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Online Appendix E Recursive Stationary Equilibrium

Recursive stationary equilibrium in the model economy consists of house-

hold value functions Vz
i (a) for each i ∈ Γ and z ∈ {1, . . . ,ζ}; household policy

functions cz
i (a) , xz

i (a); stationary probability density functions hz
i (a); firm

value functions J j (a) for each j ∈ {V , H ,E , N }; policy functions for capital

k⋆E ,k⋆N ; price of equity P ; net return on assets r ; wage rate w ; aggregate vacan-

cies v ; aggregate effort X ; labour market tightness θ; tax rate τ; and dividends

d , which jointly satisfy the following.

1. Consumer optimization - Given the per effort unit job finding rate λ f ;

net return r ; wage rate w ; benefits b; tax rate τ, the policy functions

cz
i (a) and xz

i (a) solve the optimization problems given by (1), (2), (3),

(4), and (5) with the value functions Vz
i (a) and induce the transition

matrixΛz (a) which takes xz
i (a) as the effort level exerted by each house-

hold of labour market status i , discount rate type z, and asset level a.

2. Firm optimization - Given the rental rate rg = r +δ and the bargained

wage w , the firms optimally choose k⋆E ,k⋆N by solving the optimization

problems in (8), (9). Given labour market tightness θ, and the implied

population composition given by hz
i (a), the rental rate rg , and the pol-

icy functions xz
i (a), the function JV satisfies (12).

3. Free entry - The number of vacancies is consistent with free entry of

firms such that JV = 0 and Equation (14) holds.

4. Asset market clears in nominal terms and Equation (7) holds such that

A = K +P , where A is the total steady-state desire of households to hold

assets given the population composition and policy rules, K is the total
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capital demanded by the firms and P is the price of the equity, existing

in unit net supply, such that the no-arbitrage condition in (6) must hold.

5. Matching - The transition probabilities are consistent with the match-

ing function.

6. Wage setting - The wage w is the median solution for the Nash bargain-

ing problems between the worker and the firm as expressed in (16).

7. Government budget is balanced as in Equation (17).

8. Consistency - The distributions hz
i (a) are the stationary distributions

implied by the transition matrix Λz (a) and the policy functions cz
i (a)

and xz
i (a).

Online Appendix F Model Solution in General Equi-

librium

This appendix details the algorithm used to solve the model presented in Sec-

tion 2. The algorithm owes much to the works of Krusell et al. (2010) and

Achdou et al. (2021).

F.1 Solution Algorithm for the Steady State

The solution boils down to solving for the zero of a system of four equations in

four unknowns, namely, U (r,θ,τ, w) = 0. The explicit system is given in stage

9 of the algorithm and follows the definition of recursive stationary equilib-

rium. As such, the solution algorithm proceeds as follows:

1. Initialization Provide a grid for assets, parameter values for the model,

and initial guesses for r,θ,τ, and w .

2. Compute benefits Given the guess for the wage level and the calibrated

replacement rate, determine b.

3. Solve household block Solve the household optimisation problem given

the guesses and parameter values using the algorithm for solving the

HJB equations and the Kolmogorov forward equations developed by
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Achdou et al. (2021).71 This will allow us to obtain the distributions

hz
i (a), the policy functions cz

i (a) and xz
i (a), total assets held by house-

holds A the equilibrium masses mi and the aggregate effort level X as

well as XN and XU .

4. Solve firm block Use the first-order condition for capital and the rela-

tionship rg = r +δ to solve for the capital choice of the firm and flow

profit at each state by using k⋆E =
(
α
rg

) 1
1−α

and k⋆N =
(
αϵ1−α

rg

) 1
1−α

. Given

these values, the firm’s value functions can be obtained from Equations

(10), (11) and (13).

5. Compute dividends Compute the dividends using the flow profits, the

vacancy stock v = Xθ, and Equation (15). Given the net return, com-

pute the price of equities P .

6. Compute capital demand Combine the masses mE , mN 1 and mN 2 from

3 with the capital solutions from 4 to obtain the aggregate capital de-

mand by the firms K .

7. Conduct wage bargaining Use the procedure detailed in Appendix F.3

to compute a vector of ∆ws, which are the distances at each asset grid

point of the guessed wage w from being the solution to the approxi-

mated Nash problem given in Appendix F.3.

8. Find median worker Use the resulting vector of ∆w and the distribu-

tions hz
E (a) to find the median value of ∆w or MED (∆w).

9. Market clearing Compute U (r,θ,τ, w) where U is given by the following

system:

• Asset market clearing condition:

U1 = A− (K +P ). (F.1)
71The only meaningful adjustment I need to apply this algorithm is to use the first-order

condition for the effort level at each iteration given the current guess for the value func-
tions. This means that at each iteration, the guess for the policy functions for search ef-
fort xz

N 1 (a) ,xz
U 1 (a) , and xz

U 2 (a) solves Ψ′ (xz
N 1 (a)

) = λ f
(

Vz
N 2 (a) − Vz

N 1 (a)
)
, Ψ′ (xz

U 1 (a)
) =

λ f
(

Vz
E (a) − Vz

U 1 (a)
)
, and Ψ′ (xz

U 2 (a)
) = λ f

(
Vz

E (a) − Vz
U 2 (a)

)
using the previous iteration’s

value functions. It is also useful to solve the consumption-saving problem first without the
effort choice to provide a good initial guess for the value functions of the full model.
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• Free entry:

U2 =−κ+q

[
JE

XU

X
+ JH

XN

X

]
. (F.2)

• Government deficit:

U3 = τ (w (mE +mN 1 +mN 2)+bmU 1)−bmU 1. (F.3)

• Wage consistency:

U4 = MED (∆w) (F.4)

10. If the system U is sufficiently close to zero, stop. Else, update the initial

guess accordingly, and repeat from 2 until convergence is achieved.

Solver A solver based on Newton-Raphson or Broyden’s method can solve

the model. In practice, a solver that combines both performs well and con-

verges faster. The Jacobian matrix is computed using finite differences. It

is helpful to relax the updated solution in the Newton direction, such that

at the new guess, the value of r lies between zero and the maximum value

of maxz
{
ρz +λD

}
, and that the wage levels and labour market tightness are

non-negative. I use backtracking to choose the largest relaxation parameter

from a pre-specified set of values (all less than one), so the new guess is well

within these bounds. If the bounds are already violated, which can occur, I

use a pre-set relaxation parameter, which, in many cases, leads the algorithm

to return to its normal bounds. If the solver is unsuccessful, a new guess is

randomised, and the procedure begins anew.

Stopping criterion and normalizations A convergence criterion of max(|U |) <
10−4 yields fast results and performs well. All equations described in stage 9

of the algorithm are solved after normalisation to obtain a meaningful stop-

ping criterion. The first two equations are solved in the form of relative errors,

e.g., 1− A
K+P = 0 instead of (F.1). Thus, the error is interpreted as percentage

deviations from equilibrium. The government budget constraint is set such

that the deficit divided by output is close enough to zero. The equation con-

cerning the median wage update is solved as MED(∆w)
w = 0.
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Grid for assets The asset grid is a n = 200 grid points for assets for each

labour market status and discount rate type. The grid is not uniform such

that most grid points are concentrated near the borrowing constraint. The

maximum value for assets is set at a = 3,000, corresponding to asset holdings

equivalent to around ninety years of unconsumed wages. I set the asset vector

ā such that it has monotonically increasing increments as follows

ā = amax
(0,1, . . . ,n −1)4

(n −1)4
, (F.5)

while having a grid point situated exactly on the borrowing constraint with

a positive mass of households. This point is treated throughout as a Dirac

mass.

F.2 Solution Algorithm with Transition Dynamics

The policy shock I assume that the reform from the baseline policy set T to

a policy set T ′ occurs at time zero and is unanticipated (’MIT shock’). Unlike

in an Aiyagari model, where asset holdings represent physical capital alone,

in my model, asset holdings correspond to nominal asset positions that are

the joint value of capital and equity. Recall that equity in the model is de-

fined as claims on aggregate firm profits. Thus, given a policy reform that

may affect future firm profitability and perfect foresight, the equity value will

respond on impact and immediately affect the aggregate asset holdings in the

economy. This immediate asset valuation effect changes aggregate asset po-

sitions by a factor of αv = Kt=0+Pt=0(T ′)
Kt=0+Pt=0(T ) . With heterogeneous asset positions

in the model, it is important to take a stand on who holds which asset, capi-

tal or equity, at the instant of the reform. Given the no-arbitrage condition, I

assume that all households have a uniform portfolio composition, i.e., every

unit of a held is equally affected by the asset valuation effect of the policy. To

conclude, at the time of impact, the entire asset distribution will scale by a

factor of αv , which will be endogenously determined.72

72The existence of equity as an asset with a positive duration creates these capital gains
or losses at the time of the reform. A similar issue arises in Kaplan et al. (2018), where the
solution also involves changing the asset positions of agents upon impact; see the compu-
tational appendix for details of this. Unlike in Kaplan et al. (2018), in the present model, the
reform might increase or decrease asset positions on impact; thus, I use the scaling factor αv

to handle this issue. To verify that the numerical error resulting from this change is small, I
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The solution now requires solving for the zero of a system of four equa-

tions in four unknowns per period, plus one for αv . Thus, one needs to spec-

ify a discretized time vector t̄ with nt periods and solve for 4×nt +1 equations

in r (t ),θ(t ),τ(t ), w(t ) and αv . The explicit system is given in stage 10 of the

algorithm. The algorithm proceeds as follows.

1. Initialization Solve for the steady state under initial policy vector T and

the steady state under the new policy vector T ′. Provide a grid for assets,

time, parameter values for the model, and initial guesses for the values

of r (t ),θ(t ),τ(t ), w(t ) and αv .

2. Compute benefits Given the initial guess for the wage level and the cal-

ibrated replacement rate, determine b(t ).

3. Adjust terminal condition Given the guessed for valuation factor αv ,

solve again for the steady-state value functions using the scaled grid to

serve as a consistent terminal condition at the next step.

