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Online Appendix

A Notes on Aggregative Games

In this appendix, we derive the aggregative games formulation of the Bertrand model with
MNL, CES, NMNL, and NCES demand. We focus especially on the MNL and CES models
in order to provide something of a “practitioner’s guide” for those who previously have not
studied aggregative games.

A.1 MNL Demand

We take as given the profit function and first order conditions of (1) and (2), the indirect
utility of (3), and the market shares of (4). In this framework, it is well known that consumer
surplus is given by

CS =
1

α
ln

1 +
∑
j∈J

exp(vj − αpj)

 . (A.1)

The primitives of the aggregrative game reformulation are the vector of firm-specific types,
{T f} ∀f ∈ F , and the price parameter, α. Equation (6) defines the type of each firm f as

T f ≡
∑
j∈J f

exp(vj − αcj),

which represents the firm’s contribution to consumer surplus if its prices equal its marginal
costs. From these primitives, the Bertrand equilibrium can be characterized as a vector of
“ι-markups,” {µf} ∀f ∈ F , a vector of firm-level market shares, {sf} ∀f ∈ F , and a market
aggregator, H. We define markups below, and let sf =

∑
j∈J f sj . The aggregator is defined

as H ≡ 1 +
∑

j∈J exp(vj − αpj), which is the denominator from the market share formula of
the product-level model (see (4)).

We first derive a relationship between the ι-markups and firm-level market shares. The
product-specific price derivatives for logit demand are

∂sj
∂pk

=

{
−αsj(1− sj) if k = j

αsjsk if k ̸= j.

Substituting these demand derivatives into the first order conditions of (2) for some product
j and rearranging gives

α(pj − cj) = 1 + α
∑
k∈J f

(pk − ck)sk. (A.2)
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The right-hand side of this equation does not depend on the which product j ∈ J f is ref-
erenced. This implies that the left-hand side is equivalent for all products sold by firm f ,
meaning each firm imposes a common markup (in levels) across all of its products. Following
(7), define the ι-markup of firm f as µf ≡ α(pj − cj) ∀j ∈ J f . Substituting back into (A.2)
obtains an equilibrium relationship between markups and shares:

µf =
1

1− sf
. (A.3)

We also have sf = (1/H)
∑

j∈J f exp(vj − αpj) from (4), after substituting in for the defi-
nition of the aggregator, H. Adding and subtracting αcj inside the exponential and applying
the definitions of µf and T f gives

sf =
T f

H
exp (−µf ) (A.4)

⇐⇒ T f

H
= sf exp

(
1

1− sf

)
. (A.5)

Plugging (A.4) into (A.3), we obtain that equilibrium ι-markups satisfy (9):

µf

(
1− T f

H
exp(−µf )

)
= 1.

Let the unique solution for µf from this expression be written as m(T f/H). This markup
fitting-in function, m(·), has the properties that m(0) = 1 and m′(·) > 0. Plugging µf =
m(T f/H) into (A.4) yields the expression for equilibrium market shares provided in (10).
Equilibrium market shares can be written sf = S(T f/H), and thus equilibrium profit can be
written Πf = π(T f/H). To close the system, the aggregator satisfies an adding-up constraint
of (11). The expressions for equilibrium profit and consumer surplus provided in (12) obtain
immediately.

A.2 CES

Derivation of the CES aggregative game mirrors that of MNL case, except the CES demand
derivatives and formula for shares must be used instead. With CES, the pricing first order
condition for product j becomes

σ
pj − cj

pj
= 1 + (σ − 1)

∑
k∈J f

sk
pk − ck

pk
, (A.6)

which is the counterpart to the MNL equation (A.2). We again see that the right-hand side of
this equation does not depend on the identity of j ∈ J f , which in turn implies that each firm
charges a constant percentage markup across all of its products.

Once we define the ι-markup as µf = σ(pj − cj)/pj following (7), we obtain

µf =
1

1− σ−1
σ sf

(A.7)
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after substituting into the pricing first order condition. Take the share equation (5) and
multiply and divide it by c1−σ

j . We can then substitute in the definitions of the aggregator H,
µf , and the type T f . Summing across the shares for the products sold by firm f gives

sf =
T f

H

(
1− µf

σ

)σ−1

(A.8)

for firm-level revenue shares. Substituting this share into the markup expression in (A.7)
gives the markup fitting-in function,

1 = µf

(
1− σ − 1

σ

T f

H

(
1− µf

σ

)σ−1
)
, (A.9)

which appears in (9). The model is closed with the adding-up constraint given by (11).

A.3 NMNL

With NMNL demand, the following equations hold in Bertrand equilibrium:

µf =
1

1− ρsf |g − (1− ρ)sf
(A.10)

1 = µf

(
1− ρ

T f

Hg
exp(−µf )− (1− ρ)

T f

Hg

H1−ρ
g

H
exp(−µf )

)
(A.11)

T f

Hg
= sf |g exp

(
1

1− ρsf |g − (1− ρ)sf

)
(A.12)

s̄g =
H1−ρ

g

H
(A.13)

sf = sf |g s̄g (A.14)

1 =
∑
f∈Fg

sf |g (A.15)

1

H
= 1−

∑
f∈F

sf (A.16)

πf =
1− ρ

α
µfsf (A.17)

CS =
1

α
ln(H) (A.18)

where T f is the type of the firm, sf is the share of the firm, sf |g is the share of the firm within
its nest, s̄g is the share of the nest, µf is the ι-markup of the firm, Hg is a nest aggregator, H
is the market aggregator, πf is the profit of the firm, and CS is consumer surplus.

Firm types are defined as in (23). Firm share is given by sf =
∑

j∈J f sj , as in the MNL
and CES models. Firm share within its nest is given by sf |g =

∑
j∈J f sj|g, where the share of
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a product within a nest is

sj|g =
exp

(
vj−αpj
1−ρ

)
Hg

. (A.19)

The aggregators are defined as Hg ≡
∑

j∈Jg
exp((vj −αpj)/(1−ρ)) and H ≡ 1+

∑
g∈G H

1−ρ
g .

The markup is defined as µf ≡ (α/(1− ρ))(pj − cj) for all j ∈ J f .
The pricing first order condition for good j can be written as

α

1− ρ
(pj − cj) = 1 +

αρ

1− ρ

∑
k∈J f

(pk − ck)sk|g + α
∑
k∈J f

(pk − ck)sk, (A.20)

under the assumption that firm f owns products only in nest g. We again see that the right-
hand side of this condition does not depend on the identity of j ∈ J f . Substituting in for the
definition of µf gives (A.10).

