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A Proofs

A1 Proof of Proposition 1

Under full information, the objective function of the government is

sup Eo ) B'U; (7t Ex [141164],6) -
Tt t=0

Taking the FOC in 714, we have

—1 ou;_1 OJE;_17
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oy
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From here, we have i (0

= f(6¢|6;-1), so that we have

oU;_q ou;
0= —
a]Et,1 7Tt + am

from which the result follows.

A.2 Proof of Proposition 3

The proof strategy is as follows. First, we derive the relevant envelope condition associated with
local incentive compatibility, which defines necessary conditions on the value function associated
with an incentive compatible mechanism (as in e.g., Farhi and Werning 2013, Pavan et al. 2014). We

then show that the value function generated by our mechanism satisfies this envelope condition.

Envelope condition. Suppose that the central bank has a history 8'~! of reports and has a current
true type 0;. Given a mechanism with transfer rule T; and allocation rule 77, the value function of a
central bank that has truthfully reported in the past, assuming truthful reporting in the future, as a

function of its current report is given by equation (6),
W6, Bul6r) = Uy (i (61,6, 6 (6", 80), ) + T (6", 61) + BIE: [Wha (6,81, 01.1116111) 6.

Recall that 7§ (' 1,6;) = E; |:7Tt+1 (011,06 1) |§t] is a function of the reported type, not the true
type, at date t. Furthermore recall that W; 1 is also a function of the reported type ; but not the

OA-1



true type 6;. As a result, the Envelope Condition, obtained by Envelope Theorem, in the true type

|

8¢, evaluated at truthful reporting 0; = 6, is

JE; [Wtﬂ(gtl/ 01, 0111)
20,

BWt(Gt) . aut (7'[,5, 7'(?, 9,})
20, 20,

oE; Wt—i—l(gt_l/éhgt-f—l) 6t:| 5 /0 )
5 = a—et/e Wii1 (071,01, 0141) £ (0141160:)d6; 14

|

+B

gtIGt

where we have

(0¢4116+) /064
f(0r41161)

~ d
= [E; [Wt+1(9t1,9t/ Or+1) f

Substituting in and evaluating at truthful reporting, we obtain

aWt(9t> . BUt (7Tt, 7Tf,9t>
0 d6;

(0¢4116:)/06;
f(614116:)

+ BE, [Wm (o)

|

which provides a conventional envelope condition for incentive compatibility. For clarity, note
that %9’75’9’) is the derivative of U; in the direct type 0;, but not including the Phillips curve

expectation, which is the derivative in the reported type.
Verifying the envelope condition. We now verify the value function under our mechanism

satisfies the envelope condition. Our mechanism has a transfer rule T;(6") = —v;_1(6*~1) (7 (6") —

E;_1[7|6;—1]) and an allocation rule given by the constrained efficient allocation of Proposition 1.

|

where v;_1, 711, E;_1[74|6;—1] are the constrained efficient values associated with Proposition 1,

The value function associated with this mechanism is

Wi(6') = —vi (ﬂt - ]Etl[ﬂt\f)tﬂ) + Ui (711, By [77141]04] , 0¢) + BIE; [Wt+1(9t+1)

given the realized shock history. From here, recall that v;_; and E;_[71¢|6;_1] are only functions of

6t=1. Therefore, agtgjl = "]E*—%Z;‘Q*—” = 0. Thus differentiating the value function in 6;, we have

|

IW(6Y) AU,

=5 + PE: Wt+1(9f+1) of (0111/60;) /96;

M 06 f(611164)
am aut a7'l.'t allt dIEt [71}_;,.1 \Gt] 8Wt+1 (9t+1>
Y150, T om 96 T OE [t 0] A8 PE 06 b
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The first line on the RHS are the terms associated with the envelope condition. The second line are
derivatives that arise because in equilibrium, the reported type equals the true type, and we have
evaluated the value function given truthful reporting. It therefore remains to show that the second
line sums to zero and hence our mechanism satisfies the required envelope condition.

It is helpful to write out the continuation value function W;, 1 in sequence notation. Iterating

forward, we obtain

Wi (671 = — v (mﬂ il |94)

—Ei [ Y BVt <7Tt+1+s - ]Et+s[7ft+1+s|9t+s])
s=1

9t+1]

[e0]
+Ei [ Y BUriss (Te1vs, Bryrgs [7ip21s|0e14s), 01 vs)
5=0

9t+1]

The first two lines on the RHS are total expected discounted value arising from transfers. The third
line on the RHS is total expected discounted value arising from flow utility.
Notice from here that the second line is equal to zero. To see this, applying Law of Iterated

Expectations, when s > 1 we have

9t+s:| |9t+1:| =Ei [Vt+s]Et+s |:7Tt+1+s

Ei11 |:Vt+s7ft+l+s‘6t+1:| =Ein [IEHs [Vt+s7ft+1+s 9t+s} |9t+1}

since 1145 is a function only of 6'*%, and so is known at date t + s. As a result, the second line is

zero, and we can write
Wi (071 = — vy (ﬂt+1 — Et[ﬂt+1!9t]>

(o]
+ Eip [ Y BUr14s (Mrs14s Brpras [r24s]0i14s] , Oits)
s=0

9t+1]

Observe that this is an augmented Lagrangian at date t + 1: it is the date ¢t 4- 1 lifetime value
(second line), plus an augmented penalty on date t 4 1 inflation. The Ramsey solution is a critical
point of the augmented Lagrangian, which leads to a simple derivative. Formally from the Ramsey

solution of Proposition 1, we know that

AU 1145 L oU; 124

=0, s>0
OBt 1467245 07Tt 4245
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history by history. Therefore, we have

aWt+1 (9t+1) _ al/t aﬂt+1 dIEt[ﬂt+1 ’91}] aut+1 aﬂft+1
26, — o\t T Eilmalo] f —vi == =2 iy 06;

_dy P

where the second line follows since vy = gg—:} (Proposition 1).

Now substituting back into the expression for %—12?, we have

oW, (6') _ou; [ t+1) Of (B11(64) /90; ]
+ BE;: [Wi1(6 Y
o0, o, PP V@ e ey |
iy Bm + %% aut LﬂEt [nt+1‘9t]
=130, 89t am 89t BIEt [nt+1‘9t] d9t

ov dE;|7t:.110
+,31Et[ aet <7Tt+1 ]Et[ﬂt+1|9t]> +Vtt[d;;1‘t]

|

The first term on the third line is zero, since

ov
]Et[ aet <7Tt+1 ]Et[ﬂt+1|9t]>

ov
9t}= aet]Et[ﬂtH E¢[71:4164]

or| =o.

From here, we can rearrange terms to get

oW, (6") ol [ 141, 0f (014116¢) /004 ]
+ BE; | Wi (0" 0
0 00 PE: Wi (87) f(6r1116:) :
aut aﬂt BLIt d]Et [7Tt+1 ’9,}]
* [ V-1 5n ] %6, [amt o] ﬁvf} a6,
By Proposition 1, we have —v;_1 + g = (0 and m + vy = 0. 56 Thus, the entire second line

is zero, and we are left with

Of (0¢1116:) /96
f(0:41]64)

a0 al, »
90, aet +:BIE‘t WH‘ (9 )

|

which is the required envelope condition. This concludes the proof.

% For completeness, note that when considering the date 0 value function, we have v_; = 0 and have au* = 0by
Proposition 1.
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A.3 Proof of Lemma 4

Global incentive compatibility implies equation (6) holds. Under a dynamic inflation target, the

transfer rule is
T(81) = —vheaa(67) (ose(819) = iy (8°)).

Therefore, we have

Ei [(Wii1(071,0;,0:11|6:11)

|

ef] —E, [ i (8) (mmm - nf(ﬁi)) U (4 (00), 74, (907), Bi4)

+E [ Y FE [ (85 (nmﬂ (81 — m+s(19§+s>)

s=1

+ Uprst1 (7Tt+s+1 (19§+S+1 )/ ”f+s+1 (19§+S+1 )/ 9t+5+1)

9t+1]

|

and using that along a one-shot deviation we have 7¢, [(8;°) = Eyis[mti541 (017571) 0,1 for

s > 1, we obtain

Ei [Wi1(071,0;,0:11|6:11)

et] = — pui(8}) (Et[mwi“) 01] — Ex[rres1 (87) rét])

[ee]

+ Iy [ Y B Us (s (01°), Bps 7511 (0175 [145] 014
s=1

|

Therefore, we obtain

Wt(et_lrét|9t) :Vt—l(et_l)Tt—l(et_l) + Et(ﬁﬂef)

+ U; <7Tt(9t_1, ét)/ E; |:7Tt+l (l9f+1)

o)

ét:| ,9t> — U <7Tt(9t_1,ét),lEt |:7Tt+l(l9£+l)

+ﬁw(l9i)<lE (e (8071)]8] — Bl (61 >|et1)

Thus substituting into global IC obtains the result.

A.4 Proof of Proposition 7

We begin by describing the Ramsey allocation. Using v;_1 = g and —pv; = g £, we obtain

N U, (x4, 0
Vt1=Zma(x::t)

n=1

Ctn
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N autn(xtnzet)

= Z axtn

n=1

dtn

A.4.1 A Tractable Representation of Augmented Lagrangian

Becuase U}, is linear-quadratic in x;,, we can do an exact second order Taylor series expansion of

Uy, around x4, (0") to obtain for an alternate policy Ty,

N U (x1,(0Y),0;) , _ 102U (x14(04),6:) , .

_ t tn\Atn sVt t tn\Atn sVt N2
Usn (Zin, 1) = Usn (x1n(0"),6¢) + 3% (67) (Zen — xn(0°)) + 2 oxm (672 (Zen — xn(6°))
Observing that W = —a4,(0;), then we can write

Uy (x:(0Y),0:) — Usu(%4,6;) = —

N1
(Zen — x1n (0")) + Z Eatn(et)(ftn — xm(01))?

n=1

Thus, we can write the augmented Lagrangian gap as

% aut—i—s,n (xt—i-s,n (9t+s)’ 9t+s)

t ~
axt+s,n(9t+s) (XHSIH(Q +S) N xt+s,n)

L(0'6;) — L(%]6:) = — 111 [m(et) - ﬁt] +1Et§(;)ﬁs [

n=1

© N
1 ~
+E) B ) Eat+sln(6t+s>(xt+s,n — Xy (0779))?
5=0 n=1

The key observation is that the first line sums to zero for any one shot deviation 6; in reporting
strategy. This follows from the fact that the Ramsey policy is a critical point of the augmented

Lagrangian (see also the proof of Proposition 3). Formally, observe that

xt+s,n(9t+s) — Xppsn = Ct+s,n(7ft+s(9t+s) - ﬁt+s) + ,Bdt+s,n(7rf+s(9t+s) - ﬁf—&-s)'

which obtains a telescoping series. Therefore, we are left with the simple form of the augmented

Lagrangian,
. R |
£(9t|9t) - ‘c(gtilr 0¢(6;) = IE; Z p’ Z Eat+5,n(9t+5)(xt+5,n(19£+s) - xt+5,n(9t+s))2
s=0 n=1

Given the assumption a4, (6;) > 0, then this is weakly positive. This gives rise to the following

result.

Corollary 19. In the linear-quadratic model, if shocks are independent over time then the dynamic

inflation target is globally incentive compatible.

Proof. The result follows from the fact that £(6!|6;) — £(6'"1,0:6;) > 0 and that the RHS of

OA-6



equation (9) is zero under independent shocks. u

A.4.2 Right hand side of global IC

We define s; = 0; to be the reported type, for notational clarity in the analysis which follows.

