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A Additional Applications

We apply Theorem 1 to twelve additional applications in the fields of spatial networks, production
networks, social networks, and demand estimation.

A.1 An urban model with spatial spillovers

Here we consider another variant of the urban spatial model based on the seminal work of Ahlfeldt,
Redding, Sturm, and Wolf (2015) presented in Section 3, where we include productivity and amenity
spillovers that depend flexibly on the distribution of workers and residents, respectively, across the
entire city.

A.1.1 The Model

We first describe the model and derive its equilibrium conditions.

Setup Consider a city comprised of i ∈ {1, ..., N} ≡ N blocks inhabited by agents with measure
L̄. Each agent ν chooses where to live i ∈ N and where to work j ∈ N in order to maximize her
utility:

Uij (ν) =
uiwj

µij
εij (ν) , (16)

where ui and wj are the value of living at block i and working at block j, respectively, common
to all agents, µij ≥ 1 is the commuting cost, and εij (ν) is the idiosyncratic preference of agent ν
over location pairs, which we assume is extreme value (Frechet) distributed with shape parameter
θ > 0.

Commuting flows The number of agents who choose to live in location i and work in location j
can be written as:

Lij =

(
uiwj

µij

)θ

λ, (17)

where λ ≡ L̄W−θh and W ≡
(∑

(i,j)∈N 2

(
uiwj

µij

)θ) 1
θ

= E
(
max(i,j)∈N 2 Uij (ν)

)
is the expected

welfare of agents.

Spatial Spillovers Suppose that an agent working in block j produces a costlessly traded nu-
meraire good, for which they are paid their marginal product Aj , which is the only value they
derive from their work, i.e. wj = Aj . Suppose that their productivity depends both on the innate
productivity of block j, Āj , and the entire distribution of populations of workers throughout the
city as follows:

Ai = Āi

∑
j∈N

FA
ijL

W
j

α

, (18)

where FA
ij > 0 governs the effect of the number of workers in j ∈ N on the productivity of a worker

in i ∈ N and α governs the overall strength of the productivity spillover.
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Similarly, suppose that an agent residing in block i receives a value of living there that depends
both on the innate amenity of block i, ūi, and the entire distribution of populations of residents
throughout the city as follows:

ui = ūi

∑
j∈N

F u
ijL

R
j

β

, (19)

where F u
ij > 0 governs the effect of the number of residents in j ∈ N on the amenity of a worker in

i ∈ N and β governs the overall strength of the amenity spillover.8

Equilibrium For any geography

{{
µij , F

A
ij , F

u
ij

}
(i,j)∈N 2

,
{
Āi, ūi

}
i∈N

}
, measure of agents L̄,

and model elasticities {θ, α, β}, equilibrium is a set of workplace and residential populations{
LW
i , LR

i

}
i∈N such that:

1. The measure of workers employed in block i ∈ N is equal to the total number of agents
commuting to that location:

LW
i =

∑
j∈N

Lji (20)

2. The measure of residents residing in block i ∈ N is equal to the total number of agents
commuting from that location:

LR
i =

∑
j∈N

Lij (21)

As in Section 3 (and unlike Ahlfeldt, Redding, Sturm, and Wolf (2015)) we do not impose that
rental rates of residential and commercial floor spaces are equalized.

A.1.2 Applying Theorem 1

Substituting the commuting equation (17) into the equilibrium conditions (20) and (21) and re-
arranging equations (18) and (19) yields:

LW
i A−θ

i = λ
∑
j∈N

µ−θ
ji u

θ
j

LR
i u

−θ
i = λ

∑
j∈N

µ−θ
ij Aθ

j ,

A
1
α
i = Ā

1
α
i

∑
j∈N

FA
ijL

W
j

u
1
β

i = ūi
∑
j∈N

F u
ijL

R
j ,

which together comprise our equilibrium system. It is immediately evident that this system of
4N equations in 4N unknowns takes the form of equation (8), which is a special case of equation

8Assuming alternative spillover functions Ai = Āi

∑
j∈N FA

ij

(
LW
j

)α
and ui = ūi

∑
j∈N Fu

ij

(
LR
j

)β
result

in an elasticity matrix with the same spectral radius as the one below, i.e. the conclusions of Theorem 1
below are unchanged.
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(1), so by applying Remarks 4 and 5, it is sufficient to characterize the spectral radius of matrix
A ≡

∣∣BΓ−1
∣∣ ,where:

B ≡


0 0 0 θ
0 0 θ 0
1 0 0 0
0 1 0 0

 , Γ ≡


1 0 −θ 0
0 1 0 −θ
0 0 1

α 0
0 0 0 1

β

 ,

so that:

A ≡


0 0 0 |βθ|
0 0 |αθ| 0
1 0 |αθ| 0
0 1 0 |βθ|


From the Collatz–Wielandt Formula, a sufficient condition for uniqueness is hence |α| θ ≤ 1

2 and
|β| θ ≤ 1

2 , i.e. both the productivity and amenity agglomeration forces must be no stronger than
the dispersion forces arising from the heterogeneity in agent preferences governed by θ. Note these
conditions are identical to the H = 1 case of the example presented in Section 3, i.e. the presence
of spatial spillovers does not affect the uniqueness condition.

We remark that while the full model presented in Ahlfeldt, Redding, Sturm, and Wolf (2015)
included spatial spillovers, that paper only offered conditions for uniqueness in the absence of such
spillovers; as a result, to our knowledge this is the first proof of uniqueness of an urban model
in the presence of spatial spillovers. A similar methodology can be applied to incorporate spatial
spillovers in other spatial settings—but with very different implications for the properties of the
model—as we illustrate in the following economic geography example.

A.2 An economic geography model with spatial spillovers

We now extend the economic geography framework of Allen and Arkolakis (2014) to incorpo-
rate spatial productivity and amenity spillovers. It turns out that any spatial productivity or
amenity spillovers can result in multiple equilibria—a very different conclusion from the urban
model—highlighting the importance of Theorem 1 part (iii).

A.2.1 The model

Setup There are N locations, each of which produces a differentiated variety of a good. Agents
in location i ∈ {1, ..., N} ≡ N have constant elasticity of substitution preferences over the differen-
tiated varieties so that their welfare Wi is:

Wi =

∑
j∈N

q
σ−1
σ

ji

 σ
σ−1

ui,

where qji is the quantity of goods produced in j ∈ N and consumed in i, σ ≥ 1 is the elasticity of
substitution, and ui is the local amenity. Agents are perfectly mobile and earn wage wi by supplying
their unit labor inelastically. Labor is the only factor of production; let Ai be the productivity of an
agent in location i ∈ N . Finally, the transportation of goods are subject to iceberg transportation
costs, where Tij ≥ 1 indicates the number of goods needed to be sent from i ∈ N in order for one
unit to arrive in j ∈ N .
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Spatial spillovers We suppose that productivities and amenities depend on the distribution of
labor across all locations through spatial spillovers as follows:

Ai = Āi

∑
j∈N

FA
ijLj

α

(22)

ui = ūi

∑
j∈N

F u
ijLj

β

(23)

where Āi and ūi are the exogenous productivity and amenity, respectively, of location i ∈ N ;
FA
ij > 0 and F u

ij > 0 capture how the population in location j ∈ N affects the productivity and
amenity, respectively in location i ∈ N , and α and β are the productivity and amenity spillover
elasticities, respectively common to all locations.9

Equilibrium For any geography

{
{Tij}(i,j)∈N 2 ,

{
Āi, ūi

}
i∈N ,

{
FA
ij

}
(i,j)∈N2

}
equilibrium is a set

of populations, wages, productivities, and amenities {Li, wi, Ai, ui}i∈N such that:

1. Markets clear, i.e. income in a location i ∈ N is equal to the value of all goods sold in all
other locations:

wiLi =
∑
j∈N

Xij ,

where Xij =
T 1−σ
ij (wi/Ai)

1−σ∑N
k=1 T

1−σ
kj (wk/Ak)

1−σwjLj is the bilateral flow of goods from i ∈ N to j ∈ N .

2. Trade is balanced, i.e. income in a location i ∈ N is equal to the value of all goods purchased
from all other locations:

wiLi =
∑
j∈N

Xji

3. Welfare is equalized, i.e. there exists a scalar W > 0 such that for all i ∈ N ,Wi ≤ W , with
the equality strict if Li > 0.

4. Productivities and amenities are given by equations (22) and (23).

A.2.2 Applying Theorem 1

Combining the first three equilibrium conditions (see equations (10) and (11) of Allen and Arkolakis
(2014)) and re-arranging equations (22) and (23) yields the following system of 4N equilibrium

9Assuming alternative spillover functions Ai = Āi

∑
j∈N FA

ijL
α
j and ui = ūi

∑
j∈N Fu

ijL
β
j result in an

elasticity matrix with the same spectral radius as the one below, i.e. the conclusions of Theorem 1 below
are unchanged.
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conditions in 4N unknowns:

Liw
σ
i A

1−σ
i = W 1−σ

N∑
j=1

T 1−σ
ij Ljw

σ
j u

σ−1
j

w1−σ
i u1−σ

i = W 1−σ
N∑
j=1

T 1−σ
ji w1−σ

j Aσ−1
j

A
1
α
i = Ā

1
α
i

∑
j∈N

FA
ijLj

u
1
β

i = ū
1
β

i

∑
j∈N

F u
ijLj

which together comprise our equilibrium system. It is immediately evident that this system takes
the form of equation (8), which is a special case of equation (1), so by applying Remarks 4 and 5,
it is sufficient to characterize the spectral radius of matrix A ≡

∣∣BΓ−1
∣∣ ,where:

B ≡


1 σ 0 σ − 1
0 1− σ σ − 1 0
1 0 0 0
1 0 0 0

 , Γ ≡


1 σ 1− σ 0
0 1− σ 0 1− σ
0 0 1

α 0
0 0 0 1

β

 ,

so that:

A ≡


1 0 |α| (σ − 1) |β| (σ − 1)
0 1 |α| (σ − 1) |β| (σ − 1)
1 σ

σ−1 |α| (σ − 1) |β|σ
1 σ

σ−1 |α| (σ − 1) |β|σ

 .

