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Appendix A Discussion on Proposition 1

Appendix A.1 The DA+TTC Mechanism

In Proposition 1, we show that the EADA is an efficient Pareto improvement on the

DA while satisfying our weak strategy-proofness. Another well-known intuitive Pareto-

improving procedure is the DA+TTC mechanism, which first runs the DA and then

reallocates the allocation using Shapley and Scarf’s (1974) top-trading cycles algorithm.

In this subsection, we show that our criterion clearly distinguishes between these two

seemingly similar mechanisms regarding their incentive properties.

To begin, we define the DA+TTC mechanism. Throughout this subsection, we assume

that the choice rules C are acceptant and responsive for a linear order profile ≻. In the

context of school choice, the top-trading cycles (TTC) algorithm operates as follows:

• Step k(≥ 1). Each student in the remaining population points to the most preferable

available choice. Each school points to the student with the highest priority in the

population. Then, there exists at least one cycle (ik, sk)
K
k=1 such that each student

ik points to sk and each sk points to ik+1, where subscripts are modulo K. All

students in cycles are permanently assigned to the one they point to. Remove the

matched students and the associated capacities.

• The algorithm ends at the step where no students are permanently assigned.

Abdulkadiroğlu and Sönmez (2003) define the this algorithm, which adapts the classic

TTC algorithm to a school choice setting. They show that the matchings produced by

the TTC mechanism are efficient and that the mechanism is strategy-proof.

∗Graduate School of Economics, The University of Tokyo/Department of Economics, Massachusetts
Institute of Technology. Email: r.shirakawa0723@gmail.com

1

r.shirakawa0723@gmail.com


The DA+TTC algorithm is defined as follows, building upon the TTC algorithm:1

• DA Round. Run the DA. Let µ be the DA matching.

• TTC Round. For each school s, create a new priority order ≻′
s from ≻s by raising

all students in µ−1(s) to the top, keeping other relative orderings unchanged. Run

the TTC algorithm using the student preferences and the new priority orders.

By construction, the DA+TTC mechanism clearly Pareto dominates the DA. Further-

more, a standard argument involving top-trading cycles establishes its efficiency.2 How-

ever, as discussed in the main paper, no Pareto improvement on the DA is strategy-proof,

which implies that the DA+TTC mechanism also violates strategy-proofness.

Now, we are ready to present our observation. The DA+TTC mechanism does not

satisfy the incentive conditions outlined in Proposition 1. Consequently, although the

EADA and the DA+TTC mechanisms may seem similar, there is a significant distinction

in their incentive properties.

Proposition A.1. The DA+TTC mechanism does not admit a profitable bottom-dropping.

However, it admits a profitable top-dropping.

Proof. Let φ be the DA+TTC mechanism.

First, we show that there is no profitable bottom-dropping. Take any R = (Ri, R−i).

Let R′
i be a bottom-dropping of Ri. Define R′ = (R′

i, R−i). Suppose that i is unmatched

at φDA(R′). Then, since the DA is stable and strategy-proof, we have φDA(R′)(i) = ∅.

Hence, Lemma 1 implies φ(R′)(i) = ∅, and thus, R′
i is not profitable. Next, suppose that

i is matched with some school, that is, φDA(R′)(i) ̸= ∅. Then, φDA(R) = φDA(R′) as the

DA satisfies anti-bottom-dropping monotonicity. This implies that φ(R) = φ(R′) by the

definition of the DA+TTC algorithm.

Second, we show by an example that there exists a profitable top-dropping in gen-

eral. Suppose that there are five students I = {i1, i2, i3, i4, i5} and four schools S =

{s1, s2, s3, s4}. Each school has a unit capacity. Then, let ≻ and R be defined as in the

following tables:

1We adopt the description given in Troyan et al. (2020).
2See, e.g., Shapley and Scarf (1974).
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≻s1 ≻s2 ≻s3 ≻s4

i1 i2 i3 i4

i5 i3 i1 i3

i2 i1 i2 i1
...

... i4
...

...

Ri1 Ri2 Ri3 Ri4 Ri5

s3 • s1 • s4 • s3 s1

s4 s3 s2 s4 • ∅

• s2 s2 s3 ∅ ...

s1 ∅ ∅ ...

∅ ...
...

