate r∗t (Section 3.1) but allow

for σ > 0. The realized nominal interest rate is

it = Etπt+1 + θt + σ
[
Etyt+1 − yt

]
− ϵt.

Intuitively, an expected rise in the output gap means household consumption is expected to rise,

raising the nominal interest rate and pushing the central bank away from the ELB. Similar to Section
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3.1, we can write it = i∗t − ϵt and write the welfare losses v(i∗t ) from the ELB. In this case with

σ > 0, we have a change in the definition of i∗t to

i∗t = −σπt + (1 + (1 + β)σ)Etπt+1 − βσEtπt+2 + θt,

which reflects internalizing the NKPC to substitute out the output gap. Intuitively, higher inflation

today, πt, increases output today and so reduces the required nominal rate. Higher inflation πt+1

both directly increases the nominal rate and indirectly increases it by stimulating output yt+1.

Conversely, higher inflation πt+1 depresses output yt+1 and so reduces the nominal rate.

We now characterize the shape of the commitment curve in this setting. Recall that the

reduced-form objective is given by Ut = − 1
2 π2

t − 1
2 α̂(π − βEtπt+1)

2 + v(i∗t ). We can now write

νt,t+1 = ν
y
t,t+1 + νi

t,t+1,

where ν
y
t,t+1 = − 1

2 α̂(πt − βEtπt+1) is the usual output gap component, and where νi
t,t+1 = −(v1 −

βv2i∗t )(1 + (1 + β)σ) < 0 is the component that comes from the effective lower bound. From here,

we can show that

νt,t+2 = −β∗νi
t,t+1,

where β∗ = σ
1+σ(1+β)

< 1 is increasing in σ.

Intuitively, in this case the commitment curve can be decomposed into two components. The

first component is the output gap commitment curve, where we have ν
y
t,t+1 > 0 and ν

y
t,t+k = 0

for all k > 1. This corresponds to the standard one period commitment to stabilize the output

gap. The second component is the effective lower bound commitment curve, where νi
t,t+1 < 0 and

νi
t,t+2 = −β∗νi

t,t+1 > 0. The effective lower bound commitment curve switches signs precisely

because of the different effects of inflation at different horizons.

B.4 Costly Transfers: Main Applications Revisited

It is instructive to revisit how costly transfers (Section 5.2) affects the optimal allocation rule in our

main applications. In this Appendix, we revisit our applications on declining r∗t (Section 3.1), the

flattening Phillips curve (Section 3.2), cost-push shocks (Appendix B.1), and lower bound spells

(Appendix B.2).

We show that costly transfers calls for less aggressive unconventional policies (e.g., forward

guidance) when the economy experiences a lower bound spell, while it calls for more aggressive

policies (e.g., raising the inflation target) in response to a decline in r∗. We document competing

effects in the case of flattening Phillips curve that can call more more or less aggressive policies.
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Declining r∗. In the case of changes in the natural rate θt = r∗t (Section 3.1), reduced-form

preferences satisfy ∂Ut
∂πt∂θt

= 0 and ∂Ut
∂Etπt+1∂θt

= −c1 for a constant c1 > 0. Intuitively, high θt

corresponds to being further from the effective lower bound, which reduces the value of raising

inflation expectations to get away from the ELB. The allocation rule under the optimal mechanism

is given by
∂Ut

∂πt
= νt−1 − KΓt−1c1,

where again the RHS is λt−1. The rule thus parallels the rule under lower bound spells, but in the

opposite direction. This is because higher inflation expectations now reduce past information rents

to the central bank, rather than raising them, by pushing the economy away from the ELB. This

leads the planner to prefer a more aggressive policy for promoting future inflation.

These results highlight a surprising contrast between the two lower bound applications: costly

transfers calls for less aggressive unconventional policies in a lower bound spell, but for more

aggressive policies in response to changing a natural rate. Intuitively once the economy is already

in a lower bound spell, boosting inflation expectations raises central bank information rents by

disproportionately benefiting central banks in worse conditions. By contrast if the economy has

not yet hit the lower bound, boosting inflation expectations reduces central bank information rents

by pushing all central banks away from the lower bound, reducing the value to the central bank of

private information about r∗.

Flattening Phillips curve. In the case of a flattening Phillips curve (Section 3.2), reduced-form

preferences satisfy ∂Ut
∂πt∂θt

= 1
κ and ∂Ut

∂Etπt+1∂θt
= − β

κ . This reflects that a flattening Phillips curve

(higher θt) increases the value of stimulating current output through current inflation, but also

increases the cost of higher inflation expectations that depress output. The optimal allocation rule

is given by
∂Ut

∂πt
= νt−1 +

K
κ

∆Γt,

where again the RHS is λt−1 and where ∆Γt ≡ Γt − Γt−1. There are two competing effects from

costly transfers. On the one hand, high θt means that the central bank’s value of stimulating output

rises, promoting higher current inflation. This increases information rents to the central bank and

calls for lower inflation. On the other hand, high inflation also increases past inflation expectations,

which reduces information rents to past central banks and calls for higher inflation (similarly to the

r∗ application). The relative magnitude of the two effects is determined by ∆Γt, that is the change

in the persistent portion of the information rent earned by the central bank between the two dates.