It can be shown that ρ (A) ≤ 1 only if α = β = 0, i.e. only if there are no spatial spillovers.
Note that this is a substantial departure from Allen and Arkolakis (2014) and Allen, Arkolakis, and
Takahashi (2020), who show that uniqueness is guaranteed in an economic geography model with
local spillovers as long as the dispersion forces are stronger than agglomeration forces; in contrast,
Theorem 1 part (iii) says that there will be geographies for which there are multiple equilibria for
in the presence of any spatial spillover, i.e. for any non-zero α and β. Note too that this is also
a major qualitative difference with the urban example above, where the conditions for uniqueness
were the same for local and spatial spillovers.

A simple example suffices to provide intuition for the possibility of multiple equilibria. Consider
a world of two identical locations (i.e. Āi = ūi = 1 for i, j ∈ {1, 2}) separated by trade costs τ > 1.
Suppose there are only productivity spillovers (i.e. β = 0); the case with amenity spillovers is

similar. For any α > 0 and FA
ij =

{
1 if i = j

0 if i ̸= j
— i.e. a case where the spillovers are positive and

depend only on one’s own population—there exists a τ > 1 such that there are three equilibria:
one in which both locations have an equal population and one in which one of the two locations
has a greater concentration of population (to take advantage of the agglomeration forces). But for

any α < 0 and FA
ij =

{
0 if i = j

1 if i ̸= j
— i.e. a case where the spillovers are negative and depend only

on the other location’s population—there exists a τ > 1 such that there are again three equilibria:
one in which both locations have an equal population and one in which one of the two locations has
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a greater concentration of population (to take advantage of the fact that the smaller population in
the neighbor increases productivity spillovers). That is, with spatial spillovers, a dispersion force
from population elsewhere acts like a local agglomeration force.

To our knowledge, this is the first characterization of uniqueness in an economic geography
model with spatial spillovers.

A.3 A trade model with intermediate goods and tariffs

We now consider a Ricardian model based on the seminal work of Eaton and Kortum (2002) but
augmented to include tariffs and an input-output network as in Alvarez and Lucas (2007).

A.3.1 The model

Setup

There are N locations, each of which produces 3 sets of goods: a continuum of tradeables qi(u)
where u ∈ [0, 1], a aggregate intermediate good ai, and a non-tradeable final good ci. Agents in the
economy derive their utility from the non-tradeable final good ci. This final good ci is produced in
a Cobb-Douglas manner using the intermediate good ai and labor i.e. ci = sαfia

1−α
fi where sfi and

afi are the labor and intermediate inputs in final good production, respectively. The intermediate
good ai is a Spence-Dixit-Stiglitz aggregate of all varieties of tradeables:

ai =

[∫ 1

0
(qi∗(u))

1−1/η du

] η
η−1

,

where i∗ ≡ argminj∈N pji (u), i.e. each variety of tradeable is sourced from the lowest cost location.
Tradeables in turn are produced using the composite intermediate good Ii as input, along with labor
as:

qi(u) = xi(u)
−θsi(u)

βai(u)
1−β

where xi(u)
−θ is the total factor productivity, ai(u) is the quantity of the intermediate good used

in the production of tradeable variety u and si(u) is the labor input. Following Alvarez and Lucas
(2007), we assume xi(u) follows an exponential distribution with parameter λi and its draws are
independent across u (and across countries), allowing us to rewrite the above equations in terms
of x. Each country i ∈ {1, 2, ...N} ≡ N is endowed with immobile labor Li. Transportation costs
between countries are iceberg in nature, where to keep the notation similar to Alvarez and Lucas
(2007), we denote by κij ≤ 1 as the fraction arriving in location j ∈ N if one unit is set from
location i ∈ N . Tariffs ωij are defined as the proportion of revenue received by producer in country
j for a unit of its tradeable good sold in country i. In addition, we define Ymi as the revenue of the
tradeables sector and Ii as the expenditure on tradeables in country i.

Equilibrium

The equilibrium can be characterized by three sets of equations. The first one corresponds to
equation 3.8 in Alvarez and Lucas (2007):

p
−1/θ
mi =

∑
j∈N

λj

(
1

κij

AB

ωij

)−1/θ (
wβ
j p

1−β
mj

)−1/θ
. (24)
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Now we derive the other two, which are different from those in Alvarez and Lucas (2007) and
convenient for the exercise here. Let Lfi and Lmi be the numbers of labor used in country i’s
production of the final and intermediate goods. We have αYfi = Lfiwi and βYmi = Lmiwi. Adding
both sides of the two equations, we get

αYfi + βYmi = Liwi.

Also let Ti be the total tariffs collected by country i. Notice that the residents’ total income in
country i is Liwi + Ti and all used to buy the final goods. That is Yfi = Liwi + Ti. Substitute the
expression into the above displayed equation. We can solve

Liwi =
α

1− α
Ti +

β

1− α
Ymi. (25)

Let Ij be the total expenditure on intermediate goods in country j. Then DjiIj is the amount
spent on intermediate goods from country i, of which (1− ωji)DjiIj is tariff and goes to the
government and ωjiDjiIj goes to the producer. Thus, we have Ti =

∑
j∈N (1− ωji)DjiIj and

Ymi =
∑

j∈N ωjiDjiIj . Insert them into equation (25). Then we get our second equilibrium
equation

Liwi =
∑
j∈N

α (1− ωji) + βωji

1− α
DjiIj . (26)

Furthermore, notice that producers’ total expenditure Ii+Liwi must be equal to their total income
Ymi+Yfi i.e. Ii+Liwi = Ymi+Yfi. Since Liwi+Ti = Yfi, Ii must be equal to Ymi+Ti. Substituting
the expression of Ymi and Ti, we then have

Ii =
∑
j∈N

DjiIj . (27)

Although the above equilibrium equations can be simply transformed the one in Theorem 1,
unfortunately, the corresponding spectral radius we get is larger than 1.10 We move to impose a
quasi-symmetry condition like Allen and Arkolakis (2014) that can allow us to reduce the three
sets of equilibrium equations into two. Specifically, we assume κijωij = τijcirj for some τij , ci, and
rj where τ is symmetric i.e. for any i, j, τij = τji.

Notice that
∑

j∈N Dij = 1. Multiplying it with both sides of equation (27), we get
∑

j∈N DijIi =∑
j∈N DjiIj . Substitute into the expression of equation Dij = λj

(
wβ

j p
1−β
mj

pmi

)−1/θ (
AB

κijωij

)−1/θ
and

κijωij = τijcirj , then:

∑
j∈N

λj

(
wβ
j p

1−β
mj

pmi

)−1/θ (
AB

τijcirj

)−1/θ

Ii =
∑
j∈N

λi

(
wβ
i p

1−β
mi

pmj

)−1/θ (
AB

τjicjri

)−1/θ

Ij .

On the left side of this equation, keep all the i-related variables (ci, pmi, and Ii) and move the
rest (the summation) to the right side; similarly, on the right side of this equation, keep all the

10This does not necessarily imply multiplicity of solutions since {Kijh > 0}i,j∈N ,h∈H are correlated unlike

Part (iii). For example, Kijh in equations (26) and (27) both depend on tariffs and thus are correlated with
each other.
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i-related variables (λi, ri, wi, and pmi,) and move the rest (the summation) to the left side. We
have:

c
1/θ
i p

1/θ
mi Ii∑

j∈N

(
AB
τji

)−1/θ
c
1/θ
j p

1/θ
mj Ij

=
λir

1/θ
i

(
wβ
i p

1−β
mi

)−1/θ

∑
j∈N

(
AB
τij

)−1/θ
λjr

1/θ
j

(
wβ
j p

1−β
mj

)−1/θ
.

Denote the numerators, c
1/θ
i p

1/θ
mi Ii and λir

1/θ
i

(
wβ
i p

1−β
mi

)−1/θ
, as Ĩi and w̃i respectively. Further-

more, denote
(
AB
τij

)−1/θ
as τ̃ij . Notice that τ̃ij = τ̃ji. Then we can write the above equation as

Ĩi∑
j∈N τ̃ij Ĩj

= w̃i∑
j∈N τ̃ijw̃j

, of which the value we denote as γi. Then we can write this equation as

two equations:

Ĩi =
∑
j∈N

γiτ̃ij Ĩj ;

w̃i =
∑
j∈N

γiτ̃ijw̃j .

Thus Ĩ and w̃ can be viewed as two solutions of equation xi =
∑

j∈N γiτ̃ijxj . According to

Perron–Frobenius theorem, Ĩ and w̃ is different at most up to scale i.e. there exists some constant
a such that Ĩi = aw̃i. Furthermore, substitute into the expression of Ĩi and w̃i and we get

Ii = aλir
1/θ
i c

−1/θ
i

(
wβ
i p

2−β
mi

)−1/θ
. (28)

Notice that in this expression, Ii, wi, and pmi are nominal variables and we can scale them arbitrarily
and get the corresponding a. Therefore, a simply reflects the normalization of nominal variables
and without loss of generality, we set a = 1.

Substitute equation (28) into equation (26). Then, the equilibrium can be characterized by
equations (24) and (26) where the endogenous variables are: pmi, the price index of tradeables in
country i; and wi, country i’s wage.