Now, we can compute the DA+TTC matching under these preferences and priority

relations. In the DA round, the DA algorithm produces a matching that is marked with

boxes in the above preference list, wherein ik is matched with sk for each k = 1, 2, 3, 4, and

i5 is unmatched. Given this, note that a priority profile is unchanged in the second TTC

round. Therefore, running the TTC algorithm using ≻ and R produces the DA+TTC

matching, which is marked with bullet points. In particular, i1 is matched with s2.

Next, consider the following preference profile. All students except for i1 have the

same preferences as before. Note that R′
i1
is a top-dropping of Ri1 .

R′
i1

Ri2 Ri3 Ri4 Ri5

• s4 • s1 s4 • s3 s1

s2 s3 • s2 s4 • ∅

s1 s2 s3 ∅ ...

∅ ∅ ∅ ...

s3
...

...

Likewise, we can compute the DA matching, which is marked with boxes. Here, in the

second TTC round, we create new priority orders for schools s2 and s3 by raising i3

and i2 to the top, respectively. Priority orders for schools s1 and s4 are unchanged.

Then, running the TTC algorithm using the new priority, we get a matching marked with

bullet points in the above preference list. In particular, i1 is matched with s4, which is

strictly preferred over s2 under the original preference Ri1 . Therefore, R
′
i1
is a profitable

manipulation of Ri1 and the DA+TTC admits a profitable top-dropping.

The intuition behind this latter result is as follows: Because the DA satisfies weak

Maskin monotonicity, a top-dropping transformation improves the initial round of DA

matching. However, during the subsequent TTC algorithm, it may alter a student to

which each school points. This alteration can lead to the formation of a different trading

cycle, thereby producing a distinct outcome. Notably, this misreporting student may end
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up in a more favorable position, as illustrated in the example above.

Appendix A.2 The Converse of Proposition 1

A natural theoretical question arising from Proposition 1 is whether the EADA is the

only mechanism possessing these properties. The following example illustrates that, in

general, there are other efficient Pareto improvements over the DA that also satisfy our

weak strategy-proof conditions. However, the main theorem indicates that the EADA is

a unique mechanism when we impose the additional requirement that no simple collective

top-droppings or bottom-droppings are profitable.

Example A.1. Consider a situation in which there are four students I = {i1, i2, i3, i4}
and two schools S = {s1, s2}. School s1 has a unit capacity and school s2 has two seats.

Let C∗ and R∗ be acceptant responsive choice rules with the following order profile ≻∗

and the preferences of the following forms, respectively.

≻∗
s1

≻∗
s2

i4 i1

i1 i2

i2 i3

i3 i4

R∗
i1

R∗
i2

R∗
i3

R∗
i4

s1 • s1 s2 • s2

• s2 s2 s1 s1

∅ ∅ • ∅ ∅

Let µ∗ be the matching that is marked with bullet points in the above preference list:

µ∗(i1) = s2, µ
∗(i2) = s1, µ

∗(i3) = ∅, and µ∗(i4) = s2. A computation shows that µ∗ is an

efficient matching that Pareto dominates the DA matching at R∗ and C∗. We also have

µ∗ ̸= φEDA(R∗, C∗), where the EADA matching is underlined above.

We are now ready to provide a counterexample. Consider a mechanism φ such that

φ(R∗, C∗) = µ∗ and φ(R,C) = φEDA(R,C) for all other pairs of R and C. It follows from

the definition that φ ̸= φEDA is an efficient Pareto improvement on the DA. It remains

to show that φ has no profitable top-dropping/bottom-dropping.

Take any i and a pair R and C. If C ̸= C∗ holds, then φ coincides with φEDA, and

thus, Proposition 1 implies i has no profitable top-dropping/bottom-dropping. Hence,

assume C = C∗. Let R′
i ̸= Ri be either a top-dropping or a bottom-dropping of Ri. Write

s = φ(R,C)(i) and s′ = φ(R′
i, R−i, C)(i). There are three cases to consider.