From Proposition 17, we can write

∆Γt = Γt−1

(
h(θt|θt−1)Et

[
Λ(st|θt−1)

∣∣∣∣st ≥ θt

]
− 1

)
.
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where recall that h−1(θt|θt−1) =
1−F(θt|θt−1)

f (θt|θt−1)
is the inverse hazard rate and Λ(st|θt−1) =

∂ f (st|θt−1)/∂θt−1
f (θt|θt−1)

is the derivative of the likelihood ratio. We know that the expected likelihood ratio derivative is

zero at θt = θ while we know that the inverse hazard rate is zero at θt = θ. Thus local to the two

extremes of the shock distribution, we have ∆Γt < 0 and hence the optimal mechanism promotes

higher inflation. Interestingly, this suggests a tendency in this environment for the backward

looking information rent to dominate the contemporaneous information rent, and hence generate

a tendency to promote higher inflation to generate lower past information rents (at the expense

of promoting higher current information rents). In the interior, two common assumptions are a

nonincreasing inverse hazard rate and a monotone (increasing) likelihood ratio (higher past types

signal high future types). These have competing effects on the response to a flattening Phillips

curve. Intuitively, a lower inverse hazard rate reduces current virtual surplus whereas a higher

likelihood ratio increases virtual surplus.

Cost-push shocks. With costly transfers, note that we have ∂Ut
∂πt∂θt

= 1
2 α and ∂Ut

∂Etπt+1∂θt
= − 1

2 αβ.

The impacts are analogous to a flattening Phillips curve, and means we can write

∂Ut

∂πt
= νt−1 +

1
2

K
α

∆Γt

Thus relative to the Ramsey solution, the optimal mechanism adjusts the allocation trading off

two effects on information rents. On the one hand, higher expected inflation reduces past infor-

mation rents by increasing costs of inflation for central banks that experience large past cost push

shocks. On the other hand, higher contemporaneous inflation increases current information rents

by reducing costs of large contemporanous cost push shocks. The optimal allocation rule trades

off these two effects. As once again ∆Γt < 0 local to the boundaries of the shock distribution,

particularly large or particularly small cost push shocks at date t lead past information rents to

dominate, and calls for a more aggressive inflation response today in order to reduce historical

information rents. Interestingly, this amplifies the response of inflation to a large cost push shock,

pushing the allocation rule closer to the policy under discretion.

Lower bound spells. In the case of lower bound spells (Section B.2), reduced-form preferences

satisfy ∂Ut
∂πt∂θt

= 0 and ∂Ut
∂Etπt+1∂θt

= c0 for a constant c0 > 0. This reflects that high θt > 0 corresponds

to a binding lower bound and thus makes it valuable to promise more future inflation. However,

because θt reflects a benefit of increasing the nominal rate and increasing inflation πt does not

directly increase the nominal rate, changes in the allocation rule πt does not generate an information

rent for the central bank at date t. This leads to an allocation rule given by

∂Ut

∂πt
= νt−1 + KΓt−1c0,
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where the RHS is λt−1.

Suppose that lower bound spells are persistent and higher current types signal higher future

types (monotone likelihood). Then, Γt−1 > 0, so that the optimal mechanism prescribes a marginal

value of contemporaneous inflation that is higher under costly transfers, all else equal. Intuitively,

higher inflation expectations increase past information rents through by pushing the economy away

from the lower bound. This leads the planner to prefer a less aggressive policy for promoting future

inflation.

B.5 Revisiting Rogoff’s Inflation-Conservative Central Banker

We ask whether dynamic inflation targets can be implemented by inflation-conservative central

bankers in the spirit of Rogoff (1985). In particular, our inflation-conservative central banker places

a greater penalty on inflation than the government. After appropriate intertemporal rearrangement

of terms, we represent this by assuming central bank preferences equal to

Vt = Ut − c(πt − Et−1[πt|θ̃t−1]),

where as before Ut denotes the preferences of society and the government, and where c is the

constant linear cost to the conservative central banker of inflation exceeding firm inflation expecta-

tions.62 We obtain the following result.

Proposition 25. With an inflation-conservative central banker, the full-information Ramsey allocation can

then be implemented by a dynamic inflation target with bt−1 = −νt−1 + c.

Proposition 25 demonstrates that the appointment of an inflation-conservative central banker

does not obviate the fundamental need for a dynamic inflation target. Intuitively, the inflation-

conservative central banker applies a constant penalty to inflation, given by c. In the presence

of persistent shocks, the target flexibility −νt of the dynamic inflation target changes over time.

While an inflation-conservative central bank raises target flexibility on average, in the sense that

bt−1 = −νt−1 + c > −νt−1, the total implied inflation penalty bt−1 − c is −νt−1 just as before.

The inflation target mechanism that implements the full-information Ramsey allocation is still

time-varying and responds to persistent shocks.