Applying Theorem 1

As in the previous example, the equilibrium of this system can be expressed in the special form of
equation (1) presented in equation (8) in Remark 5. Now we show how to transform the equilibrium

equations into the form of equation (8). To see this, denote λj

(
1
κij

AB
ωij

)−1/θ
in equation (24) as

K1
ij , so that it becomes

p
−1/θ
mi =

∑
j∈N

K1
ij

(
wβ
j p

1−β
mj

)−1/θ
. (29)

Second, substitute the expression ofDij = λj

(
wβ

j p
1−β
mj

pmi

)−1/θ (
AB

κijωij

)−1/θ
and Ii = aλir

1/θ
i c

−1/θ
i

(
wβ
i p

2−β
mi

)−1/θ

into equation (26), multiply both sides by
(
wβ
i p

1−β
mi

)1/θ
L−1
i , so that equation (26) becomes:
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w
1+β/θ
i p

(1−β)/θ
mi =

∑
j∈N

K2
ij

(
wβ
j p

1−β
mj

)−1/θ
, (30)

where K2
ij ≡

α(1−ωji)+βωji

1−α

(
AB

κjiωji

)−1/θ
λiλjr

1/θ
j c

−1/θ
j L−1

i .

Now we have transformed the equilibrium equations into the form (8) and with two set of
endogenous variables {pmi, wi}i=1,2,...,n. Notice that K1

ij and K2
ij , defined above are positive when

α, β, θ > 0 and 0 < ωij ≤ 1.
Then we have the corresponding parameter matrices

Γ =

(
−1/θ 0

(1− β) /θ 1 + β/θ

)
, B =

(
− (1− β) /θ −β/θ
− (1− β) /θ −β/θ

)
Clearly, Γ is always invertible as long as θ > 0. Therefore, we have

∣∣BΓ−1
∣∣ = ( (1−β)θ

β+θ
β

β+θ
(1−β)θ
β+θ

β
β+θ

)
Here ρ

(∣∣BΓ−1
∣∣) = β+θ−βθ

β+θ < 1 i.e. we always have (up-to-scale) uniqueness with quasi-symmetry
trade costs κij and tariffs ωij . In comparison, the conditions for uniqueness in Alvarez and Lucas
(2007) (see their Theorem 3) are:

(i)

(
min

i,j∈N 2
{κij} min

i,j∈N 2
{ωij}

) 2
θ

≥ 1− β; (ii) α ≥ β; (iii) 1− min
i,j∈N 2

{ωij} ≤ θ

α− β
,

although these conditions are derived only for the special case of uniform tariffs (i.e. ωij = ωi for
all j ∈ N ).

A.4 A production network with multiple intermediates goods

We extend the many firm production network in the seminal paper by Acemoglu, Carvalho,
Ozdaglar, and Tahbaz-Salehi (2012) to include (1) a constant elasticity of substitution (CES) ag-
gregator across labor and intermediates (as discussed in Carvalho and Tahbaz-Salehi (2019)), (2)
a constant elasticity of substitution between intermediate goods (as discussed in Carvalho, Nirei,
Saito, and Tahbaz-Salehi (2021)), and (3) multiple types of intermediates goods.

A.4.1 The model

Setup There areN different competitive firms, each of which produceH distinct products using as
intermediate goods the output of all other firms. The quantity of productH by firm i ∈ {1, ..., N} ≡
N , Qih, is determined by a constant elasticity of substitution production function combining labor
and a composite bundle of intermediate goods as follows:

Qih =

[
(1− µih)

1
ζh (AihLih)

ζh−1

ζh + µ
1
ζh
ih M

ζh−1

ζh
ih

] ζh
ζh−1

where µih is between 0 and 1 and governs the relative importance of labor and intermediate goods,
Lih is the amount of labor, Aih is the (exogenous) labor productivity, ζh is the elasticity of substi-
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tution between labor and intermediates, and the intermediate input bundle Mih is a CES aggregate
of inputs purchased from other firms:

Mih =
∏
h′∈H


∑

j∈N
a

1
σh′
jih′hq

σh′−1

σh′
jih′h


σh′

σh′−1


βh′h

,

where σh′ is the elasticity of substitution between different intermediate goods, ajih′h represents
the production network of firms j supplying intermediates h′ in firm i’s production of product h,
qjih′h is the quantity supplied, and {βh′h}h′∈H is the intermediates share satisfying

∑
h′ βh′h = 1

for all h.

Equilibrium Solving the cost minimization problem of the firm results in the following system of
equations for equilibrium firm prices pih:

p1−ζh
ih = (1− µih) (w/Aih)

1−ζh + µih

∏
h′∈H

β
−βh′h
h′h

∑
j∈N

ajih′hp
1−σh′
jh′


βh′h
1−σh′

(1−ζh)

(31)

where w is the (exogenous) market wage.

A.4.2 Applying Theorem 1

Take both sides of equation (31) to the power of 1
1−ζh

. Then, due to Remark 1 it takes the form of
equation (1). Denote its right side as Fih(·). We can directly bound its elasticity as follows:∑

j∈N

∣∣∣∣ ∂ lnFih

∂ ln pjh′

∣∣∣∣ < βh′h.

Since
∑

h′ βh′h = 1, according to Remark 1, we have ρ(β)=1. Thus by Theorem 1 (part ii.a)
and Remark 1, there exists at most one equilibrium. To our knowledge, this is the first proof of
uniqueness of an equilibrium in a many firm production network with multiple types of intermediates
goods and constant elasticity of substitution between different types of intermediate goods and
between the intermediate goods bundle and labor.

A.5 Identification of productivities in a production network model with
many locations and sectors

We next consider input-output production networks with many locations and sectors as in the work
of Caliendo and Parro (2015). The purpose of this is two-fold: first, it demonstrates how Theorem
1 can be applied to establish identification results; second, it demonstrates the ubiquity of economic
situations where ρ (A) = 1, highlighting the importance of part (ii) of Theorem 1.

A.5.1 The Model

Setup Consider an economy comprised of i ∈ {1, ..., N} ≡ N locations and h ∈ {1, ...,H} ≡
H sectors. Each sector h in location i produces a differentiated intermediate good (denoted as

10



good (i, h)) by combining local labor with a Cobb-Douglas combination of a CES composite of
intermediates from all locations according to the following production function:

Qih = AihL
αh
ih

∏
h′∈H


∑

j∈N
q

σh′−1

σh′
jih′h


σh′

σh′−1


βh′h

,

where qjih′h is the quantity of the good (j, h′) used as an intermediate good in the production of
good (i, h), {σh}h∈H are the sector elasticities of substitution across locations, {αh}h∈H are the
sector labor shares, and B ≡ [βh′h] is an H ×H input-output matrix of intermediate inputs, and
{Aih}h∈Hi∈N are the productivities of each sector-location. The shipment of good (j, h′) from j ∈ N
to i ∈ N incurs an iceberg trade cost τijh′ ≥ 1.

Suppose that each location i ∈ N is endowed with Li agents, each of whom is perfectly mobile
across sectors and earns (equilibrium) wage wi for inelastically supplying one unit of labor. Agents
use their wages to consume a non-traded final good produced by combining intermediate goods
with the production function Ci =

∏
h∈HMγh

ih , where
∑

h∈H γh = 1 are the consumption shares of

each sector, Mih =

(∑
j∈N m

σh−1

σh
jh

) σh
σh−1

, and mjh is the quantity of the good (j, h) used in the

production of final good.

Equilibrium From the cost minimization, the equilibrium price of the intermediate good produced
by sector h ∈ H in location i ∈ N is:

pih = ch
1

Aih
wαh
i

∏
h′∈H

P
βh′h
ih′ , (32)

where
P 1−σh
ih =

∑
j∈N

τ1−σh
jih p1−σh

jh (33)

is a sector-location price index of intermediate goods purchased in all locations, and ch > 0 is a
exogenous constant.11

Let Yih ≡ pihQih denote the income of sector h ∈ H in location i ∈ N , which in equilibrium is
equal to its total sales to all locations and sectors:

Yih =
∑
j∈N

τ1−σh
ijh p1−σh

ih P σh−1
jh

∑
h′∈H

(βhh′ + γhαh′)Yjh′ , (34)

where the two terms in the last summation captures how much spending in sector (j, h′) translates
to spending in sector (i, h) through intermediate production and final good purchases by consumers,
respectively.

Identification The question we are interested in is the following. Suppose one observes (1) the
sales of each sector h ∈ H in each location i ∈ N , i.e. {Yih}h∈Hi∈N ; (2) the labor endowment {Li}i∈N ;
(3) the sector elasticities {σh}h∈H; (4) the sector production function labor shares {αh}h∈H and
input-output matrix B ≡ [βh′h]; (5) the final good production shares {γh}h∈H ;and (6) the sector-

11In particular, ch ≡ α−αh

h

∏
h′∈H β

−βh′h
h′h .
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specific bilateral trade costs {τijh}h∈Hi,j∈N . Is it possible to identify the productivity of each sector

h ∈ H in each location i ∈ H, {Aih}h∈Hi∈N ? One could imagine many instances where recovering
the underlying productivities of different sectors in different locations from observed sales data is
useful and important: e.g. in the study of comparative advantage, structural change, technological
innovations, etc.

A.5.2 Applying Theorem 1

We begin by remarking that since wages can be inferred directly from the observed labor share
of income and labor endowment, given knowledge of prices {pih}h∈Hi∈N and price indices {Pih}h∈Hi∈N ,

one can immediately recover productivities {Aih}h∈Hi∈N from equation (32). Hence, it is sufficient to
focus on the question of identification of prices and price indices.

Define the 2H × 1 endogenous vector xi =

[{
P 1−σh
ih

}H

h=1
,
{
pσh−1
ih

}H

h=1

]
so that equations (33)

and (34) can be written as:

xih =

{∑
j Kij,hx

−1
j,h+H if h ∈ {1, ...,H}∑

j Fij,hx
−1
j,h−H if h ∈ {H + 1, ..., 2H}

whereKij,h ≡ τ1−σh
jih for h ∈ {1, ...,H} and Fij,h ≡ τ1−σh

ijh

(∑
h′∈H(βhh′+γhαh′ )Yjh′

Yih

)
for h ∈ {H + 1, ..., 2H}.