Next, consider the right hand side of global IC, given by
RHS = U(7t;, By [7tr115t], 0r) — Up(7e, B [7e1110:], 0¢] + Pre(8Y) [Et[fftﬂ\st] — E¢[7T41]6¢]
Observe that the gap between xy, for these two allocations is given by

Axin = Bdin | Be[7Er11|st] — ]Et[fft+1|9t]]

Therefore using our usual Taylor series expansion, we can write

_ 3 N Uy, (7t;, B[ty 41]s4], 0 N 1
U (72, Bt [7r1110e], 0¢) = Ur (7, Bt [ i |se], 0) — Z tn (7 atxt U115t t)Axtn_ ) Eutn<9t)Ax%n
n

n=1 n=1

Thus substituting in above, we have

N OUyy (72, Be[7tr1]5t], 0 N1 N 3
s — - S B BB py 3 San(0)85, + (89 [Ed Tl — Ei o]
n=1 n n=1
The key derivative is
U _ t t+1
oy, Cn(O0) jenm(90) + PdilEr | 7reea (97 )5t | | + bun(B)
n
Using Assumption 6,
U _ t t+1
9 —ap |Cen7tt(0") 4 BdnlBy | 71001 (0[St | | + beu(6r)
n

= —da {Ctnﬂt(ﬁt) + BdyIE; {ﬂtﬂ(ﬂtﬂ) |St” + bin(st) + ben(0r) — ben(st)

9% + by (6¢) — by (st)
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Thus substituting in above, we have

U, (9)

N
RHS =) 1o

n=1

1 (80) = bun(5)| B | B2 s] — [l

N 1 ~ 3
+ 1 3006058, + pu(#) | Eilals] — Bil e o]
n=1

Recall from here that N
ouy, (8
n@h=—y atxf( )

n=1

dtn

and therefore, we get

RHS = ﬁg:l [bm(et) — by (st)] din [lEt[ﬁtH]st] - ]Et[ﬁt+1|6t]] +§:1 %am(et) <ﬁdtn [Et[ﬁtﬂlst] _ ]Et[ﬁt+1|6t]] >2

or rearranging,

N 2 N
5 . . . 1
RHS = (il esalod — B 1)) 1 [0 (80) b (50| s+ 82 (Bl Exlaled ) X om0
n=1 n=1
A.4.3 Putting it together
Global IC therefore requires LHS > RHS, or in other words
) N 1
1Et Z ﬁs Z Eat—&-s,n (et—i-s)(ft—&-s,n - xt+s,n <9t+5))2
s=0 n=1
N 2 N 1
> ﬁ(lEt[ﬁt—i-l’St] E;[7t41(0:] > Y. [btn (6:) btn(St)] din + B° <1Et[ﬁt+l‘5t] - ]Et[fft+1|9t]> ) Eatn(et)d%n
n=1 n=1

Now, Assumption 6 along with time-invariant coefficients comes in, and we can by, = by, +
bn16¢ and ay, (6;) = a,. We can use this to also show that the Ramsey solution is linear. In particular,

the Ramsey solution has

N
= 2 |: — ApXtn + bno + bnlet:| Cn
n=1

N
—V = Z |: — Xy + bpo + bnlet:| dn
n=1

Thus using x¢, = ¢, 71 + Bd, 7T, we can write

N N N N
2
Vi1 + 7 Y anCh + 715 Y Bancudn =Y buocu + 6 Y buica
n=1 n=1 n=1 n=1
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N N N N
—Vi + T 2 AnCndy + 7T} Z ,Bﬂnd% = Z buodyn + 6; Z bu1dy

n=1 n=1 n=1 n=1

We therefore obtain linear solutions,

T = Yo + Y1Ve—1 + 720:

vt = 0 + V-1 + 020;

where the coefficients are obtained by coefficient matching in the above equations.

A key observation is that given this linear system, we can write
e (9;) = m(0') + y2(se — 6)

More generally at date t + s, the two policies differ only by the misreport at date ¢, which filters
through target flexibility. Thus more generally, we have

71(5;_152(@ —s), s>1

o (9t+s) — Ty (ﬂt—i-s) — {
’ T ’yz(Ot—st), s=20

Therefore, we have

9t+s+1) t+s54+1

Etys | s ( — TTpyst1 (0 )

9t+s:| = 715i52(9t - St)

From here, can can evaluate x; s, (') — X1, for X5y = X1 (ﬁf“). Substituting into the LHS

of global IC, we have

00 N
1
E; E s E Ean(st,n — Xt+4s,n (GH_S))Z
s=0 n=1
N 1 0 2
= 2 5 [(sz + Bdn1182) (0 — 51)° + Y BT <Cn’h51152 + 5dn7152) (6: — St)z}
n=1 s=1
_ gl 2, PY . ’ 2
=) 5 (cny2 + Bdur162)" + 1- B2 Y10y "2 + Bdnur102 ) | (6r —st)
n=1 1

Thus, the left hand side is a constant multiplied by (6; — st)z.
Conducting the parallel decomposition for the right hand side and noting that E;[7;11]s;] —
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E¢[7T14116t] = 72p(st — 0;), we have

N

ﬁ(lEt[ﬁtH!St] E4[7t141(6:] ) ) [ (6:) — b )}dn + B (]Et[ﬁt+1|5t] - Et[ﬁm!f)t])z

N

1
Z Eand%

n=1

N
Z { By20b1,dy +ﬁ27%pzfand ](Qt—st)z

Thus, the RHS also scales in (6; — st)z. Thus substituting into global IC, it reduces down to a

condition on parameters of the model, given by

2 N
<Cn7151 152+ﬁdn7152> } > ), [—ﬁ%pblndﬁﬁzvzpzandz

-1 55%

This equation defines our function I'. Moreover, observe that the LHS is positive whereas the RHS

is zero at p = 0. Therefore, we obtain a threshold p*, concluding the proof.

A4.4 Cost Push Shock Example
In the cost push shock model, suitable reduction in the above equation yields the condition

<3l (oo o]

where the right hand side is invariant to p. We can therefore define p* (&, §) as the lower root of the

2 2
quadratic equation p — %ﬁ'ylpz — %Z—k [1 + (1 +u [1 — [3’)’1} )W + [1 —B(m — 1)} } =0,

and by convention set p*(«, 8) = 1 if this lower root lies above 1.

A.5 Proof of Proposition 8

Consider reduced-form preferences,

2

1 1

Uy (711, By7ti41,0) = — 77 — —a 71 — BEirteyy | + 0(Eitigq + 6)
2 2

where for notational convenience we use « in place of & = % in the derivations. Thus, we have

derivatives 5
u
aimf = T — 06<7Tt - ,BIEt7Tt+1)
ou; ).
- — BE *
a]Eth Déﬁ <7Tt ﬁ t7rt> +v (lt>
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Under the usual definitions of v;, we then have

Vi1 = —T — & <7Tt - ,BIEtﬂt+1> (23)
vy = —a <7rt — [%IEtntH) — 01 + 0Es7ts41 + 0204 (24)
where we have used v'(i;) = Bvy — Bvpiy and if = [E;7ti 1 + 6;.
We now guess and verify a linear solution of the form
Ve = Y0 + Y1Vi—1 + Y26k
Rearranging equation (23), we get
1 14w
BE 11 = P + X (25)
and substituting into equation (24) we get
af+0v2)(14a) —a? af+o
vy = —01+ (ap + 02)( ) ﬁﬂt + P 20i_1 4 026
ap ap
From here, we denote % = W > 0. Thus rearranging the above equation, we have
1 xfB+v
ST = Vp+ 01 — P 201 — 020 (26)

¢

We now lead this equation forward one period and take expectations,

1 apf+o
Eimti1 = Byvppr +01 — ‘BIXﬁ 2

¢

v — U2lE¢0 1

and now, we can use the guess for v; along with the property E;6;1 = p6; to obtain

1 xf+v
Eimtiy1 =70+ 01+ <71 o 2>Vt + (72 — v2) 0%
¢ ap
Now, equations (25) and (26) jointly imply
1 11 14+a &+ v
ZE = "y —
7 7T+ gaﬁvt 1+ B <1/t+01 ap
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and so substituting in, we obtain

aB+ 0 1 o v
Yo+ 01+ (71 _ 2P 2>Vt + (72— v2)pb = T ke (Vt + 01 — Vi — vz&)

ap

which rearranges and simplifies to

ap

1+a+aB+0v 1+a—u« 1 14+a—u«
(71— P 2>Vt = (ﬁvl_')’0> </3p

«p ap TptT ap

The LHS is linear, so using our guess vy = o + y1v;—1 + 720; and coefficient matching, we have

Uy + ’YzP) 0;.

the system

- 1+tx0(€23—ﬁ) 91 — 70

70 = 1+a+aB+vy

T — g

1 1
T = _B'Yl _ 1+D¢4;(Déﬁ+?]2

- <1+agﬂﬁp) 0y + 72p>

Y2 = v 1+atéuéﬂ+v2

1+a+apB+v,

The second equation rearranges to a quadratic By} — n

v1 +1 = 01in 1. We choose the

non-explosive lower root to maintain consistency with the transversality condition, which yields

2
1+zx(1+ﬁ)+vz—\/<1+a(1+ﬁ)+vz> —4a2B

"=

2ap
From here, the equation for g can be rewritten as ygp = — 71 (W ’)/0> , and rearranging
yields
1+a(1—-p)
= —Y——F0
70 m a(1— py) 1

Similarly, the equation for < is rewritten as v, = B <1+0¢113va + 'yzp) which rearranges to

_114a(1-Bp)
= 1— pyip 7102
Thus, we have our solution for v;. Now recalling that b; = —v;, then we have

by = —y0 + v1bi—1 — 7204
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Recall that yg < 0, y1 > 0, and 7, > 0, then we can define
by = 8g + 61bi—1 — 626;

where 6y) = —v0, 41 = 71, and J; = 7, are all nonnegative.

From the derivations above, inflation is given by

1
—nt:vt—lxﬁ+vz

¢ ap

Now, recall from above that we have E;m; 1 =

Vi_1 + 01 — 020

ﬁvt,l + TT%&C 71;. Thus we can substitute in for
inflation and substitute in the rule for v; to obtain

1 +0
T = ﬁvt 1+€ ap |:'YO+71V1‘ 1+ 720 — 1306[3 21/t1+v1—029t]
1 14+« ap + vy 14+a
= 1+C <70+U1> + <’Yl— )V—1+§(72—02)9t
b ap ap ap ) ap
1

= ;‘; <’Yo+vl>+€1:‘g“<%+g(1:—@_(X‘B[X—;vz>vt—l‘f’Cl;l_B“(’Yz—vz)Ot

where is readily re-expressed as 7 = xo — X1vi—1 — X20:. To show that x> > 0, we need only show
that 92 < v,. Substituting in the definition of <y», this is equivalent to

11+a(1—Bp)
—————=Y102 < U
X (1_,6’)/1[)) Y102 2

71+ ay —appyr < a—afyip

- o
T Tra

Substituting in the definition of y; and rearranging, we have

aptopt+l+a 04,8 \/(a,3+vz+1+oc>2
< —4p
« 1—|—zx «

Squaring both sides (since if the LHS is negative we are already done), we get

xB+uv+14+a 2 xfp ocﬁ—i—vz—i—l—i—zx xf xf+v+14+a 2
+4 < —4p
« 1+a « 1+« «

“ <1—|—iv
1+a ocﬁz

which necessarily holds. Therefore, we have x» > 0.
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We can next show that xg > 0, which follows since we have

a—(1+a)n
a(1—pBr1)

Yo+ov1r =7 +0v1 = v >0

since we just showed that 71 < 5.

Finally for x1, using the definition of { we have

o 1+a 1 af + vy
M= [’“*5(1+a>‘ ap ]

_ 1+« o
=-¢ ap [71_14—04]

>0
which follows again since 71 < ﬁ Lastly substitute in b;_1 = —v;_1 to get
T = Xo+ X1b—1 — X206
concluding the proof.

Parameters vp, v1,v2. Finally, we briefly derive the parameters of v. Given v(iy)

A (iF —€)] E%gde, then we have

o 1 N 1. 5 .
v(zt):_e_e[(/\O_Allt)(e_lt)+2/\1(€2_1t2)
1 1 Ao+ A€ 1 A
— oL (et tae) s Bt hE), 1A e
€—¢€ 2 €—¢€ 2€—¢€

—

so that we have vy = glfg ()\oe + %)uez) , 01 = %()‘(’g)ge ,and v, = %@g'

A.6 Proof of Proposition 9

Given reduced form preferences Uy = —%nf + Gt%, then we have
ol 1
——t = —7 + *Gt
97T K
oU; 1 B 0
——bt
a]Et_l 7Tt K
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Thus substituting in the definitions,

Vi1 = —T + x/6;
N
Tk /6i

Thus putting them together, we get 71y = ﬁet — K/;ﬁ Finally, using [E;6;,1 = 1 — p + pf; we get

w:(l_p)l_u_p)%

Eimiq =
+ K K K

which gives the result.

A.7 Proof of Proposition 10

Consider the Ramsey problem,
max Y BIU 71y, Bi[71141164], .., Bi[7114 k|64, 6:)
t=0

It is expositionally helpful to extend the sum to include U_1, ..., U_x = 0. Under this extended sum,

differentiating in 7;(6") for t > 0, we have

=1 s BUS a]Es[T[t’Qs] s taut ¢
a]Es[T[t’Qs] ant(Gt) f(9 ) + :B Tmf<9 )

s=t—K
From here, note that we have

aIES[nth] s\ __ t|ps S\ __ t
Wf((?)—f((? 16°)f(6°) = f(6")

Thus rearranging and dividing through, we have

ou; =l ol

— == ) P
am s—IK B]Es[rtt|95]

Substituting in the definition of v;_j ; gives the result.
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A.8 Proof of Proposition 12

The proof strategy parallels that of Proposition 3. Defining 717, (011,0;) = By [, x (0071, 0:, 0011, ..., 0ik| 0],

then we have
Wi(6'71,6:16,) = U, (m(ef—l,ét),nf(et—l,ét),...,n§,t+k(9f—1,ét),9t) + Ty (671, 6y)
+ BIE; [Wt+l(9t_lrét/ 6r+1(6r41) ‘Qt} .