4. Solve household block Solve the household optimisation problem given

the guesses and the calibrated parameters using the algorithm for solv-

ing the HJB equations and the Kolmogorov forward equations devel-

oped by Achdou et al. (2021), with the modification introduced in Ap-

pendix F.1. This time, the HJB equation is solved backwards in time us-

ing the steady state under the policies T ′ as the terminal condition for

the value functions and yields the policy functions cz
i (a, t ) and xz

i (a, t ).

Next, using the initial steady-state population composition and the newly

obtained time-dependent policies, solve the Kolmogorov equation for-

ward and use them to compute the distributions hz
i (a, t ), the masses,

aggregate asset holdings A(t ) and the aggregate effort level X (t ) as well

as XN (t ) and XU (t ).

5. Solve firm block Use the first-order condition for capital and the re-

lationship rg (t ) = r (t ) + δ to solve for the capital choice of the firm

and flow profit at each state by using k⋆E (t ) =
(

α
rg (t )

) 1
1−α

and k⋆N (t ) =

compare the value of steady-state welfare at the terminal condition using both the original
and the scaled grid and find similar values. In all the optimal policy scenarios summarized
in Table 5, the difference from scaling is at least an order of magnitude lower than the total
welfare gain or loss.
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(
αϵ1−α
rg (t )

) 1
1−α

. Given these values, the firm’s value functions can be ob-

tained from Equations (B.15), (B.16), and (B.17) using a finite difference

approximation for the temporal derivative in the modified value func-

tions, and the new steady state values of the firms’ value functions as

the terminal condition. Since the solution is obtained using a terminal

condition, the time-dependent values should be solved backwards in

time. An example of the exact iterative procedure is shown in Appendix

F.3 when discussing the treatment of the wage derivatives out of steady

state.

6. Compute dividends Compute the dividends using the flow profits, the

vacancy stock v(t ) = X (t )θ(t ), and Equation (B.20). Given the net re-

turn, solve for the price of equities P (t ), again using the new steady

state value of P as a terminal condition and iterating backwards in time.

7. Compute aggregate capital demand Combine the masses from 4 with

the capital solutions from 5 to obtain the aggregate capital demand

K (t ).

8. Conduct wage bargaining Use the procedure detailed in Appendix F.3

to compute a vector of ∆w(t )s, which are the distances at each asset

grid point of the guessed wage w from being the solution to the ap-

proximated Nash problem given in Appendix F.3.

9. Find median worker Use the resulting vector of ∆w(t ) and the distri-

butions hz
E (a, t ) to find the median value of ∆w(t ) or MED (∆w(t )).

10. Market clearing Compute U (r (t ),θ(t ),τ(t ), w(t )) where U is a system of

4×nt equations that is given by the following (subscripts denote equa-

tion numbers, e.g., U1−nt denotes equations one through nt ):

• Asset market clearing condition:

U1−nt = A(t )− (K (t )+P (t )). (F.6)

• Distance from free entry:

Unt+1−2nt =−κ+q(t )

[
JE (t )

XU (t )

X (t )
+ JH (t )

XN (t )

X (t )

]
.
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• Government deficit:

U2nt+1−3nt = τ(t ) (w(t ) (mE (t )+mN 1(t )+mN 2(t ))+b(t )mU 1(t ))−b(t )mU 1(t ).

(F.7)

• Wage consistency:

U3nt+1−4nt = MED (∆w(t )) . (F.8)

• Valuation factor consistency:

U4nt+1 =αv − Kt=0 +Pt=0(T ′)
Kt=0 +Pt=0(T )

(F.9)

11. If the system U is sufficiently close to zero, stop. Else, update the initial

guess accordingly, and repeat from 1 until convergence is achieved.

Solver As in the previous case, a solver based on Newton-Raphson or Broy-

den’s method can solve the model. Again, I use a solver that combines both

methods. The Jacobian matrix is computed using finite differences. As it is

for the steady state algorithm, it is helpful to relax the updated solution in the

Newton direction using backtracking so that the new guess is still positive and

economically possible. The new steady-state values perform well as guesses

for the values of r (t ), θ(t ), τ(t ), and w(t ), and given that the immediate val-

uation effects are relatively small αv = 1 serves as a good initial guess for the

valuation factor.

Stopping criterion I apply the same normalisations as in the solution algo-

rithm for the steady-state values. A convergence criterion of max(|U |) < 10−4

performs well. However, this criterion requires solving for the initial steady

state and the new steady state using a higher accuracy, for which I set the

stopping criterion of the steady state solution to 10−5.73

Grid for time Given the high computational cost of solving the transition

dynamics and the accuracy needed for welfare maximisation, I use non-uniform

73In cases where solving to this accuracy proves difficult, I allow the solver to use a less
restrictive tolerance of 0.5×10−4 for the terminal condition in step 3 of the algorithm.
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grids for assets and time. The asset grid is the same one as in the steady-

state solution algorithm. I use a non-equispaced grid for the time grid with

more points at the beginning and a few at the end to save the computational

cost. Recall that a time period in the model is set to one month. I compute

the transition dynamics for two hundred years in the future, so tmin = 0 and

tmax = 12× 200 are the time vector’s minimum and maximum values. I use

twenty time periods n = 20 and set the time vector t̄ such that increments are

monotonically increasing as follows

t̄ = tmax
(1,2, . . . ,nt )p

np
t

, (F.10)

where p sets the grid curvature. Since transition dynamics involve iterating

forward on the distribution, unsuitable grids might yield unstable results. I

compute a total of eight optimal policy scenarios, each involving the compu-

tation of several thousand transition paths. For all scenarios that use termi-

nation notice and UIB, I set p = 2 (scenarios 1, 3, 5, and 7 in Table 5). The

other four scenarios studied involve switching off termination notice and al-

lowing all workers to be entitled to severance pay; this immediate change in

policies and masses requires setting a more curved grid. Thus, I set p = 5 in

the other four scenarios (scenarios 2, 4, 6, and 8 in Table 5).

F.3 Solving the Wage Bargaining Problem

The bargaining problems require maximising the Nash product, which is an

objective function of the form

(
Ṽz

E (a, w) − Ṽz
N 1 (a, w)

)β(
J̃E (w) − J̃N (w)

)1−β
, (F.11)

at every value of a. For ease of notation, let∆V z(a, w) = Ṽz
E (a, w)− Ṽz

N 1 (a, w)

and ∆J (w) = J̃E (w) − J̃N (w). Since the value functions are not solved as ex-

plicit functions of two state variables a, w , but for values of a and a given

level of w , I use an approximation method to solve the problem. The Nash

product for a given level of assets a can be approximated using the guessed
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wage level at each iteration of the solution algorithm as

(
∆V z(a, w)

)β
(∆J (w))1−β ≈ (F.12)(

∆V z(w, a)+ ∂∆V z(a, w)

∂w
∆w

)β(
∆J (w)+ ∂∆J (w)

∂w
∆w

)1−β
.

I exploit this convenient approximation to analyse the approximated bargain-

ing problem:

max
∆w

(
∆V z(w, a)+ ∂∆V z(a, w)

∂w
∆w

)β(
∆J (w)+ ∂∆J (w)

∂w
∆w

)1−β
. (F.13)

Observe that the above problem has a straightforward analytical solution since

it is an unconstrained problem in one variable ∆w , which is given by:

∆w =−β
∂∆V z (a,w)

∂w ∆J (w)+ (
1−β)

∂∆J (w)
∂w ∆V z(w, a)

∂∆V z (a,w)
∂w

∂∆J (w)
∂w

. (F.14)

Note that bargaining takes place in partial equilibrium with labour market

conditions, unemployment insurance benefits, tax rates, and prices all fixed.

Thus, ∆V z(a, w) is increasing in w and ∆J (w) is decreasing in w . Therefore,

there will be a single solution to the problem for each level of a, i.e., a single

value of w , which maximises the Nash product in Equation (F.11). Hence, the

wage level consistent with Nash bargaining will be found when ∆w will be

close enough to zero.

All that remains is to compute
∂(∆zV (a,w))

∂w and ∂(∆J (w))
∂w which means com-

puting the derivatives of the value functions with respect to the wage as

∂ (∆V z(a, w))

∂w
= ∂Vz

E (a)

∂w
− ∂Vz

N 1 (a)

∂w
,
∂ (∆J (w))

∂w
= ∂JE

∂w
− ∂JN

∂w
.

These can be computed by applying the envelope theorem to the value func-

tions obtained at stages 3 and 4 of the solution algorithm. For the firm, this

derivation is simple and can be done with pencil and paper from Equations
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(10) and (11)

∂JN

∂w
=− 1

φ+ r +λD
, (F.15)

∂JE

∂w
= −1+λs

∂JN
∂w

λs + r +λD
. (F.16)

For the households, the derivation will be more complex. Start by applying

the envelope theorem to the household’s value functions. The derivatives are

given by

(
ρz +λD +φ)∂Vz

N 2 (a)

∂w
= (1−τ)

∂Vz
N 2 (a)

∂a
+ sz

N 2 (a)
∂2 Vz

N 2 (a)

∂w ∂a
, (F.17)

(
ρz +λD +φ+λ f xz

N (a)
)∂Vz

N 1 (a)

∂w
= (F.18)

(1−τ)
∂Vz

N 1 (a)

∂a
+λ f xz

N (a)
∂Vz

N 2 (a)

∂w
+ ∂2 Vz

N 1 (a)

∂w ∂a
sz

N 1 (a) ,

(
ρz +λD +λs

)∂Vz
E (a)

∂w
= (F.19)

(1−τ)
∂Vz

E (a)

∂a
+λs

∂Vz
N 1 (a)

∂w
+ ∂2 Vz

E (a)