In the language of Svensson (1997), however, appointing an inflation-conservative central

banker can resolve average inflationary bias when c is set equal to the average value of νt in the

stochastic steady state. When this average penalty is large (e.g., in the presence of a distorted

62 This is a special case of preference disagreement in Appendix C.2.
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steady state) but time variation in νt is small, approximating the dynamic inflation target with an

inflation-conservative central bank may result in relatively small welfare losses.

Proposition 25 suggests that an alternative implementation of the dynamic inflation target

might be to appoint new central bank chairs with appropriate inflation preferences in response to

changes in νt. The inflation conservativeness of the central bank would then be time-varying and

correspond to ct = νt−1. If in response to a shock at date t − 1 the dynamic inflation target requires

νt−1 > νt−2, then a more dovish central banker at date t − 1 should be replaced by a more hawkish

central banker at t. Just as the dynamic inflation target must be updated one period in advance, the

appointment of a new central banker would also be announced one period in advance.63

B.5.1 Proof of Proposition 25

The proof follows the same steps as in Proposition 3. The envelope condition is the same, given

that the additional term −c(πt − Et−1[πt|θ̃t]) in Vt depends on reported types and not true types.

From here, the value function at date t under our proposed mechanism given by

Wt(θ
t) = bt−1(πt − Et−1πt) + Vt + βEt

[
Wt(θ

t+1)|θt

]

= (−c + bt−1)(πt − Et−1πt) + Ut + βEt

[
Wt(θ

t+1)|θt

]

= −νt−1(πt − Et−1πt) + Ut + βEt

[
Wt(θ

t+1)|θt

]
which is the same value function as in the proof of Proposition 3 when evaluated at the constrained

efficient allocation. Thus the result follows using the same proof as for Proposition 3.

C Further Extensions

C.1 Welfare Gains from a Dynamic Inflation Target

We characterize the potential welfare gains under a dynamic inflation target. Suppose that the

central bank adopts a permanent, static target (ν∗, τ∗) instead of the dynamic inflation target of

Proposition 3.64 The following proposition describes the first-order welfare gains from moving

63 Importantly, just as a fixed central bank under the optimal mechanism was tasked with updating its own target,
in an implementation with time varying conservativeness a central banker would be tasked with appointing her own
replacement one period in advance (or at the least, would be responsible for naming her successor). However, this
institutional arrangement is not typical (if used at all) in practice. For example, in the U.S. the president is tasked with
appointing members of the Board of Governors, who must then be confirmed by the Senate.

64 To simplify analysis, we will characterize welfare under a static target with full information, even though the
dynamic inflation target implements the Ramsey allocation under incomplete information. This streamlines analysis
because under a static target absent full information, the central bank’s reporting constraints would be nontrivial due to
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from the static target to a dynamic inflation target.

Proposition 26. To first order, the welfare gains in allocative efficiency from moving from a static target

(ν∗, τ∗) to the dynamic inflation target (νt−1, τt−1) of Proposition 3 are

E
∞

∑
t=1

βt
[

ν∗t−1 − ν∗︸ ︷︷ ︸
Cost of Excess Inflation

][
Et−1π∗

t − τt−1︸ ︷︷ ︸
Amount of Excess Inflation

]
.

The first order welfare gains available from moving to a dynamic inflation target depend on two

forces. The first, ν∗t−1 − ν∗, is the intertemporal variation in the time consistency problem under

the static target (where ν∗t−1 is the time consistency wedge evaluated at the allocation obtained

under the static target). When ν∗t−1 > ν∗, the time consistency problem is more severe than the

slope imposed ν∗, and hence inflation is too high relative to the efficient trade-off. In other words,

the first term reflects the cost of excess inflation. The second term, Et−1π∗
t − τt−1, is the difference

between inflation expectations under the static target and inflation expectations under the dynamic

target. High welfare gains are therefore available when a large excess time consistency problem,

ν∗t−1 − ν∗, coincides with substantial excess inflation, Et−1π∗
t − τt−1, relative to the constrained

efficient inflation level. The dynamic inflation target thus allows welfare gains not only by allowing

for greater inflation when the static target would be too severe, but also by allowing for lower

inflation when the static target would be too flexible.

C.1.1 Proof of Proposition 26

To first order, the welfare gains of an inflation perturbation from the static target is

E0

∞

∑
t=0

βt
[

∂Ut

∂πt
dπt +

∂Ut

∂Etπt+1
dπt+1

]
.

From here, the first order condition of the central bank is ν∗ = ∂Ut
∂πt

, while by definition ∂Ut
∂Etπt+1

=

−βν∗t . We have ∂U0
∂π0

= 0, so that we have

E0

∞

∑
t=1

βt
[

ν∗ − ν∗t−1

]
dπt.

Finally, we have Et−1dπt = τt−1 − Et−1π∗
t , giving the result.

information effects.
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C.2 Preference Differences

We extend the costly transfers model (Section 5.2) to allow for preference disagreement. For-

mally, the central bank has utility Ut but the government has utility Vt(πt, Et[πt+1|θ̃t], θt). Social

preferences of the government are now

max E

[ ∞

∑
t=0

βt (Vt(πt, Et[πt+1|θ̃t], θt)− κTt
) ]

. (31)

As before there is a central bank participation constraint. Define K = κ
1+κ as before, and define

weighted reduced form preferences to be

Zt = (1 − K)Vt + KUt.