Next, adding and subtracting αcj inside the exponential on the right-hand side of (A.19)
and applying the definitions of µf , TF , and Hg obtains

sf |g =
T f

Hg
exp(−µf ), (A.21)

which rearranges to (A.12). Then (A.11) can be obtained by plugging (A.12) and (A.13) back
into (A.10). Next, (A.15) and (A.16) are adding-up constraints that close the model, (A.17)
is obtained by plugging µf into the profit function, and (A.13), (A.14), and (A.18) follow
directly from the NMNL functional form.
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A.4 NCES

With NCES, the following equations hold in Bertrand equilibrium:

µf =
1

1− γ−1
σ sf − σ−γ

σ sf |g
(A.22)

1 = µf

1− γ − 1

σ

T f

H
σ−γ
σ−1
g H

(
1− µf

σ

)σ−1

− σ − γ

σ

T f

Hg

(
1− µf

σ

)σ−1
 (A.23)

T f

Hg
= sf |g

(
1− µf

σ

)1−σ

(A.24)

sf =
T f

H
σ−γ
σ−1
g H

(
1− µf

σ

)σ−1

(A.25)

1 =
∑
f∈Fg

sf |g (A.26)

1

H
= 1−

∑
f∈F

sf (A.27)

πf =
1

σ
µfsf (A.28)

CS = H1/(γ−1) (A.29)

where T f is the type of the firm, sf is the share of the firm, sf |g is the share of the firm within
its nest, µf is the ι-markup of the firm, Hg is a nest aggregator, H is the market aggregator,
πf is the profit of the firm, and CS is consumer surplus.

Firm types are defined as in (23). Firm share is given by sf =
∑

j∈J f sj , as in the MNL
and CES models. Firm share within its nest is given by sf |g =

∑
j∈J f sj|g, where the share of

a product within a nest is

sj|g =
vjp

1−σ
j∑

k∈Jg
vkp

1−σ
k

. (A.30)

The aggregators are defined as Hg ≡
∑

j∈Jg
vjp

1−σ
j and H ≡ 1+

∑
g∈G H

γ−1/σ−1
g . The markup

is defined as µf ≡ σ(pj − cj)/pj for all j ∈ J f , same as with CES demand.
The pricing first order condition for good j can be written as

σ
pj − cj

pj
= 1 +

∑
k∈J f

pk − ck
pk

[(γ − 1)sk + (σ − γ)sk|g] (A.31)

under the assumption that firm f owns products only in nest g. We again see that the right-
hand side of this condition does not depend on the identity of j ∈ J f . Substituting in for the
definition of µf gives (A.22).

Next, multiplying and dividing by c1−σ
j on the right-hand side of (A.30) and applying the
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definitions of µf , TF , and Hg obtains

sf |g =
T f

Hg

(
1− µf

σ

)σ−1

. (A.32)

which rearranges to (A.24). Applying the same computation to (21) gives (A.25). Then
(A.23) can be obtained by plugging (A.24) and (A.25) back into (A.22). Next, (A.26) and
(A.27) are adding-up constraints that close the model, (A.28) is obtained by plugging µf into
the profit function, and (A.29) follows directly from the NCES functional form.

B Numerical Extensions

B.1 Delayed and Probabilistic Entry

Our baseline model considers a three-stage game in which (1) firms decide to merge, (2) an
outsider decides to enter, and (3) payoffs are realized according to a differentiated pricing
game. In this appendix, we consider two variants. The first is a model of delayed entry in
which incumbents obtain payoffs for N periods before entry occurs (if it does occur). The
second is a model of probabilistic entry in which entry occurs in the second stage with some
fixed probability p if it is profitable, and with probability zero otherwise.

With delayed and probabilistic entry, a merger that induces entry increases the net present
value of the merging firms if and only if

1− θ

1− δ
πM
m,ne +

θ

1− δ
πM
m,e ≥

∑
i=1,2

1

1− δ
πi
nm,ne, (B.1)

where δ is a discount factor, θ = δN with delayed entry, and θ = p with probabilistic entry.
Similarly, a merger that induces entry increases the net present value of consumer surplus if
and only if

1− θ

1− δ
CSm,ne +

θ

1− δ
CSm,e ≥ 1

1− δ
CSnm,ne. (B.2)

As these equations nest both delayed and probabilistic entry, we proceed by analyzing mergers
and entry in the two models jointly.

With θ = 1, the analytical results from in the main body of the paper obtain, and with
MNL or CES demands merger-induced entry sufficient to preserve consumer surplus renders
the merger unprofitable. At the other end, entry is irrelevant with θ = 0.

With θ ∈ (0, 1), our intuition is that Proposition 1 extends for most reasonable parameter-
izations. The reason is that as θ decreases from one, the profitability of the merger increases
but so does the consumer surplus loss. Given the strict inequalities we obtain, the first of these
effects would have to be considerably stronger than the second to generate a profitable, pro-
competitive merger. Our examination of the implied relationships indicates this is unlikely to
be the case.

In support of this conjecture, we conduct numerical simulations using a model with two
incumbents and MNL demand. We consider market shares for the incumbents that range
from 1% to 80%. After calibrating incumbent types, we examine entrants with types that
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range between that of the compensating entrant (Proposition 4) and ten times that of the
merged firm. Finally, for each of these, we scale θ between zero and one in increments of
0.01. We find no cases in which a profitable merger increases consumer surplus.

This is not to claim that profitable, pro-competitive mergers cannot be found with unrea-
sonable parameterizations. Indeed, for any initial set of incumbent types and MNL or CES
demands, we can prove that there exists some θ and entrant type TF for which a profitable
merger improves consumer surplus. As one example, suppose that two incumbents each have
of a market share of 40% initially. The implied types are T 1 = T 2 = 10.59. Further let
θ = 0.099, which obtains with 21.96 years of delay (given δ = 0.90) or with a probability of
post-merger entry just less than 10%. If, in addition, the entrant’s type exceeds 3.59 × 10102,
then a profitable, pro-competitive merger obtains.28 This entrant captures a market share
of 99.6%; the incumbents’ combined market share decreases to 0.4% and the share of the
outside good is approximately zero.

We now formally state that with delayed and probabilistic entry, the model can generate
profitable, pro-competitive mergers.

Proposition B.1. Fix an initial market structure comprising f = 1, . . . , F − 1 incumbents and
their types, and consider a merger of firms 1 and 2. With MNL and CES demands, there exists
a θ and entrant type TF such that the merger with induced entry increases the present value of
consumer surplus and the merging firms’ profit.

Proof. See Appendix C.

For intuition, if θ is small enough—i.e., entry is sufficiently delayed or unlikely—then a
merger increases the present value of the merging firms’ profit, even if this profit is approxi-
mately zero in every period after entry occurs. Thus for any baseline calibration, by choosing
a small enough θ, the profit and surplus inequalities ‘decouple,’ in the sense that the profit
inequality holds for any value of entrant type. However, as consumer surplus increases to in-
finity with the type of the entrant, one can then always find some sufficiently capable entrant
such that the present value of consumer surplus increases. The numerical results we describe
above suggest that this theoretical possibility is not practically relevant for merger review.

B.2 Random Coefficients Logit

The random coefficients logit (RCL) demand system is widely employed in modern empiri-
cal studies due to its flexibility. In this section, we explore whether the basic intuition that
emerges from our analysis of NMNL and NCES demand—that entry by a distant competi-
tor can offset the adverse effect of a profitable merger in SPE—extends to the RCL model.
Throughout this section we rely on numerical analysis due to the RCL model’s failure to ex-
hibit the type aggregation or common markup properties underpinning our earlier analytic
results.