∂w ∂a
sz

E (a) ,

where sz
i = w(1−τ)+ r a − cz

i (a) ,∀i ∈ {E , N 1, N 2} is introduced to streamline

notation. The derivatives
∂Vz

i (a)
∂a are computed from the first-order conditions

of the household’s problem
∂Vz

i (a)
∂a = ∂u

∂c using the policy functions from stage

3 of the solution algorithm. The cross-partial derivatives are slightly more

complicated to compute. However, the discretisation method from Achdou

et al. (2021) used in stage 3 of the solution algorithm provides a straightfor-

ward computation strategy. In discretising the household’s HJB equation,

I use an upwind finite difference approximation of the form
∂Vz

i (a)
∂a sz

i (a) ≈
Di

zVi
z where Dz

i is a square matrix with the same size as the asset grid which

is the finite difference operator multiplied by the suitable approximation of

sz
i (a) given the guess for V z

i , i.e., Di
z approximates the operator ∂

∂a sz
i (a) . At

the end of stage 3, I have the matrices Dz
i readily computed. Observe that
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∂2 Vz
i (a)

∂w ∂a sz
i (a) can be expressed as

∂2 Vz
i (a)

∂w ∂a
sz

i (a) = ∂

∂a

∂

∂w

[
Vz

i (a)
]

sz
i (a) ≈ Di

z ∂

∂w

[
Vi

z]= Di
z ∂Vi

z

∂w
,

which means that each of the derivatives of the household’s value functions

with respect to the wage can be numerically solved by substituting in this ap-

proximation. To illustrate the computation, using
∂Vz

N 2(a)
∂w , the approximation

results in solving the system

∂Vz
N 2 (a)

∂w
= [(

ρz +λD +φ)
I −DN 2

z]−1
(1−τ)

∂Vz
N 2 (a)

∂a
,

where I is the identity matrix. This concludes all the requirements for com-

puting (F.14).

Modifications required outside of steady state The algorithm can be equally

applied to the bargaining problem outside of the steady state, with only one

modification. It is essential to include the temporal derivative in the house-

holds’ and firms’ value functions. Thus, when one applies the envelope the-

orem to obtain their derivatives, a new cross partial is introduced, which re-

quires special attention.

As before, the firm’s side is easier to handle. The firm with a worker under

notice has the value function given by Equation B.16. Deriving it with respect

to w results in

r (t )
∂JN

∂w
=−1− (

φ+λD
)∂JN

∂w
+ ∂

∂w

∂JN

∂t
. (F.20)

This equation is much easier to handle after changing the order of differenti-

ation to yield

r (t )
∂JN

∂w
=−1− (

φ+λD
)∂JN

∂w
+ ∂

∂t

∂JN

∂w
. (F.21)

This equation can be discretised using a simple finite difference scheme of

the form:

r (t −1)
∂JN

t−1

∂w
=−1− (

φ+λD
)∂JN

t−1

∂w
+

∂JN
t

∂w − ∂JN
t−1

∂w

∆t
. (F.22)

The terminal condition for this equation is that at the last period, period s, the
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derivative is ∂JN
s

∂w = ∂JN
∂w = −1

φ+r s+λz
where r s is the new steady-state net return.

By using this terminal condition, the temporal derivatives can be computed

recursively by a formula for the form(
r (t −1)+φ+λD + 1

∆t

)
∂JN

t−1

∂w
=−1+ 1

∆t

∂JN
t

∂w
. (F.23)

Similarly, using the same discretisation and the analogous terminal condi-

tion, the formula for ∂JE
∂w is given by

(
r (t )+λs +λD + 1

∆t

)
∂JE

t−1

∂w
=−1+λs

∂JN
t−1

∂w
+ 1

∆t

∂JE
t

∂w
. (F.24)

I apply the same idea to the household’s value functions and will illustrate

its use on the value function in state N 2. The derivative with respect to the

wage is given by

(
ρz +λD +φ)∂Vz

N 2 (a)

∂w
= (F.25)

(1−τ)
∂Vz

N 2 (a)

∂a
+ sz

N 2 (a)
∂2 Vz

N 2 (a)

∂w ∂a
+ ∂2 Vz

N 2 (a)

∂w ∂t
. (F.26)

Using the same discretisation notation as before with respect to the treatment

of the expression sz
N 2 (a)

∂2 Vz
N 2(a)

∂w ∂a , and the same discretisation for the tempo-

ral derivative as in the firm’s value function above, results in the following

discretisation scheme for the wage derivative

[(
ρz +λD +φ+ 1

∆t

)
I −DN 2

z,t−1
]
∂Vz,t−1

N 2 (a)

∂w
= (F.27)

(1−τ)
∂Vz,t−1

N 2 (a)

∂a
+ 1

∆t

[
∂Vz,t

N 2 (a)

∂w

]
,

whereas in the firm’s case, the new steady state is used as a terminal condition

for the value of
∂Vz

N 2(a)
∂w .

Introducing severance pay In the model that features severance pay as in-

troduced in Appendix C, severance pay involves modifying the derivative of

JN as follows
∂JN

∂w
=− 1

r +λD +φ − φλSP

r +λD +φ . (F.28)
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For the household in states N 1 and N 2 the adjustment is as follows

(
ρz +λD +φ)∂Vz

N 2 (a)

∂w
= (F.29)

(1−τ)
∂Vz

N 2 (a)

∂a
+ sz

N 2 (a)
∂2 Vz

N 2 (a)

∂w ∂a
+ ∂Vz

E (a)

∂a
φλSP (1−τ)

(
ρz +λD +φ+λ f xz

N 1 (a)
)∂Vz

N 1 (a)

∂w
= (1−τ)

∂Vz
N 1 (a)

∂a
+ (F.30)

sz
N 1 (a)

∂2 Vz
N 1 (a)

∂w ∂a
+λ f xz

N 1 (a)
∂Vz

N 2 (a)

∂w
+λSP (1−τ)

[
φ
∂Vz

U 1 (a)

∂a

]
Grids used for the wage solution In Krusell et al. (2010), a multi-grid struc-

ture is utilised to improve efficiency while solving for the wage function. The

asset grid was finer than the grid used for wage bargaining (1,000 points vs

125 points on the same support), and cubic-spline interpolation was used to

connect the two. This has a speed advantage over using the same grid for both

needs and, in practice, can smooth out minor numerical errors that would oc-

cur in a very fine grid, thus resulting in a smooth wage function. In my case,

however, the wage is a scalar, and the main source of inaccuracies lies in com-

puting the median for a coarse distribution, which may result in small jumps

in the solution that would hinder convergence. To mitigate this problem, I

use a non-uniform asset grid of 200 points for the household and a finer grid

on the same support with equidistant 104 points to update the wage. The dis-

tributions hi (a), the value functions, and their derivatives are interpolated

using a cubic spline to the finer grid. This setup is practical since solving for

the wage in the abovementioned method involves no optimisation, just op-

erations on vectors that would yield ∆w by Equation (F.14).

This approximation method described in this appendix can be used when-

ever the derivatives of the value functions can be characterised analytically.

The method saves many computational resources because there is no need to

use optimisation at each grid point. After the derivatives are computed, the

entire bargaining procedure collapses into a few lines of code, requiring only

vector operations.
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Online Appendix G Calibrating the Model

G.1 Calibration Strategy and Targets

Calibration Strategy My calibration strategy uses six free parametersψ,ψ0,

η, κ, λs and ∆ρ to minimise the model’s distance from three scalar moments

and two distributions: the unemployment rate; vacancy rate; average du-

ration elasticity to benefits; the unemployment duration distribution; and

wealth distribution measured as shares of total wealth held by each decile.

Since there is a difference between targeting a scalar and minimising distance

from a distribution, I use a different distance metric for each in constructing

the objective function. For scalar targets, I use squared relative errors as a dis-

tance measure. For targeted distributions, I use the Kolmogorov-Smirnov dis-

tance between the model-implied distribution and the empirically observed

one to measure distance.

Scalar targets As discussed in the main text, I target an unemployment rate

of 4.6%,74 and a vacancy rate of 3.27%.75 I also target the elasticity of un-

employment duration with respect to benefits. I target a value of −0.5, an

accepted value in the literature, taken from Chetty and Finkelstein (2013). To

do so, I target the average elasticity
∂xz

U 1
∂b

b
xU 1

among those households eligible

for UIB in the model to be −0.5. To compute this elasticity, I compute coun-

terfactual policy functions xU 1 resulting from increasing b by one per cent,

holding all prices constant and weighting these changes by the population

distribution in the baseline model. I cap the effort levels that households can

exert such that no household may have an expected unemployment duration

of less than one month at each instant when choosing effort, i.e., λ f xz
i (a) ≤ 1

to avoid degeneracies in the distribution.

Matching labour-market dynamics Calibrating the model poses several chal-

lenges which merit a short discussion. First, while calibrating simple search

and matching models, one may directly calibrate the job-finding and separa-

74The average unemployment rate for persons between ages 25 to 54 in Israel for 2012 -
2019.

75The average value from the Bank of Israel series taken at a monthly frequency for the
years 2012 - 2019
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tion rates and obtain the unemployment rate as a result. However, my model

features a non-degenerate, endogenous heterogeneity in the job-finding rates,

making a direct calibration of the job-finding rate impossible. Second, the

separation rate cannot be directly calibrated by setting the value of λs , as

some shock realisations will result in job-to-job transitions and not in an un-

employment spell. Thus, calibrating for job flows by directly setting hazard

rates is infeasible in the current setup.

Instead, I fit the model’s aggregate outcomes and job flows to the data as

follows. I use the internally calibrated parameters to obtain the best fit to

the unemployment duration distribution, thus capturing the overall severity

of the risk of unemployment to a household’s income and consumption. In

so doing, I target the distribution of job flows without externally setting the

hazard rates directly, as one would do in the simple case of a DMP model.

Data on this distribution is available in the form of five bins, which consist of

the proportion of unemployed persons unemployed for less than one month,

between one and three months, between three to six months, between six to

twelve months, and over twelve months.76 Since this is not a linear hazard

model, I simulate the steady-state unemployment duration distribution by

iterating forward on the laws of motion obtained from the model solution on

a uniform asset grid with 100 points. The policies, distributions and laws of

motion are interpolated using a cubic spline. Given the instability of forward

simulations, I use very small time steps of 0.01 months while simulating this

distribution. Figure 11 shows the targeted and resulting distributions.