Global incentive compatibility is given by W;(6*(6;) > W;(0'1,8;|6;) for all t, 6, 6;. By Envelope

Theorem and the same steps as in the proof of Proposition 3, we obtain the Envelope Condition

|

What now remains is the verify the Envelope condition holds for the K-horizon dynamic inflation

oW, (") _ Uy (7, By [701416] , ., B [1ek[64], 1)
d6; d99;

Of (0:11(6:) /06
f(6r1116:)

+ BE; [ (6

target.

Verifying the Envelope Condition. Our mechanism has a transfer rule

- Z thk,t(ﬂt - IEtfkT[t)

and an allocation rule given by the constrained efficient allocation of Proposition 10. Recall the

definition 7; 1 = ZkK:1 Vi +- The value function evaluated at truthtelling and the Ramsey allocation

|

is

K
— Y Vi (e — Bygrty) 4+ U (711, By tiga, o Bty k, 0) + BIE: [Wt+1<9t+l)
-1

Differentiating in 6;, we have

aWi(eY) au (612116:)/06;

0
+'B]Et Wt+1(9t+1> f

|

20; 96 f(0:41]01)
aﬂ.’t aut E)m K E)Ut dIEtﬂt+k aWt+1 (9t+1)
~ V13, 89t tom am E)Gt + =1 B]Ethrk dgf 'BIEt E)Gt et

First from Proposition 10, we have —7;_1 + § aut = 0, leaving the second line with only the latter

two terms.
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Expanding out the continuation value W, 1(0'*!), we have
) K
Wi (071) =B ) B° [ — Y Vestgs—ktats (Ter1es — Brprvs k[ Tri1ss|Oars—k]) + Urprgs
=0 k=1

Observe that by Law of Iterated Expectations for s > k,

Etiq [Vt+1+sk,t+1+s <7Tt+1+s - ]Et+1+sfk[7rt+l+s |8t+1+sk]>]

=} |:Vt+1+sk,t+1+sIEt+1+sk |:7Tt+1+s — TT41+s 9t+1+sk:| 9t+1:| =0

So we are left with

K-1 )
Wit (071) = —Bpq ¥ ,35[ Y Viigs—kiti4s <7Tt+1+s - IEt+1+sk[nt+1+s|9t+1+sk]>:| +Ei1 ) B Ui14s
s=0 s<k<K s=0
Observe that, as in the proof of Proposition 3, this is also an augmented Lagrangian. For s > K, we
have history by history
i Bk OUrirsk | psOUies _
07T} 1 sk tt14s 07T 41+

which follows from Proposition 10. Likewise for 0 < s < K, we have

10 AR U1
_ﬁs S<kZ<KVt+1+S Kottls +};ﬁ 5o t4+14s +ﬁs +l+s 0

t+1+4s—kt+1+s 07Tt 114

which follows from Proposition 10 and the definitions of v. Thus we obtain

Wi, (0H1 k-1 Oy 145
tglgi) = _IEH—l Z ;BS |: Z ngs—etk,ﬂrlﬂ (ﬁt—i-l-&-s - lEH—l—i—s—k[7-51‘4-1-5—5|0H—1—i—s—k]):|
S=

s<k<K

K-l dE 0

t+14+s—k [ 704145 |Vt +145—k

+Ei1 ) ,BS[ Y Uitk [ 70 JURES ]]
s=0 s<k<K t

Lastly observe that v, 1 k414 is a date t +1+ s — k adapted constant and so, for s < k, depends

only on 6; when k = s + 1. Thus we have

oW ov Ko dE[71,45|0
1 —]Et+1 ﬁ - tt+s Tivs — E¢[Mi15|0¢] | + Eip1 ) B° 1Vt,t+swz
20, Z o,
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which reorders the indexation for clarity. By Law of Iterated Expectations,

v v,
E{Er 1 E gt tt+s <7Tt+s I [7T145 0] > 25 ! tt+s <7Tt+s - Et[”t+s|9t]> =0

and so substituting back into the equation for 0W;/d6; we obtain

aW(eh)  au

of (6¢+106¢)/06; }
t t+1 t+1
+ BIE 0 0
20 96 PIE: [ A f(0:41]04) t
Koouy  dEm K, et dIE¢[7T1+5|0:]
+ L SE o, + BE; [5_21 B Vit+s — a8 91‘}

The second line is zero from the definitions of v;;,s (Proposition 10), leaving only the first line

remaining, which is the required envelope condition. This concludes the proof.

A.9 Proof of Proposition 14

Recall that we have

[ee]

T = Kyt + (.B’Y + B)Etnt+1 + BlEt [ Z 5 7Tt+1+5} .

From Proposition 10 for k > 1,

Vg = — LU 9y
PR BR OB
Thus, we can write for k > 1,
ayt ~
1 OE; 7Ty & 1 ,B(Sk_1 * sk (k—1)
Vittk = 201 oy, Vb1 = gt ao gl = B0 Vi1
P s Pl py+p
where 0% = 3 2 and B = 5 + i , completing the proof.

Now, consider the final part of the proposition. First, we have

20" 1 s
3y BQB@ -1 >0

Next, we have i i
o _ BB - (G HPE_ B b
9y (B+pBv)? (B+pr)*

From the definition of B, we have

1 (=172
y—=1)  (1-7r1)

5, = P1- g ) (e=1) = (y = DPile —1)7" (e 1) = (
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and therefore substituting above,

I N 0 V] % ol DO c .
p* [7—1 (1=gy1) ]7 15[3 % (1 155311 Bp
9y (B+pr)? (B+pBr)?
The first step of the commitment curve is *6*, so differentiating,
a(p*o*) E),B 90*
oy 37 it dy

1 (et

e S (e=1)] oo s
[ B+ By Pt ]'M
1

G- )t

1
+(e—1 } —B*o*
(e=1)| 2B
which is positive for o not too large, giving the result.

A.10 Proof of Proposition 15

Lemma 29 in Appendix E.1 proves a counterpart of Lemma 4: the K-horizon dynamic inflation

target is globally incentive compatible if

L4(6'0r) — L4(8'(6:) >Uy(71:(8"), B[4 (87164, . .., Ee[rresx (8;75)164], 61)

— Up(e(8"), By [t (0171)[64], . .., B[k (875)164], 61)
K
+ Z B vt i1k (9)) <]Et[ﬂt+k(‘9f+k) 10:) — B¢ [ty 1 (0175) |9t]>
k=1
where the augmented Lagrangian is given by

|

+ IE; [ Z B Uy s (70115 (075, By [mtrs 11 (07 0e4s), -, Brps [k (077575) |61, Br1s)

K-1
L:(9'6;) = — IEt|: Y BVt ek (8F)

k=0

|

The vector Vi_1 sk = Yy>0 Vi—1—¢,++k is cumulative historical commitments made at date t — 1 and

before to target flexibility at date ¢ + k (see also Appendix D).
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A.10.1 Simplifying the LHS of Global IC (Augmented Lagrangian)

Observe that the Ramsey solution of Proposition 10 is a critical point of the augmented Lagrangian,
which follows as in the proof of Proposition 7 but here with V;_; ;1 encoding all prior commitments
inherited for date t + k (in the baseline model, we only had an inherited commitment for date t).
Thus we can replicate the exact second order Taylor series expansion from the proof of Proposition

7, which relied on the allocation rule being the Ramsey solution, to obtain

) N 1
L(6'16:) — L(8116;) = E Z P Z 5 0 (Xersn(077°) = X5, (0°7°))2

We thus obtain a nonnegative left hand side of global incentive compatibility. This in turn allows

us to replicate Corollary 19 in this setting (global incentive compatibility under iid shocks).

A.10.2 Simplifying the RHS of Global IC
Using Assumption 6, we can write
N
Ur(xp, .. xin, 08) = Ue(xi1, .o Xen, 5t) + Y bt Xen (6 — ¢)
n=1

when the policies x are held fixed. Therefore, we can write

Ur(72:(9"), Be [t 1 (0161, -, Belrme (9577)164), 06) — Un(72:(9"), Be[rreca (077164, - -, B[k (95

= U (i (9), 705 1 1 (8), -, 705 g (8Y),00) — U (e (8'), B[00 (8171)[64), - .., e [k (8775) 164, 0r)

+ i bt [Xen (8') — X1 (8']6¢)](6: — 61)

n=1

Observe that, as in the proof of Proposition 7, the exact second order Taylor series expansion of

the second line has first order terms that cancel out with the second term on the RHS of global IC,

YK Bk (0) <]Et[7'(t+k(l9f+k) 165] — B¢ [k (875) \94) . Therefore we are left with

1N 2 N <
RHS = 2 Y ay <xm(l9t) — xm(ﬁt|9t)> + ) b [xen(8") — x1n (8'160)] (6 — )

n=1 n=1

A.10.3 Linear Solutions to the Ramsey Problem

It is easy to observe that given the linear-quadratic form, given the solution of Proposition 10,
and given Assumption 6, we obtain linear solutions in (V;_1, 6;), where V;_; € RK again encodes

inherited commitments. It is therefore helpful to give a vector form representation to the system,
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thatis 7t; = 70 + 71 Vie1 + 720; and V; = 8y + 61Vi_1 + 626, where 70,72 € R, 711,60, 62 € RK, and

01 is a K x K matrix. Therefore, we can write

')/2(9t—§f), s=20

T 9t+s — l9t+s :{ 3
b5 (077°) = Ty (0;7°) 60— ), 5> 1

where we note that ’yléi’léz is a scalar.

Therefore, forany s > 0andany k =1,...,K

9t+s+k) l9t+s+k

Efts | Trpstk( — Tk (% )

9t+s] = 715i+k_152(9t —0r)

Thus we have fors > 1

K
Xt s (077°) — xt+s,n(19£+s) = cn(7T45(0'7°)) — m+5(19f+5)) + Z ,BkdanEtJrs [ﬂt+s+k(9t+s+k) - 7Tt+s+k(19§+s+k)
k=1

9t+s]

K
= cym8 1020 — 0r) + Y Br 18T 162(0: — 6y)
k=1

K
=7 [cnéi_l +) ﬁkdkn(sg“f—l] 52(0; — 6;)
k=1

Therefore we have
cndy !+ Ty .Bkdkn(si+k_1:|52(9t —0), s>1

T [
s (07°) = Xprsn(97°) = { <
|:Cn'72 +71 Y8, ,Bkdkn52] (6r —6:), s=0

We next construct I [ 71, (975)(6;] — Ey[rrr1(9075)|6¢]. For k = 1, we obtain
Ey[7e1(851)10d] — B e (8571)16:] = v20(8; — 61)
For k > 1, we have
Et[7014(95 ) 18] — Ex[mei (817)161)

=1 <]Et [Vt+k—1(l9§+k1)

ét] — E; [Vt+k—1(l9§+k1)

e]) 2 (B [01-4l81] — Ex[0r4/60])

=7 <1Et [Vt+k—1(l9§+kl)

ét:| - ]Et |:Vt+k—1(l9£+k1)

Gt] > + 720" (6 — 6:)
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From here, observe that we can write V; 1 = 6y + 61 V; + ,0;11, or more generally
k—1 , ) k=1 1
Viek = Y_ 6160+ 05Vi+ Y 811620, 414
£=0 (=0

Therefore for any k > 1, we can write

Bt 7141 (85) 18] — Be [ (8515)164)

k-2

=71 Y 8527 50" (B, — 0;) + 120" (8 — 6)
/=0

k—2
= [% Y oE 250"+t ] (6 — 6y)
/=0

=Ck

Therefore, we can write

Xon(8) — x0n (81]6) = z B (IEf [mkw £y

k=

9t] — [E; [ﬂt+k(l9f+k)

9tD = [éﬁkdkn&]ﬁ(ét —0)

A.10.4 Completing the Argument

Thus putting it all together, we have

LHS = L(6'(6;) — L(0%]6;) = %(et —6;)?®

2 2
where ® = Y, a, Kcm + 7 Yo ,Bkdkn(52> +Y8, B (71 [cnéil + Y5, ,Bkdknéi*kl} 52) ] is
a positive constant. Analogously, we can write

N

RHS = % Y ay ( Li 5kdkn§k]> (6; — 6;)? Z bm [ Z B dknék] (6 — 6;)?

n=1

Thus global IC requires LHS > RHS, or

N K
7025 2%([25“@@4) p* — anl[zﬁ dkan}
n=1 k=1
We are thus left with a single condition on parameters of the model that needs to be checked.