As a result, we can define the 2H × 2H matrix of elasticity bounds as A ≡
(

0 IH
IH 0

)
,where IH

is the H ×H identity matrix. Regardless of the particular input output structure (or the values of
labor shares, final goods shares, or sector elasticities) we have ρ (A) = 1, and so from Theorem 1
part (ii) there is at most one set of (column-wise to scale unique) prices {pih}h∈Hi∈N and price indices

{Pih}h∈Hi∈N consistent with equations (33) and (34). Thus, there is at most one (column-wise up to
scale) unique set of productivities {Aih} consistent with observed sales data.12

A.6 A forward-looking migration model with agglomeration spillovers

We next consider a dynamic migration framework. The model is based on the work of Artuç,
Chaudhuri, and McLaren (2010), extended into general equilibrium as in Caliendo, Dvorkin, and
Parro (2019) with productivity and amenity spillovers as in Allen and Donaldson (2020). Here
we consider a version of the framework where all locations produce a homogeneous and costlessly
traded numeraire good.

Setup There are i ∈ {1, ..., N} ≡ N locations inhabited by identical agents that are mobile across
space. Time t ∈ {0, 1, ..., T} ≡ T is discrete and finite.13 In each period t ∈ T , agent v derives a
period utility ln (ui,tAi,t) from living at location i ∈ N , where ui,t and Ai,t refer to the amenity and
productivity at location i, respectively. The agent discounts the future at a rate δ < 1.

We denote the value of living at location i at period t as vi,t. For period t = T , this value is
simply the period utility i.e. vi,T = ln (ui,TAi,T ). For any period t ≤ T − 1, this value depends

12The column-wise up to scale uniqueness implies that the relative productivity within sector across lo-
cations can be identified from sales data, but the relative productivity across sectors cannot; intuitively,
if the productivity of sector h doubles in all locations, given the unit price elasticity from the presumed
Cobb-Douglas production function, its price will half, leaving its sales unchanged.

13Extending the results below to an infinite T is an interesting avenue for future research.
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on both her period utility at location i and her highest utility of moving to another location next
period:

vit = ln (ui,tAi,t) + δEt

[
max
j∈N

(vj,t+1 − µij,t+1 + ϵij,t+1)

]
,

where µij,t+1 represents the migration cost from i to j, ϵij,t+1 (v) is the idiosyncratic utility shock
and Et is the expectation operator. Assuming that ϵij,t+1 (v) follows a Type-I Extreme Value
distribution with zero mean and shape parameter θ, we obtain:

Vit ≡ exp (vi,t) = ui,tAi,t

∑
j

T−θ
ij,t+1V

θ
j,t+1

 δ
θ

for all t ≤ T − 1, (35)

where Tijt ≡ exp (−µij,t) and
Vi,T = ui,TAi,T , for t = T . (36)

Spillovers We suppose that agents’ location choices can endogenously affect the productivity Ajt

and amenity ujt of residing in a location. Specifically, these depend both on the innate productivity
(amenity) of block i, Āit (ūit), and the number of each type of agents working (residing) in that
location:

Ai,t = Āi,tL
α
i,t;ui,t = ūi,tL

β
i,t. (37)

Equilibrium For any given geography
{
µij,t, Āi,t, ūi,t

}t∈T
i∈N , initial population distribution {Li,0}i∈N

and model parameters {α, β, θ, δ}, an equilibrium is a pair of sequences of populations and values
{Li,t, Vi,t} such that equations (36), (37) hold, equilibrium condition (35) holds, and the choice
probability of agent in i to be in location j in period t, πij,t, is obtained from the value function
(35), resulting in the following equilibrium law of motion of labor:

Lit =
∑
j∈N

πij,tLj,t−1 =
∑
j∈N

T θ
ji,tV

θ
i,t∑

k∈N T θ
jk,tV

θ
k,t

Lj,t−1, (38)

which holds for all i ∈ N and t ∈ T .

Theorem 1, parts (i) and (ii) We now apply Theorem 1 to characterize the equilibrium of the
model. We proceed in three steps.

Step 1: Re-write the equilibrium in the form of equation (1) We first define Gi,t ≡(∑
j T

θ
ij,tV

θ
j,t

) 1
θ
, so that equation (35) becomes Vi,t = ui,tAi,tG

δ
i,t+1. Substituting this expression

and equation (37) back into the definition of Git yields:

Gθ
it =

∑
j∈N

Kij,tL
γθ
j,tG

δθ
j,t+1,

where γ ≡ α+ β and Kij,t = T θ
ij,tĀ

θ
j,tū

θ
j,t. Similar substitutions in equation (38) yields:

L1−γθ
i,t G−θδ

i,t+1 =
∑
j∈N

Kji,tG
−θ
j,t Lj,t−1.
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We then apply the logic of Remark 5 and further rewrite equilibrium equations (35) and (38) in the
format of equation (8), by setting xi,t ≡ Gθ

i,t and yi,t ≡ L1−γ
i,t G−θδ

i,t+1 so that we obtain for all t < T :

xi,t =
∑
j∈N

Kij,ty
γθ

1−γθ

j,t x
δ

1−γθ

j,t+1, (39)

yi,t =
∑
j∈N

Kji,tx
δ−1+γθ
1−γθ

j,t y
1

1−γθ

j,t−1 . (40)

Following this process t = T yields:

xi,T =
∑
j∈N

Kij,T y
γθ

1−γθ

j,T ; (41)

yi,T =
∑
j∈N

Kji,Tx
δ−1+γθ
1−γθ

j,T y
1

1−γθ

j,T−1. (42)

Equations (39)–(42) comprise an N × 2T system of equations in the form of equation (1) (with
H = 2T ), as required.

Step 2: Construct the matrix of elasticity bounds A We now construct the matrix of
elasticity bounds A. Because the elasticities are constant, the bounds are simply the elasticities
themselves. Moreover, because the system of equations only depends on the endogenous outcomes
in the prior period, current period, and subsequent period, we can write the matrix A solely as a
function of the following three matrices corresponding to elasticities of xit, yit with respect to each
of these two variables at the same time period t, at time period t+ 1, and at time period t− 1:

MD ≡

 0
∣∣∣ γθ
1−γθ

∣∣∣∣∣∣ δ−1+γθ
1−γθ

∣∣∣ 0

 , MU ≡

( ∣∣∣ δ
1−γθ

∣∣∣ 0

0 0

)
, ML ≡

(
0 0

0
∣∣∣ 1
1−γθ

∣∣∣
)
,

so that:

A ≡


MD MU 0 · · · 0
ML MD MU · · · 0
0 ML MD · · · 0
· · · · · · · · · · · · MU

0 0 0 ML MD

 .

From parts (i) and (ii.b) of Theorem 1, the equilibrium system is unique if ρ (A) ≤ 1. The next
(optional) step helps to provide additional economic intuition.

Step 3: Simplify the condition on the spectral radius Suppose that γ ≡ α + β ≤ 0, i.e.
the spillovers are net dispersive. The Collatz–Wielandt Formula implies that the spectral radius
can be bounded above by the maximum of the sum of the absolute value of the elements of each
columns of the matrix; as a result, if the sum of every column of A is less than or equal to one,
then uniqueness is assured. Consider the first column. Since δ < 1 and γ ≤ 0, we have:∣∣∣∣δ − 1 + γθ

1− γθ

∣∣∣∣ = 1− γθ − δ

1− γθ
< 1.
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Similarly, it is straightforward to show that the sum of any other odd column or any even column is
equal to one. Hence, as long as γ ≤ 0, then for any δ < 1, we have ρ (|A|) ≤ 1, and the equilibrium
system is unique.

Theorem 1, part (iii): Multiplicity Part (iii) of Theorem 1 implies that for any choice of model
parameters such that ρ (A) > 1, there will exist a geography such that there are multiple equilibria.
We illustrate this in a simple economy with two identical locations with symmetric migration costs
(N = 2, Āi = ūi = 1, µijt = µ if i ̸= j, and µijt = 0 if i = j) initially inhabited by an equal
number of agents with preferences defined by a discount parameter of δ = 0.99 and migration
elasticity of θ = 2. When γ > 0 (i.e. the spillovers are net agglomerative), as long as the migration
costs µ are sufficiently large, there exist three possible equilibria: an (unstable) equilibrium where
both locations remain equally populated, and another type of equilibrium where economic activity
becomes concentrated in one of the two locations to take advantage of the agglomeration economies.

Comparison to previously known results To our knowledge, little is known about the equi-
librium properties of a dynamic economic geography model. Kleinman, Liu, and Redding (2023)
consider a log-linearized version of a dynamic economic geography model but do not characterize
the non-linear system. Allen and Donaldson (2020) provide conditions for uniqueness, but those
conditions themselves are written in terms of properties of corresponding second-order linear differ-
ence equations. Bilal (2023) provides sufficient conditions for local uniqueness around the steady
state(s) for infinite lived agents in continuous time but does not consider the global uniqueness
of the economy. In contrast, the results here—albeit in a setting with only migration costs and
no trade frictions—are simple and straightforward: if spillovers are net dispersive, i.e. as long as
agents would prefer to reside apart from each other, uniqueness is assured. It is worthwhile noting
that this condition is identical to the one given by Allen and Arkolakis (2014) for a static setting
with trade costs and perfect labor mobility.