Matching the wealth distribution As discussed in the main text, I use data

on the shares of aggregate wealth held by deciles to discipline the model wealth

distribution. This data is available from the Credit Suisse ’global wealth re-

port’ databook of 2019 (Credit Suisse Research Institute, 2019). The wealth

shares and their model counterparts are reported in Figure 12.

76This data is publicly available at https://stats.oecd.org/ under ’unemployment by
duration’.
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Figure 11: Model Fit - Unemployment Durations Distribution
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Note: The green bars correspond to the distribution of unemployment durations for all per-

sons aged 25 to 54. I report averages for each bin for the years 2012 - 2019. The model coun-

terpart of this distribution implied by the parametrisation in Table 2 is presented in blue.

G.2 Numerical Procedure

Objective Function I minimise the model’s distance from three scalar tar-

gets and two distributions. I measure the distance from the scalar targets us-

ing squared relative errors; thus, for a scalar target Gi and a parameter vector

ϑ ∈ R6, the distance metric is given by Ŝ2(ϑ) =
(

Gmodel
i (ϑ)

G
target
i

−1

)2

. For the dis-

tributions, I measure distance using the Kolmogorov–Smirnov distance SK S ,

which is a distance metric between the two discretised cumulative distribu-

tions. Let F target
k be the targeted cumulative distribution at bin k in the data,

and F model
k (ϑ) be its model counterpart. The Kolmogorov–Smirnov distance

for parameter vector ϑ is given by SK S
i (ϑ) = max

k

∣∣∣F target
k −F model

k (ϑ)
∣∣∣.

Formally, for a parameter vector ϑ, the total distance from the five targets,

the unemployment rate, vacancy rate, duration elasticity, unemployment du-
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Figure 12: Model Fit - Wealth Shares
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Note: The green bars correspond to the wealth shares at each decile in Israel from the Credit

Suisse ’global wealth report’ databook of 2019 (Credit Suisse Research Institute, 2019). The

model counterpart implied by the parametrisation in Table 2 is presented in blue.

ration distribution, and wealth shares is given by

SSE(ϑ) =
3∑

i=1
Ŝ2

i (ϑ)+
2∑

i=1
SK S

i
2
(ϑ), (G.1)

where the squared Kolmogorov–Smirnov distance is used to make the dis-

tances commensurable. To illustrate, a ten per cent deviation from the unem-

ployment rate, which will increase the SSE by 0.01, will be weighted equiva-

lent to a Kolmogorov–Smirnov distance of 0.1 in the unemployment duration

distribution. Alternatively, a maximum deviation between bins of the cumu-

lative distributions of 0.1 contributes to the SSE just as much as a relative

distance from the targeted unemployment rate of 0.1 contributes to it.

Optimisation Routine I employ the cross-entropy method (CEM) as devel-

oped in de Boer et al. (2005). Specifically, I use the Beta as my class of para-

metric distributions as is done in Mannor et al. (2003). I choose Beta distribu-

tions since a bounded support is helpful in this type of exercise. It prevents
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the algorithm from choosing extreme parameter values that yield no solu-

tions and, thus, only result in costly evaluations that deliver no information.

The algorithm proceeds as follows:

1. Initialize the algorithm Choose a number of evaluations Neval, a smooth-

ing parameter rs , a size for the elite sample Nelite, tolerances ϵT , and

ϵsd , prior distributions, and bounds for each parameter. Let the vector

of lower bounds be B ∈ R6 and the vector of upper bounds be B ∈ R6.

Set the iteration counter x = 1.

2. Draw a sample Draw Neval independent random draws from the prior

for each parameter to form a sample of Neval parametrisations. Each

one of the six model parameters is drawn from the uniform interval us-

ing its corresponding prior distribution and then rescaled into its cor-

responding bounds, i.e., the interval
[

B k ,B k

]
where k ∈ {1,2, . . .6}.

3. Evaluate Let ϑ j ∈R6 denote the j -th parametrization out of Neval in the

current iteration. For each j , evaluate SSE(ϑ j ). If the evaluation fails,

use SSE(ϑ j ) = 9999999.

4. Find elite sample Find the best Nelite parametrisation, those for whom

SSE(ϑ j ) is the smallest, and use them as the elite sample. Also, find the

best parametrisation, ϑ⋆x , minimising the SSE among those sampled at

the current iteration x.

5. Compute stopping criteria Within the elite sample, for each one of the

six model parameters ϑk ∈ R, compute its mean ϑk =
∑Nelite

i=1 ϑk,i

Nelite
. Pro-

ceed by computing the standard deviation of the mean-divided param-

eter st .dev(ϑk

ϑk
) for each parameter.

6. Test for convergence If max st .dev(ϑk

ϑk
) < ϵsd , x > 1, and the marginal

improvement of the best iteration of the current iteration relative to the

best of the previous iteration is smaller then ϵT or
∣∣SSE(ϑ⋆x−1)−SSE(ϑ⋆x )

∣∣≤
ϵT stop the loop and choose the best draw ϑ⋆x as a solution.

7. Update distributions If convergence was not reached in the last step,

for each parameter, use the elite sample to compute the method of mo-

ment estimates of aelite and belite, where these are the parameters of
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a new Beta distribution Bet a(aelite,belite). This distribution is the one

that is most likely to generate the values in the elite sample.

8. Repeat Set for each of the six parameters a new distribution such that

Bet ak
x+1(ax(1− rs)+ rs aelite,bx(1− rs)+ rsbelite), for each k ∈ {1,2, . . .6}

update the iteration counter such that x = x +1, and repeat from 2.

Specifics of the procedure and resulting calibrations I implement the above

algorithm using the uniform distribution or Bet a(1,1) as a prior for each of

the six parameters. Each CEM iteration samples Neval = 5,000 potential cal-

ibrated versions of the models, of which Nelite = 40 are chosen as the elite

sample. The smoothing parameter is set to rs = 0.7 and the tolerances are

ϵT = 0.1 and .ϵsd = 0.01. The parameter values resulting from this exercise for

the baseline calibration are reported in Table 2. The details of the model fit

for the baseline calibration are presented in Table 1 of the main text and in

Figures 11 and 12 of this appendix. This paper uses four different calibrated

versions of the model. Table 6 reports all calibrations along with their fit and

the bounds used to conduct the optimisation exercise.
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Table 6: Summary of Calibrations Used in the Paper and Their Fit

(1) (2) (3) (4)

Externally calibrated parameters

ν - CRRA parameter 1 1 2 2
ϵ 0.0000 0.6500 0.0000 0.6500
ρ̄ 0.0036 0.0036 0.0036 0.0036
λD 0.0021 0.0021 0.0021 0.0021
β 0.5000 0.5000 0.5000 0.5000
α 0.3300 0.3300 0.3300 0.3300
δ 0.0067 0.0067 0.0067 0.0067
λU 1 0.2500 0.2500 0.2500 0.2500
φ 1.0000 1.0000 1.0000 1.0000
R 0.6000 0.6000 0.6000 0.6000

Internally calibrated parameters

∆ρ 0.00087 0.000878 0.001527 0.001541
ψ0 9.6754 11.7563 1.7875 0.9674
ψ 0.2096 0.2003 0.3274 0.3341
λs 0.0147 0.0142 0.0181 0.0184
κ 12.4896 13.7684 7.8116 8.8446
η 0.7508 0.6342 0.6022 0.9057

Model fit

Target

Unemp. rate 0.0460 0.0465 0.0465 0.0460 0.0460
Vacancy rate 0.0327 0.0329 0.0328 0.0327 0.0327
Average duration elasticity -0.5000 -0.5004 -0.5025 -0.4991 -0.4992
SK S unemp. duration 0.0000 0.0583 0.0452 0.0120 0.0129
SK S wealth shares 0.0000 0.0204 0.0208 0.0198 0.0199
SSE 0.0040 0.0026 0.0005 0.0006

Bounds for internally calibrated parameters

∆ρ [0,0.00324]
ψ0 [0.5,20] [0.5,20] [0.01,5] [0.01,5]
ψ [0.01,0.5]
λs [0.0137,0.0416]
η [0.1,2]
κ [5,30] [5,30] [2,20] [2,20]

Note: This table reports all the calibrations used in the main text and the appendices, their

fit with respect to each calibration target, the value of the objective function, and the bounds

used to obtain them.
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Most of the bounds used are derived from trial and error, and the solu-

tion is situated well within them. The exceptions are the bounds for ∆ρ and

λs . The limits on ∆ρ come from its definition as a positive increment, which

sets the lower limit at zero, and from being related in size to ρ̄. Thus, I set

the upper limit of ∆ρ to 0.9ρ̄. λs , unlike the other parameters, can be par-

tially observed in reality. λs is the hazard of an idiosyncratic shock hitting

the employer-employee pair and causing termination notice to be delivered.

Thus, the value of 1
λs

is the expected duration of a match net of the termina-

tion notice. This duration is bounded above by the expected duration of an

employment spell, which gives a lower-bound value for λs . Using a GMM es-

timation, detailed below, of the Israeli unemployment duration that is based

on a two-state model (employment and unemployment) for the 25-54 age

cohort, I determine that for the relevant years, the average separation haz-

ard into unemployment for an employed person is 0.0137. Therefore, I use

0.0137 as the lower bound value of λs . This lower bound figure means that a

shock hits on average every 73 months. The upper bound is set to an expected

duration of 24 months. The resulting value of λs for the baseline calibration

corresponds to shocks arriving, on average, once in 68.03 months.