Moreover the RHS is positive whereas the LHS is zero at p = 0. Therefore, we obtain a threshold
p*. This concludes the proof.
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A.11 Proof of Proposition 16

Given a penalty function —v;P:(0') augmenting the dynamic inflation target, we have a value
function under truthtelling (given informed and uninformed firms have the same expectation)

given by
Wi(0) = Uy ((8Y), (6", 80) — v (m(m - Eu[mrefﬂ) — YP(0") + BB Wi (0 o],

Observe that this value function differs from the one in the proof of Proposition 3 only by the

additional penalties. Thus from the proof of Proposition 3, we have

IWi(0') AU
6 00,

(9t+1|9t /aet ‘9 }
f(0ra]0) 1

9

where the second line follows from the presence of the penalties. We will now construct penalties

B Wi (e

BPt

_ E[Zﬁ

9Pk |

Py so that the second line is exactly equal to the unaccounted for information rent, —ywy, from the

t:| = Wt.

Totally differentiating the recursive formulation of P;, we have

Envelope Condition (equation 18). Thus we require

b k9P ik
26, “Et{zfg 26,

9P, P,

aPt+1
F aT)t‘Fﬁ tl

0:+1|6¢)/00;

10:] + BE:[ P11 A f(6r41]6)

0]

Thus combining the two equations,

P,
a0,

(0¢11160¢) /06,
f(0:1116¢)

The final expression comes from integrating. Thus we have constructed the required penalty

- 0
= w; + PE¢[Pr11 f |6:].

function to satisfy the envelope condition, completing the proof.

A.12 Proof of Proposition 17

Integrating the Envelope Condition (equation 7), we obtain integral incentive compatibility

% U (6", 51)

0 of: (6 0
Wt<9t> :/6 Tdst—i—ﬁ/ E; [WH— ft( t+1|5t)/ St

fr(Brs1lst)

‘St ds; (27)
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where recall we have normalized the date 0 outside option to zero. From here, we can re-express

the value function W as follows (see also Pavan et al. 2014).

et] ",

Lemma 20. The value function W; can be represented as

Wi(6') = ioﬁww%

where Bj is given by

s—1
1
BS 9t+s :l l x
HE) o Sk (Orky1]0ix)

dSt+s...dSt.

/ aut+s(9t71,5t, ---/St—i-s) ﬁ aft+k(9t+k+1‘5t+k)
5t <0,/ St4+5 <Ot s aSH—S k=0 aSt+k

Proof. Iterating the Envelope Condition forward one period,

t—1
Wi(6!) = /9 E, [aut(gtt)dst

+

oft (0r11]s¢) /9st [/ef“ U (0", 51,5¢11) LE, 1{1/\4 zft+1(9t+2‘5t+l)/ast+l‘St 1” }dst
ft (Br11lst) 0 0S¢41 - 2 fi1(Bisalsen) -

Define BY(g,0) = f; gds;, with g0 = M

series defining WV;. We then define Bl (g,0) f 0 E; [% g

yielding BY(g?,0) as the first term in the infinite

st} ds;, consider the function

gt = 9”1 sttﬂ, and obtain BB} (g}, 6;) as the second term. Next consider a function
g that is a date t + s adapted function, and define 157 (7,60;) = B} (B}, (§7,0:141) ,6;). Thus we

have

b Ofi(0ry1]s¢)/0sy [Or Ofr+1(0r42]5t41) /05141
Bzzlez/E[t+ /E{+++ 25, 0 9
¢ (8/01) ‘ fe(Oralse) 9 a fr1(Be42]5641) gt (5111, 61:2)

5t+l:| dsi 1 St] ds;

. 2 (B WUra (0 sisia8140)
Usmg 9t (St/5t+1/9t+2) =Jo 3110
in the infinite series characterizing WV;. Continuosly defining these recursive operators as such, and

d f . f . s 9 0t+s aut+s( 15 /SH-S)
efining functions g; (st,...,st+s_1, t+s) = Jo Fiis

dst+2 and multiplied by p? gives us the next term

dsi1s, we obtain the infinite series

that characterizes W;.
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To then simplify from here, for B} (g, 0;) we have

b Oft(0141]s¢) /95t
1 _
B; (g,6:) = /0 E; [ [ACED) g (st,0¢41)

0
/ / aft 9t+1|5t ('9t+1)d9t+ld5t
0141

= b oft(6111]st)
B Or41 [~/9 asigg(st’et+l)dsf] d9t+1

[ Jy St (s, 0,41)ds |

= = fr(0r4116¢)d0; 11

St:| dSt

61 ft(Br+10:)
1 0 9f(0;11]s
= E [ft(9t+1\9t) {/ ft(at:‘ t)g(St, 9t+1)dst] Qt]
In particular, as applied to the function g} = 90”1 sttﬂ, we obtain:
1 O O ou 1(9t_1 St, St 1) aft(Gt 1‘St)
Bl (3,0 :E[[// Sl 115 g ds}é)]
t8,0) =Ei fr(Br4116:) [Jo Jo 0S¢41 0s; S |

Next considering B? (g,6;) = B} (B}, (8,6:+1),6:), note we have along history (6!, s;)

1 0141 9 f111(Op42|5141)
1 _ t+1(Or42]St41
Bii1(80i41) = Er1 |:ft+1(9t+2‘9t+1) [/9 st g(5t15t+1/9t+2)dst+1]

9t+1:|

which then yields

B} (3,6:) = Ei ! [/e”’ﬁ(f’tﬂst)

{ft(9t+19t) st Bl (8,6141) dst} Gt]

= E/Eq [ 1 [/9‘ Oft(0¢41]s¢) { 1 [/9’“ Ofr11(0r12l8141)
L (044161 st fre1(0r42(0:41) (Vo 05¢41

=FE { 1 [/et /6'“ oft 9t+1|5t) Ofi+1(Or2]5641)
fi(0:4110¢) fria (9t+2|9t+1 05441

g(st13t+119t+2)dst+l] 9t+1} dst}

|

g(st,se41, 9t+2)d5t+1d5t]

. . . 0,., ol ,5¢,5¢41,5
and substituting in g7 = [;"" (@ aStJ:Z t1.5142)

dsi2, we get the next expression from the Lemma.

From here, the result follows from repeated iteration. [ |
Thus given Lemma 20, we can construct the required transfer rule T; = W; — U; — BE{[Wi1164]

to achieve that value function. This gives rise to the followed relaxed problem (i.e., requiring the

envelope condition but not global incentive compatibility).
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Lemma 21. The relaxed problem is

max [E_;

{m: (0}

7

— By + U
?ﬂ T t]

where B, is given as in Lemma 20.

Proof. Since central bank welfare is Wy = Ep Y j— [ﬁtut + Tt] , then
—Ey) Tt =Eo)_B'U —
=0 =0
Since government welfare is E_4 [Zf"_o /sfut - KTt] , then substituting in

E_4 [— KWo + 2&(1 —|—K)ut:|/

The result obtains by substituting in Wy from Lemma 20. [

We can now solve the relaxed problem of Lemma 21.>” Denote the realized value of B, by:

= 1 aUt(SO ..., S ) afk(ek 1’Sk)
By (6" AR / A £11%) yo, d
o(8) = ka(9k+1!9k) 500,51 <O 054 g 35y 50

so that Bf (") is a random variable derived from the history 6" of shocks. From here the relaxed

problem is

maxE_ 1[25 [

na Bo(”tzﬂt+1,9t|9 )+(1+K)Ut(ﬂt,ﬂt+1,9t)u
7Tt t=0

Consider the optimal choice of inflation 7 (z"), for a realized history 6! = z! of shocks. Note that

the solution can be written in the form (for ¢ > 1):

i1 i Ui ety = K S gy 4 g :
am(zf)f( ) ﬁan_ ( )f(Z ) - 1 +KE—1 S:Zt;l,B WBO(TCS, 7TS+1,95|9 )

so what remains is to characterize the derivatives of Bf with respect to 7;(z'). When s = t, we have:

d d =l 1 oU (S0, ..., st) T Ofe(Bki1|sk)
B (ot / el + ds;...ds
dry(zt) 0(®) = dr(z!) [Igfk(gkﬂmk) 50<00,.-,5¢ <61 Ost lg ISk o

57 We characterize the optimal allocation assuming that 7; is interior.
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Note that 77;(z") appears in % only along the path given by sop = zo, s1 = z1, ... , St = 2¢, SO

we have

d — U 1 9fi(Brialz

WBB(Qt) = 1;,<q,,...2<6; ]g) [ACED aztantézf) Ig) fk(ak;(ﬂ %)
Note the subtlety that the 6’s are preserved, as the realization of the random history, whereas the
s’s are replaced by z’s, as the path under the integrals that leads to the history z! under the integrals.
It is worth remembering then, when we substitute into the expectation, that 0; is a random variable,
and 7! is (fixed) the history being differentiated along, and so is not a random variable.

Note that by exactly the same logic, we obtain Vt > 2

A pi1ip-1y _ 1 PUir 1 0fe(Biralzi)
() By (0') = 1zy<qy,.z 1<6, 4 ,g)fk<9k+l|9k) 0z;_1071:(2!) ]E) 0z)

As a result, the right-hand side of the first-order condition becomes vVt > 2

14+« f d
RHS =E_; 55_1 () Bi(7ts, 7541, 0516°)
_t |4 11 1 U4 ﬁ O fic(Ok12k)
—1 | 120<60,...,21-1<011 ot Fr(Brs116k) 0z¢ 10714 (2) P 0z

k=0

1 2U; = fi(Bksrlze)
+BE-1 |1

_oun Fo1 Al
aZt_laﬂt(Zt) =1 | t20<00,..,zt-1<0; 1 kZOfk(9k+1‘9k) 0z

02U, 1 ﬁ afk(9k+1|zk)]

+ aZtaT[t< ),BE 1 [ 20<0,.. Zt<€erk 9k+1|9k) i azk

where recall that z! is a specific history and so comes out of the expectation.
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Now, consider these two expectations. Now, we define Q;(z") by:

-1 1 1 O (Oks1]2k)
Oz =E_4 |1 L
t( ) 1 [ Zo§90m-,2t§9rIg)fk(ek+1|gk) H azk

k=0

L [ s
zt Jzp % k=0

aZk

/9 ofy 9t|Zt 1) [/ /Gt = 0fy 9k+1|zk)f( )d@tl...d(?o] 40,

Zt 20 k=0 Zk

_ /9 afk 9,}|Zt 1 t 1(Zt71)d9t

aZt 1

8
— 0 (th) / afk(et‘zt—l)det

0z;_1

which is well-defined for all + > 1. However, it requires an initial condition Q(z°). It is helpful to

define this initial condition in the date 1 FOC. Note that at date 1, we have:

1 pt— %o ol
B0 = B = [ 5ol

so that we have ( )Bt Lo 1) = 1, <, 87? EoL In particular then, the expectation is simply:

7
E_1[1z<q) = /Z f(60)dbo =1 — F(zo)

so the initial condition is Q(z°) = 1 — F(zp). This gives us a state space reduction property, where
we can fully determine (); from ();_; and z;_; by a recursive sequence, where the initial value is
Qo(ZO) =1- F(Zo).

From here, we can substitute back into the FOCs:

ou;_ t ol; N o U, o 02U
(1+x) [am(zfl)f( 1) 5371 (! )f(z )} =K [Qt—l(z 1)m + B (z )aztam(zf)]

From here, it is helpful to divide through by f(zf~1):

t(Zt) aZUt
f(zt=1)  0zp_197m(2t) +h f(zt) aztam(zf)f(zt‘zt_l)

t—1 2
(1+8) | g + Byt k)| = | SE) STl g
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And from here, we define I';(z") = (}‘((ZZ,[)) . Note that we have:

0 dfi (6|2 0 dfi(6r|z—
Ft(zt) — Qt(zt) — Qtfl(ztil) th fk(f;z‘z? 1)d0t -T 1(Zt—1)f2t fk(atZ|th 1)d9t
fE) o fE@ f(zlze) . f(zt|2e1)
which is itself a recursive sequence with initial condition I'y = 1;2 (OZ)O) . The characterization from

the lemma follows from recalling that aag’(;}) = gg%j f(zt|zi-1).

Lastly, we can evaluate the FOC for 71y, which from the steps above yields

aLIO_ K
omy 1+xk

02Uy
aZ()aTL'O

ro (ZO)

This concludes the proof.

A.12.1 Second best with Average Transfers

In Section 5.2, we assumed the outside option was Wy(6°) > 0. We might alternatively have

expressed this in the form

/9 Wo(6°) £ (60]6_1)d6o > 0 (28)

Intuitively, one can think of the former as a participation constraint when the central bank already
knows 6, while the latter is a participation constraint when the central bank does not yet know
fp. Under this structure, we can show a dynamic inflation target is optimal under costly transfers.
Intuitively, the principal and agent have the same preferences (apart from transfers) and so agree
that the Ramsey allocation maximizes total surplus. The average participation constraint allows

the principal to extract full surplus without distorting the allocation rule.

Proposition 22. Under an average participation constraint (28), the dynamic inflation target of Proposition

3 is an optimal mechanism.