First, suppose s ̸= φEDA(R,C)(i) and s′ = φEDA(R′
i, R−i, C)(i). This implies that if

the manipulation is profitable, we must have i = i1 because i2 matches with the most

preferred choice under R. If R′
i is a bottom-dropping of Ri, then a calculation shows

s′ = ∅, which is thus unprofitable. If R′
i is a top-dropping of Ri, then we must have

s′ = s2, which again means the manipulation is not profitable.
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Second, suppose s = φEDA(R,C)(i) and s′ ̸= φEDA(R′
i, R−i, C)(i). Note that R′

i

cannot be a bottom-dropping of Ri and is thus a top-dropping of Ri. Additionally, either

i = i1 or i = i2 holds, which implies that either s2 or ∅ is the most preferred choice under

Ri. Then, a calculation using R−i = R∗
−i shows that i must match with the most preferred

choice before the manipulation, and thus there is no incentive for the manipulation.

Finally, for the remaining case where both s and s′ match with the assignments un-

der the EADA, Proposition 1 implies that the manipulation is unprofitable. Therefore,

there exists another efficient Pareto improvement on the DA that has no profitable top-

dropping/bottom-dropping.

Appendix A.3 Other Simple Manipulations

In Proposition 1, we find that the EADA mechanism represents an efficient Pareto im-

provement over the DA that allows for no profitable top-dropping or bottom-dropping.

In contrast, as indicated in the subsequent proposition, all efficient Pareto improvements

on the DA admit a profitable anti-bottom-dropping. This suggests that it may be theo-

retically challenging to require that all simple manipulations be unprofitable.

Proposition A.2. All mechanisms that Pareto dominate the DA admit a profitable anti-

bottom-dropping.

Proof. Afacan et al.’s (2022) proof of their Proposition 1 works directly as a proof of

this statement. Since their original statement is different, however, we provide a proof

for completeness. Let a mechanism φ Pareto dominate the DA. Then, there exist R and

C such that φ(R,C)RφDA(R,C) and φ(R,C)(i)Piφ
DA(R,C)(i) for some i. We write

s = φ(R,C)(i) and s′ = φDA(R,C)(i) to abbreviate notation.

Now, let R′
i be a preference that truncates from Ri all schools that are strictly less

preferred to s, as defined in the proof of Proposition 6. Then, we have ∅P ′
is

′ by con-

struction, and therefore, one can see that φDA(R′
i, R−i, C)(i) = ∅ by the definition of the

DA algorithm. Then, since the outside option is always underdemanded under the DA,

Lemma 1 in the Appendix implies that φ(R′
i, R−i, C)(i) = ∅. Finally, note that sP ′

i∅ by

construction. Moreover, Ri is an anti-bottom-dropping of R′
i by construction. Therefore,

Ri is a profitable anti-bottom-dropping of R′
i.

5



Appendix B Discussion on Theorem 1

Appendix B.1 On Top-dropping Monotonicity

In Remark 1, we observe that top-dropping monotonicity implies a stronger condition,

specifically, invariance to the upper-manipulation described by Afacan et al. (2022). Be-

low, we provide a formal discussion of this statement. An upper-manipulation is defined

as follows.

Definition B.1. A preference R′
i is an upper-manipulation of Ri at s, if R

′
i is a monotonic

transformation of Ri at s, and s′R′
is

′′ implies s′Ris
′′ for all s′ and s′′ with sPis

′, s′′.

We say that a preference profile R′ is an upper-manipulation of R at a matching µ if

each Ri is an upper-manipulation of Ri at µ(i). A mechanism is upper-manipulation-proof

if for any R, any upper-manipulation of Ri at φ(R,C)(i) is not profitable.

A key conceptual distinction between top-dropping and upper-manipulation is that

our definition of top-dropping operates independently of the assignment resulting from

truthful reporting. This feature makes top-dropping much easier to describe in plain

language, which is crucial for the comprehension of real-world participants.

The formal argument presented in Remark 1 is stated as follows. In the proof, we

represent a preference as a vector: Ri = (s1, s2, . . . , s|S|+1), where the l-th element sl

represents the l-th preferred option under Ri.

Proposition B.3. Suppose that a mechanism φ satisfies top-dropping monotonicity.

Then, if R′ is an upper-manipulation of R at φ(R,C), we have φ(R′, C) = φ(R,C).