Weighted reduced form preferences average the preferences of the government and central bank. A

higher weight is assigned to central bank preferences the more costly transfers are, that is K rises in

κ. The optimal mechanism can be described as follows.

Proposition 27. The solution to an optimal allocation rule of the relaxed problem is given by the first-order

conditions
∂Zt

∂πt
− KΓt

∂Ut

∂θt∂πt
= λ∗

t−1

where λ∗
t−1 = − 1

β
∂Zt−1

∂Et−1πt
+ KΓt−1

1
β

∂2Ut−1
∂θt−1∂Et−1πt

and Γt is defined as in Proposition 17.

The optimal allocation rule of Proposition 27 is similar to that of Proposition 17, but with one

important difference: the weighted preference Zt replaces the planner’s utility. Intuitively, the

government places value on the lifetime utility to the central bank because promising higher lifetime

value allows the government to extract more surplus in the form of transfers. Counterveiling

this force is information rents, which are analogous to before and only depend on central bank

preferences Ut. Intuitively, these terms only depend on central bank preferences as information

rents accrue based on central bank preferences. Otherwise, the intuitions of Section 5.2 carry over.

It is helpful to illustrate two dichotomous cases. If K = 0 and transfers are costless, we have

Zt = Vt and hence the optimal allocation is the government’s Ramsey allocation. This follows

intuitively: the government has no cost to designing a scheme that incentives the central bank to

choose the government’s preferred allocation. At the other extreme, if K = 1 then Zt = Ut, that is

to first order the planner only values transfers. Interestingly, the optimal allocation collapses to

that of Proposition 17. Intuitively when the principal only cares about transfers, the principal on

the one hand wants to make utility as high as possible to the agent in order to relax the central
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bank’s participation constraint and extract larger transfers ex ante. On the other hand, the principal

also internalizes that higher agent utility increasess agent information rents. This leads to the same

allocation rule as in the case where principal and agent preferences are aligned except for transfers.

At intermediate values of K, the optimal allocation rule trades off the two extremes. On the

one hand, the planner wishes to push the allocation closer to her Ramsey allocation, which increases

her direct utility from allocations. At the same time, the planner wishes to push the allocation

closer to the central bank’s Ramsey allocation in order to relax the participation constraint and

extract greater transfers. This leads to a balancing act determined by K, which encodes a relative

weight the principal assigns to the different motivations.

As in Corollary 18, following θt ∈ {θ, θ} the optimal allocation reverts to the Ramsey allocation

associated with weighted reduced-form preferences Zt. If K = 1, then this allocation coincides with

that of the dynamic inflation target.

C.2.1 Proof of Proposition 27

Observe that the integral envelope condition (27) still holds and implies Lemma 20 characterizes the

central bank’s value function, given central bank preferences have not changed. Thus the transfer

rule is still given by Tt = Wt − Ut − βEt[Wt+1|θt]. Thus we still have

−E
∞

∑
t=0

Tt = E
∞

∑
t=0

βtUt −W0

where W0 = E0

[
∑∞

s=0 βsBs
0(θ

s)

∣∣∣∣θ0

]
. Given the change in preferences, the government’s objective

function is now

E

[ ∞

∑
t=0

βtVt − κTt

]
thus substituting in the transfer rule and definition of W0, the government’s objective function is

E

[ ∞

∑
t=0

βt
[

Vt + κUt − Bt
0

]]

Finally dividing through by 1 + κ and defining K = κ
1+κ (1 − K = 1

1+κ ), we obtain

E

[ ∞

∑
t=0

βt
[
(1 − K)Vt + KUt − KBt

0

]]

Thus we simply define Zt = (1 − K)Vt + KUt and the derivation proceeds exactly the same as

before with Zt replacing Ut as the government’s effective utility function. This recovers the first

order condition given and completes the proof.
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C.3 Inaction

Periods of policy inaction may arise between policy meetings or at the zero lower bound. Does

the optimality of our dynamic inflation target mechanism extend to such periods of inaction?

We extend our baseline model to allow for an inaction state. In this inaction state, the central

bank is forced to set its policy variable πt to an exogenously specified level. It can still influence

current utility by communicating its type and the future policies it will set (“forward guidance”).

In practice, central bankers use speeches and other forms of communication to convey information

between policy meetings or when the economy is at the zero lower bound.

In this extension, the Ramsey allocation involves the central bank adjusting its next-period

target in order to manage inflation expectations Etπt+1 even while its policy variable πt is exoge-

nously fixed. We show that the dynamic inflation target remains locally incentive compatible.

That is, the central bank’s incentives to report truthfully are not affected by the inaction constraint.

Intuitively, the dynamic inflation target mechanism already implements the full extent to which

the Ramsey planner would like to use forward guidance. And because the preferences of Ramsey

government and central bank over future inflation policy are aligned, this forward guidance is

incentive compatible as in the baseline model. Even in the inaction region, therefore, target adjust-

ments under our mechanism implement the forward guidance that the Ramsey planner would like

to use.