A.7 Social interactions with many types of networks

We consider a social network based on the work of Ballester, Calvó-Armengol, and Zenou (2006)
(as summarized in the review article of Jackson and Zenou (2015)) where agents’ payoffs depend
both on their own actions as well as the actions of others in their social network. We extend that
framework to incorporate (a) flexible impacts of others’ actions on one’s own payoffs; (b) many
different types of actions; and (c) many different types of networks. Allowing agents’ different
types of actions through different networks—and for those choices to flexibly affect the payoffs of
all other agents’ actions—enables the study of a variety of empirically relevant social interactions,
including e.g. the interdependent nature of different types actions on different social networks
(friends, family, work, etc).

Setup There are i ∈ {1, ..., N} ≡ N agents, each of whom decides how much effort xih to exert
on each activity h ∈ {1, ...,H} ≡ H. Agent i’s payoff from activity h is:

uih

({
xjh′

}h′∈H
j∈N

)
= cihxih −

x2ih
2

+ xih
∑
j ̸=i

fijh

({
xjh′

}
h′∈H

)
,

where cih > 0 is the (constant) marginal own benefit of effort, costs are quadratic in effort, and
fijh (·) ≥ 0 is a function capturing the network of type h and how others’ efforts in all activities
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affect agent i’s payoff in activity h. Agent i’s overall utility is given by:

ui (x) = m [ui1 (x) , ..., uiH (x)] ,

where m (·) is a monotonic function increasing in each of its arguments.

Example For the purpose of illustration, consider a simple example withH = 2 where fij1

({
xjh′

}
h′∈H

)
=

Kij1x
α11
j1 xα12

j2 and fij2

({
xjh′

}
h′∈H

)
= Kij2x

α21
j1 xα22

j2 . Here, {xj1}j∈N and {xj2}j∈N can be agents’

incomes and educations, respectively; correspondingly, {Kij1}i,j∈N and {Kij2}i,j∈N reflect the
economic and education networks, through which incomes and educations are determined, with
{αij}i,j∈{1,2} capturing the interaction between incomes and educations.

Equilibrium Agent i choose her efforts {xih}h∈H to maximize her utility ui (x). The first order
conditions give the best response function of agent i ∈ N for action h ∈ H to all other agents
actions:

xih = cih +
∑
j ̸=i

fijh

({
xjh′

}
h′∈H

)
, (43)

which is a special case of equation (1) (where fiih (xj1, ..., xjH) = cih). We note that Ballester,
Calvó-Armengol, and Zenou (2006) consider a single network (H = 1) and a linear spillover function
(fij (xj) = gijxj).

Theorem 1, part (i): General spillovers Suppose that the elasticities of the spillover function

can be bounded, i.e. for all h, h′ ∈ H there exists an αhh′ ≥ 0 such that
∣∣∣ ∂ ln fijh
∂ lnxjh′

∣∣∣ ≤ αhh′ for all{
xjh′

}
h′∈H. Let A be the H ×H matrix whose (h, h′) element is αhh′ . From Theorem 1 part (i),

there exists a unique strictly positive equilibrium if ρ (A) < 1. Moreover, that equilibrium can be

reached from any initial strictly positive starting point
{
x0jh′

}h′∈H

j∈N
by iteration of equation (43).

Note that the iterative procedure here has the simple economic intuition as an application of best-
response dynamics, i.e. from any initial starting point, the unique equilibrium can be reached as
an iterative application of agents’ best-responses (see e.g. section 6 of Parise and Ozdaglar (2019)).
Finally, while there may also be weakly positive solutions, from Remark 2 any such solutions will
be asymptotically unstable, in the sense of e.g. Weibull (1997).14

Theorem 1, part (ii): Constant elasticity spillovers Consider the above example of income and
education networks. Then from Theorem 1 part (ii), there is at most one equilibrium if ρ (A) ≤ 1.

Theorem 1, part (iii): Multiplicity It is sufficient to consider a two agent single network (N = 2,
H = 1) with constant elasticity social spillover fij = gijx

α
j . For any α > 1 it is straightforward to

confirm that the payoff structure of c1 = c2 = 1− 1
2α and g12 = g21 =

1
2α has at least two solutions: a

low-effort symmetric equilibrium (x1, x2) = (1, 1) and a high-effort symmetric equilibrium (x1, x2) =
(M,M), where M is the maximal root of the equation xα − 2αx+ 2α− 1 = 0.

14In Online Appendix A.11, we extend the analysis here to consider the uniqueness of weakly positive
solutions in the setting where the best response functions are linear (i.e. ρ (A) = 1).
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Comparison to previously known results We view our results are complementary to existing
results in the social network literature.

In the baseline network model where H = 1 and fij = gijxj , Ballester, Calvó-Armengol, and
Zenou (2006) show that there exists a unique interior solution if ρ (G) < 1, where G is the N ×N
matrix with (i, j) element gij , i.e. they provide a condition on the spectral radius of the network
structure. In contrast, Theorem 1.ii.a shows there exists at most one interior equilibrium, as the
elasticities of fij = gijxj and fii = ci are equal to and smaller than 1, respectively. Combining
these results in the α = 1 case illustrates that the condition ρ (G) < 1 guarantees the existence of
an interior equilibrium, but not uniqueness (indeed, if ρ (G) ≥ 1, there exists no interior solution).

Bramoullé, Kranton, and D’amours (2014) and Galeotti, Golub, and Goyal (2020) extend the
Ballester, Calvó-Armengol, and Zenou (2006) framework to the case where actions can be sub-
stitutes by allowing possibly negative G and offer similar conditions for uniqueness as Ballester,
Calvó-Armengol, and Zenou (2006) based on the network structure. While Theorem 1 does not
allow negative fijh, it can incorporate situations where actions are substitutes through negative
payoff elasticities.15 In the example above, income and education can be substitutes if α12 and α21

are negative. Moreover, while there may exist non-interior weakly positive equilibria, Remark 2
guarantees that the only stable equilibria is the unique strictly positive solution when the spectral
radius ρ (A) < 1.

As in Allouch (2015); Acemoglu, Garćıa-Jimeno, and Robinson (2015) and Chen, Zenou, and
Zhou (2018), the setup above also extends the Ballester, Calvó-Armengol, and Zenou (2006) frame-
work to include non-linearity and multiple activities. However, the setup above also extends the
framework to allow for multiple networks, something (to the best of our knowledge) for which
positive properties have not been previously characterized, despite the empirical importance of
simultaneous social interactions across multiple types networks (see e.g. Christakis and Fowler
(2009); Banerjee, Chandrasekhar, Duflo, and Jackson (2013)). Our characterization emphasizes
that the positive properties of the equilibrium multi-network system can be characterized in terms
of a single statistic: the spectral radius of the matrix of the elasticities of the social interactions.

A.8 Discrete choice over many actions with social interactions

Here we consider a discrete choice framework with social interactions as in the seminal paper of
Brock and Durlauf (2001), generalized to include agents simultaneously choosing over many types
of actions with flexible social spillovers across agents and actions.

A.8.1 The model

Setup Suppose there are N agents. Each agent i ∈ {1, ..., N} ≡ N makes a discrete choice over
H ≡ {1, ...,H}, a set of H actions.

Vih (µi) = uih + Sih (µi) + εih,

where uih is the private utility associated with action h, Sih (µi) is the social utility, µi is agent
i’s belief of other agents’ actions, and εih is a random utility term, independently and identically

15Note that Theorem 1’s parallel result, Remark 3, does allow negative fijh. Remark 3 is also comple-
mentary with existing works on social networks by enabling the characterization of non-symmetric networks
and settings with multiple actions in multiple networks (see Online Appendices A.10 and A.11).
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distributed across agents and actions. Agent chooses action

argmax
h∈H

Vih (µi)

that maximizes her payoffs given her belief of the actions of others.Define µijh to be the conditional
probability measure agent i places on the probability that agent j chooses action h. We assume
that Sih (µi) takes the following form:

Sih (µi) =
∑
h′∈H

Jhh′ ln (µih′) ,

where Jhh′ reflects the impact of action h′ by others on agent i’s utility when she chooses action
h, µih′ ≡

∑
j ̸=iwijh′µijh′ is her (weighted) expected number of agents taking action h′, wijh′ is

the corresponding weight, and µijh′ is her belief of agent i taking action h′. We note that the
log transform on the social utility function – not present in the primary case considered by Brock
and Durlauf (2001) – ensures that the uniqueness of the equilibrium can be characterized without
reference to an (endogenous) threshold value (c.f. Brock and Durlauf (2001) Proposition 2).

Equilibrium Retaining the assumption from Brock and Durlauf (2001) that the random utility
term follows a type I extreme value distribution with shape parameter βh and agent’s conditional
probabilities are rational (so that µijh = µjh for all j ∈ {1, ..., N} and µjh is equal to the probability
agent j actually chooses action h) results in the following equilibrium conditions for all i ∈ {1, ..., N}
and for all h ∈ {1, ...,H}:

µih =

eβhuih

(
Πh′∈H

(∑
j ̸=iwijh′µjh′

)βhJhh′
)

∑
k∈H eβkuik

(
Πh′∈H

(∑
j ̸=iwijh′µjh′

)βkJkh′
) (44)

Note this is a system of N×H equilibrium conditions in N×H unknown probabilities µjh. Equation
(44) is a special case of (1). From Remark 5, define xih ≡

∑
j ̸=iwijhµjh, which, when combined

with equation (44), becomes:

xih =
∑
j ̸=i

wijh
eβhujhΠh′∈H

(
xjh′

)βhJhh′(∑
k∈H eβkujk

(
Πh′∈H

(
xjh′

)βkJkh′
)) (45)

Finally, defining fijh ≡ wijh
e
βhujhΠh′∈H(xjh′)

βhJhh′(∑
k∈H e

βkujk
(
Πh′∈H(xjh′)

βkJkh′
)) if j ̸= i and fiih = 0 results in equation

(45) be written as:

xih =
∑
j∈N

fijh (xj1, ..., xjH) ,

as in (1).
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A.8.2 Applying Theorem 1

It is straightforward to calculate the elasticities of interactions as follows:

∂ ln fij,h
∂ lnxj,h′

= βhJhh′ −
∑
k

eβkujk

(
Πh′∈H

(
xjh′

)βkJkh′
)

∑
k∈H eβkujk

(
Πh′∈H

(
xjh′

)βkJkh′
)βkJkh′ ,

which is between Jhh′ ≡ βhJhh′ −maxk∈H βkJkh′ and Jhh′ ≡ βhJhh′ −mink∈H βkJkh′ . Thus if we
define:

(A)hh′ ≡ max
(
−Jhh′ , Jhh′

)
then we have for all h, h′: ∣∣∣∣∂ ln fij,h

∂ lnxj,h′

∣∣∣∣ ≤ (A)hh′ .