Proof. Take any student i. It is enough to prove for the case R′
j = Rj for all j ̸= i. Suppose

R′
i = (s1, s2, . . . , s|S|+1). Let sk ≡ φ(R′, C)(i). The definition of upper-manipulation

implies that s1, . . . , sk−1 are ranked above sk under Ri as well. Moreover, relative rankings

among those s with skRis are the same between the two preferences Ri and R′
i.

Consider the following algorithm, which outputs a manipulation of an input Ri: Let

sl be the most preferred choice. If l ≤ k − 2, other ordering being equal, place sl to the

point right before sk in the preference. If l ≥ k− 1, place sl to the point right before sl+1.

Repeat this until sk−1 is placed right before sk, which ends within k − 1 steps.

Now, we get a preference R1
i = (. . . , sk−1, sk, . . . ). Since R1

i is derived from Ri by an

iteration of top-droppings at φ(R,C)(i), top-dropping monotonicity implies φ(R,C) =

φ(R1
i , R−i, C). Next, starting from R1

i , run the above algorithm where k is replaced

with k − 1. Then, we get R2
i = (. . . , sk−2, sk−1, sk, . . . ). By the same rationale, we have

φ(R1
i , R−i, C) = φ(R2

i , R−i, C), hence φ(R,C) = φ(R2
i , R−i, C).
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Repeating this procedure, we get Rk−1, where the first k coordinates of Rk−1
i and R′

i

coincide. Recall that ranking among those s with skRis are the same between the two

preferences Ri and R′
i. Therefore, together with the definition of the algorithm, we have

Rk−1
i = R′

i. Hence, φ(R,C) = φ(Rk
i , R−i, C) = φ(R′, C).

We say that a mechanism φ satisfies upper-manipulation monotonicity if for any R′,

R, and C, we have φ(R,C) = φ(R′, C) whenever R′ is an upper-manipulation of R at

φ(R,C). Proposition B.3 shows that Theorem 1 remains true if we replace top-dropping

monotonicity with upper-manipulation monotonicity.

Corollary B.1. A mechanism φ satisfies upper-manipulation monotonicity, and anti-

bottom-dropping monotonicity, and respects top-top pairs, if and only if φ = φEDA.

Appendix B.2 Independence of Axioms

In this section, we establish the logical independence of the three axioms presented in

Theorem 1. Specifically, we demonstrate that for each axiom, there exists a mechanism

that does not satisfy that particular axiom while still satisfying the other two. The

examples below illustrate this point.

Example B.2. In this example, we see that anti-bottom-dropping monotonicity and

respecting top-top pairs do not imply top-dropping monotonicity in general.

Let us consider the DA mechanism φDA. As φDA is a stable mechanism, it respects

top-top pairs. Moreover, φDA satisfies anti-bottom-dropping monotonicity, which one can

see by the definition of the DA algorithm.

Meanwhile, φDA fails to satisfy top-dropping monotonicity. To illustrate, suppose

that there are three students I = {i, j, k} and two schools S = {s1, s2} with capacities

qs1 = qs2 = 1. Assume acceptant responsive choice rules Cs1 and Cs2 for the following

orders. Also, consider the following list of student preferences.

≻s1 ≻s2

k i

j j

i k

Ri Rj R′
j Rk

s1 s1 ∅ s2

s2 ∅ s1 s1

∅ s2 s2 ∅

Now, if we run the DA at R = (Ri, Rj, Rk), it produces the matching φDA(R,C) marked

with boxes in the above preference list. Note that R′
j is a top-dropping of Rj, and that j

does not match with the student’s most preferred school s1 under φDA(R,C). However,

for R′ = (Ri, R
′
j, Rk), the matching φDA(R′, C) underlined above does not match with

φDA(R,C), meaning φDA does not satisfy top-dropping monotonicity.
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Example B.3. The following example shows that top-dropping monotonicity and re-

specting top-top pairs do not imply anti-bottom-dropping monotonicity in general.

Consider the school-proposing DA mechanism, whose outputs are given by the follow-

ing algorithm for each input R and C:

• Step 1. Every school s ∈ S applies to the students Cs(I). Students tentatively

accept the most preferred school among acceptable applicants and reject the rest.

• Step k(≥ 2). Every school s ∈ S applies to the students Cs(N), where N is the set

of students who have not rejected s in the earlier steps. Students tentatively accept

the most preferred school among acceptable applicants as well as the previously

tentatively accepted school and reject the rest.