At the beginning of each period t, a publicly observed and i.i.d. action/inaction state It ∈ {0, 1}
is realized. With probability p, the “action state” It = 0 is realized and the central bank is able to

choose an inflation level πt. With probability 1 − p, the “inaction state” It = 1 is realized and the

central bank must set inflation equal to an exogenous constant, πt = π I .

Reduced-form preferences are given by Ut(πt, πe
t , θt) as in the baseline model, where in this

extension inflation expectations are

πe
t = Et

[
πt+1

∣∣∣∣θ̃t

]
= pEt

[
πt+1

∣∣∣∣It+1 = 0, θ̃t

]
+ (1 − p)π I .

Parallel to the proof of Proposition 1, the Ramsey allocation πt in the action state (It = 0) is given

by ∂Ut
∂πt

= νt−1, where νt−1 = − 1
β

∂Ut−1
∂πe

t
if t > 0 and ν−1 = 0. Inflation, inflation expectations, and

transfers are now functions of the shock history (θt, It), that is we have πt(θt, It), πe
t (θ

t, It), and

Tt(θt, It).

Parallel to Section 1.3, we have

Wt(θ
t−1, θ̃t, It|θt) = Ut

(
πt(θ

t−1, θ̃t, It), πe
t (θ

t−1, θ̃t, It), θt

)
+ Tt(θ

t−1, θ̃t, It)

+ βEt

[
Wt+1(θ

t−1, θ̃t, θt+1, It+1|θt+1)
∣∣∣θt

]
,
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and therefore obtain local incentive compatibility

∂Wt(θt, It)

∂θt
=

∂Ut
(
πt(θt, It), πe

t (θ
t, It), θt

)
∂θt

+ βEt

[
Wt+1(θ

t+1, It+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
. (32)

Finally, we define our dynamic inflation target in this environment as before by

Tt(θ
t, It) = bt−1(πt − πe

t−1).

It is worth noting that the dynamic inflation target is maintained in both the action and inaction

state (i.e., the central bank receives transfers even in the inaction state). This implies the central

bank is rewarded/punished based on its inflation policy in the inaction state, even though it has no

control over inflation in this state. However, transfers in the inaction state end up washing out,

since the target level πe
t includes the contribution of inflation in the inaction state to expectations.

We now obtain the counterpart of our main result.

Proposition 28. In the action/inaction model, a dynamic inflation target implements the full-information

Ramsey allocation in a locally incentive compatible mechanism, with target flexibility bt−1 = −νt−1. The

target (bt−1, τt−1) is a sufficient statistic at date t for the history θt−1 of past types.

Why does the dynamic inflation target remain relevant even with inaction? One might have

expected the central bank to have a motivation to lie in the inaction state in order to give itself more

favorable inflation expectations, since its contemporaneous inflation policy is fixed and would not

be affected by a misreport. In fact, the central bank is motivated to lie to alter inflation expectations

favorably—a force that, crucially, is also present in our baseline model. Misreporting in this manner

also changes the inflation target for the next period, however. The combined effect of a marginal

change in reported type on current expectations and the next period target level is

∂Ut

∂πe
t

∂πe
t

∂θ̃t︸ ︷︷ ︸
Effect via Current Expectations

+ β
∂Te

t+1

∂πe
t

∂πe
t

∂θ̃t︸ ︷︷ ︸
Effect via Future Target Level

=

[
∂Ut

∂πe
t
− βbt

]
∂πe

t

∂θ̃t
=

[
− βνt + βνt

]
∂πe

t

∂θ̃t
= 0

Thus, just as in our baseline model, the benefit of lying to obtain more favorable inflation expecta-

tions is offset by the fact that such a lie alters the future target, affecting future penalties. Intuitively,

our dynamic inflation target mechanism already provides the central bank with incentives to

implement forward guidance to the full extent the Ramsey planner would like to use it.
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C.4 Proof of Proposition 28

The derivation of the Envelope condition for local incentive compatibility parallels that of the

baseline model, since f (θt+1|θt) does not depend on the action/inaction state. We therefore proceed

as usual by showing the value function generated by our mechanism satisfies this envelope

condition.

Verifying the envelope condition. We now verify the value function under our mechanism

satisfies the envelope condition. The value function associated with the mechanism is

Wt(θ
t, It) =− νt−1(θ

t−1, It−1)

(
πt(θ

t, It)− πe
t−1(θ

t−1, It−1)

)
+ Ut

(
πt(θ

t, It), πe
t (θ

t, It), θt
)

+ βEt

[
Wt+1(θ

t+1, It+1)
∣∣∣θt

]
From here, recall that νt−1 and Et−1[πt|θt−1] are only functions of θt−1. Therefore, ∂νt−1

∂θt
=

∂Et−1[πt|θt−1]
∂θt

= 0. Thus differentiating the value function in θt, we have

∂Wt(θt, It)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1

∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
.