Proof. Lemma 20 still holds. Using T;(6") = W; — U; — BE; [W;41/6¢], we have from equation (28)
0 = E71W0 == IE,1 Zﬁt(ut + Tt)
=0

Thus substituting into the principal’s problem, we have the relaxed problem

[ee]

maxE_; ) B (1+x)U;
{r} t=0

so the principal’s allocation rule is the Ramsey allocation, and hence is implemented by the
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dynamic inflation target (along with a date 0 lump sum transfer to achieve a binding participation
constraint). ]
A.13 Proof of Corollary 18

The proof follows immediately from the definition of T';, which is equal to zero if 6; € {6, 5}. When
I't = 0, the allocation rule is constrained efficient for all I'; ¢, k > 1, so the optimal mechanism

reverts to constrained efficiency, which is implemented by the dynamic inflation target.
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B Applications Continued

This Appendix develops several additional applications as well as extensions of those presented in
the main text. In Appendix B.1, we develop a canonical application of persistent cost-push shocks.
In Appendix B.2, we characterize the dynamic inflation target response during lower bound spells.
In Appendix B.3, we generalize the declining r* application presented in Section 3.1 of the main
text to the case where ¢ > 0. In Appendix B.4, we revisit our main applications allowing for
costly mechanism transfers. Finally in Appendix B.5, we discuss how Rogoff (1985)’s classical

conservative central banker relates to our dynamic inflation target mechanism.

B.1 Cost-Push Shocks

In this application, we study a persistent cost-push shock both with and without costly transfers.
This revisits the related full-information environment of Svensson and Woodford (2004) and
studies the properties of the dynamic inflation target. Social welfare is characterized by a New
Keynesian loss function around a non-distorted steady state, U; (71, y4, 6;) = — % * — %zx(yt —6;)2.
For simplicity, we set the slope of the Phillips curve to be x = 1. Internalizing the NKPC (11) into
the loss function yields reduced-form preferences
1 >

U(my, Eymtey,0) = —5mp —

1
5 —a(m — BEsmiy1 — 6r)% (29)

2
Note that 6; is a cost-push shock in the usual sense: higher 6; means higher current inflation
is needed in order to maintain the same output loss. We assume the cost-push shock satisfies
E:0;11 = p0;, where 0 < p < 11is its persistence. The following result characterizes the dynamic

inflation target.

Proposition 23. The dynamic inflation target that implements the full-information Ramsey allocation is

by = y1bi—1 — 720;

T = (1—71)71bi-1+ Y2(v1 — 1+ )6},

where 0 < 1 < 1 does not depend on p, and v, > 0 increases in p. Optimal inflation sets 7ty = —by + by_1.

Proposition 23 specializes the dynamic inflation target of Proposition 3 to the cost-push shock
application. In response to a positive and persistent innovation in the shock, i.e., a high 0; realization,
the central bank updates both parameters of the target for the next period. First, the target flexibility
decreases in the sense that b; falls. This happens because the cost-push shock leads to a larger output

gap today, increasing the inflationary bias of the central bank.
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Second, the response of the target level is ambiguous and depends on the shock persistence.
When shocks are not persistent, a cost-push shock is followed by a lower target level. As shocks
become more persistent, there is a critical level p* = 1 — ;1 after which the central bank raises
the target level instead. This result reflects the common intuition of the cost-push shock model:
The central bank would like to promise low future inflation to improve the contemporaneous
inflation-output trade-off; as shocks become more persistent, however, it also wants to promise
higher future inflation to mitigate future expected cost-push shocks.

The target also rises as the previous period’s target flexibility parameter b;_ rises. This reflects
the history dependency: a high past inflationary bias leads to a desire for low inflation today, which
in turn leads to a desire for low inflation tomorrow. This means that the decrease in b; serves
as a force for future deflationary pressures. Finally, contemporaneous inflation unambiguously
rises in response to a positive cost-push shock. It is interesting to note that the target flexibility
is always more responsive to a contemporaneous cost-push shock than its level, since we have

-1<m-1+p<1l

B.1.1 Proof of Proposition 23
Given reduced from preferences are

1, 1

u(nt/IEtntJrl/gt) = _Eﬂt — E(X(TL} — ﬁEtﬂt+1 — Qt)z
then we have 5
U,
aini = —m — a(m — BEymiq — 6f)
ou;_
F_tﬂlrt = Ba(7ti—1 — BEr—171t — O4—1).
By definition, we have
1 oU;_4
= = — _1— BE;_ —0;_1).
Vi BIE, 17 a(mt—q — BE—171t — 61-1)

au, _

Therefore, we can write the FOC for the full-information Ramsey allocation, o

v;_1, equivalently
as

—T —Vp = Vi1

or in other words, 7; = v; — v;_1. Combined with the definition of v;_; and the initial condition
v_1 = 0, this gives us a complete system.

Suppose that [E;8;1 = pf;, where p = 1 corresponds to full persistence. We thus think of cost
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push shocks as reverting towards zero. We guess and verify a linear solution
Ut = Y1Ve-1 + 720;.
Given this conjecture, we know from the FOC that
e = (711 — D)ve—1 + 7200

Using the definition of v,

Vy = —&70 + D(,B]Etﬂt+1 + 0(6,},

we substitute in the expression for 71; and our conjecture for v;1 to obtain

V= —« (Vt — I/t_1> + “ﬁ((’)’l — 1)Vt + ’yzlEthH) + 0(9,}.

Now using that [E;8;,1 = pf; and rearranging, we get

. o <572P + 1>

—= Vi_ —|— 9
1+a+(1—71)apB -1 1+a+(1—71)aB !

Ut

Thus coefficient matching, we have the system of equations

®
1+a+(1—91)a

'B:’h

“<572P+1>
T+a+(1—71)ap

T2

The first equation is defined solely in terms of 1. Thus taking it and rearranging, we obtain the
quadratic

04/37%—71(1+a+0cﬁ)+0c20.

This quadratic has two roots, with the upper root being explosive since f < 1 implies ;" > 1. Thus

selecting the non-explosive root gives 0 < 7y; < 1, where

Cl+a+af—/(1+a+aB)?—4a2p
= 20 '

Note that to see why this root lies between 0 and 1, the quadratic above equals a« > 0 for 71 = 0
and equals —1 < 0 when 1 = 1.
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Given that 0 < 7; < 1, we can solve for > using the second equation, which gives

gg!

2= 1—Bom’

which is positive since Bpy; < 1. Thus we have our solution. Given this solution, the parameters
of the target are
Ve = 11Ve-1 + 720

and

T = B4
= (71 — Dve + 7200

=—1—71)71v-1+ 72(71 — 1+ p)6;

B.2 Lower Bound Spells: Target Adjustments as Unconventional Policy

When the economy is at the effective (zero) lower bound, which we refer to as a “lower bound spell”,
the central bank loses its conventional policy instrument (short-term interest rates). Historically,
central banks have then resorted to unconventional policy, focusing largely on forward guidance
and asset purchases. Some commentators have explicitly raised the question whether changes
in the targeting framework could and should be seen as a potential additional unconventional
monetary policy instrument. Our theory provides a natural framework to ask this question.”®

Zero lower bound spells are commonly represented by a constraint i; > 0 (Eggertsson and
Woodford, 2003; Werning, 2011). Consider a canonical loss function at a distorted steady state,
U(mt,yr) = —37m2 — Jay? + Ay;. When explicitly accounting for the zero lower bound constraint,
ir > 0, social welfare can be associated with the Lagrangian EY > 8’ [Z/I (72, y¢) + 19tit}. The
Lagrange multiplier & can be interpreted as the shadow value of being able to set negative nominal
rates. In other words, when the economy falls into a liquidity trap, the shadow value on policies that
push the economy away from the constraint rises—for example by raising inflation expectations,
lowering current output, or raising future expected output.

In this application, we represent the mechanism design problem directly over the reduced-
form loss function U; (7, y;) + 64i;, which encodes 6;i; as a reduced form utility benefit/cost of the
nominal interest rate. A positive innovation to 6; qualitatively captures the same economics as an
explicit lower bound spell ¢;: a higher 6; increases the utility value of higher nominal interest rates,

consistent with a lower bound spell. We associate a persistent lower bound spell with a persistently

%8 Crucially, we implicitly abstract from asset purchases: That is, we do not allow the central bank to use any other
unconventional tool that would allow it to make the lower bound constraint slack again. We assume that instruments
are incomplete to such an extent that the economy experiences a lower bound spell.
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high value 6;.

We assume that E;0;,1 = pb; for 0 < p < 1. We associate p = 0 with a transitory liquidity
trap, where the lower bound constraint is expected not to bind in the following period. In this
application, we abstract from shocks to the slope of the Phillips curve, x; = «, innovations in the
natural rate, r{ = r*, and demand shocks, €; = 0. Substituting the NKPC (11) into the dynamic IS

equation (12) then implies
. . O
it = Eimtpen + 17 4 | =0+ (14 B)Birtisn — PEiti2 | (30)

This means that, after substituting out for i; and y; in preferences U;(7t;, y;) + 6:i;, we can represent
reduced-form preferences by Uy (7ts, [E; 7141, B¢ 71412, 6¢). Since E; 7.2 appears in this implementabil-
ity condition, the resulting time consistency problem has a horizon of more than one period. We
study longer-horizon time consistency problems in Section 4. In this application, we set ¢ = 0 so
that the time consistency problem reverts to a single period. We can then rewrite the reduced-form
utility function as
1, 1 ?
U (e, B 7ti49,601) = —Eﬂtz — 556 <7Tt — ﬁlEtﬂtH) +A <7Tt — ,BIEtT(t—i-l) + 6 <1Et7ft+1 + 1’*>

where & = 5 and A= %.59 We now characterize the dynamic inflation target of Proposition 3 when

the economy experiences a lower bound spell.

Proposition 24. The dynamic inflation target that implements the full-information Ramsey allocation is
by = —v0 — 10 + 12bi1

1
Eimtip1 =y — (72— 1)b + <')’1 + ﬁ>P9t

A A 1+a(1+) —+/(1+a(1+p))2—4a2B
where o = 1ﬁg§2 > 0, where y1 = 71_122/5‘0 [p — 1};"‘/13} < 0, and where 7y, = REhed) (2&;( P4
with 0 < 2 < 1. Optimal inflation sets 1y = —by + b1 + %Gt.

To illustrate the economic forces that govern the dynamic inflation target mechanism, consider

the following exercise: We initialize the economy at its risky steady state.®” Formally, we consider

5 In both this application and the ones that follow, the proof shows that there are two linear solutions that satisfy the
first order conditions of the optimum, and we take the non-explosive solution to remain consistent with the transversality
condition.

0 We define the risky steady state of the economy under a dynamic inflation target as comprising the allocation,
prices, and target parameters (7, v) that the model converges to if a shock sequence of 8; = 0 for all ¢ is realized. This is
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a particular realization of the stochastic process where 0; = 0 for sufficiently many periods such

that the economy and the mechanism asymptotically converge. It is straightforward to see that the

target flexibility converges to by — b = — 11%2 = — 17172 1:’5% kA < 0in this limit. In the language

of Svensson (1997), the distorted steady state A > 0 implies that there is an average inflationary bias,

which b < 0 corrects. Similarly, the target level convergesto 7; = Ei i1 = 7=y — (12— 1)b =0
in the risky steady state limit. This reflects a common Ramsey intuition: with a distorted steady
state, the central bank achieves a better inflation-output trade-off today by promising lower
inflation tomorrow, and subsequently achieves a better inflation-output trade-off tomorrow by
promising future lower inflation, and so on. This pushes optimal inflation under commitment
towards zero in the long run, absent shock innovations. Formally, the allocation rule implies
= —b+b_1+ %Gt — b—b = 0. Our dynamic inflation target implements the long-run Ramsey
allocation in the risky steady state of this economy with a target level of T = 0 and a positive target
flexibility v > 0 that exactly offsets the central bank’s time inconsistent incentive to respond to the
steady state distortion.®!

We now initialize the economy at this risky steady state and consider a positive realization of
the shock, 6 > 0. Intuitively, we consider the economy as having entered a lower bound spell of
uncertain duration at date 0. We plot the resulting impulse response functions (IRFs) under the
dynamic inflation target mechanism in Figure 4.

Suppose first that the ZLB spell is purely transitory, and hence Eo0; = 0. We consider a
realization of the shock path such that 6; = 0 for all t > 1. The red-dashed line in Panel (a) of Figure
4 plots the dynamics of the target flexibility under this path.

The dynamic inflation target becomes more flexible at the lower bound, i.e., by rises since
71 < 0. Intuitively, the transitory lower bound spell increases the value of future inflation and calls
for a lower future inflation penalty. Even though the economy escapes from the lower bound at
date 1, the added target flexibility is persistent and decays only at the rate > < 1. This endogenous
persistence in the target response captures the standard intuition that optimal monetary policy
in a liquidity trap makes long-lived promises to keep interest rates low even after the economy
moves away from the lower bound (Werning, 2011). Intuitively, promising high inflation at date 1
means that unless the central bank also promises high inflation at date 2, the economy experiences a
significant output contraction at date 1. The central bank therefore smooths the output contraction
by promising to maintain higher inflation for longer.