The algorithm ends at the step when no school is rejected by a student. Each school

tentatively accepted by a student in the last step matches with the student. All remaining

students match with the outside option.

Let φSDA be the school-proposing DA mechanism. It respects top-top pairs because

it is a stable mechanism (See, e.g., Roth and Sotomayor (1992)).

Now, we show that φSDA satisfies top-dropping monotonicity. LetR′
i be a top-dropping

of Ri, and suppose that i does not match with their most preferred choice s at R and

C. Hence, s ̸= ∅ because φSDA is individually rational. Moreover, the school s has

never applied to i during the algorithm. Therefore, under the inputs R′ = (R′
i, RI\{i})

and C, the algorithm runs in the same manner as under R and C. Thus, we have

φSDA(R′, C) = φSDA(R,C). Hence, φSDA satisfies top-dropping monotonicity.

Finally, the following example shows that φ does not satisfy anti-bottom-dropping

monotonicity. Suppose I = {i, j} and S = {s1, s2}, each with capacity 1. Assume

acceptant responsive choice rules Cs1 and Cs2 for orders ≻s1 and ≻s2 such that j ≻s1 i

and i ≻s2 j. Also, consider the following lists of student preferences:

Ri R′
i Rj

s1 s1 s2

∅ s2 s1

s2 ∅ ∅

If we run the school-proposing DA under the preference profile R = (Ri, Rj), we ob-

tain the matching φSDA(R,C) marked with boxes in the above preference list. Now,

φSDA(R,C)(i) ̸= ∅, and R′
i is an anti-bottom-dropping of Ri. Yet, for an anti-bottom-

dropping R′ = (R′
i, Rj) of the profile R at φSDA(R,C), we get φSDA(R′, C), underlined

in the above list. Hence, this example shows that φSDA does not satisfy anti-bottom-

dropping monotonicity.
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Example B.4. Consider a null mechanism φ∅ that always assigns the matching µ such

that µ(i) = ∅ for each student i ∈ I. This mechanism satisfies top-dropping/anti-bottom-

dropping monotonicity. Meanwhile, φ∅ does not respect top-top pairs: In a setting I = {i}
and S = {s} with qs = 1, for example, if s is acceptable under R, then respecting top-top

pairs requires φ∅(R,C)(i) = s for any C.

Appendix B.3 The EADA with Partial Consent

In the paper, we focus on the EADA mechanism where all students consent to their priori-

ties being violated. However, Kesten (2010) define a general mechanism that incorporates

a consenting constraint. In this context, we present a result that generalizes Theorem 1

to accommodate scenarios involving partial consent.

First, we introduce the EADA mechanism under partial consent. Fix a subset J ⊂ I

of students, which we refer to as a consenting constraint. An interpretation is that a

student i consents to his/her priority being violated if and only if i ∈ J . Then, Ehlers

and Morrill’s (2020) simplified EADA mechanism with consenting constraint, denoted by

φEDA(J), outputs the matching obtained by the following algorithm for each input R and

C:3

• Step 1. Run the DA at (R,C). For each underdemanded s ∈ S ∪ {∅} and each

i ∈ J assigned to s, permanently assign i to s and remove both i and s.

• Step k(≥ 2). Run the DA at (R,C) on the remaining population. For each under-

demanded s ∈ S ∪ {∅} and each i ∈ J assigned to s, permanently assign i to s and

remove both i and s.

The algorithm terminates when all students imatched with an underdemanded alternative

do not consent to their priority violations, that is, i /∈ J . Intuitively, in each step, students

who do not consent can remain in the market, ensuring that their priorities are not violated

in subsequent steps. Note that φEDA = φEDA(I). It is straightforward to see that the

mechanism φEDA(J) weakly Pareto dominates the DA.

It turns out that the EADA with a consenting constraint J ̸= I does not satisfy top-

dropping monotonicity.4 Consequently, we propose the following weaker axiom, defined

in the spirit of Kojima and Manea’s (2010) weak Maskin monotonicity.

3To the best of our knowledge, no study defines the EADA with partial consent under general choice
rules beyond responsive ones. Here, we extend Ehlers and Morrill’s (2020) algorithm incorporating
consenting constraints in a straightforward manner.