We first consider whether merger-induced entry sufficient to eliminate consumer surplus
loss from a profitable merger (without efficiencies) requires an entrant with products that are
distant substitutes to those of the merging firms. We assume the indirect utility that consumer

28For comparison, there are approximately 2.40× 1067 atoms in the Milky Way galaxy.
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i receives from product j is
uij = (1 + βi)vj − αpj + ϵij , (B.3)

where ϵij is iid Type I extreme value and βi ∼ N(0, 1) is a consumer-specific valuation for
quality. There are two single-product incumbents, each with vj = 4 and cj = 2. We consider
four values of the price parameter: α = (1, 2, 3, 4). The larger values imply more elastic
demand. With α = 4, the pre-merger equilibrium features prices of 2.36, incumbent market
shares of 6.4%, and a diversion ratio between incumbents of 45%. With α = 1, these statistics
are 3.72, 30%, and 72%, respectively. We consider entrants with marginal costs and qualities
that range between -2 and 8. With a step size of 0.05, this yields 40,401 entrants. We simulate
a merger between the incumbents under the assumption that it induces entry by one of the
entrants. Iterating through the entrants, we determine whether consumer surplus and the
merging firms’ profit increase relative to the pre-merger baseline.

Figure B.1 summarizes the results. In each panel, the shaded gray region provides the
entrant qualities and marginal costs for which the merger is both profitable and increases
consumer surplus. In the top left panel (α = 4), this region features entrant marginal costs
that are close to zero or negative and entrant quality that is substantially less than that of
the merging firms.29 Comparing across panels, as demand becomes less elastic and incum-
bent market powers grows, the gray region requires even lower entrant marginal costs and
qualities. In the bottom right panel (α = 1), the region does not exist within the considered
marginal cost and quality ranges.

We interpret these results as indicating that the intuition behind our results for the NMNL
and NCES models extends to the RCL model: merger-induced entry sufficient to preserve con-
sumer surplus can be compatible with a profitable merger, but only if the entrant’s products
are differentiated enough from those of the merging firms. The model also is informative
of the entrant characteristics under which surplus-preserving merger-induced entry can arise
in SPE. Thus in empirical work, knowledge of the production technologies could be paired
with the model to determine whether merger-induced entry that restores consumer surplus
in SPE is plausible. For example, the model might indicate that the entrant’s marginal costs
would have to be negative, or that its quality would have to be much higher than that of the
incumbents.

C Section 3 Proofs

C.1 Proofs of Lemmas

C.1.1 Lemma 1

Proof. (i) =⇒ (ii): Suppose (i) holds, that is,

πf
nm,ne = πf

∗ .

29We suspect that a similar region exists for entrant costs and quality that are both much higher than the
merging firms, but computing equilibrium in that parameter range is difficult for numerical reasons.
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Figure B.1: Numerical Results for RCL Demand with α = (4, 3, 2, 1)

Notes: The panels show the combinations of entrant quality and marginal cost for which a merger with entry
increases consumer surplus (shaded yellow), increases the merging firms’ profit (shaded blue), or both (shaded
gray). The corresponding neutrality curves for merger profitability and consumer surplus are plotted as solid blue
and dashed orange lines, respectively. The marginal cost and quality of the merging firms are plotted with the
black vertical and horizontal lines.

By (12), µf
nm,ne = µf

∗ , and by (A.3), sfnm,ne = sf∗ . Because T f = T f
nm,ne = T f

∗ by hypothesis,
(10) implies

T f

Hnm,ne
= sfnm,ne exp

(
1

1− sfnm,ne

)
= sf∗ exp

(
1

1− sf∗

)
=

T f

H∗
,

and thus Hnm,ne = Hm,e, which implies (ii).

(ii) =⇒ (i): Suppose now that Hnm,ne = H∗ = H. By (10), we obtain sfnm,ne = sf∗ for every
f ∈ Fnm,ne immediately, and (i) follows by a chain of substitutions identical to the above.

(ii) =⇒ (iii): Suppose now that Hnm,ne = H∗ = H. From (11),

1

H
+

∑
f∈Fnm,ne

sfnm,ne =
1

H
+
∑
f∈F∗

sf∗ ⇐⇒
∑

f∈Fnm,ne

sfnm,ne =
∑
f∈F∗

s∗m,
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which implies (iii) immediately upon cancelling terms (via appeal to (ii) implying (i) and
hence to the shares also coinciding across scenarios).

(iii) =⇒ (ii): We proceed by contraposition. Thus suppose that the merger affects consumer
surplus: Hnm,ne ̸= H∗. Let f belong to both Fnm,ne and F∗, i.e. let f denote any firm other
than 1, 2, M or potentially F . By (10), we have

T f

Hnm,ne
= sfnm,ne exp

(
1

1− sfnm,ne

)

and
T f

H∗
= sf∗ exp

(
1

1− sf∗

)
.

For both equations, the right-hand side is strictly increasing in the relevant share, and thus
for all such f ,

1

Hnm,ne
>

1

H∗
⇐⇒ sfnm,ne > sf∗ .

Thus,
1

Hnm,ne
+

∑
f∈Fnm,ne∩F∗

sfnm,ne ̸=
1

H∗
+

∑
f∈Fnm∩F∗

sf∗ ,

and it follows by (11) that (iii) cannot hold.

C.1.2 Other Lemmas

Lemma C.1. In Bertrand equilibrium with MNL demand, all firms with positive share have
markups such that µf ∈ (1,∞). If we instead have CES demand, all firms with positive share
have markups such that µf ∈ (1, σ).

Proof. In equilibrium in the MNL case we have that

µf =
1

1− sf

from (A.3). There is an outside good with positive share, so sf < 1 for all active firms. Thus
we have that µf > 1, since the denominator in the expression above, 1− sf , is less than one
for all positive values of sf . We also have that µf approaches infinity as sf approaches 1.

In equilibrium in the CES case we have that

µf =
1

1− σ−1
σ sf

=
σ

σ − sf (σ − 1)

from (A.7). Given that there is an outside good with positive share, sf < 1 for all active firms.
Thus, the first equality implies that µf > 1, since the denominator 1 − ((σ − 1)/σ)sf is less
than one for all positive values of sf . The second equality implies that µf is bounded above
by σ as sf approaches 1.
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Lemma C.2. Define the function

ϕ(x) ≡
{

xe−x (MNL or NMNL)
x
(
1− x

σ

)σ−1 (CES or NCES)
(C.1)

where the first specification applies to the MNL and NMNL models, and the second applies to the
CES and NCES models. This function ϕ(·) is decreasing on (1,∞) for the MNL/NMNL specifica-
tion and decreasing on (1, σ) for the CES/NCES specification.

Proof. The derivative for the MNL/NMNL specification is

d

dx
ϕ(x) = (1− x) exp(−x).

This derivative is negative if and only if 1− x is negative. This in turn is true if x > 1.
For the CES/NCES specification, we employ a change of variables by defining x̃ = x/σ.

The derivative of the redefined function has the same sign as the original, since σ is positive.
We have that ϕ(x̃) = σx̃(1− x̃)σ−1. Then the derivative is

d

dx̃
ϕ(x̃) = σ(1− x̃)σ−1

[
1− x̃(σ − 1)

1− x̃

]
.