G.3 GMM Estimation Using Israeli Labour Market Data

Source data description To provide a lower bound for λs , I utilise data on

labour force size and unemployment by duration available for the years 1995-

2019 for all persons aged 25 to 54.77 The choice of ages is done to be consis-

tent with the rest of the calibration in Section 3, which also leads me to focus

solely on the years 2012 - 2019. The data consists of the total number of per-

sons in the labour force and the number of persons at each unemployment

duration bin for each year. Bins are available for duration groups with unem-

ployment durations of less than one month, between one to three months,

more than three and less than six months, more than six months and less

than a year, over than a year of unemployment, and persons for whom dura-

tion data is unavailable.
77Data was retrieved from https://stats.oecd.org/
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Data transformation I first assume that duration data is missing at random

and distribute the number of persons for whom duration is missing propor-

tionally into the other five bins. Following this, each bin is divided by the total

size of the labour force such that summing all the bins yields the unemploy-

ment rate for this year, and the population size is normalised to unity within

each year.

Structural assumptions I assume the standard two-states representation of

employment E and unemployment U that features the following law of mo-

tion:
dU

d t
= s(1−U )− f U , (G.2)

where E = 1−U and s and f denote the separation rate and the job-finding

rate correspondingly, which are the objects of interest for this estimation. The

system has a unique steady-state with U⋆ = s
s+ f . At this steady state, the

flow from employment to unemployment and from employment to unem-

ployment is fixed at z = f s
s+ f .

The law of motion above means job-finding occurs at a constant hazard

of f . The survival function in unemployment is S(t ) = e− f t . Thus, the total

number of persons unemployed with duration τ is zS(τ).

The normalised number of persons in each bin is given by:

ui = f s

f + s

∫ b

a
e− f t d t , (G.3)

where the i -th bin is the one which includes durations of anywhere from a to

b months.

Moment Conditions and Estimation For each unemployment duration bin,

I compute its average size for the sample duration ¯ua−b . The estimation is

carried out by solving

min
s, f

4∑
i=1

(
1− ui

ûi
(
s, f

))2

(G.4)

where ûi
(
s, f

)
is the value computed using the Equation (G.3) for a given pair

s, f . I use the identity as a weighting matrix as I will not conduct inferences

on these estimates.
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The procedure and especially the moment conditions described here owe

much to the insights in the work of Hobijn and Sahin (2009). Modifications

arise from differences in identifying assumptions and data availability. Namely,

Hobijn and Sahin (2009) have data on employment and unemployment by

duration, which allows for two separate estimations, one for each hazard in

an independent fashion, using a Gompertz hazard model. As such, their

model includes an additional scale parameter in the survival function that,

due to the limited data availability, my set-up would not be able to identify.

As in Hobijn and Sahin (2009), I omit the bin, which includes only persons

unemployed for over a year.

Results The estimates which minimise the moment conditions are monthly

hazards of f = 0.3083 and s = 0.0137. To illustrate the fit of these numbers to

the long-term behaviour of the Israeli labour market, see the figure at the end

of this appendix. The upper panels of the figure present a replication of the

above estimation but for each year separately to give a range of values for s

and f . The lower panel plots each year’s implied steady-state unemployment

rate against the implied steady-state obtained from estimating the flow rates

from 2012 to 2019. The obtained value of s is used to discipline the lower

bound of λs .
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Figure 13: Estimated Israeli Labour Market Flow Hazards
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Note: The upper two panels plot the results from estimating s and f annually using the

above-described procedure, with the long-term estimates in the dashed lines. The lower

panel plots the actual unemployment rate with the unemployment rate implied by the long-

term estimation results of s and f in the dashed line.

Online Appendix H Optimal Policy Optimization

All the optimization exercises in Section 6 are done using grid search. This

method is suitable and feasible as the social planner wishes to set only three

policy parameters in each scenario presented in Table 3. When severance pay

is considered instead of notice, termination notice is set at the moment of re-

form to 0.1 weeks or φ = 43. Since all exercises here consider policy combi-

nations of three parameters, I will denote a potential policy vector as T ∈ R3+,

and a particular element thereof as Ti , i ∈ {1,2,3}. The procedure is as follows

1. Initialization - Set the iteration counter j = 1. For each policy param-

eter, define upper and lower bounds
[

L j
i ,U j

i

]
such that D j =

[
L j

1,U j
1

]
×[

L j
2,U j

2

]
×

[
L j

3,U j
3

]
is the domain in iteration j where × denotes the

Cartesian product. Define also tolerances for each range as ∆i . The

bounds for φ and λU 1 are expressed in terms of duration, and not haz-

ard, so the variable chosen is 1
φ and 1

λU 1
. For the replacement rate, the
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natural bounds are R ∈ [0,1]. Bounds for notice duration, UIB duration,

and severance pay eligibility are chosen by trial and error to ensure the

solution is internal.

2. Discretizing the domain - For each policy parameter, create a grid con-

sisting of 10 equispaced increments for each policy parameter between

its lower and upper bound such that the first point is the lower bound

and the last is the upper bound, let this grid for policy parameter i be

denoted by G j
i =

{
g j

1 , g j
2 , . . . , g j

10

}
. This results in 103 potential policy

combinations in a grid G j =G j
1 ×G j

2 ×G j
3 .

3. Evaluation - For each one of the 103 policy vectors T ∈ G j considered,

solve the model’s transition path as a result of the policy reform using

the algorithm presented in Appendix F.2 and compute the welfareΩ (T )

at time of impact. If an evaluation fails, use the value of Ω (T ) =−∞ for

welfare on this point.

4. Find the maximum - Find the best combination of policy parameters

T⋆
j such that T⋆

j = arg max
T∈G j

Ω (T ) and find the indices of corresponding

to it for each policy variable. Let pi denote the index on the grid p ∈
{1,2, . . . ,10} of the optimal value of policy parameter i , corresponding

to the i th element of T⋆
j .

5. Refine the domain

(a) Compute new domain - Set the new bounds
[

L j+1
i ,U j+1

i

]
for the

j +1 iteration as follows L j+1
i = g j

pi−1 and U j+1
i = g j

pi+1. These new

bounds bracket T⋆
j between its closest grid points. If pi = 1, then

L j+1
i = L j

i and if pi = 10 then U j+1
i = U j

i . The new candidate do-

main is Dc =
[

L j+1
1 ,U j+1

1

]
×

[
L j+1

2 ,U j+1
2

]
×

[
L j+1

3 ,U j+1
3

]
.

(b) Check for failed evaluations - Ensure that the objective function

was successfully evaluated in the current iteration j for every T

that lies on the edge of the new domain. I.e., verify that for all pol-

icy vector T ∈ Dc such that its i th element is equal in either the

lower or upper bounds, the value of Ω (T ) was successfully evalu-

ated in step 3. If so, set D j+1 = Dc . Otherwise, expand the grid by

one increment of the grid G j along the i th dimension and update
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Table 7: Bounds for Policy Variables in Optimal Policy Exercises

ν - CRRA Scenario Termination
notice dura-
tion (weeks)

Severance
pay generos-
ity

UIB eligibil-
ity duration
(weeks)

Replacement
rate

(1) 1 TN & UIB, ϵ= 0 [0.043,30] none [0.043,260] [0,1]
(2) 1 SP & UIB, ϵ= 0 none [0.043,12] [0.043,260] [0,1]
(3) 1 TN & UIB, ϵ= 0.65 [0.043,80] none [0.043,260] [0,1]
(4) 1 SP & UIB, ϵ= 0.65 none [0.043,12] [0.043,260] [0,1]

(5) 2 TN & UIB, ϵ= 0 [0.043,40] none [0.043,260] [0,1]
(6) 2 SP & UIB, ϵ= 0 none [0.043,12] [0.043,260] [0,1]
(7) 2 TN & UIB, ϵ= 0.65 [0.043,104] none [0.043,500] [0,1]
(8) 2 SP & UIB, ϵ= 0.65 none [0.043,12] [0.043,260] [0,1]

Dc accordingly. Repeat this step until there are no failed runs on

the edges.

6. Check domain size for convergence If the new bounds bracket a region

such that U j+1
i −L j+1

i < ∆i for every i stop and use T⋆
j as the solution.

Otherwise, repeat from step 2 until this condition is satisfied.

The objective function in all cases appears to be well-behaved and single-

peaked in the chosen domain, and the maximum in each exercise is an inter-

nal one for all policy parameters. The reason to check for failed evaluations

is a contingency to prevent the program from ruling out a part of the domain

concerning which information is unavailable. Thus, the contingency in 5 (b)

prevents the newly chosen domain from including a blind spot. These fail-

ures are uncommon in practice. Regardless, it is still necessary to verify that

the end result is indeed internal to the first specified domain D1; otherwise,

one needs to restart with new bounds. For each of the eight optimal policy

exercises conducted in the paper, four in Section 6, and an additional four in

Appendix D, the bounds are reported in Table 7. Since setting the durations

to exactly zero implies using an infinite hazard rate, which is impractical, I

use a lower bound of 0.01 months duration or 0.043 weeks.
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Online Appendix I Stylized Model of Termination No-

tice

In what follows, I present a stylized model illustrating the effects of termina-

tion notice on job creation and wage bargaining in a DMP style environment.

This model is intentionally simplified compared to the full scale model pre-

sented in the main text. It does not feature a consumption-savings decision

nor an intensive margin search effort choice. The model can serve as an in-

tuitive basis for understanding the effects of termination notice on vacancy

posting and wage bargaining in the model of Section 2. Additionally, I will use

the model to demonstrate some of the differences between severance pay and

termination notice mandates.

I.1 A Stylized Model of Termination Notice

I begin the analysis by considering the textbook search and matching model

from Pissarides (2000) and extend it to allow for mandated termination no-

tice as follows. When an idiosyncratic productivity shock hits an employer-

employee match, they do not separate immediately but enter into a period of

termination notice. The shock causes the match to separate by reducing the

production value of the job to a fraction ϵ of its original value p. This pro-

duction decline is assumed severe enough to merit termination of the em-

ployment relationship.78 The worker can use the notice period to search for a

new job, which increases their value from the employment contract.