From Theorem 1, there is a unique solution if ρ (A) < 1, i.e. as long as the social spillovers are not
too heterogeneous across actions.

A.9 Choosing many (continuous) actions with social interactions

Here we consider a framework with non-market interactions as in Glaeser and Scheinkman (2002),
generalized to include many actions and a general network structure.

A.9.1 The Model

Setup Suppose there are N agents where each agent i ∈ {1, ..., N} ≡ N who chooses actions
{xih}, indexed by h ∈ {1, ...,H} ≡ H. Let agent i′s payoffs depend on her own actions and the
actions of others as follows:

Ui

{xih}h∈H ;

∑
j ̸=i

gijh′xjh′


h′∈H

 , (46)

where the utility function Ui is strictly concave in each xih, gijh′ ≥ 0, and
∑

j ̸=i gijh′xjh′ measures
the aggregate behavior of agent i’s peers. Note that this generalizes Glaeser and Scheinkman (2002)
to include an unrestricted network structure

{
gijh′

}
and arbitrary H.

Equilibrium Suppose there exists a unique solution to the utility maximization problem of equa-
tion (46) that can be written as:

xih = fih

∑
j ̸=i

gijh′xjh′


h′∈H

 , (47)

where fih is the best response function. Following Remark 5, we define yih ≡
∑

j ̸=i gijhxjh and
substitute the expression (47), yielding:

yih =
∑
j ̸=i

gijhfjh

({
yjh′

}
h′∈H

)
. (48)
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A.9.2 Applying Theorem 1

It is immediately evident that equation (48) is a special case of equation (1). Suppose that the
elasticities of the spillover function can be bounded, i.e. for all h, h′ ∈ H there exists an αhh′ ≥ 0

such that
∣∣∣ ∂ ln fjh
∂ ln yjh′

∣∣∣ ≤ αhh′ for all
{
yjh′

}
h′∈H. Let A be the H × H matrix whose (h, h′) element

is αhh′ . From Theorem 1 part (i), there exists a unique equilibrium if ρ (A) < 1. Moreover, that

equilibrium can be reached from any initial starting point
{
y0jh′

}h′∈H

j∈N
by iteration of equation (48).

Glaeser and Scheinkman (2002) prove uniqueness in the H = 1 case where
∑

j ̸=i gij = 1 if a

“Moderate Social Influence” condition holds, i.e.
∣∣∣∂fj∂yj

∣∣∣ < 1 for all yj . Notice that their results

are actually implied by Remark 3 and depend on the particular network structure. In the H = 1

case, our condition, obtained from Theorem 1, simplifies to
∣∣∣∂ ln fj
∂ ln yj

∣∣∣ < 1 for all yj , regardless of the

structure of {gij}. More generally, ours is the first characterization (of which we are aware) for the
H > 1 case with general {gijh}.

A.10 Public goods in social networks

Here we consider a framework where agents decide how much of their own resources to contribute
to public goods whose payoff depends on the contributions of others. To do so, we extend the work
of Allouch (2015) and Acemoglu, Garćıa-Jimeno, and Robinson (2015) to allow agents to contribute
multiple types of public goods on multiple social networks.16

A.10.1 The model

Setup Consider a world of i ∈ {1, ..., N} ≡ N agents. Agent i ∈ N is endowed with wealth
wi and chooses how allocate that wealth to private consumption (ci) or contributions to H public
goods ({qih}h∈{1,2,3...H}≡H), where her payoff depends on the contributions of all other agents. In
particular, agent i ∈ N solves:

max
ci,qi

Ui (ci, {Qih}h)

s.t. ci +
∑
h

qih = wi +
∑
h

Q−ih and qi ≥ 0,

where Ui (·) is the utility function Qih = qih + Q−ih is the public good bundle with Q−ih =∑
j ̸=i gijhqjh the contributions of all other agents, and the N ×N matrix Gh ≡ [gijh] governs the

payoff of j’s contribution of public good h to agent i (thereby defining the social network h).

Equilibrium Suppose that Ui (·) is continuous, strictly increasing in all its arguments, and strictly
quasi-concave. Solving agent’s utility maximization problem gives rise to agent i demand function
of public good h,γih (wi +

∑
h′ Q−ih′). Notice that if this demand function is less than other agents’

contribution Q−ih, agent i will contribute nothing in public goods. That is in equilibrium we have:

qih = max

(
γih

(
wi +

∑
h′

Q−ih′

)
−Q−ih, 0

)
. (49)

16Allouch (2015) and Acemoglu, Garćıa-Jimeno, and Robinson (2015) extend the work of Bramoullé,
Kranton, and D’amours (2014), who applies the seminal work of the private provision of public goods in
Bergstrom, Blume, and Varian (1986) to a network setting, but with non-linear best response functions.
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We assume that γih (·) is differentiable and the private and public goods are all normal goods i.e.
0 < γ′ih < 1.

A.10.2 Applying Theorem 1’s Remark 3

Denote the right-side of equation (49) as Fih (·). The right and left partial derivatives of Fih (·) with
respect to qjh′ are either 0 or γ′ihgijh′ if h ̸= h′ and (γ′ih − 1) gijh if h = h′. Thus, according to Remark
3, equation (49) has a unique solution if there exists an N -by-N matrix B satisfying ρ (B) < 1

such that for all i, j ∈ N , h ∈ H,
∑

h′ max
(∣∣∣∂+Fih(x)

∂xjh′

∣∣∣ , ∣∣∣∂−Fih(x)
∂xjh′

∣∣∣) ≤
∣∣γ′ih∑h′ gijh′ − gijh

∣∣ ≤ (B)ij .

Intuitively, as long as the aggregate spillovers between agents’ public goods contributions are not
too strong, the incentives of any agent to shirk her contribution to public goods are not large enough
to result in multiplicity. When H = 1, this condition can be reduced to ρ (G) < 1

1−γ′
i
where G

represents the only network. This condition is very similar to (and stronger than) Allouch (2015)’s
−λmin (G) < 1

1−γ′
i
, since −λmin (G) ≤ ρ (G). However, the well-definedness of λmin (G) crucially

relies on network G being symmetric (the symmetry guarantees all the eigenvalues of G are real
and can be ranked); in contrast, the condition provided here is valid for asymmetric networks as
well.

A.11 Multiple activities in social networks

We extend the work of Chen, Zenou, and Zhou (2018) where agent’s payoffs depend on their own
multiple actions as well as the actions of others in their social networks to more than two types of
actions on multiple social networks. Unlike in Section A.7, here we focus on linear best response
functions in order to extend the domain of solutions to include zero and negative values.

A.11.1 The model

Setup Consider a system of h ∈ {1, 2, 3...H} ≡ H social networks with N agents. Each agent
i ∈ {1, 2, 3...N} ≡ N has preferences over actions {xih}h∈H which take real numbers. We assume
that agents’ preferences are represented by the quadratic utility function:

Ui =

H∑
h=1

(
cihxih −

1

2
x2ih

)
+

H∑
h=1

H∑
h′=1

dihh′xihxih′ +

H∑
h=1

N∑
j=1

gijhxihxjh,

where cih, dihh′ , and gijh are exogenously given constants and for all i, h, dihh = 0 and giih = 0.
The first term in the above expression, reflects decreasing returns to scale of agent i’s own actions;
the second term reflects substitution or complementary effects between agent i’s different actions;
the last term reflects the network externality from other agents and {gijh} i,j∈N represents the
corresponding social network.

Equilibrium We assume the above utility function is concave. Thus its maximum can be char-
acterized by the first order condition:

xih = cih +
∑
h′ ̸=h

(dihh′ + dih′h)xih′ +
∑
j ̸=i

gijhxjh.

Define theH-by-H symmetric matrixDi such that (Di)hh′ = dihh′+dihh′ . The concavity assumption
implies that matrix I−Di is positive definite and thus invertible. Denote the element of the inverse
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of I −Di as δihh′ . Then we can rewrite the above first order condition as:

xih =
∑
h′

δihh′

cih′ +
∑
j ̸=i

gijh′xjh′

 . (50)

This equation then represents the Nash equilibrium of this network game.

A.11.2 Applying Theorem 1’s Remark 3

Denote the right-side of equation 50 as Fih (·). Notice that ∂Fih(x)
∂xjh′

= δihh′gijh′ . Thus, according

to Remark 3, equation (50) has a unique solution if there exists an N -by-N matrix B satisfying
ρ (B) < 1 such that for all i, j ∈ N , h ∈ H,

∑
h′

∣∣δihh′gijh′
∣∣ ≤ (B)ij . Intuitively, if the aggregate

connections of different networks are low, agents’ influences on each other are weak enough such
that the multiplicity as in coordination games then is excluded.

We note that our condition simplifies to the one given by Chen, Zenou, and Zhou (2018) in
the special case considered there of H = 2, dihh′ + dihh′ = −β (h = 1, h′ = 2), and for all i, j,
gij1 = gij2 = gij i.e. there is a single network G. To see this, note that by calculating the inverse of
I −Di, we have

∑
h′

∣∣δihh′gijh′
∣∣ = 1

1−|β|gij . Then our condition can be written as ρ (G) < 1 − |β|,
which is the one used in Chen, Zenou, and Zhou (2018).