+

(
− νt−1 +

∂Ut

∂πt

)
∂πt

∂θt
+

∂Ut

∂πe
t

dπe
t

dθt
+ βEt

[∂Wt+1(θ
t+1, It+1)

∂θt

∣∣∣θt

]
Writing out continuation value function Wt+1 in sequence notation, we have

Wt+1 =− νt

(
πt+1 − Et[πt+1|θt]

)

− Et+1

[ ∞

∑
s=1

βsνt+s

(
πt+1+s − Et+s[πt+1+s|θt+s]

)∣∣∣∣θt+1

]

+ Et+1

[ ∞

∑
s=0

βsUt+1+s (πt+1+s, Et+1+s [πt+2+s|θt+1+s] , θt+1+s)

∣∣∣∣θt+1

]

As in the proof of our main result, since νt+s is only a function of (θt+s, It+s) and so is a constant

from the date t + s + 1 perspective we have

Et+1

[
νt+sπt+1+s|θt+1

]
= Et+1

[
Et+s

[
νt+sπt+1+s

∣∣∣∣θt+s

]
|θt+1

]
= Et+1

[
νt+sEt+s

[
πt+1+s

∣∣∣∣θt+s

]
|θt+1

]
and therefore the second line above is equal to zero. Note we did not use anything about whether

OA-49



we are in the action or inaction state in this argument. Therefore, we can write

Wt+1 =− νt

(
πt+1 − Et[πt+1|θt]

)

+ Et+1

[ ∞

∑
s=0

βsUt+1+s (πt+1+s, Et+1+s [πt+2+s|θt+1+s] , θt+1+s)

∣∣∣∣θt+1

]

Observe that this is an augmented Lagrangian at date t + 1: it is the date t + 1 lifetime value

(second line), plus an augmented penalty on date t + 1 inflation. The Ramsey solution is a critical

point of the augmented Lagrangian, which leads to a simple derivative. Formally, we know that

the impact of a change in report θt on continuation value through changes in inflation policy at

date t + 2 + s, s ≥ 0, is [
dUt+1+s

∂Et+1+sπt+2+s
+ β

∂Ut+2+s

∂πt+2+s

]
dπt+2+s

dθt
= 0.

If It+2+s = 0 and the central bank is in the action state, then dUt+1+s
∂Et+1+sπt+2+s

+ β ∂Ut+2+s
∂πt+2+s

= 0 and hence

the above equality holds. If instead It+2+s = 1 and the central bank is in the inaction state, then
dπt+2+s

dθt
= 0 and again the above is equal to zero. Thus the above equality holds.

Using this result, we therefore have

∂Wt+1

∂θt
= −∂νt

∂θt

(
πt+1 − Et[πt+1|θt]

)
− νt

(
∂πt+1

∂θt
− dEt[πt+1|θt]

dθt

)
+

∂Ut+1

∂πt+1

∂πt+1

∂θt

= −∂νt

∂θt

(
πt+1 − Et[πt+1|θt]

)
+ νt

dEt[πt+1|θt]

dθt

where the second line follows since νt =
∂Ut+1
∂πt+1

in the action state (Ramsey) and ∂πt+1
∂θt

= 0 in the

inaction state.

Now substituting back into the expression for ∂Wt
∂θt

, we have

∂Wt(θt, It)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1

∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
.

+

(
− νt−1 +

∂Ut

∂πt

)
∂πt

∂θt
+

∂Ut

∂πe
t

dEt[πt+1|θt]

dθt

+ βEt

[
− ∂νt

∂θt

(
πt+1 − Et[πt+1|θt]

)
+ νt

dEt[πt+1|θt]

dθt

∣∣∣θt

]
The first term on the third line is zero, since

Et

[
− ∂νt

∂θt

(
πt+1 − Et[πt+1|θt]

)∣∣∣∣θt

]
= −∂νt

∂θt
Et

[
πt+1 − Et[πt+1|θt]

∣∣∣∣θt

]
= 0.
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From here, we can rearrange terms to get

∂Wt(θt, It)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1(θ

t+1)
∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]

+

[
− νt−1 +

∂Ut

∂πt

]
∂πt

∂θt
+

[
∂Ut

∂Et [πt+1|θt]
+ βνt

]
dEt [πt+1|θt]

dθt

The first term on the second line is zero, since either −νt−1 +
∂Ut
∂πt

= 0 (Ramsey in the action state)

or else ∂πt
∂θt

= 0 (inaction state). The second term on the second line is zero from the definition
∂Ut

∂Et[πt+1|θt]
+ βνt = 0. Thus, the entire second line is zero, and we are left with

∂Wt(θt, It)

∂θt
=

∂Ut

∂θt
+ βEt

[
Wt+1

∂ f (θt+1|θt)/∂θt

f (θt+1|θt)

∣∣∣∣θt

]
which is the required envelope condition. This concludes the proof.

D Sufficient Statistics for the K-horizon dynamic inflation target

In this appendix, we show how to use two K × 1 vectors as sufficient statistics for the history of

shocks under the K-horizon dynamic inflation target. We only need to carry two K × 1 vectors,

Vt−1 = {Vt−1,t, . . . , Vt−1,t−1+K} and Tt−1 = {Tt−1,t, . . . , Tt−1,t−1+K}.