Formally, let the population have a unit measure composed of four types

of households, the employed E , the unemployed U , those employed with ter-

mination notice and are searching N 1, and those who had found a job N 2,

the mass of each type i is denoted by mi .79

Matching The matching functionµ (mU +mN 1, v) is monotonic and increas-

ing in both arguments and is homogeneous of degree one. Rather than having

the unemployed and job vacancies v as inputs, the unemployed are now re-

placed by the total searching population mN 1 +mU . As such, labour-market

78This is equivalent to assuming exogenous separation or endogenous separation with two
levels of match quality such that one of them is strictly below the reservation level.

79Unlike in the main text, this model will not feature a UIB eligibility margin.
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tightness is now defined as θ = v
mN 1+mU

, and the filling rate and the job finding

rate are given by q = µ(mU+mN 1,v)
v ,λ f = µ(mU+mN 1,v)

mU+mN 1
. I assume that matches

require positive masses of vacancies and job seekers, i.e., µ (mU +mN 1,0) =
µ (0, v) = 0.

Households Households in the economy are risk neutral and maximize life-

time utility which is discounted at rate ρ. The unemployed gain flow value b

and search for work, which is a costless activity in this stylized model. Its

value function VU is thus given by

ρVU = b +λ f (VE −VU ). (I.1)

The employed person receives a wage w , faces a termination risk with arrival

rate λs , and has the value function VE given by

ρVE = w +λs(VN 1 −VE ). (I.2)

While on termination notice, the worker is entitled by legislation to receive

her previous wage and can search for a new job. The expected termination

notice duration is 1
φ

and the value function of a person under notice VN 1 is

thus given by

ρVN 1 = w +φ(VU −VN 1)+λ f (VN 2 −VN 1). (I.3)

As in the main text, if the worker finds a job during the notice period which

occurs with hazard λ f , the new match is ’on hold’, and the worker has to wait

for the end of the notice period to switch employers. The value from being

under notice with a new job lined-up is

ρVN 2 = w +φ(VE −VN 2). (I.4)

This set-up, and especially Equations (I.3) and (I.4), assumes that the worker

cannot force a direct transition to a new job. See discussion of this assump-

tion in Section 2.1.

The firms The firms can post a vacant job which is matched with a job

seeker at a rate q . A vacancy has a flow cost of κ and, once filled, will gen-

erate a value of JE . If the job seeker is unemployed, the firm and the worker
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commence production immediately. However, if matched with a worker un-

der termination notice, the firm has a job ’on hold’. The value of a job vacancy

is given by

ρ JV =−κ+q
mU

mU +mN 1
(JE − JV )+q

mN 1

mU +mN 1
(JH − JV ). (I.5)

The value of a job ’on hold’ comes only from its potential to become a pro-

ducing job with hazard φ and is given by

ρ JH =φ(JE − JH ). (I.6)

I assume free entry so that at every point in time, JV = 0, which results in the

free entry condition

JE = κ

q
[

mU
mU+mN 1

+ mN 1
mU+mN 1

φ
r+φ

] = κ

qlc
. (I.7)

The difference between the model laid out here, and the textbook model

in terms of job creation is the labour-composition term lc , as it depends on

the population masses. Substituting in the values of the steady-state masses

yields that in steady state lc = φ

(ρ+φ)

(
ρ+φ+λ f

)(
φ+λ f

) .80 This ratio is bounded between

zero asφ→ 0 and unity forφ→∞. However, ρ is usually calibrated to around

4% annually, which is equivalent to a Poisson hazard that arrives on average

once every twenty-five years. Since we usually consider the notice period to

be several months long and job finding rates corresponding to unemploy-

ment durations of several months to a year the only it is thus reasonable to

consider that lc will be very close to unity since φ and λ f will be orders of

magnitude larger then ρ.

Once in active production, the filled job produces p and has to pay a wage

rate of w . The value of a filled job is

ρ JE = p −w +λs(JN − JE ), (I.8)

where JN is the value of the job during termination notice. After the impact of

the shock λs , the job produces a fraction ϵ ∈ [0,1) of its previous production

80For explicit derivation of this expression, see Appendix I.5.
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value. The value of the job under notice is thus

ρ JN = ϵp −w +φ(JV − JN ). (I.9)

Wage bargaining Since employment protection provisions are in place, the

surplus that governs hiring and the renegotiation of wages differ. The out-

sider’s wage is solved from the standard problem, which is

w 0 = arg max(VE −VU )β(JE − JV )1−β. (I.10)

As is standard for cases with employment protection policies, an insider-outsider

dynamic of the labour markets emerges. One surplus level would govern job

creation, and yet another would govern future wage renegotiation.81 The in-

sider’s problem is given by

w = arg max(VE − VN 1 )β( JE − JN )1−β. (I.11)

The most important feature of this problem is that the value of each party’s

outside option is a function of the solution to the problem itself. The solution

to the problem 16 presented in the main text, is simply the median solution to

problems that are identical to I.11 but for workers with varying degrees of pa-

tience and asset holdings. Unlike in the main text, I keep the insider outsider

structure here to make this model comparable with the textbook analysis in

Pissarides (2000), and to maintain tractability.

Model solution The above bargaining problems, together with the free en-

try condition in Equation (I.7), allow me to characterize the solution to this

system by using two equations.82 First, the wage solution is given by

w =
[
β

[
p + θκ

lc

]
+ (

1−β)
b

]
︸ ︷︷ ︸

Standard DMP wage

+ρβp(1−ϵ)

φ︸ ︷︷ ︸
Threat

+ ρ

ρ+φ+λ f
β
θκ

lc︸ ︷︷ ︸
Search on notice

. (I.12)

81The model is set in continuous time so the wage w0 would not be paid to any worker as
renegotiation is immediate. However, since this instantaneous first wage reflects the sharing
rule for the surplus that governs job creation, it will have a bearing on the solution.

82For a step by step derivation see Appendix I.5.
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This wage solution is the classical DMP wage with the addition of the threat of

reduced production during the notice period which is give by ρ p(1−ϵ)
φ and the

added value of search during the notice period that is given by ρ
ρ+φ+θq(θ)

θpc
l .

Second, the job-creation condition in the model isp

(
1+ λs

ρ+φϵ
)

︸ ︷︷ ︸
extra production value

−w

(
1+ λs

ρ+φ
)

︸ ︷︷ ︸
longer wage contract

 qlc

ρ+λs
= κ. (I.13)

This equation is derived from the definitions of JE , JN and the free entry con-

dition in Equation (I.7). It deviates from the textbook model by allowing for

the different horizons of production and wages along the lifetime of a job.

These two equations along with the steady-state value of l , determine the

equilibrium pair of (θ, w) in this model.

I.2 Discussion of the Model and its Policy Implications

In this section, I elaborate on the model’s properties, discuss its assumptions

and explore its implications for the use of termination notice.

Comparison to the literature The present model nests the textbook search

and matching model as a special case. If there were no termination notice,

we would have that φ→∞. From the steady-state value of lc , we can see that

in this special case, lc → 1 and the wage solution and job-creation condition

collapse into the standard textbook equations.

My extension builds on earlier models that introduce termination notice

into the search and matching literature, all of which try to understand aggre-

gate employment fluctuations. Garibaldi (1998) was the first to introduce ter-

mination notice into a search and matching model. His modelling approach

was adopted and extended by Bentolila et al. (2012) to consider the effects

of the 2008 financial crisis on France and Spain. These two works abstract

from the feedback that termination notice introduces into the outside option

in the wage bargaining problem (I.11).83 The model of Ben Zeev and Ifergane

83Garibaldi (1998) abstracts from this feedback directly by assuming that the firm can ex-
tract the full rent from the worker, and the wage is equal to the outside option. Bentolila et al.
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(2022) accounts for this feedback but, like the previous works, assumes no

search takes place during termination notice.

Production during termination notice I earlier defined that ϵ ∈ [0,1). I.e.,

I assume the terminated workers neither cause damage in the place of em-

ployment nor do they suddenly become more productive after termination

notice was given.

In fact, the upper limit on ϵ is even more restrictive. For the firing decision

to be internally consistent, the firm should still be willing to let the worker

go, given the lower production value. Recall that a job on termination notice

yields a profit of ϵp−w to the firm every period. Thus, the highest production

value for which termination is internally consistent would be ϵ̄ = w
p . Under

perfect competition this value would be ϵ̄ = 1 but in the presence of search

frictions ϵ̄< 1.84

I.3 Termination Notice and Job Creation

Proposition 3. Increasing the duration of termination notice (loweringφ) will

lower labour market tightness if ϵ< ϵ̄.

The intuition behind this conclusion is as follows (for a formal proof, see

Appendix I.6). Increasing the duration of termination notice improves the

worker’s bargaining position and shifts the wage curve to the left and upwards

in the (θ, w) plain, which raises the wage for every value of θ. It would also

add to the value of a job ϵp −w for every added instant of termination notice

which is strictly negative since ϵ < ϵ̄. Therefore, termination notice reduces

the incentive to create new jobs and shifts the job creation curve inwards,

which lowers labour-market tightness. A corollary to this result is that the

(2012) calibrate their model such that the average wage in the economy is the prevailing one
during the notice period, and assume that the firm knows this wage and takes it as a known
cost.

84This argument implicitly assumes that the wage cannot be adjusted during the notice
period itself. Allowing the wage to adjust would require additional assumptions regarding
the potential duration of the match, its future production value, and the regulatory require-
ments imposed upon it. Such analysis would not contribute much to what follows. Note that
the critical value that would result if the firm were to renegotiate wages after the shock hits
would likely be smaller since the wage reduction would make realisations worse off than ϵ̄

acceptable to the firm.
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impact on the wage is ambiguous.85

Comparison with UIB UIB would be mapped to the model as the value of

the outside option b. Observe that changing the level of UIB would influence

only the wage equation and not the job creation curve. Thus increasing the

generosity of UIB would lower job creation and increase wages in the model

economy, which is different from what increasing termination notice dura-

tion would do. From a simpler, spot-labour-market perspective, increasing

UIB generosity will reduce labour supply, while a longer termination notice

period will reduce labour demand.