This derivative is negative in the relevant range if and only if the term in brackets is negative,
because (1 − x̃) is positive for all x ∈ (1, σ). The term in brackets is negative if and only if
x̃ > 1/σ. We know that x > 1, so this condition is met.

C.2 Proof of Proposition 1

Proof. We first show that, for all choices of TF , there is a unique efficiency E that makes
the merger CS-neutral. Fix TF and suppose that the merger is CS-neutral. Then Hnm,ne =
Hm,e = H. Since types are unchanged across market structures, by (10) and (11) it follows
that

s1nm,ne + s2nm,ne = sFm,e + sMm,e. (C.2)

This establishes claim (iii). Clearly s1nm,ne and s2nm,ne do not depend upon E. Moreover, by
(9) and (10), sFm,e depends only on TF and H, not E. Then, by appeal to (10) and (A.3), the
only term in (C.2) that depends on E is pinned down by

T 1 + T 2 + E

H
= sMm,e exp

(
1

1− sMm,e

)
, (C.3)

the left-hand side of which is strictly increasing in E. However, by (C.2), the right-hand side
does not depend on E and hence there can be only one such value for E.

We now establish that the CS-neutrality curve is downward-sloping. To this end, suppose
consumer surplus is unchanged across the nm, ne and m, e equilibria, and hence that (C.3)
obtains. By an identical argument, for the entrant F ,

TF

H
= sFm,e exp

(
1

1− sFm,e

)
. (C.4)
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Suppose TF is increased. This does not change H, as it is pinned down by its value in the
nm, ne equilibrium (which does not depend upon TF ) and our hypothesis of CS neutrality.
Then by (C.4), an increase in TF leads to a higher equilibrium share sFm,e. But by (C.2) this
implies a corresponding, equivalent decrease in sMm,e as s1nm,ne and s2nm,ne do not depend upon
TF or E. By (C.3), we then conclude the CS neutrality curve is downward sloping.

Finally, claim (ii) follows immediately from the above, and the definitions of these objects.

C.3 Proof of Proposition 2

Proof. We first establish claim (iii). Suppose that the merger is profit-neutral:

π1
nm,ne + π2

nm,ne = πM
m,e.

By (12), it follows that
µM
m,e + 1 = µ1

nm,ne + µ2
nm,ne.

By substituting using (A.3) and solving for sMm,e in terms of s1nm,ne and s2nm,ne, we obtain

sMm,e = 1−
(1− s1nm,ne)(1− s1nm,ne)

1− s1nm,nes
2
nm,ne

as desired.
We now show that for all values of TF , there is a unique efficiency E that makes the

merger profit-neutral. Suppose then for some TF , that there exists some efficiency E is such
that the merger is profit-neutral. Then by (10) and (A.3), E satisfies

T 1 + T 2 + E

Hm,e
= sMm,e exp

(
1

1− sMm,e

)
.

However, (iii) implies the right-hand side is constant in E, as it is a function solely of the pre-
merger equilibrium quantities s1nm,ne and s2nm,ne, which do not depend on E. In the Online
Appendix (p.110) of Nocke and Schutz (2018), it is shown that for any firm f , T f/H is
increasing in T f . This implies that if there exists any such E, then it is necessarily unique. To
show such an E exists, it suffices to show that the left-hand side (i.e. TM/Hm,e) is unbounded
above in TM . Suppose, for sake of contradiction, this is not the case. Then as TM/Hm,e is
increasing and bounded above, it converges to some limit K < ∞. Since TM → ∞, this
implies limTM→∞Hm,e = ∞ as well. Thus for any g ∈ Fm,e, g ̸= M , (10) and (A.3) imply that
sgm,e → 0. As g was arbitrary, by (11), sMm,e → 1 and hence by (10) and (A.3) TM/Hm,e → ∞,
a contradiction. Thus limTM→∞ TM/Hm,e = ∞, and in particular, for any such TF , there
exists an E such that the merger is profit-neutral.

We now establish claim (i), that the merger profit-neutrality curve is upward sloping.
Suppose that, for TF , E is such that the merger is profit-neutral. Then, as noted prior, E
must satisfy

T 1 + T 2 + E

Hm,e
= sMm,e exp

(
1

1− sMm,e

)
,
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where, by (iii), the right-hand side is a constant function in E. Suppose TF increases. This
increases Hm,e. Since the right-hand side of the above is constant in TF and Hm,e, for the
equality to hold, the unique solution in E must increase (given the left-hand side is increasing
and unbounded in E).

For (ii), the first claim follows immediately from the definitions of T̄F . For the latter claim,
suppose that E = Ē, and observe that if TF = 0, then the merger is profitable. Conversely,
suppose TF → ∞. Then, as shown above, TF /Hm,e → ∞ as well. By (10), sFm,e → 1,
and hence sMm,e and πM

m,e → 0. Thus we conclude that as TF → ∞, the merged entrant’s
profits monotonically decreases to 0. Since pre-merger, the entrant is not in the market, the
pre-merger profits of the merging entities are unaffected by TF , there exists some TF for
which (TF , Ē) makes the merger profit-neutral; as πM

m,e is globally decreasing in TF , this T̄F

is unique.

C.4 Proof of Proposition 3

Proof. We first establish that, for all choices of TF > 0, there is a unique efficiency E that
makes the merger cause the entrant to be profit-neutral. Fix TF and consider the associated
nm, e and m, e equilibria. If the entrant’s profits are equal across both equilibria, then by
Lemma 1, Hnm,e = Hm,e = H, and

s1nm,e + s2nm,e = sMm,e.

In the m, e equilibrium we have that

T 1 + T 2 + E

H
= sMm,e exp

(
1

1− sMm,e

)
,

the left-hand side of which is strictly increasing in E. However, the right hand side is injective
in sMm,e, and sMm,e is fixed by the nm, e equilibrium and hence its equilibrium is fixed under the
hypothesis of entrant profit-neutrality. Thus there can be only one E satisfying the above.30

We consider now claim (i), that the entrant profit neutrality curve is downward sloping.
By Lemma 1, we know that Hnm,e = Hm,e = H and s1nm,e + s2nm,e = sMm,e. In equilibrium,

T 1 + T 2 + E

H
= sMm,e exp

(
1

1− sMm,e

)
.

By Proposition 6 of Nocke and Schutz (2018), an increase in TF for fixed E leads to a decrease
in s1nm,e and s2nm,e. But this implies a decrease in sMm,e as it is the sum of these terms. Thus
there must be a commensurate decrease in E.

We now establish claim (ii). Consider the following three market structures: Fnm,ne,
Fnm,e, and Fm,e. The entry neutrality line is determined by profit-neutrality across Fnm,e and
Fm,e; the CS neutrality line is determined by surplus remaining constant across Fnm,ne and
Fm,e. We first claim that if the two curves intersect for some (TF , E) then TF = 0. By Lemma
1, CSnm,e = CSm,e; by hypothesis, CSm,e = CSnm,ne. Hence in particular, Hnm,ne = Hnm,e =

30Here, as H is fixed by the nm, e equilibrium value, the left hand side is unbounded in E.
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H. Then for each f ∈ Fnm,e \ {F}, we have

sfnm,e exp

(
1

1− sfnm,e

)
=

T f

H
= sfnm,ne exp

(
1

1− sfnm,ne

)
,

and hence sfnm,e = sfnm,ne. By the adding up constraint,∑
f∈Fnm,ne

sf =
∑

f∈Fnm,e

sf ,

and thus sF = 0 and hence so too is TF . Thus consider TF →+ 0. If TF > 0, then CSnm,e >
CSnm,ne, however, limTF→+0CSnm,e = CSnm,ne. Thus as TF →+ 0, the associated efficiency
tends to Ē by definition.