4Note that Proposition 4 shows that the EADA under full consent is the only mechanism that weakly
Pareto dominates the DA and satisfies top-dropping monotonicity.
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Definition B.2. We say that a mechanism φ satisfies weak top-dropping monotonicity

if for any top-dropping R′ of R at φ(R,C), we have φ(R′, C)R′φ(R,C).

The following result can be viewed as an analogous counterpart to Theorem 1 that

characterizes the EADA under full consent with top-dropping monotonicity, anti-bottom-

dropping monotonicity, and respecting top-top pairs.

Proposition B.4. The mechanism φEDA(J) satisfies weak top-dropping monotonicity,

anti-bottom-dropping monotonicity, and respects top-top pairs.

Proof. We show that φEDA(J) is weakly top-dropping monotonic. The proof for the other

two properties is a trivial modification of that for the EADA with full consent.5 For

simplifying notation, we fix C and abbreviate it throughout.

Let R̄ be a top-dropping (t.d.) of R at φEDA(J)(R). As in the proof of Lemma 5,

let two sequences R1, . . . , RK and R̄1, . . . , R̄K̄ be induced by the EADA algorithm with

consenting constraint J under R and R̄, respectively. If K > K̄, define R̄k ≡ R̄K̄ for

each k with K̄ < k ≤ K. Then, for each k, let Jk and J̄k be those in J who match with

underdemanded choices at (Rk, φEDA(J)(Rk)) and (R̄k, φEDA(J)(R̄k)), respectively.

First, we prove by mathematical induction that R̄k t.d. Rk at φDA(Rk). Define R0 ≡ R

and R̄0 ≡ R̄. Then, the argument is true at k = 0. Suppose that it is true that k−1 with

k ≥ 1. Then, weak Maskin monotonicity (Kojima and Manea (2010)) implies that

φDA(R̄k−1)Rk−1φDA(Rk−1).

Thus, from Lemma 4, Jk−1 ⊂ J̄k−1.

Now, we prove the argument at k. Define R̂k ≡ (R̄k
Jk−1 , R̄

k−1
I\Jk−1). To begin with, we

show that R̂k t.d. Rk at φDA(Rk). Take any i ∈ I. If i ∈ Jk−1, Lemma 1 implies

φDA(R̄k−1)(i) = φDA(Rk−1)(i) = φDA(Rk)(i) ≡ s.

Therefore, both R̄k
i and Rk

i are top-droppings of R̄k−1
i and Rk−1

i that rank s at the top.

Hence, R̂k
i = R̄k

i t.d. Rk
i at φDA(Rk). If i /∈ Jk−1, Rk

i = Ri and R̂k
i = R̄i. Hence, R̂

k
i t.d.

Rk
i at φEDA(J)(R) and thus at φDA(Rk). Summarizing, R̂k t.d. Rk at φDA(Rk).

Next, we show that R̄k t.d. R̂k at φDA(R̂k). To prove this, we first show that

sR̄k
i φ

DA(R̂k)(i) implies sR̄k−1
i φDA(R̂k)(i). Note that it is straightforward when i /∈ J̄k−1.

If i ∈ J̄k−1, then note that R̂k t.d. R̄k−1 at φDA(R̄k−1) by the construction of R̂k. Hence,

weak Maskin monotonicity and Lemma 1 implies φDA(R̂k)(i) = φDA(R̄k−1)(i). Thus, we

must have s = φDA(R̂k)(i) by the construction of R̄k, and thus, sR̄k−1
i φDA(R̂k)(i). Now,

5In Lemma 5 and Lemma 6, we rely much on the efficiency of φEDA in proving top-dropping mono-
tonicity. Consequently, we need to modify the proof in a slightly non-trivial manner.
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weak Maskin monotonicity implies φDA(R̄k)R̄kφDA(R̂k). To prove that R̄k t.d. R̂k at

φDA(R̂k), take any i ∈ I. If i ∈ Jk−1, then R̄k
i = R̂k

i . If i /∈ J̄k−1, then R̄k
i = R̄k−1

i = R̂k
i .

Finally, let i /∈ Jk−1 and i ∈ J̄k−1. Then, we have R̂k
i = R̄k−1

i . As R̄k
i t.d. R̂k

i = R̄k−1
i at

φDA(R̄k)(i) = φDA(R̄k−1)(i) by definition, so is at φDA(R̂k)(i) by φDA(R̄k)R̄kφDA(R̂k).