I.4 Relationship to Severance Pay

To consider the relationship between termination notice and severance pay,

I derive the job creation equation and the wage curve of the stylised model

with severance pay and compare them to those of the model with termination

notice instead. I briefly lay down the model equations, which will be very

close to those in Appendix I.1. Most notations are identical to those in I.1 and

will not be re-stated. The model is simpler than the one in Appendix I.1 as

it has only two states, namely employment and unemployment, without the

interim state of a termination notice and the associated job creation delay. As

such, the modified model will still have a unit measure of households with

the following value functions:

ρVU = b + λ f (VE −VU ), (I.14)

ρVE = w +λs
(

VU +Sp − VE
)
, (I.15)

where Sp denotes the severance pay received at termination, which is a single

transfer from employer to employee. Note that now the termination rate λs is

identical to the separation rate.

85Contrast to the result in Figure 5 of Pissarides (2001), where the job creation curve shifts
in the same manner but the wage curve shifts in the opposite direction.
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Accordingly, the firm’s value functions are given by

ρ JV =−κ+q JE , (I.16)

ρ JE = p −w +λs
(

JV − JE −Sp
)
. (I.17)

Observe that in this case, the free entry condition results in the standard ex-

pression JE = κ
q, .

As in Appendix I.1, there is an insider outsider dynamic for the workforce,

with the outsider facing the standard problem of

w 0 = arg max (VE −VU )β(JE − JV )1−β, (I.18)

which is identical to the one in I.1. The insider’s bargaining problem is given

by:

w = arg max
(

VE − (
VU +Sp

))β(
JE − (

JV −Sp
))1−β, (I.19)

where Sp will be indexed to the wage, I assume that Sp = λSP w where λSP

denotes the number of wages the worker is entitled to receive from her em-

ployer when they separate.

Solving the model The outsider’s problem has the following first-order con-

dition:

β( JE )− (
1−β)

(VE −VU ) = 0, (I.20)

which together with the definition of VU and the free entry condition yield:

ρVU = b + β

1−βκθ. (I.21)

The insider’s problem has the following first-order condition

β
(

JE +Sp
)− (

1−β)(
VE −VU −Sp

)= 0. (I.22)

Multiplying by ρ and substituting in the definitions of VE and JE result in

β
[
p −w

]+βρSp − (
1−β)[

w −ρVU −ρSp
]= 0, (I.23)
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which combined with Equation I.21, yields

w =βp + (
1−β)

b +βκθ+ρSp . (I.24)

Substituting in Sp =λSP w will allow us to obtain the wage equation

w = 1

1−ρλSP

[
βp + (

1−β)
b +βκθ]

, (I.25)

which is the analogue of Equation I.12. Substituting the free entry condition

JE = κ
q into the definition of JE , combined with Sp = wλSP yields the job cre-

ation condition
κ

q
= p − (1+λsλSP )w

ρ+λs
. (I.26)

Comparison of Severance Pay and Termination Notice in the Stylised Mod-

els Let us examine the two wage equations

w =β
[

p + θκ

lc

]
+ (

1−β)
b +ρβp

(1−ϵ)

φ
+ ρ

ρ+φ+λ f
β
θκ

lc
, (w - TN)

w = 1

1−ρλSP

[
βp + (

1−β)
b +βκθ]

, (w - SP)

where T N denotes termination notice and SP denotes severance pay. It is

instructive to recall that in the textbook model without any policies, the wage

curve would be w = βp +βκθ+ (
1−β)

b. Thus, the wage in the case of sever-

ance pay is a mark-up over the wage in the textbook model. Although termi-

nation notice and severance pay encapsulate a similar mandated monetary

transfer between firm and worker, there are three differences between these

policies. First, termination notice introduces an interim period, during which

the worker produced ϵp; thus, output in the economy is different even if total

employment and unemployment are the same for every case in which ϵ > 0.

Second, production in this interim period serves as a threat in the bargaining

problem, which is added slightly differently to the wage. Last, the interim pe-

riod provides the worker time to search for a job, which generates value for

the worker at the cost of forgoing the value of the outside option b, and thus

affects the match surplus. Therefore, the surplus will not be the same under

both policies even if θ is the same and there is no production value. The rea-

son behind this result is that severance pay in the stylised model has no effect
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on the unemployment duration of the worker other than through its effect on

θ.

Let us proceed now by analysing job creation under the two policies. In

particular, let us examine the job creation conditions

κ

q
= lc

ρ+λs

[
p

(
1+ λs

ρ+φϵ
)
−w

(
1+ λs

ρ+φ
)]

, (JC - TN)

κ

q
= 1

ρ+λs

[
p − (1+λsλSP )w

]
. (JC - SP)

As explained earlier while discussing the wage equations, the production value

under notice ϵ will change the income flow from a new job which will factor

into the job creation condition, which is essentially an asset price equation.

As this paper assumes that ϵ= 0, and this is a rather convenient case, let us be-

gin the comparison using this case. Next, the job creation delay, lc will make

the comparison challenging as there is no delay inherent in job creation un-

der severance pay. Let us assume for a moment that the delay is of a negligible

magnitude, resulting in the convenient case of lc → 1. From there, one may

construct, for every value of φ, a corresponding value of λSP such that the

two job creation conditions are equivalent λ∗
SP

(
φ

) = 1
ρ+φ . If so, can we ob-

tain that a under the same equilibrium value of θ and the suitable policies

φ and λ∗
SP

(
φ

)
, termination notice and severance pay would yield the same

wage? Define the difference in wages under the two policies in this special

case as

∆= wSP
(
λ∗

SP

(
φ

))−wT N (ϵ= 0, l = 1), (I.27)

which, after some tedious algebra yields

∆= ρ

φ

[
b
(
1−β)]+κθβρ[

1

φ
− 1

ρ+φ+λ f

]
> 0. (I.28)

Therefore, holding θ constant, the wage under severance pay would be higher

in the simple case than under termination notice. The cause of this is the

added value the worker receives from the match while searching during the

notice period. However, since this expression is proportional to ρ, it will be

quantitatively a negligible difference. However, this illustrates that there are

slight differences that even the stylised model will not be able to entirely ig-

nore when comparing these tools.
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Moreover, stepping outside the bounds of the model and discussing the

policies as they are applied in reality, the comparison above clarifies that the

two policies have a different impact on aggregate production and unemploy-

ment. These differences occur even though the two policy tools are pretty

similar in terms of the monetary transfer they entail. This result is not simply

a modelling artefact but rather the implications of these policies in practice.

Thus, despite the apparent similarities between these policies, it is essential

to specify the exact policy instrument used to analyse it correctly.

To further drive this point home, note that without policies, the match

surplus will be given by:

S = JE +VE −VU . (I.29)

Introducing severance pay into the economy will not affect the match surplus

as

SSP = JE − (
JV −Sp

)+VE − (
VU +Sp

)= JE +VE −VU = S. (I.30)

However, introducing termination notice into the economy will affect the

match surplus

ST N = JE +VE −VN 1 − JN ̸= S. (I.31)

To verify the last statement, one can obtain the following to derive the wage

Equation (see Equation I.45)

(
ρ+φ)

(VN 1 + JN ) = ϵp +φVU + λ f φ

ρ+φ+λ f
(VE −VU ). (I.32)

Combining the fact that ρVU −b =λ f (VE −VU ) with the above we have that

(
ρ+φ)

(VN 1 + JN ) = ϵp −b
φ

ρ+φ+λ f
+φ

[
ρ

ρ+φ+λ f
+1

]
VU . (I.33)

Finally, subtracting
(
ρ+φ)

VU from both sides and substituting in Equation

I.47 as ρVU = b +λ f
β

1−β
κ

qlc
will yield

(
ρ+φ)

(VN 1 + JN −VU ) = (I.34)

ϵp −b −
[

ρ+λ f

ρ+φ+λ f

][
β

1−β
κθ

lc

]
.

The sign of the expression on the left-hand side of the equation will deter-

105



mine under which policy the surplus is larger. However, without knowing the

parameter values, the sign of this expression is unknown. The reason behind

this ambiguity is that during every period of termination notice, the pair for-

goes b utility units and gains the values of production ϵp and of search during

notice. The trade-off between the two will depend on the exact values of the

parameters. As a side note, observe that in a model with lay-off taxes, which

will not be fully derived here, the surplus SLT will be larger with

SLT = JE +F +VE −VU ≥ S, (I.35)

where F is a firing tax.86

I.5 Model Solution and Additional Derivations

This appendix presents the explicit derivation of the equilibrium masses in

the model, and the steady-state value of l , as well as Equations (I.12), and

(I.13).