A.12 Inverting a demand system with multiple types of goods

Here we consider the question of the invertibility of demand systems based on the seminal work
of Berry, Levinsohn, and Pakes (1995). In Berry, Levinsohn, and Pakes (1995), agents makes a
choice over a single type of goods, e.g. which cellphone to buy. Here, we extend the framework to
consider a situation where consumers simultaneously make decisions across multiple types of goods,
e.g. which cellphone and computer to buy. We suppose that the market shares for each type are
observed and ask if that is enough information to recover the unobserved demand for each good.17

A.12.1 The model

Setup There areH types of goods for agents to buy (e.g. cellphones, computers, and automobiles).
Within each type h ∈ {1, ...,H} ≡ H of good, there are Nh products over which to choose (e.g. in
the case of cellphones, there are the Google Pixel 6, the iPhone 13, etc.). One of these Nh products
may be the choice to purchase nothing.

Let J be a H-by-1 vector representing agent’s choice over the bundle of products. Specifically,
J ≡ [jh]h∈H, where jh ∈ {1, ..., Nh} ≡ Nh is agent’s choice of product type h to purchase. Suppose
that the latent utility of agent k’s choice J is:

Uk (J) =
∑
h∈H

δjh,h + µ (J, νk) + εkJ (51)

where δjh,h represents the (unobservable) good characteristics of product jh in type h, µ (J, νk) is a
function of (observable) good characteristics of the bundle J and consumer characteristics νk and
εkJ is a random variable representing agents’ idiosyncratic preference. Note that µ (J, νk) flexibly

17While the choice of buying two products can be technically modeled as a single choice over pairs of
products, applying the inversion results of Berry, Levinsohn, and Pakes (1995) would then require knowledge
of the market shares of each pair of products, which is typically not observed.
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allows for any sort of (observed) complementarity or substitutability across products of different
types, which can potentially vary with consumer characteristics νk. We assume νk ∼ P where P is
a known distribution and εkJ has type I extreme value distributions independent of k and J .

Suppose for each h ∈ H we observe the fraction of agents that choose product i ∈ Nh, i.e. the
market share si,h. Our goal is to identify the set of unobservable good characteristics {δi,h}.

Market share Given the extreme value distribution of εih, the market share can be written as:

si,h =

∫ exp
(
δi,h

)∑N1
j1=1 · · ·

∑Nh−1
jh−1=1

∑Nh+1
jh+1=1 · · ·

∑NH
jH=1 exp

(∑
h′ ̸=h δjh′ ,h′ + µ ([j1, ..., jh−1, i, jh+1, ..., jH ] , ν)

)
∑Nh

jh=1 exp
(
δjh,h

)∑N1
j1=1 · · ·

∑Nh−1
jh−1=1

∑Nh+1
jh+1=1 · · ·

∑NH
jH=1 exp

(∑
h′ ̸=h δjh′ ,h′ + µ ([j1, ..., jh−1, jh, jh+1, ..., jH ] , ν)

)dP (ν) .

(52)

A.12.2 Applying Theorem 1

The case of H = 1 (Berry, Levinsohn, and Pakes (1995)) We first consider the case of H = 1,
as in Berry, Levinsohn, and Pakes (1995). In this case, equation (52) becomes:

si =

∫
exp (δi + µ (i, ν))∑N
j=1 exp (δj + µ (j, ν))

dP (ν) .

Define xi ≡ exp (δi) . Then xi = sifi (x) ,where fi (x) ≡
(∫ exp(µ(i,ν))∑N

j=1 xj exp(µ(j,ν))
dP (ν)

)−1

. We then

have:

∂ ln fi
∂ lnxj

= fi

∫
exp (µ (i, ν))xj exp (µ (j, ν))(∑N

k=1 xk exp (µ (k, ν))
)2 dPν

which in turn implies:

∑
j∈N

∣∣∣∣ ∂ ln fi
∂ lnxj

∣∣∣∣ = fi

∫
exp (µ (i, ν))

∑
j xj exp (µ (j, ν))(∑N

k=1 xk exp (µ (k, ν))
)2 dPν

= fi (x) /fi (x) = 1.

According to part (ii) of Theorem 1 and Remark 1, there is at most one set of {δi} (up to an
unknown constant), as in Berry, Levinsohn, and Pakes (1995).

The case of H = 2 We now consider the case ofH = 2, under the special case where µ ([i, j] , ν) ≡
µp ([i, j]) + µc (ν), i.e. that there is separability between any complementarity or substitutability
of product characteristics and any heterogeneity in consumer preferences. Also, we assume N1 =
N2 = N .

Define xi,h ≡ exp (δi,h). Equation (52) can be written as:

xi,1zi,2 =
N∑
j=1

si,1xj,1zj,2

xi,2zi,1 =

N∑
j=1

si,2xj,2zj,1,
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where:

zi,1 ≡
N∑
j=1

xj,1 exp (µp ([j, i]))

zi,2 ≡
N∑
j=1

xj,2 exp (µp ([i, j]))

It is immediately evident that this system of 4N equations in 4N unknowns takes the form of
equation (8), which is a special case of equation (1), so by applying Remark 5, it is sufficient to
characterize the spectral radius of matrix A ≡

∣∣BΓ−1
∣∣ , where:

B ≡


1 0 0 1
0 1 1 0
1 0 0 0
0 1 0 0

 , Γ ≡


1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

 ,

so that:

A ≡


1 0 0 0
0 1 0 0
1 0 0 1
0 1 1 0


which has a spectral radius equal to 1, so that from Theorem 1 part (ii) there exists at most one set

of {δi,h} consistent with the observed market shares, up to an unknown constant for each h ∈ H,

thereby extending the results of Berry, Levinsohn, and Pakes (1995) to the case of H = 2 under

the special case where µ ([i, j] , ν) ≡ µp ([i, j]) + µc (ν).

B Additional Details

B.1 Details of Remarks

In this section, we provide further details for the remarks discussed in the paper.

B.1.1 Remark 1

Remark 1: Suppose there exists an H-by-H matrix A such that for all i, j ∈ N , h, h′ ∈ H, and

xj ∈ RH
++,

∑
j∈N

∣∣∣∂ ln
∑

k∈N fikh(x)

∂ lnxjh′

∣∣∣ ≤ (A)hh′ . Then:

(i). If ρ (A) < 1, there exists a unique solution to equation (1) which can be computed by
iteratively applying equation (1) with a rate of convergence ρ (A);

(ii). If ρ (A) = 1 and:
a. For all i ∈ N and h, h′ ∈ H when (A)hh′ ̸= 0 there exists some j such that for all xj ∈ RH

++,∑
j∈N

∣∣∣∂ ln
∑

k∈N fikh(x)

∂ lnxjh′

∣∣∣ < (A)hh′ , then equation (1) has at most one solution;

b. For all xj ,
∑

j∈N
∂ ln

∑
k∈N fikh(x)

∂ lnxjh′
= αhh′ ∈ R where |αhh′ | = (A)hh′ then there is at most

one column-wise up-to-scale solution, i.e. for any h ∈ H and two solutions x and x′ it must be
x′.h = chx.h for some scalar ch > 0.
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Proving this remark requires only a small change to the proof of Theorem 1. Equality (2)

becomes ∂gih
∂yjh′

=
∂ ln

∑
k fikh(x)

∂ lnxjh′
.

Correspondingly, in part (i), inequality (4) becomes

∣∣gih (y)− gih
(
y′
)∣∣ =

∣∣∣∣∣∣
∑
h′∈H

∑
j∈N

∂gih (ŷ)

∂yjh′

(
yjh′ − y′jh′

)∣∣∣∣∣∣
≤
∑
h′∈H

∑
j∈N

∣∣∣∣∂ ln
∑

k fikh (x̂)

∂ lnxjh′

∣∣∣∣max
j∈N

∣∣yjh′ − y′jh′
∣∣

≤
∑
h′∈H

(A)hh′ max
j∈N

∣∣yjh′ − y′jh′
∣∣ .

And in part (ii.b), equation (6) becomes

yih − y′ih + ŝh =
∑
h′∈H

∑
j∈N

∂ ln
∑

k fikh (x)

∂ lnxjh′

(
yjh′ − y′jh′ + sh′

)
The rest of the proof of Theorem 1 remains unchanged.

B.1.2 Remark 2

Remark 2: Consider the special case of equation (1) where fijh : RH
+ → R+ ≡ Kijhgijh (xj1, ..., xjH),

where Kijh ≥ 0 and gijh (xj) is continuous, differentiable, and gijh (xj) > 0 for all xj > 0 so that

equation (1) becomes xih =
∑N

j=1Kijhgijh (xj1, ..., xjH). Then if ρ (A) < 1 and matrices (Kijh)i,j∈N
for all h are irreducible, there exists only one strictly positive solution. Weakly positive solutions,
where for some i, h, x∗i,h = 0, may exist but will be asymptotically unstable,

The condition that matrices (Kijh)i,j∈N for all h are irreducible implies that for any strictly

positive x,
∑N

j=1Kijhgijh (xj1, ..., xjH) > 0. Thus we can apply Remark 1 to obtain the existence,
uniqueness, and convergence of the solution. Observe that the convergence simply implies the
unstableness of other weakly positive solutions.