We define Vt−1,t−1+k as cumulative promises inherited at the beginning of date t (end of

date t − 1) for date t − 1 + k. Thus, Vt−1,t = ν̄t−1 corresponds to target flexibility at date t and

summarizes all commitments made over the past K periods. By contrast, Vt−1,t−1+k for k > 1

reflects the cumulative partial commitments the central bank has made so far for dates beyond t. We

refer to these as partial commitments precisely because they can still be updated at date t. We can

track the evolution of partial commitments using the recursion

Vt,t+k = Vt−1,t+k + νt,t+k

where Vt−1,t+K ≡ 0 and νt,t+k reflects the new promise made at date t for target flexibility k periods

ahead. To illustrate, note that Vt,t+1 = Vt−1,t+1 + νt,t+1 = ν̄t: target flexibility for period t + 1 results

from adding a new partial commitment made in period t, νt,t+1, to our measure of cumulative

promises made in the past, Vt−1,t+1. Vector Vt−1 thus summarizes all relevant information for

updating target flexiblity at date t to Vt.

To update the target level τt, the central bank must compute a weighted average of historical
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inflation forecasts. The evolution of this weighted average of forecasts satisfies the recursion

τt =
νt,t+1

ν̄t
Et[πt+1|θ̃t] +

K−1

∑
k=1

νt−k,t+1

ν̄t
Et−k[πt+1|θ̃t−k]

=
νt,t+1

νt,t+1 + Vt−1,t+1
Et[πt+1|θ̃t] +

Vt−1,t+1

νt,t+1 + Vt−1,t+1

K−1

∑
k=1

νt−k,t+1

Vt−1,t+1
Et−k[πt+1|θ̃t−k]︸ ︷︷ ︸

≡Tt−1,t+1

,

where the first line expresses τt as an average of current and historical inflation forecasts with

weights directly taken from Proposition 12. We introduce Tt−1 to track the evolution of average

forecasts and summarize the information needed by the central bank to update its target level. Its

first element reflects the current target level, Tt−1,t = τt−1, which is taken as given at date t. For

k > 1, Tt−1,t−1+k summarizes the cumulative weighted average of historical forecasts for inflation

in period t − 1 + k. Its evolution satisfies the recursion

Tt,t+k =
Vt−1,t+k

Vt−1,t+k + νt,t+k
Tt−1,t+k +

νt,t+k

Vt−1,t+k + νt,t+k
Et[πt+k|θ̃t].

To implement the K-horizon dynamic inflation target, the central bank must therefore keep

track of (Vt−1, Tt−1). Intuitively, these two vectors encode a notion of forward guidance in the form

of partial commitments for what the central bank will do for the next K periods. At date t, the

central bank takes as given its target for the current date, τt−1 = Tt−1,t and bt−1 = Vt−1,t, and lacks

any ability to update this target. The central bank has partial ability to update its target for periods

t + k, for 1 ≤ k < K, taking as given its prior commitments that are encoded in Vt−1,t+k and Tt−1,t+k.

Finally, the central bank has no prior commitment over inflation at date t + K, and so makes its

first partial commitment for this period at date t. This provides a generalized notion of the iterated

one-period commitments of the baseline model: The central bank here makes iterated K-period

partial commitments.

E Global Incentive Compatibility

E.1 K-Horizon Dynamic Inflation Target

As in Section 2.3, let us define the augmented Lagrangian as

Lt(ϑ
t|θt) =− Et

[ K−1

∑
k=0

βkVt−1,t+kπt+k(ϑ
t+k
t )

∣∣∣∣θt

]

+ Et

[ ∞

∑
s=0

βsUt+s(πt+s(ϑ
t+s), Et+s[πt+s+1(ϑ

t+s+1
t )|θt+s], . . . , Et+s[πt+s+K(ϑ

t+s+K
t )|θt+s], θt+s)

∣∣∣∣θt

]
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where Vt−1 is defined in Appendix D. We can then obtain a characterization of global incentive

compatibility that mirrors that of Lemma 4.

Lemma 29. The dynamic inflation target is globally incentive compatible if

Lt(θ
t|θt)−Lt(ϑ

t|θt) ≥Ut(πt(ϑ
t), Et[πt+1(ϑ

t+1
t )|θ̃t], . . . , Et[πt+K(ϑ

t+K
t )|θ̃t], θt)

− Ut(πt(ϑ
t), Et[πt+1(ϑ

t+1
t )|θt], . . . , Et[πt+K(ϑ

t+K
t )|θt], θt)

+
K

∑
k=1

βkνt,t+k(ϑ
t
t)

(
Et[πt+k(ϑ

t+k
t )|θ̃t]− Et[πt+k(ϑ

t+k
t )|θt]

)

Proof. The proof parallels the proof of Lemma 4. Recall from the proof of Proposition 12 that global

IC is Wt(θt|θt) ≥ Wt(θt−1, θ̃t|θt) for all t, θt, θ̃t, where

Wt(θ
t−1, θ̃t|θt) = Ut

(
πt(θ

t−1, θ̃t), πe
t (θ

t−1, θ̃t), . . . , πe
t,t+k(θ

t−1, θ̃t), θt

)
+ Tt(θ

t−1, θ̃t)

+ βEt

[
Wt+1(θ

t−1, θ̃t, θt+1|θt+1)
∣∣∣θt

]
.