Suppose now that TF > 0. We will establish that the unique E such that (TF , E) is entrant
profit-neutral must be strictly positive. Suppose, for sake of contradiction, that E = 0. Since
TM > max{T 1, T 2}, following the merger the markups for the merging firms increase. Given
marginal costs remain fixed, the corresponding equilibrium prices increase and hence the
effect of the merger on H is an unambiguous decrease. But this implies then πF

m,e > πF
nm,e > 0,

a contradiction. By an argument analogous to that appearing in the proof of Proposition 2,
an E such that the merger is profit-neutral for F must exist, thus we conclude E > 0.

Finally, claim (iii) follows from Proposition 1, and the immediate observation that, ceteris
paribus, entry increases consumer surplus.

C.5 Proof of Proposition 4

Proof. We begin by characterizing the implicit functions ΥMNL and ΥCES . With MNL de-
mand, the type of the compensating entrant, T̃F , satisfies

T̃F

T 1 + T 2
=

(s1 + s2 − sM ) exp
(

1
1−s1−s2+sM

)
s1 exp

(
1

1−s1

)
+ s2 exp

(
1

1−s2

) , (C.5)

where sM is the unique solution to

sM exp

(
1

1− sM

)
= s1 exp

(
1

1− s1

)
+ s2 exp

(
1

1− s2

)
. (C.6)

With CES demand, the type of the compensating entrant satisfies

T̃F

T 1 + T 2
=

(s1 + s2 − sM )
(
σ + s1+s2−sM

1−(s1+s2−sM )

)σ−1

s1
(
σ + s1

1−s1

)σ−1
+ s2

(
σ + s2

1−s2

)σ−1 , (C.7)
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where sM is the unique solution to

sM
(
σ +

sM

1− sM

)σ−1

= s1
(
σ +

s1

1− s1

)σ−1

+ s2
(
σ +

s2

1− s2

)σ−1

. (C.8)

In order to derive the above relationships, begin by rearranging (10) to solve for firm type,
giving

T f =

 Hsf exp
(

1
1−sf

)
(MNL)

Hsf (σ − 1)1−σ
(
σ + sf

1−sf

)σ−1
(CES)

(C.9)

after substituting in for markups. Then evaluate this type equation for firm F after the merger
and firms 1 and 2 before the merger, substituting in for the entrant share using sF = s1+s2−
sM , which obtains from Lemma 1. Dividing the result for firm F by the sum of the results for
firms 1 and 2 gives (C.5) and (C.7) for MNL and CES, respectively.

Without efficiencies, TM = T 1 + T 2. Substituting into this sum for types using (C.9)
gives (C.6) and (C.8). These two expressions have unique positive solutions because the
expressions x exp(1/(1− x)) and x(σ + x/(1− x))σ−1 are increasing if x ∈ [0, 1).

Furthermore, with MNL and CES demand, we can characterize the relationship between
the entrant’s type T̃F and an “average” type. Let sa be the average of s1 and s2, calculated
as (s1 + s2)/2. Let T a be the type that generates a share of sa given aggregator H, which
can be found by solving (10) holding H fixed. (Note that if s1 ≥ s2, then s1 ≥ sa ≥ s2 and
T 1 ≥ T a ≥ T 2, the latter due to the monotonicity of shares in terms of T f/H.) We can show
that T̃F < T a and sF < 1

2

(
s1 + s2

)
. In order for consumers to be unharmed, H must be

unchanged due to the merger. Therefore, since TM > T 1 and TM > T 2, TM/H > T 1/H and
TM/H > T 2/H. In turn, this means that sM > s1 and sM > s2, since shares are increasing
in T f/H. Adding these inequalities gives 2sM > s1 + s2, and then dividing by two gives
sM > sa. As shown by Lemma 1, if H remains the same, then sF + sM = s1 + s2, which also
means that sF +sM = 2sa. In order for this equality to hold when we also know that sM > sa,
it must be that sF < sa. By the monotonicity of shares, this means that T̃F < T a.

C.6 Proof of Proposition 5

Proof. Suppose, for purposes of contradiction, there exists a SPE in which firms 1 and 2
merge, and consumers surplus does not decrease. Thus the merger must increase joint profits:

πM

(
T 1 + T 2

Hm,e

)
≥ π1

(
T 1

Hnm,ne

)
+ π2

(
T 2

Hnm,ne

)
,

where Hnm,ne denotes the aggregator with no merger and no entry. By hypothesis, consumers
surplus does not fall, hence we have Hnm,e ≤ Hm,e. Furthermore, by Nocke and Schutz (2018,
Proposition 6), πM is decreasing in H all else equal, meaning that

πM

(
T 1 + T2

Hnm,ne

)
≥ π1

(
T 1

Hnm,ne

)
+ π2

(
T 2

Hnm,ne

)
. (C.10)

15



Multiplying the markup and firm share shows that firm profit is given by

πf =


1
αµ

f T f

H exp(−µf ) (MNL)
1
σµ

f T f

H

(
1− µf

σ

)σ−1
(CES).

Then (C.10) is satisfied, after canceling certain constants, if and only if

(T 1 + T 2)ϕ
(
m(T 1 + T 2, Hnm,ne)

)
≥ T 1ϕ

(
m(T 1, Hnm,ne)

)
+ T 2ϕ

(
m(T 2, Hnm,ne)

)
,

where ϕ(·) is defined as in C.1, and m(·) denotes the markup fitting-in function for the MNL
or CES, as appropriate. This expression is equivalent to∑

i∈{1,2}

T i
[
ϕ
(
m(T i, Hnm,ne)

)
− ϕ

(
m(T 1 + T 2, Hnm,ne)

)]
≤ 0,

which is an impossibility. The function ϕ(·) is decreasing for all possible markup values for
both the MNL and CES cases according to Lemma C.2. Furthermore, for all i, m(T 1 + T 2) >
m(T i), since Nocke and Schutz (2018, Proposition 6) implies that markups are increasing in
type for fixed H. Therefore, the sum above is component-wise strictly positive, which is a
contradiction.

C.7 Proof of Proposition 6

Proof. Immediate from Propositions 1 - 3.

C.8 Proof of Proposition 7

Proof. Let (E, TF ) be such that (i) the merger is profit-neutral and (ii) consumer surplus is
unchanged due to the merger. From (ii), we know that the aggregator is constant at some
level H. From (C.9), we also have

TM = T 1 + T 2 + E =

 HsM exp
(

1
1−sM

)
(MNL)

HsM (σ − 1)1−σ
(
σ + sM

1−sM

)σ−1
(CES).