The associated increase in inflation expectations is also reflected in an upwards adjustment of

distinct from the standard deterministic steady state because agents understand that the environment is stochastic. It is
also distinct from the stochastic steady state, which describes the random variables that allocation, prices, and target
parameters converge to in distribution as the model is simulated for a sufficiently long period of time under the ergodic
stochastic process {6;}.

61 Similarly, we have iy — r* and y; — 0. The allocation in the risky steady state is therefore the same as in the
deterministic steady state of this model. This follows from certainty equivalence under a first-order linearization.
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Figure 4. Impulse Responses: Lower Bound Spell

Note. Figure 4 plots the impulse responses of inflation and the dynamic inflation target after a lower bound shock
6o > 0. Panels (A) through (D) show target flexibility, target level, inflation, and the shock, respectively. Our illustrative
calibration closely follows Gali (2015), except we focus on the limit of a vanishing EIS, ¢ = 0. The blue solid line
corresponds to a persistent shock (0 = 0.6) and the red dashed line to a transitory shock (p = 0). In each case, we
initialize the economy at the risky steady state and consider a shock at time 0.

the target level—see panel (b) of Figure 4. This reflects the success of the central bank in using the
increased target flexibility to raise inflation expectations. It manifests in a higher inflation level in
the next period. Coinciding with the gradual decay in target flexibility, the target level and realized
inflation also both remain above zero even after the shock has phased out. A persistent shock,

p > 0, leads to qualitatively similar but more persistent dynamics.

B.2.1 Proof of Proposition 24

Using reduced form preferences, our two key equations are

Vi1 = — T — g <71't — ,BlEtTCt+]) + }\

. L1
vy = —& <7Tt — ,31Et7Tt+1> +A— BGt
1

Summing the two equations, we get vy = v4_1 + 714 — ﬁGt. Guessing and verifying a linear solution

vt = ¥ + 710 + 12v:—1 and using our key equation, we get

1
T = Vg — Vi1 + —Gt

p
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Leading one period and taking expectations,

1
Eimtip1 = v+ (2 — v + <’Yl + 5>P9t

Now, substituting back in to the equation for v; and rearranging,

(1+5¢—5¢/3(7z—1)>w = &pyo+ A+ [&ﬁ<%+;>9— 1;“

Now, we solve by coefficient matching. Coefficient matching on 7,, we have

:| Gt + 56th1

0=&By3— (1—}—54—1—&[3)’724—&

and so the non-explosive root is

2
1+&+&[3—\/<1+&+&[3> — 432B
2&p

T2 =

& 267048 oiving

Now, we can coefficient match on the constant, yo = 5 Y oy R

~

1 A
T i
Finally, coefficient mathcing on 7,
1 _ 1+a
S L Gl
N1 a—ap(yn-1) &

B.3 r* Revisited and the Commitment Curve

We revisit the application to persistent changes in the natural interest rate r; (Section 3.1) but allow

for o > 0. The realized nominal interest rate is
it = Byt + 60 + U[IEtym — ]/t] — €.

Intuitively, an expected rise in the output gap means household consumption is expected to rise,

raising the nominal interest rate and pushing the central bank away from the ELB. Similar to Section
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3.1, we can write iy = if — €; and write the welfare losses v(i}) from the ELB. In this case with

o > 0, we have a change in the definition of i} to
iy = —om+ (1+ (1+ )o)Esrtryy — POEsti2 + 0y,

which reflects internalizing the NKPC to substitute out the output gap. Intuitively, higher inflation
today, 7t;, increases output today and so reduces the required nominal rate. Higher inflation 77;.1
both directly increases the nominal rate and indirectly increases it by stimulating output y;,1.
Conversely, higher inflation 71,1 depresses output y;,1 and so reduces the nominal rate.

We now characterize the shape of the commitment curve in this setting. Recall that the

reduced-form objective is given by Uy = —3 717 — & (7t — BE;741)% + 0(i} ). We can now write

Y i
Vet+1 = Vi + Vi,

Y _
where Vil =

Buaif) (14 (14 B)o) < 0is the component that comes from the effective lower bound. From here,

—3&(m; — E47ri11) is the usual output gap component, and where v}, ., = —(v1 —

we can show that

* 0
V2 = =B Vi,
« g . o
where B* = 1755 < 1is increasing in 0.
Intuitively, in this case the commitment curve can be decomposed into two components. The

y pr—
ti+k

for all k > 1. This corresponds to the standard one period commitment to stabilize the output

first component is the output gap commitment curve, where we have v/, 4 > 0andv

gap. The second component is the effective lower bound commitment curve, where v;,.; < 0 and
Vg,t o = - ,B*v;',t +1 > 0. The effective lower bound commitment curve switches signs precisely

because of the different effects of inflation at different horizons.

B.4 Costly Transfers: Main Applications Revisited

It is instructive to revisit how costly transfers (Section 5.2) affects the optimal allocation rule in our
main applications. In this Appendix, we revisit our applications on declining r; (Section 3.1), the
flattening Phillips curve (Section 3.2), cost-push shocks (Appendix B.1), and lower bound spells
(Appendix B.2).

We show that costly transfers calls for less aggressive unconventional policies (e.g., forward
guidance) when the economy experiences a lower bound spell, while it calls for more aggressive
policies (e.g., raising the inflation target) in response to a decline in r*. We document competing

effects in the case of flattening Phillips curve that can call more more or less aggressive policies.
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Declining r*. In the case of changes in the natural rate 6; = r; (Section 3.1), reduced-form

preferences satisfy ai%tef = 0 and Wﬁaet = —cj for a constant ¢; > 0. Intuitively, high 6;
corresponds to being further from the effective lower bound, which reduces the value of raising
inflation expectations to get away from the ELB. The allocation rule under the optimal mechanism
is given by

ol

—— = Vi1 — KTy,
am

where again the RHS is A;_1. The rule thus parallels the rule under lower bound spells, but in the
opposite direction. This is because higher inflation expectations now reduce past information rents
to the central bank, rather than raising them, by pushing the economy away from the ELB. This
leads the planner to prefer a more aggressive policy for promoting future inflation.

These results highlight a surprising contrast between the two lower bound applications: costly
transfers calls for less aggressive unconventional policies in a lower bound spell, but for more
aggressive policies in response to changing a natural rate. Intuitively once the economy is already
in a lower bound spell, boosting inflation expectations raises central bank information rents by
disproportionately benefiting central banks in worse conditions. By contrast if the economy has
not yet hit the lower bound, boosting inflation expectations reduces central bank information rents
by pushing all central banks away from the lower bound, reducing the value to the central bank of

private information about r*.

Flattening Phillips curve. In the case of a flattening Phillips curve (Section 3.2), reduced-form

preferences satisfy ai%’& = 1and W{’laet = —% This reflects that a flattening Phillips curve

(higher 6;) increases the value of stimulating current output through current inflation, but also
increases the cost of higher inflation expectations that depress output. The optimal allocation rule
is given by

ou; K

~—— =V + ALy,
o7ty K

where again the RHS is A;_1 and where ATy = I't — I',_;. There are two competing effects from
costly transfers. On the one hand, high 6; means that the central bank’s value of stimulating output
rises, promoting higher current inflation. This increases information rents to the central bank and
calls for lower inflation. On the other hand, high inflation also increases past inflation expectations,
which reduces information rents to past central banks and calls for higher inflation (similarly to the
r* application). The relative magnitude of the two effects is determined by AI’;, that is the change

in the persistent portion of the information rent earned by the central bank between the two dates.

St Zet:| —1)

From Proposition 17, we can write

Al"t = Ft,1 <h(9t|9t1)IEt [A(Stletl)
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where recall that h=1(6;6; 1) = % is the inverse hazard rate and A(s¢|0;—1) = %
is the derivative of the likelihood ratio. We know that the expected likelihood ratio derivative is
zero at 6; = 6 while we know that the inverse hazard rate is zero at 8; = 0. Thus local to the two
extremes of the shock distribution, we have Al'; < 0 and hence the optimal mechanism promotes
higher inflation. Interestingly, this suggests a tendency in this environment for the backward
looking information rent to dominate the contemporaneous information rent, and hence generate
a tendency to promote higher inflation to generate lower past information rents (at the expense
of promoting higher current information rents). In the interior, two common assumptions are a
nonincreasing inverse hazard rate and a monotone (increasing) likelihood ratio (higher past types
signal high future types). These have competing effects on the response to a flattening Phillips
curve. Intuitively, a lower inverse hazard rate reduces current virtual surplus whereas a higher

likelihood ratio increases virtual surplus.

Cost-push shocks. With costly transfers, note that we have a?r%ter = %rx and ﬁ%a@, = —1ap.

The impacts are analogous to a flattening Phillips curve, and means we can write

au; 1K
— =11+ =—AT
a7t} Vi 1+21x !

Thus relative to the Ramsey solution, the optimal mechanism adjusts the allocation trading off
two effects on information rents. On the one hand, higher expected inflation reduces past infor-
mation rents by increasing costs of inflation for central banks that experience large past cost push
shocks. On the other hand, higher contemporaneous inflation increases current information rents
by reducing costs of large contemporanous cost push shocks. The optimal allocation rule trades
off these two effects. As once again AI'y < 0 local to the boundaries of the shock distribution,
particularly large or particularly small cost push shocks at date t lead past information rents to
dominate, and calls for a more aggressive inflation response today in order to reduce historical
information rents. Interestingly, this amplifies the response of inflation to a large cost push shock,

pushing the allocation rule closer to the policy under discretion.

Lower bound spells. In the case of lower bound spells (Section B.2), reduced-form preferences

satisfy ai%fgt =0and Wbﬁlaet = g for a constant ¢y > 0. This reflects that high 6; > 0 corresponds
to a binding lower bound and thus makes it valuable to promise more future inflation. However,
because 6; reflects a benefit of increasing the nominal rate and increasing inflation 7; does not
directly increase the nominal rate, changes in the allocation rule 77; does not generate an information
rent for the central bank at date f. This leads to an allocation rule given by

ol

—— = V1 + KTy _1co,
am
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where the RHS is A;_1.

Suppose that lower bound spells are persistent and higher current types signal higher future
types (monotone likelihood). Then, I';_1 > 0, so that the optimal mechanism prescribes a marginal
value of contemporaneous inflation that is higher under costly transfers, all else equal. Intuitively,
higher inflation expectations increase past information rents through by pushing the economy away
from the lower bound. This leads the planner to prefer a less aggressive policy for promoting future

inflation.

B.5 Revisiting Rogoff’s Inflation-Conservative Central Banker

We ask whether dynamic inflation targets can be implemented by inflation-conservative central
bankers in the spirit of Rogoff (1985). In particular, our inflation-conservative central banker places
a greater penalty on inflation than the government. After appropriate intertemporal rearrangement

of terms, we represent this by assuming central bank preferences equal to
Vi = U — (7t — B[]0, 1)),

where as before U; denotes the preferences of society and the government, and where c is the
constant linear cost to the conservative central banker of inflation exceeding firm inflation expecta-

tions.®? We obtain the following result.

Proposition 25. With an inflation-conservative central banker, the full-information Ramsey allocation can

then be implemented by a dynamic inflation target with by_1 = —v;_1 +c.

Proposition 25 demonstrates that the appointment of an inflation-conservative central banker
does not obviate the fundamental need for a dynamic inflation target. Intuitively, the inflation-
conservative central banker applies a constant penalty to inflation, given by c. In the presence
of persistent shocks, the target flexibility —v; of the dynamic inflation target changes over time.
While an inflation-conservative central bank raises target flexibility on average, in the sense that
bi_1 = —v4_1+c > —v;_4, the total implied inflation penalty b;_1 — c is —v;_; just as before.
The inflation target mechanism that implements the full-information Ramsey allocation is still
time-varying and responds to persistent shocks.

In the language of Svensson (1997), however, appointing an inflation-conservative central
banker can resolve average inflationary bias when c is set equal to the average value of v; in the

stochastic steady state. When this average penalty is large (e.g., in the presence of a distorted

62 Thisis a special case of preference disagreement in Appendix C.2.
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steady state) but time variation in v; is small, approximating the dynamic inflation target with an
inflation-conservative central bank may result in relatively small welfare losses.

Proposition 25 suggests that an alternative implementation of the dynamic inflation target
might be to appoint new central bank chairs with appropriate inflation preferences in response to
changes in v;. The inflation conservativeness of the central bank would then be time-varying and
correspond to ¢; = v;_1. If in response to a shock at date ¢ — 1 the dynamic inflation target requires
Vi1 > V;_p, then a more dovish central banker at date ¢t — 1 should be replaced by a more hawkish
central banker at t. Just as the dynamic inflation target must be updated one period in advance, the

appointment of a new central banker would also be announced one period in advance.®’

B.5.1 Proof of Proposition 25

The proof follows the same steps as in Proposition 3. The envelope condition is the same, given
that the additional term —c(7t; — IE;_1[m;|6:]) in V; depends on reported types and not true types.