Population composition The following laws of motion govern the transi-

tions in the model (dots denote temporal derivatives)
ṁU

ṁE

ṁN 1

ṁN 2

=


−λ f 0 φ 0

λ f −λs 0 φ

0 λs −φ−λ f 0

0 0 λ f −φ




mU

mE

mN 1

mN 2

. (I.36)

Using the laws of motion in Equation (I.36) and the fact that the masses

86For a more comprehensive treatment of firing taxes in these frameworks see chapter 9 of
Pissarides (2000).
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sum up to unity, the steady-state masses can be derived as

mU = φ2λs

λ f
2λs +λ f φλs +λ f φ

(
φ+λ f

)+φ2λs
, (I.37)

mN 1 =
λ f φλs

λ f
2λs +λ f φλs +λ f φ

(
φ+λ f

)+φ2λs
, (I.38)

mE = λ f φ
(
φ+λ f

)
λ f

2λs +λ f φλs +λ f φ
(
φ+λ f

)+φ2λs
, (I.39)

mN 2 =
λ f

2λs

λ f
2λs +λ f φλs +λ f φ

(
φ+λ f

)+φ2λs
. (I.40)

Combining these to the value of lc as defined by Equation (I.7) yields:

lc = mU

mU +mN 1
+ mN 1

mU +mN 1

φ

ρ+φ = φ
(
ρ+φ+λ f

)(
ρ+φ)(

φ+λ f
) . (I.41)

The wage solution To solve for the wage, one needs to start from the first

order condition for the bargaining problem (I.11), which is:

β(JE − JN ) = (
1−β)

(VE −VN 1). (I.42)

It is convenient to examine the problem in terms of the surplus level S =VE −
VN 1+ JE − JN associated with it, which after multiplying by ρ and substituting

in the definitions for VE , VN 1, JE and JN and results in

(
ρ+λs

)
S = p −ρVN 1 −ρ JN . (I.43)

The sum JN +VN cab be expressed as

ρ(VN 1 + JN ) =φ(VU −VN 1)+λ f (VN 2 −VN 1)+ϵp +φ(JV − JN ). (I.44)

Subtracting VN 1 from VN 2 or Equation (I.3) from Equation (I.4) yields the fol-

lowing relationship

(
ρ+φ+λ f

)
(VN 2 −VN 1) =φ(VE −VU ),
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which substituted into Equation (I.44) yields

(
ρ+φ)

(VN 1 + JN ) = ϵp +φVU + λ f φ

ρ+φ+λ f
(VE −VU ). (I.45)

Now, we turn our attention to the outsider’s problem (I.10), which has the

first order condition

β(JE − JV )− (
1−β)

(VE −VU ) = 0. (I.46)

It is again convenient to define the surplus level S0 which is given by JE − JV +
VE −VU , and using the free entry condition from Equation (I.7), the definition

of VU and the fact that VE −VU = β
1−β JE we obtain

ρVU = b +λ f βS0 = b +λ f
β

1−β
κ

qlc
. (I.47)

This expression can be substituted into Equation (I.45), which along with the

free entry condition in Equation (I.7), and the insight that VE −VU = β
1−β JE

yields after some tedious algebra

(
ρ+φ)

(VN 1 + JN ) = ϵp + φ

ρ
b +φλ f

[
1

ρ+φ+λ f
+ 1

ρ

]
β

1−β
κ

qlc
. (I.48)

Using this expression in Equation (I.43), we can express the surplus as

(
ρ+λs

)
S = p − ρ

ρ+φ
[
ϵp + φ

ρ
b +φλ f

[
1

ρ+φ+λ f
+ 1

ρ

]
β

1−β
κ

qlc

]
. (I.49)

The surplus can also be described as follows:

(
ρ+λs

)
(JE − JN ) = (

ρ+λs
)(

1−β)
S, (I.50)

which combined with the fact that
(
ρ+λs

)
JE = p−w+λs JN , and that

(
ρ+φ)

JN =
ϵp −w allows us to write the surplus as

(
ρ+λs

)
S = 1

1−β
[

p −w −ρϵp −w

ρ+φ
]

. (I.51)

Equating the two expressions of the surplus as given by Equation (I.49) and
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Equation (I.51) and using
λ f

q = θ allows us to finally obtain the wage solution

given in Equation (I.12)

w =
[
β

[
p + θκ

lc

]
+ (

1−β)
b

]
︸ ︷︷ ︸

Standard DMP wage

+ρβp(1−ϵ)

φ︸ ︷︷ ︸
Threat

+ ρ

ρ+φ+λ f
β
θκ

lc︸ ︷︷ ︸
Search on notice

. (I.52)

The job-creation equation Combining the free entry relationship κ
qlc

= JE ,

with
(
ρ+λs

)
JE = p − w +λs(JN ) and with JN = ϵp−w

ρ+φ , after some algebraic

manipulation yields the job creation condition from Equation (I.13).p

(
1+ λs

ρ+φϵ
)

︸ ︷︷ ︸
extra production value

−w

(
1+ λs

ρ+φ
)

︸ ︷︷ ︸
longer wage contract

 qlc

ρ+λs
= κ. (I.53)

I.6 Proof of Proposition 3

Proof. Recall that the steady-state equilibrium of the system is given by the

following three equations:

w =β
[

p + θκ

lc

]
+ (

1−β)
b +ρβp

(1−ϵ)

φ
+ ρ

ρ+φ+λ f
β
θκ

lc
. (I.54)

w =
(

p −κρ+λs

qlc

)
ρ+φ

ρ+φ+λs
+ϵp

λs

ρ+φ+λs
, (I.55)

lc =
φ

(
ρ+φ+λ f

)(
ρ+φ)(

φ+λ f
) . (I.56)

where the job-creation curve is reordered such as to make the graphical ex-

planation easier. Graphically it is constructive to examine the system, as is

done in the standard search and matching representation, in the θ, w plane

while treating lc as a function of θ. As such, I first illustrate the behaviour of

this function. One can show that lc is a monotonically decreasing function of

θ.87 The function lc is also bounded by lc (θ = 0) = 1 and by lim
θ→∞

lc = φ
φ+ρ . This

behaviour of lc , taken together with the observation that d q
dθ < 0, means that

87To verify this statement, observe that ∂lc
∂θ = φ

(ρ+φ)
−ρ(

φ+λ f
)2

dλ f

dθ < 0. This statement holds

since λ f = µ(mU+mN 1,v)
mU+mN 1

= µ(1,θ) and as µ is an increasing function of both arguments we

obtain that
dλ f

dθ > 0.
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as in the standard search and matching model, the job creation curve slopes

downwards on the θ, w plane and that the wage curve slopes upwards along

the same plane, yielding a unique equilibrium. Finally, observe that holding

the value of θ constant, the steady-state value of lc will increase asφ increases

as ∂lc
∂φ

=
(
ρ+2φ+λ f

)
ρλ f(

φ+λ f
)2(ρ+φ)2 > 0. With these insights in mind, we can proceed to ex-

amine the θ, w plane.

The wage curve For a given value of θ, a decrease in φ, which also means

a decrease in lc , will unambiguously raise the wage. Thus, the wage curve

will shift to the left. Intuitively speaking, increasing the duration of the no-

tice period, holding labour market conditions constant, will strengthen the

worker’s bargaining position and weaken that of the employer, thus, resulting

in a wage increase. The converse also holds, i.e., increasing φ will shift the

curve to the right.

The job creation curve Two conflicting forces affect the job-creation curve.

Since examining the job creation curve as w as a function of θ is more conve-

nient, consider the reordered expression

w =
(

p −κρ+λs

qlc

)
ρ+φ

ρ+φ+λs
+ϵp

λs

ρ+φ+λs
. (I.57)

First, observe the special case of ϵ= 0. If ϵ, the job creation condition is given

by

w (ϵ= 0,θ) = ρ+φ
ρ+φ+λs

Duration wedge

·
(

p −κρ+λs

qlc

)
Job-creation curve DMP

. (I.58)

This case can be simply interpreted because both expressions on the right-

hand side of the equation are positive and increasing in φ for every equilib-

rium in which there is job creation. To see this, first, recall that ρ,φ, and λs

are all positive, so the duration wedge is also positive. Second, dividing the

second expression by ρ+λs yields p
ρ+λs

− κ
qlc

, which is the total discounted

production value of a job minus the flow cost of job-creation pc divided by

the job-filling rate. Recall from free entry that JE = κ
qlc

. Thus, if we have that
p

ρ+λs
− JE < 0, it means that there is no incentive to create jobs in this econ-

omy, for any positive wage rate, as only a negative wage will justify the firm’s

job creation cost. To summarize, for ϵ = 0, decreasing φ, or increasing the
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duration of termination notice, shifts the job-creation curve to the left and

lowers θ for every wage rate.

If ϵ were strictly positive, we could restate the job creation curve as:

w (θ) = pϵλs

ρ+φ+λs
+w (ϵ= 0,θ) . (I.59)

As explained above, lowering φ shifts w (ϵ= 0,θ) to the left, but, this time it

also creates a conflicting force that rises pϵλs
ρ+φ+λs

and shifts the job creation

curve to the right. Which of these forces will prevail is a quantitative question.

But, given that we know what would happen if ϵ were zero, and given that
pϵλs

ρ+φ+λs
is monotonically increasing in ϵ we can conclude that there exists a

level of ϵ such that above it, the job creation curve would shift to the right as

a result of increasing the duration of termination notice.

Additionally, we have defined the internally consistent level of the pro-

duction value during notice ϵ̄ as w
p . Since this is an upper limit on the value

of production during termination notice in the model, it is also a useful refer-

ence case to examine. Substituting in the value of ϵ̄ into Equation (I.57) yields

w
(
ϵ
)= p

w(ϵ)
p λs

r +φ+λs
+w(ϵ= 0), (I.60)

Or using Equation (I.58)

w
(
ϵ
)= p −κρ+λs

qlc
. (I.61)

This expression is increasing in φ or decreasing in the termination notice du-

ration. As such, even at ϵ̄ the influence of pϵλs
ρ+φ+λs

is not sufficiently strong to

push the job creation to the right in response to a decrease in φ. Therefore,

for every value of ϵ ∈ [0, ϵ̄], the job creation curve shifts to the left in response

to increasing the duration of termination notice.

To conclude, in response to an increased duration of termination notice,

both the job creation condition and the wage equation shift to the left, lead-

ing to a decrease in labour-market tightness. The converse also holds, i.e.,

increasing φ will increase labour market tightness for sufficiently low values

of ϵ. For a graphical representation of this proof, see Figure 14. Finally, note

that as a corollary to this result, the effect of increased termination notice du-

ration on wages is ambiguous.
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Figure 14: Varying the Duration of Termination Notice in the Stylized Model

𝜃

𝑤

𝐽𝑜𝑏 𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛1

𝐽𝑜𝑏 𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛0

𝑤𝑎𝑔𝑒1

𝑤𝑎𝑔𝑒0

𝜃1 𝜃0
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𝑤𝑎𝑔𝑒1′′

Note: This figure presents the impact of increasing termination notice in the (θ, w) plain,

where the intersection of the wage curve and the job creation curve determines the equilib-

rium pair. Increasing the duration of termination notice shifts the job creation curve towards

the origin, while the wage curve shifts upwards and to the left.
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