Plugging in for T 1 and T 2 again using (C.9) and solving for E yields (16) and (18). From
(i), we obtain (17) and (19). We derive these expressions by evaluating the profit functions
in (12) for the merged firms before and after the merger, plugging into πM = π1 + π2, and
substituting in for markups using (A.3) and (A.7), for MNL and CES, respectively (see the
proof of Proposition 2, which works out the MNL case in more detail).

C.9 Proof of Proposition 8

Proof. The proof mirrors that for Proposition 5, but within a nest. Suppose, for purposes of
contradiction, there exists a SPE in which firms 1 and 2 merge, and consumers are unharmed.
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Thus the merger must increase joint profits:

πM (T 1 + T 2, Hm,e
g ) ≥ π1(T 1, Hnm,ne

g ) + π2(T 2, Hnm,ne
g ),

where Hnm,ne
g denotes the nest-level aggregator with no merger and no entry, while Hm,e

g is
the same object but for a merger with entry. The products in all other nests remain the same,
meaning that the resulting overall aggregator is a function of activity from nest g, so we have
dropped H in order to save on notation.

By hypothesis, consumers are unharmed, hence we have Hm,e
g ≥ Hnm,ne

g . Furthermore,
profits are decreasing in Hg according to Nocke and Schutz (2018, Proposition 6), extended
to NMNL and NCES in their Appendix (pp. 104-106). Therefore, we have

πM (T 1 + T 2, Hnm,ne
g ) ≥ π1(T 1, Hnm,ne

g ) + π2(T 2, Hnm,ne
g ). (C.11)

Multiplying the markup and firm share shows that firm profit is given by

πf ≡


1−ρ
α µf T f

Hg
exp(−µf )s̄g (NMNL)

1
σµ

f T f

H
γ−σ
1−σ
g H

(
1− µf

σ

)σ−1
(NCES).

Substituting for profit in the inequality expression (C.11) with ϕ(·) from (C.1) and canceling
gives the condition

(T 1 + T 2)ϕ
(
m(T 1 + T 2, Hnm,ne

g )
)
≥ T 1ϕ

(
m(T 1, Hnm,ne

g )
)
+ T 2ϕ

(
m(T 2, Hnm,ne

g )
)
,

where m(·) denotes the markup fitting-in function for the NMNL or NCES, as appropriate.
The profit inequality in (C.11) is satisfied if and only if this condition holds. Note that this
condition is analogous to that in the non-nested proof for Proposition 5. Markups are also
increasing in type, all else equal (again referencing Nocke and Schutz (2018, Proposition 6)).
Thus, we also arrive at a contradiction in the nested case as well.

C.10 Proof of Proposition 9

Traditionally, the continuity of a fixed point as a function of some set of parameters is estab-
lished via an appeal to an appropriate form of the implicit function theorem. However, this
requires one to consider parameters on the interior of their domain, whereas here we wish to
establish continuity precisely on the boundary. Thus we instead employ an approach dating
back to Mas-Colell (1974) utilizing a generalization of the implicit function theorem known
as the regular value theorem (see Hirsch (2012), Theorem 1.4.1) which remains valid for
problems on the boundary.
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C.10.1 NMNL Preliminaries

We will prove Proposition 9 by first establishing two intermediate technical results. Define31

Ωg(H,Hg; ρ) =
1

Hg

∑
f∈Fg

∑
j∈J f

exp

[
δj − αcj
1− ρ

− m̃f

(
ρ

Hg
+ (1− ρ)

1

Hρ
gH

; ρ

)]
.

where the the function m̃f (X; ρ) is defined as the solution in µf , for fixed ρ to

µf − 1

µf

1

T f exp (−µf )
= X. (C.12)

Let: Ω : RG+1
++ × [0, 1) → RG+1 via

Ω
(
(Hg)g∈G , H; ρ

)
=


Ω1(H1, H; ρ)− 1

...
ΩG(HG, H; ρ)− 1

1 +
∑

g∈G Hg
1−ρ −H

 .

The set of equilibria, treating ρ as a free parameter, are precisely the solutions to

Ω
(
(Hg)g∈G , H; ρ

)
=

0...
0

 . (C.13)

The differential of Ω, evaluated at a solution to (C.13), is of the form

DΩ
(
(Hg)g∈G , H; ρ

)
=

 Λ Θ ∗

(1− ρ)H−ρ
1 · · · (1− ρ)H−ρ

G −1 −
∑

g∈G H
1−ρ
g lnHg

 , (C.14)

where Λ is a G×G diagonal matrix with

Λgg =
1

Hg

(
ρ

Hg
+

ρ(1− ρ)

Hρ
gH

)
Bg −

1

Hg
,

and Θ is the G× 1 matrix with

Θg =
∂Ωg

∂H
=

(1− ρ)

Hρ
gH2

Bg,

31See equation (xxxi) in Nocke and Schutz (2018) Appendix (p. 70) for reference.
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where the expression Bg is given by

Bg =
1

Hg

∑
f∈Fg

∑
j∈J f

exp

[
δj − αcj
1− ρ

− m̃f

(
ρ

Hg
+ (1− ρ)

1

Hρ
gH

; ρ

)]
m̃f ′

(
ρ

Hg
+

(1− ρ)

Hρ
gH

)
.

We now turn to our first technical lemma.

Lemma C.3. For some ε > 0, the differential DΩ, evaluated at any solution to (C.13) with
ρ ∈ [0, ε), is of rank G+ 1.

Proof. We break down the proof into steps.

1. Rank at least G: Firstly, by direct observation, the upper-left G×G block Λ is diagonal.
Moreover, each diagonal element is strictly negative (see Nocke and Schutz (2018)
Online Appendix, Lemma XXIII proof). Hence the first G columns of DΩ are linearly
independent, evaluated at any solution to (C.13).

2. Removal of Nuisance Terms: Suppose we evaluate DΩ at the unique solution to (C.13)
with ρ = 0. Then, in particular, we have that

Λgg

∣∣
ρ=0

= − 1

Hg
,

and
Θg

∣∣
ρ=0

=
1

H2
Bg

∣∣
ρ=0

.

3. Contradiction Hypothesis: Suppose, for sake of contradiction, that the G+1st column
of DΩ evaluated at the unique solution to (C.13) where ρ = 0 is a linear combination
of the first G columns. Then there exist (ag)Gg=1 such that

(∀g) Λgg|ρ=0ag = Θg|ρ=0,

and which satisfy
G∑

g=1

ag = −1. (∗)

Using the results of the preceding step, we can back out these weights

(∀g) ag = −Hg

H2
Bg|ρ=0.

4. Algebra: Then, plugging in to (∗), we obtain∑
g∈G

∑
f∈Fg

∑
j∈J f

exp

[
δj − αcj − m̃f

(
1/H

)]
m̃f ′(

1/H
)
= H2.

Since we’re at an equilibrium (i.e. a solution to (C.13)) we can simplify this using the
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usual system of equations that hold in an equilibrium. In particular, we have that∑
g∈G

∑
f∈Fg

T f exp (−µf ) m̃f ′(
1/H

)
= H2.