Recall further that

Wt+1(θ
t+1) = −Et+1

K−1

∑
s=0

βs
[

∑
s<k≤K

νt+1+s−k,t+1+s

(
πt+1+s − Et+1+s−k[πt+1+s|θt+1+s−k])

)]
+ Et+1

∞

∑
s=0

βsUt+1+s

The result follows immediately from the definitions of Vt−1,t+k and from noting that Et+1+s−k[πt+1+s|θt+1+s−k]

does not depend on (θt, θ̃t) except at k = s + 1. ■

E.2 Global IC in Quasilinear Models

We conclude by characterizing global incentive compatibility when preferences are quasilinear in

inflation expectations,

Ut(πt, πe
t , θt) = u(πt, θt)− g(θt)βπe

t . (33)

This case gives rise to an economically insightful sufficient condition and also nests the flattening

Phillips curve application of Section 3.2.65

This case is tractable because the Ramsey allocation is time-invariant and does not depend

on the density f . In particular, the Ramsey allocation πt(θt) ≡ π(θt−1, θt) is given implicitly as
∂u(π(θt−1,θt),θt)

∂πt
= g(θt−1). This allows us to characterize a stronger-than-needed sufficient condition

65 The results of this section extend readily to the case where ut and gt are time-dependent. Policies and value gains
are then explicitly indexed by time, and the sufficient condition of Proposition 30 holds for each date t.
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for global incentive compatibility by showing that Lemma 4 holds history-by-history, rather than

in expectation. In doing so, we show that global incentive compatibility can be guaranteed by a

bound on a likelihood ratio.66

Proposition 30. With quasilinear reduced-form preferences (33), a sufficient condition for global incentive

compatibility is

(
g(θ̃t)− g(θt)

)
π(θ̃t, θt+1)

( Likelihood Ratio︷ ︸︸ ︷
f (θt+1|θ̃t)

f (θt+1|θt)
−1

)
≤ ∆(θ̃t, θt+1|θt) (34)

for all θt, θ̃t, θt+1, where

0 ≤ ∆(θ̃t, θt+1|θt) ≡ u(π(θt, θt+1), θt+1)− g(θt)π(θt, θt+1)−
[

u(π(θ̃t, θt+1), θt+1)− g(θt)π(θ̃t, θt+1)

]

is the utility gain from the date t + 1 inflation policy from truthful reporting θt as opposed to misreporting θ̃t.

Proof. The result follows readily from Lemma 29 combined with the fact the Ramsey allocation as

π(θt−1, θt). Equation 34 follows by forcing Lemma 29 to hold history-by-history and by discarding

gains in value of the augmented Lagrangian that come from the date t inflation (that is, only looking

at t + 1).67 ■

Proposition 30 highlights that sufficient conditions for global incentive compatibility come as a

bound on deviations of the likelihood ratio f (θt+1|θ̃t)
f (θt+1|θt)

from one, where the likelihood ratio measures

the likelihood of θt+1 under a misreported type θ̃t as opposed to the truthful type θt.68 Intuitively,

equation (34) tells us that violations of global incentive compatibility occur when the central bank

can substantially alter firm and government beliefs by misreporting, in excess of the loss from

distorting the Ramsey allocation.

There are two special cases of the quasilinear model in which global incentive compatibility is

guaranteed. Both conditions also inform the characterization of Proposition 30.

The first special case is that of iid shocks, where the likelihood ratio is one and hence Proposi-

tion 30 necessarily holds. Thus it is only when shocks are persistent, and hence the likelihood ratio

may deviate from one, that global incentive compatibility may be violated.

66 Equation 34 is stronger than necessary for two reasons. First, equation 34 is specified history by history rather than
in expectation. Second, equation 34 ignores losses in value that arise because a misreport at date t also distorts the date t
allocation.

67 This is valid sufficient condition because the quasilinear form means the Ramsey policy is not just a critical point of
the augmented Lagrangian at date t, but also maximizes the augmented Lagrangian.

68 Observe that Proposition 30 generally provides two bounds on the same likelihood ratio. The first bound comes
from true type θt misreporting as θ̃t, while the second comes from true type θ̃t misreporting as θt.
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The second case in which global incentive compatibility is guaranteed arises when the quasilin-

ear weight g(θ) is not a function of θ, that is g(θ) = g0. Economically, global incentive compatibility

is guaranteed in this case because the flexibility of the dynamic inflation target is constant over time

and equal to g0. As a result, the benefits and costs of manipulating firm and government beliefs

are not only locally offsetting, but also globally offsetting. Hence, global incentive compatibility

may be violated in Proposition 30 because the global benefit of manipulating firm beliefs always

depends on the true quasilinear weight g(θ), whereas the benefit of manipulating government

beliefs depends on the reported weight g(θ). This highlights the offsetting effects of manipulating

firm and government beliefs achieved by the dynamic inflation target.
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