From here, the value function at date t under our proposed mechanism given by
WH(81) = bioa (s~ Evcarm) + Vit BE: | W6 e
= (—c+b1)(m — Eyymy) 4 Uy + BE; [Wt(é)t“) yet}
= —v_1 (7 — Ey_q7m) + Ur + BE; [Wt(ef“)\et]

which is the same value function as in the proof of Proposition 3 when evaluated at the constrained

efficient allocation. Thus the result follows using the same proof as for Proposition 3.

C Further Extensions

C.1 Welfare Gains from a Dynamic Inflation Target

We characterize the potential welfare gains under a dynamic inflation target. Suppose that the
central bank adopts a permanent, static target (v*, 7*) instead of the dynamic inflation target of

Proposition 3. The following proposition describes the first-order welfare gains from moving

%3 Importantly, just as a fixed central bank under the optimal mechanism was tasked with updating its own target,
in an implementation with time varying conservativeness a central banker would be tasked with appointing her own
replacement one period in advance (or at the least, would be responsible for naming her successor). However, this
institutional arrangement is not typical (if used at all) in practice. For example, in the U.S. the president is tasked with
appointing members of the Board of Governors, who must then be confirmed by the Senate.

%4 To simplify analysis, we will characterize welfare under a static target with full information, even though the
dynamic inflation target implements the Ramsey allocation under incomplete information. This streamlines analysis
because under a static target absent full information, the central bank’s reporting constraints would be nontrivial due to
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from the static target to a dynamic inflation target.

Proposition 26. To first order, the welfare gains in allocative efficiency from moving from a static target
(v*, T*) to the dynamic inflation target (vi_1, Tr—1) of Proposition 3 are
E) g v — V' } [ B 171 — T
t=1 — —_——

—
Cost of Excess Inflation Amount of Excess Inflation

The first order welfare gains available from moving to a dynamic inflation target depend on two
forces. The first, v/ | — v*, is the intertemporal variation in the time consistency problem under
the static target (where v ; is the time consistency wedge evaluated at the allocation obtained
under the static target). When v} ; > v*, the time consistency problem is more severe than the
slope imposed v*, and hence inflation is too high relative to the efficient trade-off. In other words,
the first term reflects the cost of excess inflation. The second term, E; 7t/ — 7;_1, is the difference
between inflation expectations under the static target and inflation expectations under the dynamic
target. High welfare gains are therefore available when a large excess time consistency problem,
v{ ; — v*, coincides with substantial excess inflation, IE;_171; — 7;_1, relative to the constrained
efficient inflation level. The dynamic inflation target thus allows welfare gains not only by allowing
for greater inflation when the static target would be too severe, but also by allowing for lower

inflation when the static target would be too flexible.

C.1.1 Proof of Proposition 26

To first order, the welfare gains of an inflation perturbation from the static target is

i ol; ol
By g [drc L . ] |
0 t;)ﬁ o Tt SR
From here, the first order condition of the central bank is v* = a%t’ while by definition a]Eagt =
t t/4+1

—pBvf. We have g—gg = 0, so that we have
(e ]
Eo ) pf [v* - Vt*1:| dr.
t=1

Finally, we have E;_1dm; = 1,1 — E;_171/, giving the result.

information effects.
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C.2 Preference Differences

We extend the costly transfers model (Section 5.2) to allow for preference disagreement. For-
mally, the central bank has utility U; but the government has utility V; (7, By [7t:41]0:], 6¢). Social

preferences of the government are now

max E lBt (‘/t(nt/ lEt[mH]ét],Gt) — KTt) . (31)
t=0

_K

T4 as before, and define

As before there is a central bank participation constraint. Define K =

weighted reduced form preferences to be
Zy = (1—K)V; + KU,

Weighted reduced form preferences average the preferences of the government and central bank. A
higher weight is assigned to central bank preferences the more costly transfers are, that is K rises in

k. The optimal mechanism can be described as follows.

Proposition 27. The solution to an optimal allocation rule of the relaxed problem is given by the first-order

conditions
0Z; ou;
— —K[j——— = A}
am taﬂtém =1
* _ 1 0Z;_1 1 aZu“il . . . I’
where Af | = saEm T K15 5808, and T’y is defined as in Proposition 17.

The optimal allocation rule of Proposition 27 is similar to that of Proposition 17, but with one
important difference: the weighted preference Z; replaces the planner’s utility. Intuitively, the
government places value on the lifetime utility to the central bank because promising higher lifetime
value allows the government to extract more surplus in the form of transfers. Counterveiling
this force is information rents, which are analogous to before and only depend on central bank
preferences U;. Intuitively, these terms only depend on central bank preferences as information
rents accrue based on central bank preferences. Otherwise, the intuitions of Section 5.2 carry over.

It is helpful to illustrate two dichotomous cases. If K = 0 and transfers are costless, we have
Z; = V; and hence the optimal allocation is the government’s Ramsey allocation. This follows
intuitively: the government has no cost to designing a scheme that incentives the central bank to
choose the government’s preferred allocation. At the other extreme, if K = 1 then Z; = U, that is
to first order the planner only values transfers. Interestingly, the optimal allocation collapses to
that of Proposition 17. Intuitively when the principal only cares about transfers, the principal on

the one hand wants to make utility as high as possible to the agent in order to relax the central

OA-45



bank’s participation constraint and extract larger transfers ex ante. On the other hand, the principal
also internalizes that higher agent utility increasess agent information rents. This leads to the same
allocation rule as in the case where principal and agent preferences are aligned except for transfers.

At intermediate values of K, the optimal allocation rule trades off the two extremes. On the
one hand, the planner wishes to push the allocation closer to her Ramsey allocation, which increases
her direct utility from allocations. At the same time, the planner wishes to push the allocation
closer to the central bank’s Ramsey allocation in order to relax the participation constraint and
extract greater transfers. This leads to a balancing act determined by K, which encodes a relative
weight the principal assigns to the different motivations.

As in Corollary 18, following 6; € {6, 0} the optimal allocation reverts to the Ramsey allocation
associated with weighted reduced-form preferences Z;. If K = 1, then this allocation coincides with

that of the dynamic inflation target.

C.2.1 Proof of Proposition 27

Observe that the integral envelope condition (27) still holds and implies Lemma 20 characterizes the
central bank’s value function, given central bank preferences have not changed. Thus the transfer
rule is still given by T; = Wy — Uy — BE[W;41|6:]. Thus we still have

-E) T, :Eiﬁfut—wo
t=0 t=0

where W, = E, {Zsoio B°B(6°)

function is now

90} . Given the change in preferences, the government’s objective

E [ Y BV — KTJ
t=0
thus substituting in the transfer rule and definition of WV}, the government’s objective function is
IE[Z,Bt[VM—KUt—Bf)H

t=0

Finally dividing through by 1 + x and defining K = 1. (1 — K = H%), we obtain
E[Zﬁt[(l — K)V; + KU; —KB(t)H
t=0

Thus we simply define Z; = (1 — K)V; 4+ KU; and the derivation proceeds exactly the same as

before with Z; replacing U; as the government’s effective utility function. This recovers the first

order condition given and completes the proof.
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C.3 Inaction

Periods of policy inaction may arise between policy meetings or at the zero lower bound. Does
the optimality of our dynamic inflation target mechanism extend to such periods of inaction?
We extend our baseline model to allow for an inaction state. In this inaction state, the central
bank is forced to set its policy variable 71; to an exogenously specified level. It can still influence
current utility by communicating its type and the future policies it will set (“forward guidance”).
In practice, central bankers use speeches and other forms of communication to convey information
between policy meetings or when the economy is at the zero lower bound.

In this extension, the Ramsey allocation involves the central bank adjusting its next-period
target in order to manage inflation expectations [E;7t;,1 even while its policy variable 7t; is exoge-
nously fixed. We show that the dynamic inflation target remains locally incentive compatible.
That is, the central bank’s incentives to report truthfully are not affected by the inaction constraint.
Intuitively, the dynamic inflation target mechanism already implements the full extent to which
the Ramsey planner would like to use forward guidance. And because the preferences of Ramsey
government and central bank over future inflation policy are aligned, this forward guidance is
incentive compatible as in the baseline model. Even in the inaction region, therefore, target adjust-
ments under our mechanism implement the forward guidance that the Ramsey planner would like
to use.

At the beginning of each period ¢, a publicly observed and i.i.d. action/inaction state I; € {0,1}
is realized. With probability p, the “action state” I; = 0 is realized and the central bank is able to
choose an inflation level 7r;. With probability 1 — p, the “inaction state” I; = 1 is realized and the
central bank must set inflation equal to an exogenous constant, 71; = 7.

Reduced-form preferences are given by U; (7, 7{, 6;) as in the baseline model, where in this

extension inflation expectations are

ét:| = pE; [nt—H

my = [y |:7Tt+1 Ii11 =0, ét] +(1—p)r.

Parallel to the proof of Proposition 1, the Ramsey allocation 7; in the action state (I; = 0) is given

by y = 1;_1, Where v;_1 = —lag L1 if t > 0 and v_1 = 0. Inflation, inflation expectations, and
7Tt /S T

transfers are now functions of the shock history (6, I*), that is we have 7; (6, I'), 7¢ (6%, I'), and
T (0%, I').

Parallel to Section 1.3, we have
Wt(gtilf gt/ It‘et) - ui’ (nt<9t71/ éti It)/ ﬂf(gtilf gt/ It)r Qt) + Tt(etill ét/ It)

+ ﬁIEt [Wt+1 (Gtill gtl 011, I+ ‘9t+1) ‘91‘} ’
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and therefore obtain local incentive compatibility

W6, 1Y) U (m(64, 1), i (64, 1Y), 04
89t N aet

of (04+1(0:) /96
f(6:1]61)

+ BE; [ Wiy (6111, 1Y)

Gt} . (32
Finally, we define our dynamic inflation target in this environment as before by
Tt<9t, It) = bt,1 <7Tt — 7'(?_1).

It is worth noting that the dynamic inflation target is maintained in both the action and inaction
state (i.e., the central bank receives transfers even in the inaction state). This implies the central
bank is rewarded /punished based on its inflation policy in the inaction state, even though it has no
control over inflation in this state. However, transfers in the inaction state end up washing out,
since the target level 7r{ includes the contribution of inflation in the inaction state to expectations.

We now obtain the counterpart of our main result.

Proposition 28. In the action/inaction model, a dynamic inflation target implements the full-information
Ramsey allocation in a locally incentive compatible mechanism, with target flexibility by_1 = —v;_1. The

target (by_1,Ti_1) is a sufficient statistic at date t for the history '~ of past types.

Why does the dynamic inflation target remain relevant even with inaction? One might have
expected the central bank to have a motivation to lie in the inaction state in order to give itself more
favorable inflation expectations, since its contemporaneous inflation policy is fixed and would not
be affected by a misreport. In fact, the central bank is motivated to lie to alter inflation expectations
tavorably—a force that, crucially, is also present in our baseline model. Misreporting in this manner
also changes the inflation target for the next period, however. The combined effect of a marginal

change in reported type on current expectations and the next period target level is

ou; ortf dTy, , o7ty [aut } ot [ ] ot

= = = —_ b _— = —_ — = O
aﬂ.’f 20, + ﬁ 87'[? 20; aﬂf IB ! 20; ‘BVt +‘8Vt d20;
N—— —_———

Effect via Current Expectations  Effect via Future Target Level

Thus, just as in our baseline model, the benefit of lying to obtain more favorable inflation expecta-
tions is offset by the fact that such a lie alters the future target, affecting future penalties. Intuitively,
our dynamic inflation target mechanism already provides the central bank with incentives to

implement forward guidance to the full extent the Ramsey planner would like to use it.

OA-48



C.4 Proof of Proposition 28

The derivation of the Envelope condition for local incentive compatibility parallels that of the
baseline model, since f(6;.1|6;) does not depend on the action/inaction state. We therefore proceed
as usual by showing the value function generated by our mechanism satisfies this envelope

condition.