In summary, R̄k t.d. R̂k at φDA(R̂k).

Therefore, we have R̂k t.d. Rk at φDA(Rk) and R̄k t.d. R̂k at φDA(R̂k). Thus, the

weak Maskin monotonicity of the DA implies that

φDA(R̄k)R̄kφDA(R̂k)R̂kφDA(Rk).

Hence, φDA(R̄k)R̂kφDA(Rk). As R̂k t.d. Rk at φDA(Rk), we get φDA(R̄k)RkφDA(Rk).

Now, we show that R̄k t.d. Rk at φDA(Rk). Take any i ∈ I. If i ∈ Jk−1, then, as

seen earlier, R̄k
i = R̂k

i t.d. Rk
i at φDA(Rk)(i). If we instead have i /∈ Jk−1, then, Rk

i = Ri.

Then, there are two sub-cases. If i /∈ J̄k−1, then R̄k
i = R̄i. Since R̄i t.d. Ri at φ

EDA(J)(R),

so is at φDA(Rk). If i ∈ J̄k−1, R̄k
i is obtained from R̄k−1

i by dropping schools preferred to

φDA(R̄k−1)(i) under R̄k−1
i . Therefore, using Lemma 1, R̄k

i t.d. R̄k−1
i at φDA(R̄k)(i). Since

we have R̄k−1
i t.d. Rk−1

i at φDA(Rk−1) and φDA(R̄k)RkφDA(Rk), we can conclude that R̄k
i

t.d. Rk
i = Rk−1

i = Ri at φ
DA(Rk).

Finally, we prove that φEDA(J) satisfies weak top-dropping monotonicity. The above

argument at k = K shows that R̄K t.d. RK at φDA(RK). Therefore, from the weak

Maskin monotonicity of the DA,

φEDA(J)(R̄)R̄φDA(R̄K)R̄KφDA(RK) = φEDA(J)(R),

where the first and the last relations follow by the construction of the sequences. Note that

R̄K is obtained from R̄ by dropping some schools that are preferred to φDA(R̄K). There-

fore, from the second relation, R̄K t.d. R̄ at φDA(R̄K), which implies φDA(R̄K)R̄φDA(RK).

Thus, we eventually have the desired relation.

The converse is not true, and therefore, this proposition is not a characterization for

the EADA with partial consent. To see this, consider a mechanism whose output is

the matching obtained by the EADA algorithm (with full consent J = I) that stops in

two steps. An analogous proof shows that all three conditions are satisfied under this

alternative mechanism.
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Appendix C Discussion on Section 6

Appendix C.1 Discussion on Proposition 8

In this section, we demonstrate the independence of the three axioms presented in Propo-

sition 8. Theorem 1 implies that the EADA satisfies anti-bottom-dropping monotonicity

and respects top-top pairs, but it is not strategy-proof. The null mechanism φ∅, which

always outputs a matching wherein all students are unmatched, is a simple example of

mechanisms that satisfy strategy-proofness and anti-bottom-dropping monotonicity while

not respecting top-top pairs. The next example shows that strategy-proofness and respect-

ing top-top pairs do not imply anti-bottom-dropping monotonicity in general.

Example C.5. Consider a mechanism φ that outputs the following matching for each

R and each C: Take any i ∈ I. If we have i /∈ Cs(I) and sRj∅ for all s ∈ S and all

j ̸= i, then set φ(R,C)(i) ≡ ∅. If not, set φ(R,C)(i) ≡ φDA(R,C)(i). Note that φ(R,C)

is a well-defined matching because the number of students assigned to each school never

exceeds the number of students assigned under the DA algorithm.

First, φ respects top-top pairs because φ(R,C)(i) = φDA(R,C)(i) = s if (i, s) is a

top-top pair. Second, we show that φ is strategy-proof. If i’s assignment coincides with

the assignment under the DA, then i does not gain by any misreport because the DA is

strategy-proof and individually rational. Otherwise, i matches with the outside option no

matter what preference i submits. Therefore, φ is strategy-proof.