5. Dealing with m̃f ′
: Recall m̃f is the implicit solution to (C.12). In particular,

dm̃f

dX
=

T fm̃f exp (−m̃f )

1−XT f
[
exp (−m̃f )− m̃f exp (−m̃f )

] .
For the H under consideration, let us define µf = m̃f (1/H). Then this derivative,
evaluated at X = 1/H, is

T fµf exp (−µf )

1− 1
HT f

[
exp (−µf )− µf exp (−µf )

] .
Now, as we are working at an equilibrium, it must be the case that T fµf exp (−µf ) =
H(µf − 1), hence our expression for the derivative at 1/H may be simplified to

Hµf (µf − 1)

1 + µf (µf − 1)
.

6. Simplifying Plugging in the result of Step 5 into that of Step 4 and dividing both sides
by H yields ∑

g∈G

∑
f∈Fg

T f exp (−µf )

[
µf (µf − 1)

1 +Hµf (µf − 1)

]
= H.

Note that the square bracketed term lies strictly within [0, 1) for all µ > 1. Thus,

∑
g∈G

∑
f∈Fg

T f exp (−µf )

[
µf (µf − 1)

1 + µf (µf − 1)

]
<
∑
g∈G

∑
f∈Fg

T f exp (−µf )

=
∑
g∈G

∑
f∈Fg

Hgs
f |g

=
∑
g∈G

Hg

∑
f∈Fg

sf |g

=
∑
g∈G

Hg

< 1 +
∑
g∈G

Hg

= H.

Thus (∗) can never hold for any (ag), and the first G+1 columns of DΩ, at the solution
to (21) where ρ = 0, are linearly independent. By continuity of these terms in ρ, the
same must be true for some small enough open set of ρ’s containing 0, and the result
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follows.

We now establish the following immediate corollary:

Lemma C.4. Let Ω̂ : RG+1
++ → RG+1 denote the restriction of Ω to the (relatively) open set

RG+1
++ × {0}. Then DΩ̂ is of full rank at the unique solution to (C.13) in this domain.

Proof. By direct calculation,

DΩ̂ =

 Λ̂ Θ̂

1 · · · 1 −1

 ,

where Λ̂gg = −1/Hg and Θ̂g = (1/H2)Bg|ρ=0. Thus an identical argument to the prior lemma
yields the result.

C.10.2 NCES Preliminaries

For NCES we define the function m̃f (X;σ) as the solution in µf , for fixed σ to

µf − 1

µf

1

T f
(
1− µf

σ

)σ−1
= X. (C.15)

Define:

Ωg(H,Hg;σ) =
1

Hg

∑
f∈Fg

∑
j∈Jf

δjc
1−σ
j

[
1− 1

σ
m̃f

(
γ − σ

σ

1

Hg
+

γ − 1

σ

1

H
σ−γ
σ−1
g H

)]σ−1

. (C.16)

The solutions to (C.16) are equivalent to solving Ωg(Hg, H;σ) = 1. Let: Ω : RG+1
++ × [γ,∞) →

RG+1 via

Ω
(
(Hg)g∈G, H;σ

)
=


Ω1(H1, H;σ)− 1

...
ΩG(HG, H;σ)− 1∑

g∈GHg

γ−1
σ−1 −H

 .

The set of equilibria, treating σ as a free parameter, are precisely the solutions to

Ω
(
(Hg)g∈G, H;σ

)
=

0...
0

 . (C.17)
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The differential of Ω is of the form

DΩ
(
(Hg)g∈G, H;σ

)
=

 Λ Θ ∗

γ−1
σ−1H

γ−σ
σ−1

1 · · · γ−1
σ−1H

γ−σ
σ−1

G −1 ∗

 , (C.18)

where Λ is a G×G diagonal matrix with

Λgg =
−1

Hg
+

1− σ

σ

[
− γ − σ

σ

1

H2
g

+
γ − 1

σ

γ − σ

σ − 1

1

HH
1−γ+2σ

σ−1
g

]
Bg (C.19)

at any solution to (C.17), where

Bg =
1

Hg

∑
f∈Fg

∑
j∈Jf

δjc
1−σ
j

[
1− 1

σ
m̃f

(
γ − σ

σ

1

Hg
+

γ − 1

σ

1

H
σ−γ
σ−1
g H

)]σ−2

×

m̃f ′
(
γ − σ

σ

1

Hg
+

γ − 1

σ

1

H
σ−γ
σ−1
g H

)
,

(C.20)

and Θ is a G× 1 matrix with

Θg =
∂Ωg

∂H
= −1− σ

σ

γ − 1

σ

1

H
σ−γ
σ−1
g H2

Bg. (C.21)

Lemma C.5. For some ε > 0, the differential DΩ, evaluated at any solution to (C.17) with
σ ∈ [γ, γ + ε) is of rank G+ 1.

Proof. We again break down the proof into steps.

1. Rank at least G: Firstly, by direct observation, the upper-left G×G block Λ is diagonal.
Moreover, each diagonal element is strictly negative (see Nocke and Schutz (2018)
Online Appendix, Lemma XXIII proof). Hence the first G columns of DΩ are linearly
independent, evaluated at a solution to (C.17).

2. Removal of Nuisance Terms: Suppose we evaluate DΩ at the unique solution to (C.17)
with σ = γ. Then (C.19) becomes

Λgg

∣∣
σ=γ

= − 1

Hg

and (C.21),

Θg

∣∣
σ=γ

=
(γ − 1)2

γ2
1

H2
Bg

∣∣
σ=γ

.

3. Contradiction Hypothesis: Suppose, for sake of contradiction, that the G+1st column
of DΩ is a linear combination of the first G columns when evaluated at the unique
solution with σ = γ. Since Λ is diagonal, this means that there exist real numbers
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{ag}g∈G such that agΛgg

∣∣
σ=γ

= Θg

∣∣
σ=γ

(from the first G rows), and
∑

g ag = −1 (the
G+ 1st row). From these equations we can solve for ag,

ag =
Θg

∣∣
σ=γ

Λgg

∣∣
σ=γ

= −(γ − 1)2

γ2
Hg

H2
Bg

∣∣
σ=γ

.

(C.22)

4. Algebra: Plugging in (C.22) for the contradiction hypothesis that
∑

g ag = −1, we
obtain

(γ − 1)2

γ2

∑
g∈G

∑
f∈Fg

∑
j∈Jf

δjc
1−σ
j

[
1− 1

γ
m̃f

(
γ − 1

γ

1

H

)]σ−2

m̃f ′
(
γ − 1

γ

1

H

)
= H2. (∗)

5. Dealing with m̃f ′
: Consider the m̃f ′

term now. We know m̃f (X) is the solution (in µf )
to (C.15). Thus, by direct computation we have that

dm̃f

dX
=

m̃fT f
(
1− m̃f

γ

)γ−1

1−XT f
[(
1− m̃f

γ

)γ−1 − m̃f γ−1
γ

(
1− m̃f

γ

)γ−2] . (C.23)

Considering some fixed solution to (C.17) at σ = γ, define µf = m̃f
(
((γ−1)/γ)(1/H)

)
,

and let X = ((γ − 1)/γ)(1/H). Then (C.23) becomes

µfT f
(
1− µf

γ

)γ−1

1− γ−1
γ

1
HT f

[(
1− µf

γ

)γ−1 − µf γ−1
γ

(
1− µf

γ

)γ−2]
which, given we are at a solution to (C.17), simplifies to(

γ

γ − 1

)
H(µf − 1)

1− (µf − 1)
[

1
µf − γ−1

γ
1

1−µf/γ

] .
6. Simplifying: Plugging in to (∗) we obtain

∑
g∈G

∑
f∈Fg

∑
j∈Jf

δjc
1−σ
j

[
1− µf

γ

]σ−2 (γ − 1)

γ

(µf − 1)

1− (µf − 1)
[

1
µf − γ−1

γ
1

1−µf/γ

] = H. (C.24)

Simplifying yields

∑
g∈G

∑
f∈Fg

T f

[
1− µf

γ

]σ−1(γ − 1

γ

)(
1

1− µf

γ

)
(µf − 1)

1− (µf − 1)
[

1
µf − γ−1

γ
1

1−µf/γ

]︸ ︷︷ ︸
≡χf

= H.