B.1.3 Remark 3

Remark 3: Suppose for all i, j ∈ N , h, h′ ∈ H,Fih (x) has right and left partial derivatives with

respect to xjh′ and denote they as ∂+Fih(x)
∂xjh′

and ∂−Fih(x)
∂xjh′

. Equationxih = Fih (x) has a unique

solution if (1) there exists an H-by-H matrix A satisfying ρ (A) < 1 such that for all i ∈ N , h, h′ ∈
H,

∑
j max

(∣∣∣∂+Fih(x)
∂xjh′

∣∣∣ , ∣∣∣∂−Fih(x)
∂xjh′

∣∣∣) ≤ (A)hh′ or (2) there exists an N -by-N matrix B satisfying

ρ (B) < 1 such that for all i, j ∈ N , h ∈ H,
∑

h′ max
(∣∣∣∂+Fih(x)

∂xjh′

∣∣∣ , ∣∣∣∂−Fih(x)
∂xjh′

∣∣∣) ≤ (B)ij . Due to

symmetry, we only need to prove the first condition.
Given any x and x′, let mih (tih) ≡ Fih ((1− tih)x+ tihx

′) be a function of tih on interval [0, 1].
Since each Fih (x) is left and right differentiable, so is mih (tih). Suppose m′

ih+ (tih) and m′
ih− (tih)

are function mih (·)’s right and left derivatives at tih. According to a generalized mean value theo-

rem, there exists some tih ∈ (0, 1) such that mih(1)−mih(0)
1−0 is between m′

ih+ (tih) and m′
ih− (tih). Ob-

serve that m′
ih+ (tih) =

∑
j,h′

[
∂+Fih(x̂)
∂xjh′

1∆xjh′>0 +
∂−Fih(x̂)
∂xjh′

1∆xjh′<0

]
∆xjh′ where x̂ ≡ (1− tih)x+

tihx
′ and ∆xjh′ ≡ x′jh′−xjh′ . Similarly,m′

ih− (tih) =
∑

j,h′

[
∂+Fih(x̂)
∂xjh′

1∆xjh′<0 +
∂−Fih(x̂)
∂xjh′

1∆xjh′>0

]
∆xjh′ .
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Thus we have m′
ih+ (tih) and m′

ih− (tih) must be within interval [−Mih,Mih] where

Mih ≡
∑
j,h′

max

(∣∣∣∣∂+Fih (x̂)

∂xjh′

∣∣∣∣ , ∣∣∣∣∂−Fih (x̂)

∂xjh′

∣∣∣∣) ∣∣∆xjh′
∣∣.

Thus Fih (x
′)− Fih (x) = mih(1)−mih(0) must be also within interval [−Mih,Mih]. That is

∣∣Fih

(
x′
)
− Fih (x)

∣∣ ≤
∑
j,h′

max

(∣∣∣∣∂+Fih (x̂)

∂xjh′

∣∣∣∣ , ∣∣∣∣∂−Fih (x̂)

∂xjh′

∣∣∣∣) ∣∣∆xjh′
∣∣

≤
∑
h′

(A)hh′ max
j

∣∣∆xjh′
∣∣ .

Since the above expression holds for any i, h, we have max
j

|Fih (x
′)− Fih (x)| ≤

∑
h′ (A)hh′ max

j

∣∣∆xjh′
∣∣.

Thus we establish a contraction mapping as in Theorem A.1, which gives us the existence and
uniqueness of the solution in equation xih = Fih (x).

B.1.4 Remark 4

Consider first the equilibrium system (7) with constant elasticities, which can be written as follows:

λhxih =
∑
j∈N

Kijh

∏
h′∈H

x
αhh′
jh′ , (53)

where λh > 0 is endogenous. If ρ (A) ≤ 1, we have the same conclusion as in part (ii)b: the {xih}
of any solution is column-wise up-to-scale unique. The proof of this result is exactly the same as
part (ii)b of Theorem 1.

For ρ (A) < 1, particularly it is possible to subsume the endogenous scalars into the equilibrium
outcomes through a change in variables, expressing equation (53) as in equation (1). To do so, define

x̃ih ≡ xih
∏

h′∈H λ
dhh′
h′ , where dhh′ is the hh′th element of the H×H matrix (I−α)−1 and α ≡ (αhh′)

(i.e. α is the matrix of elasticities without the absolute value taken) so the system becomes:

x̃ih =
∑
j∈N

Kijh

∏
h′∈H

x̃
αhh′
jh′ .

Note that because ρ (A) < 1, then so too is ρ (α) < 1, so that (I−α)−1 exists. From Theorem
1 part (i), the {x̃ih} are unique and can be calculated using an iterative algorithm, which in
turn implies that the {xih} are column-wise up-to-scale unique. (Separating the {xih} and {λh} to
determine the scale of {xih} requires the imposition of further equilibrium conditions, e.g. aggregate
labor market clearing conditions).

Consider now equilibrium system (7) with H additional aggregate constraints
∑N

i=1 xih = ch
for known constants ch > 0.

The second result concerns the general case with an endogenous scalar:

λhxih =

N∑
j=1

fijh (xj1, ..., xjH)

with H additional aggregate constraints
∑N

i=1 xih = ch for known constants ch > 0. Substituting
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in the aggregate constraints allows us to express the equilibrium system as:

xih =
N∑
j=1

(
fijh (xj1, ..., xjH)

1
ch

∑N
k=1

∑N
l=1 fklh (xl1, ..., xlH)

)
,

where the denominator is equal to the endogenous scalar, i.e. λh = 1
ch

∑N
k=1

∑N
l=1 fklh (xl1, ..., xlH).

We can define the new function:

gij,h (x) ≡
fijh (xj1, ..., xjH)

1
ch

∑N
k=1

∑N
l=1 fklh (xl1, ..., xlH)

so that the equilibrium system becomes:

xih =
N∑
j=1

gijh (x) .

We can then bound the elasticities, following Remark 1. Note:

∂ ln gij,h
∂ lnxm,l

=
∂ ln fij,h
∂ lnxj,l

1m=j −
∑
o

(
∂ ln fom,h

∂ lnxm,l

)
fom,h ({xm,l})∑
o

∑
p fop,h ({xp,l})

where 1m=j =

{
1 if m = j

0 if m ̸= j
is an indicator function. Thus,

∣∣∣∣∂ ln gij,h
∂ lnxm,l

∣∣∣∣ ≤ |Ahl|1m=j + |Ahl|
∑

o fom,h ({xm,l})∑
o

∑
p fop,h ({xp,l})

.

Furthermore,∑
m

∣∣∣∣∂ ln gij,h
∂ lnxm,l

∣∣∣∣ ≤∑
m

|Ahl|1m=j + |Ahl|
∑

m

∑
o fom,h ({xm,l})∑

o

∑
p fop,h ({xp,l})

= 2 |Ahl| .

Hence, from Remark 1, we have uniqueness as long as ρ (A) < 1
2 , as required.

B.2 Details of the Urban Spatial Model

B.2.1 Theorem 1, part (i): General spillovers

The following sufficient condition for uniqueness

ρ

(
2θα 2θβ
2θα 2θβ

)
< 1.

is equivalent with ρ (θ (α+ β)) < 1
2 . To see this simplify spectral radius ρ

(
2θα 2θβ
2θα 2θβ

)
as r

and denote its associated eigenvector as

(
vα
vβ

)
where both vα and vβ are H-by-1 vectors. Thus
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we have (
2θα 2θβ
2θα 2θβ

)(
vα
vβ

)
= r

(
vα
vβ

)
⇒(

2θαvα + 2θβvβ
2θαvα + 2θβvβ

)
= r

(
vα
vβ

)
,

which implies vα = vβ. Thus, 2θ (α+ β) vα = rvα. According to the Perron–Frobenius theorem,
there is a positive number r

2 = ρ (θ (α+ β)). Therefore ρ (θ (α+ β)) < 1
2 implies r < 1, as desired.

B.2.2 Theorem 1, part (ii): Constant elasticity spillovers

Now we show that c ≡ ρ

 0
∣∣∣θβ (I− θβ)−1

∣∣∣∣∣∣θα(I− θα)−1
∣∣∣ 0

 ≤ 1, the uniqueness condition

here, is weaker than ρ (θ (|α|+ |β|)) < 1
2 , the condition required in the case of general spillovers

given above. Suppose that for vα and vβ H-by-1 vectors, 0
∣∣∣θβ (I− θβ)−1

∣∣∣∣∣∣θα(I− θα)−1
∣∣∣ 0

( vα
vβ

)
= c

(
vα
vβ

)
⇒

 ∣∣∣θβ (I− θβ)−1
∣∣∣ vβ∣∣∣θα(I− θα)−1
∣∣∣ vα

 = c

(
vα
vβ

)
⇒

∣∣∣θα(I− θα)−1
∣∣∣ ∣∣∣θβ (I− θβ)−1

∣∣∣ vβ = c2vβ.

Thus it is equivalent to show that ρ
(∣∣∣θα(I− θα)−1

∣∣∣ ∣∣∣θβ (I− θβ)−1
∣∣∣) = c2 ≤ 1. Define H-by-

H matrix δ where (δ)hh′ = max ((θ |α|)hh′ , (θ |β|)hh′). Clearly,
∣∣∣θβ (I− θβ)−1

∣∣∣ ≤∑∞
n=1 (θ |β|)n ≤∑∞

n=1 δ
n where the inequality is element-wise; similarly,

∣∣∣θα(I− θα)−1
∣∣∣ ≤∑∞

n=1 δ
n. Thus,

ρ
(∣∣∣θα(I− θα)−1

∣∣∣ ∣∣∣θβ (I− θβ)−1
∣∣∣) ≤ ρ

( ∞∑
n=1

δn
∞∑
n=1

δn

)
= ρ

( ∞∑
n=1

δn

)2

.

Here, ρ (
∑∞

n=1 δ
n) = ρ(δ)

1−ρ(δ) . Furthermore, ρ (δ) ≤ ρ (θ (|α|+ |β|)) < 1
2 . Thus, ρ (

∑∞
n=1 δ

n) < 1,
which is as desired.
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