Third, φ violates anti-bottom-dropping monotonicity. Suppose I = {i, j} and S =

{s1, s2}, each with capacity 1. Let the schools have acceptant responsive choice rules Cs1

and Cs2 for a common order i ≻ j. Then, consider the following preferences:

Ri R′
i Rj

s1 s1 s2

∅ s2 ∅
s2 ∅ s1

Under R = (Ri, Rj), the output of φ equals that of the DA, which assigns s1 to i and s2 to

j. Thus, the profile R′ = (R′
i, Rj) is an anti-bottom-dropping of R at φ(R,C). However,

the mechanism φ matches j with the outside option ∅ ̸= s2 at R′ by definition, which

violates the condition of anti-bottom-dropping monotonicity.

12



Appendix C.2 Discussion on Proposition 9

In this section, we provide examples of mechanisms to which Proposition 9 applies. One

notable example is a family of mechanisms called application-rejection mechanisms, which

is introduced in Chen and Kesten (2017). Throughout this discussion, we assume a fixed

profile of acceptant responsive choice rules corresponding to an order profile ≻. For each

parameter e ∈ N, the application-rejection mechanism φe : R → M outputs a matching

according to the following algorithm for each profile R:

• Round t = 0, 1, . . . :

– Step 1. Each unassigned student from the previous round applies to their

(te + 1)th choice at R. Each school tentatively accepts students from the ap-

plicants following their order ≻ up to their remaining capacity. The remaining

applicants are rejected. Proceed to the Final step if either e = 1 or no student

is rejected. Otherwise, go to the next step 2.

– Step k ≥ 2. The rejected students in the previous step apply to their next

preferred choice at R. Each school tentatively accepts students among the

pool of the new applicants and the tentatively accepted students following their

order ≻ up to their remaining capacity. The remaining students are rejected.

Proceed to the Final step if for each student i, either i is assigned to a choice

or i has been rejected by all his/her first (te+ e) choices. Otherwise, go to the

next step k + 1.

– Final Step. The round t ends, and tentatively accepted students are perma-

nently matched with the alternatives. Proceed to the next round, t+ 1.

• The algorithm terminates when all students are assigned to some alternative.

The algorithm described above resembles the DA algorithm, but it differs in that

the assignment is finalized at the end of each round. The list length considered in each

round is parameterized by e ∈ N. This family of mechanisms encompasses various well-

known mechanisms, including the Boston mechanism φ1, the Shanghai mechanism φ2,

the Chinese parallel mechanism φe for 2 ≤ e < ∞, and the DA mechanism φ∞ = φDA.

For each e ∈ N, the application-rejection algorithm exhibits two key properties: First,

if there is a top-top pair, they will be permanently matched during the first step of the

first round. Second, outputs are always individually rational, ensuring that all relative

rankings below the students’ assignments are never considered.

These two properties together imply that application-rejection mechanisms respect

top-top pairs and satisfy anti-bottom-dropping monotonicity under all acceptant respon-

sive choice rules. Consequently, Proposition 9 indicates that these mechanisms yield stable
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matchings if and only if they are strategy-proof. Kumano (2013) provides a theorem that

includes this conclusion, focusing on the Boston mechanism φ1.

Additional examples can be derived from a generalization of application-rejection

mechanisms that account for real-world constraints. As noted by Abdulkadiroğlu et al.

(2005), students often face restrictions on the number of schools to which they can apply.

Under these constraints, even the DA can result in allocations that are neither stable nor

strategy-proof. The theoretical analysis of these issues has been explored by Haeringer

and Klijn (2009), Pathak and Sönmez (2013), and Decerf and Van der Linden (2021), for

instance.

Considering this scenario, for a positive integer k > 0, we define φe
k to be the mech-

anism such that φe
k(R) ≡ φe(R(k)), where R(k) truncates from R all schools that are

ranked strictly lower than the kth choice. Essentially, φe
k is the application-rejection

mechanism φe, where students can apply to at most k schools. The same two observa-

tions regarding respect for top-top pairs and anti-bottom-dropping monotonicity apply to

φe
k. Therefore, the equivalence between stability and strategy-proofness holds for these

limited list mechanisms as well. Similarly, one can see that under the EADA with a

limited list length, denoted φEDA
k , stability and strategy-proofness remain equivalent.
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