Verifying the envelope condition. We now verify the value function under our mechanism

satisfies the envelope condition. The value function associated with the mechanism is
Wi(04, 1) = — v (0871, 11 <m(9f, Iy — ¢ (01, lf—1)> + Uy (e (0%, 1), 75 (67, 1), 6)
+ ﬁIEt [Wt+1 (9t+l, IH—l) ’9{|

From here, recall that v;_; and [E;_1[7;|0;_1] are only functions of 6!~!. Therefore, agtgjl =
OE;_1[7¢[6 1]
d0;

= 0. Thus differentiating the value function in 6;, we have

ARG [ Af (014116:) /96, }
L =l BE | W, 0.
a6, o6 PV e e |
aut am But dT[f 8Wt+1 (9t+1, ItJrl)
+< Vt1+am>aet+ang T P 30, o]

Writing out continuation value function W, in sequence notation, we have

Wipgi =—v <7Tt+1 - Et[ﬂt+1’9t]>

—Ei 1 [ Y BVt <7Tt+1+s — ]Et+s[ﬂt+1+s\9t+s]>
s=1

9t+1}

(o]
+Ei [ Y BUii1ys (Meravs, Berags [Merarsl0e14s], 0ri14s)
5=0

9t+1]

As in the proof of our main result, since v;; is only a function of (6'*%, ['*%) and so is a constant

from the date t + s + 1 perspective we have

E;q [Vt+s7ft+1+s|9t+1} =Ei |:1Et+s |:Vt+s7Tt+1+s 9t+s] |9t+1] =Ei1 [Vt+sIEt+s |:7Tt+1+s

9t+s:| | 9t+1:|

and therefore the second line above is equal to zero. Note we did not use anything about whether
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we are in the action or inaction state in this argument. Therefore, we can write

Wit = — v <7Tt+1 — IE1&[7Tt+1|9t]>

+Ei [ Y B Uri4s (1, Brgas [7ria4s]0r14s], Orr14s) 9t+1]

s=0

Observe that this is an augmented Lagrangian at date t + 1: it is the date t 4 1 lifetime value
(second line), plus an augmented penalty on date ¢ + 1 inflation. The Ramsey solution is a critical
point of the augmented Lagrangian, which leads to a simple derivative. Formally, we know that
the impact of a change in report 6; on continuation value through changes in inflation policy at

datet+2+s,5s > 0,is
dU; 145 U215 | drtiioqs

=0.
OBt 14574245 0245 | do
If I;124+s = 0 and the central bank is in the action state, then alE,ilitj }J -+ 53%:1 ;* ¢ = 0 and hence
the above equality holds. If instead I;;24s = 1 and the central bank is in the inaction state, then
d”éigf“ = 0 and again the above is equal to zero. Thus the above equality holds.

Using this result, we therefore have

504Y av,
aet:rl = aet (ﬂt+1 E¢[77;11]6¢] )

ov
= a@t <7TH-1 — IEt 7Tt+1’9t >

where the second line follows since v; = ggﬁi : in the action state (Ramsey) and ag—gl = 0 in the

Omyp1  AE[7r41(604] oU; 41 971141
BGt d(?t aT[t_H 89t

dIEt TIt_|_1|9 ]

inaction state.

Now substituting back into the expression for %—)3?, we have

aW, (6, 1Y) au; [ Of (0,416:) /06, ]
o/ + BE; | W 0;].
90, 00 PE Wi 0100 |
au aTL’t aut d]Et[TL'H_l \Gt]
+ ( vt 5 > 20, " ome  de,

v dE;[7t:41|0
+ ﬁIEt [ aet (7‘[th1 ]Et[ntJrl ’9t]> + Utt[dé_:ﬂt] ‘9{|

The first term on the third line is zero, since

ov
Et[ aet<7ft+1 ]Et[ﬂtﬂ\et]) ~ 36,

ov.
Qt} = —E [ﬂtﬂ E¢ (71141164

or| =o.
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From here, we can rearrange terms to get

W04, 1) aUl Af (614116¢) /06

£ + ﬁIEt |:Wt (Gt-‘rl)

|

06; 90, f(6:41]61)
E)LI aT[t |: allt :| d]Et [ﬂt—&—l‘et]
+ | v+ t s A ur |
|: =1 8 :| aﬂt a]Et [nt+1|9t] ﬁ t th

The first term on the second line is zero, since either —v; 1 + § aut = 0 (Ramsey in the action state)

or else %gf = 0 (inaction state). The second term on the second line is zero from the definition

U Bv: = 0. Thus, the entire second line is zero, and we are left with
JIE; 714164
Qt}

IW(64, 1Y) 3l
20, 00,

f(0r41|6:)/00;
f(0r4116¢)

0
+ BE: | Wi

which is the required envelope condition. This concludes the proof.

D Sufficient Statistics for the K-horizon dynamic inflation target

In this appendix, we show how to use two K x 1 vectors as sufficient statistics for the history of
shocks under the K-horizon dynamic inflation target. We only need to carry two K x 1 vectors,
Viii= {thl,t/ . -,thl,t—1+K} and T; 1 = {thl,tr ceey thl,t71+l<}-

We define V;_;;_ 1., as cumulative promises inherited at the beginning of date ¢ (end of
date t — 1) for date t — 1 + k. Thus, V;_1; = 7;_1 corresponds to target flexibility at date t and
summarizes all commitments made over the past K periods. By contrast, V;_1; 14 for k > 1
reflects the cumulative partial commitments the central bank has made so far for dates beyond . We
refer to these as partial commitments precisely because they can still be updated at date t. We can

track the evolution of partial commitments using the recursion

Vitrk = Victpek + Veprk

where V;_1;,x = 0 and v; ;. reflects the new promise made at date ¢ for target flexibility k periods
ahead. To illustrate, note that V; ;1 = Vi_1 141 + vi 441 = 7 target flexibility for period ¢ + 1 results
from adding a new partial commitment made in period t, v; 41, to our measure of cumulative
promises made in the past, V;_1;1. Vector V;_; thus summarizes all relevant information for
updating target flexiblity at date f to V;.

To update the target level 7, the central bank must compute a weighted average of historical
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inflation forecasts. The evolution of this weighted average of forecasts satisfies the recursion

K-1
1% A Vi— )
7 = VR (6] + Y SR, 6
1Z; k=1 Vit

K-1
Vi1 5 Vicit41 Vi ki1 5
= v E¢[7ti4116:] + v v E_[7ti41]6:—k],
Vitr1 + Vie1,i41 Vi1 + Vie1,41 F—1,t+1
k=1

=T 111

where the first line expresses 7; as an average of current and historical inflation forecasts with
weights directly taken from Proposition 12. We introduce T;_; to track the evolution of average
forecasts and summarize the information needed by the central bank to update its target level. Its
first element reflects the current target level, T;_1 ; = 7;_1, which is taken as given at date ¢. For
k> 1, T,_1 ;14 summarizes the cumulative weighted average of historical forecasts for inflation

in period t — 1 + k. Its evolution satisfies the recursion

Vi 14k T Vt bk
% t—1t+k T %
t—1 04k T Vi rk b1tk T Vitrk

Ttk = ]Et[ﬂt+k\ét]-

To implement the K-horizon dynamic inflation target, the central bank must therefore keep
track of (V;_1, T;—1 ). Intuitively, these two vectors encode a notion of forward guidance in the form
of partial commitments for what the central bank will do for the next K periods. At date ¢, the
central bank takes as given its target for the current date, 7,1 = T;_1 and b;_1 = V;_1, and lacks

any ability to update this target. The central bank has partial ability to update its target for periods

t 4+ k, for 1 < k < K, taking as given its prior commitments that are encoded in V;_1 ;. and T;_1 ;4.

Finally, the central bank has no prior commitment over inflation at date ¢ + K, and so makes its
first partial commitment for this period at date t. This provides a generalized notion of the iterated
one-period commitments of the baseline model: The central bank here makes iterated K-period

partial commitments.

E Global Incentive Compatibility

E.1 K-Horizon Dynamic Inflation Target

As in Section 2.3, let us define the augmented Lagrangian as

|

K-1
Li(0'0) = — ]Et|: Y B Vi1 et i (977F)
k=0

+ E; [ Y B U s (s (9°F°), B[ 7rasr1 (8100 is], - B[k (85775 Br4s], Br45)
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where V;_; is defined in Appendix D. We can then obtain a characterization of global incentive

compatibility that mirrors that of Lemma 4.

Lemma 29. The dynamic inflation target is globally incentive compatible if

L4(6'6:) — L4(8'16;) >Us (71 (8), B[4 (85|04, . .., Ee [k (9175164, 6¢)

— Up(me(8"), By [rmia (0171)[64], ..., Ba[mrik (8)75)164], 61)
K
+ Z ﬁkVt,tJrkwf) (Et[nt+k(ﬁ£+k> CARS ]Et[”t+k(l9§+k> |9t]>
P

Proof. The proof parallels the proof of Lemma 4. Recall from the proof of Proposition 12 that global
IC is Wi (6|6;) > Wi (6471, 68,|6;) for all t,6¢,6;, where

Wi (61, 6,16,) = U (m(effl,ét), 7 (01,8, .. .,n§,t+k(9f*1,ét),et) +T(61,6y)

+ BE: [Wt+1(9t71, Ot 0141160111) ‘91‘} :

Recall further that
1 K-1 0o
Wi (071) = —Er1 ) ,Bs[ Y Viilgskiiiss (ﬂt+1+s - ]Et+1+sk[ﬂt+1+s’9t+l+sk])>:| +Ei1 ) B Ur14s
s=0 S<kSK s=0

The result follows immediately from the definitions of V;_1 ;4 and from noting that E; 1 s ¢ [7Tt41+5]60r+145—k]

does not depend on (6;,8;) except atk = s + 1. |

E.2 Global IC in Quasilinear Models

We conclude by characterizing global incentive compatibility when preferences are quasilinear in
inflation expectations,

LIt(rct, 7'[?, 9,}) = M(T[t, Gt) — g(Qt),Brtf (33)

This case gives rise to an economically insightful sufficient condition and also nests the flattening
Phillips curve application of Section 3.2.%°
This case is tractable because the Ramsey allocation is time-invariant and does not depend

on the density f. In particular, the Ramsey allocation 71;(0") = 71(6;_1, 6;) is given implicitly as

Bu(n(Gt,l,Ot),f)f)

Ep = g(6;—1). This allows us to characterize a stronger-than-needed sufficient condition

65 The results of this section extend readily to the case where 1; and g; are time-dependent. Policies and value gains
are then explicitly indexed by time, and the sufficient condition of Proposition 30 holds for each date .
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for global incentive compatibility by showing that Lemma 4 holds history-by-history, rather than
in expectation. In doing so, we show that global incentive compatibility can be guaranteed by a

bound on a likelihood ratio.®®

Proposition 30. With quasilinear reduced-form preferences (33), a sufficient condition for global incentive
compatibility is

Likelihood Ratio
———

<g((§t) - 8(9t)) ﬂ(étz9t+1)< m —1> < A1, 6:41161) (34)

for all 6, 0:, 0,1, where
0 < A(64,601+110:) = u(7t(6r,0141), 01+1) — 8(0¢) 7T (Or, 0p11) — [”(77(5t/ 01+1),0111) — 8(0¢) (61, 6;41)

is the utility gain from the date t + 1 inflation policy from truthful reporting 0; as opposed to misreporting 0;.

Proof. The result follows readily from Lemma 29 combined with the fact the Ramsey allocation as
71(6¢—1,6;). Equation 34 follows by forcing Lemma 29 to hold history-by-history and by discarding
gains in value of the augmented Lagrangian that come from the date ¢ inflation (that is, only looking
att +1). |

Proposition 30 highlights that sufficient conditions for global incentive compatibility come as a

f(6:41161)
f(Ory1(0¢)

the likelihood of 6;,1 under a misreported type 8; as opposed to the truthful type 6;.°® Intuitively,

bound on deviations of the likelihood ratio from one, where the likelihood ratio measures
equation (34) tells us that violations of global incentive compatibility occur when the central bank
can substantially alter firm and government beliefs by misreporting, in excess of the loss from
distorting the Ramsey allocation.

There are two special cases of the quasilinear model in which global incentive compatibility is
guaranteed. Both conditions also inform the characterization of Proposition 30.

The first special case is that of iid shocks, where the likelihood ratio is one and hence Proposi-
tion 30 necessarily holds. Thus it is only when shocks are persistent, and hence the likelihood ratio

may deviate from one, that global incentive compatibility may be violated.

%6 Equation 34 is stronger than necessary for two reasons. First, equation 34 is specified history by history rather than
in expectation. Second, equation 34 ignores losses in value that arise because a misreport at date ¢ also distorts the date ¢
allocation.

%7 This is valid sufficient condition because the quasilinear form means the Ramsey policy is not just a critical point of
the augmented Lagrangian at date ¢, but also maximizes the augmented Lagrangian.

% Observe that Proposition 30 generally provides two bounds on the same likelihood ratio. The first bound comes
from true type 6; misreporting as 6;, while the second comes from true type 0, misreporting as 6;.
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The second case in which global incentive compatibility is guaranteed arises when the quasilin-
ear weight g(0) is not a function of 6, that is g(6) = go. Economically, global incentive compatibility
is guaranteed in this case because the flexibility of the dynamic inflation target is constant over time
and equal to go. As a result, the benefits and costs of manipulating firm and government beliefs
are not only locally offsetting, but also globally offsetting. Hence, global incentive compatibility
may be violated in Proposition 30 because the global benefit of manipulating firm beliefs always
depends on the true quasilinear weight g(6), whereas the benefit of manipulating government
beliefs depends on the reported weight ¢(6). This highlights the offsetting effects of manipulating

firm and government beliefs achieved by the dynamic inflation target.
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