(C.25)
By Lemma C.1, in any solution µf ∈ [1, γ) and hence for all g and all f ∈ Fg, χf lives
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within [0, 1). Thus, considering the left-hand side of (C.25),

∑
g∈G

∑
f∈Fg

T f

[
1− µf

γ

]σ−1(
γ − 1

γ

)(
1

1− µf

γ

)
(µf − 1)

1− (µf − 1)
[

1
µf − γ−1

γ
1

1−µf/γ

]
<
∑
g∈G

∑
f∈Fg

T f

[
1− µf

γ

]σ−1

=
∑
g∈G

∑
f∈Fg

Hgs
f |g

=
∑
g∈G

Hg

= H,

a contradiction of (C.25). Thus the Jacobian DΩ, evaluated at any solution to (C.17)
with σ = γ, is of full rank.

Lemma C.6. Let Ω̂ : RG+1
++ → RG+1 denote the restriction of Ω to the (relatively) open set

RG+1
++ × {γ}. Then DΩ̂ is of full rank at the unique solution to (C.17) in this domain.

Proof. By direct calculation we have that

DΩ̂ =

 Λ̂ Θ̂

1 · · · 1 −1

 ,

where Λ̂gg = −1/Hg and Θ̂g = ((γ − 1)2/γ2)(1/H2)Bg

∣∣
σ=γ

. Thus, an identical argument to
the prior lemma yields the result.

C.10.3 Proof of Proposition 9

Proof. We state the proof for the NMNL case; the NCES case follows, mutatis mutandis, using
Lemmas C.5 and C.6. Let ε > 0 be any such value such that the conclusions of Lemmas C.3
and C.4 hold, and by abuse of notation, denote the restriction of Ω to RG+1

++ × [0, ε′) for any
0 < ε′ < ε simply by Ω. By Lemma C.3, 0 is a regular value of Ω on this domain, and by
Lemma C.4, 0 is also a regular value of Ω restricted to the boundary of this domain. Thus
by the Regular Value Theorem (see Hirsch (2012) Theorem 1.4.1, see also Mas-Colell (1974)
Theorem 2), Ω−1(0) is a C1 submanifold of RG+1

++ × [0, ε′), with boundary precisely equal to
the unique equilibrium at ρ = 0. Consider the (necessarily unique) connected component
of Ω−1(0) that intersects RG+1

++ × {0}. Since this component is a connected C1 manifold
with boundary, it is C1-diffeomorphic to [0, 1) (Hirsch (2012) Exercise 1.5.9).32 Since the

32It cannot be diffeomorphic to [0, 1] as from the Regular Value theorem, its boundary is given precisely by its
intersection with the boundary of the domain, and at ρ = 0 the equilibrium is unique.
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Regular Value Theorem guarantees its intersection with the slice RG+1
++ ×{0} is transverse, the

restriction of this component to RG+1
++ × [0, ε′′] for some 0 < ε′′ < ε′ is diffeomorphic to [0, 1],

and hence is compact.
However, Ω−1(0)|RG+1

++ ×[0,ε′′] is also the graph of the function e : [0, ε′′] → RG+1
++ that

takes a nesting parameter value and maps it to the unique equilibrium of the associated
differentiated Bertrand-Nash pricing game. By the preceding argument, we may without loss
restrict the codomain of e to be some compacta K ⊆ RG+1

++ such that (i) K × [0, ε′′] contains
Ω−1(0)|RG+1

++ ×[0,ε′′] , and (ii) the graph of e is a closed subset of K × [0, ε′′].33 But then by the
Closed Graph Theorem (Aliprantis and Border (2006) Theorem 2.58), this map is continuous
on [0, ε′′].

C.11 Proof of Proposition 10

Proof. We know from Proposition 5 that in the MNL and CES cases, if consumer surplus
remains unchanged after a merger, then the profits of the merging firms must fall. Thus, in
the NMNL (resp. NCES) model, for ρ = 0 (resp. σ = γ), if consumer surplus is unharmed
then,

πM (T 1 + T 2, Hm,e
g , H) < π1(T 1, Hnm,ne

g , H) + π2(T 2, Hnm,ne
g , H).

Suppose then that we consider a sequence of nesting parameter values (ρn)n∈N such that
ρn → 0 (resp. (σn)n∈N such that σn → γ). By Proposition 9, and the continuous dependence
of profits and markups on the underlying equilibrium variables (Hg)g∈G and H, we obtain a
sequence of profits for the individual merging parties and the merged entity which converge
to their ρ = 0 values as ρn → 0 (resp. σ = γ values as σn → γ). In the NMNL model, for n
large enough it then must be the case that

πM (T 1 + T 2, Hm,e
g (ρn), H(ρn)) < π1(T 1, Hnm,ne

g (ρn), H(ρn)) + π2(T 2, Hnm,ne
g (ρn), H(ρn)),

establishing the result. The sequence of profits would generate an analogous inequality in the
NCES model.

C.12 Proof of Proposition B.1

For brevity we focus on MNL demand. An analogous proof for CES demand can be provided
upon request by the authors. We first show that as the type of any one firm goes to infinity,
so too does the market aggregator.

Lemma C.7. Fix any market structure F∗ and vector of model primitives. For any f ∈ F∗,

lim
T f→∞

H∗ = ∞.

33It suffices to let K be the projection of Ω−1(0)|RG+1
++ ×[0,ε′′] onto RG+1

++ to satisfy both these properties. In

particular, this set is compact by continuity of the projection, and the graph of e is closed in RG+1
++ × [0, ε′′], hence

it is closed in the subspace topology on K × [0, ε”].
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Proof. First note that limT f→∞ T f/H∗ = ∞, as established in the proof of Proposition 2.
Thus, as

sf =
T f

H∗
exp

[
−1

1− sf

]
,

as T f goes to infinity, sf goes to one. But as:

1

H∗
+
∑
f∈F∗

sf = 1,

it follows that H∗ → ∞.

We now prove the proposition.

Proof. Fix an arbitrary market structure Fnm,ne and associated Fm,ne. The merger is profitable
with delayed or probabilistic entry if and only if

(1− θ)

[
1

1− sMm,ne

]
+ θ

[
1

1− sMm,e

]
≥ 1

1− sMm,e

, (C.26)

where

sMm,e = 1− (1− s1)(1− s2)

1− s1s2

is the market share of the merged firm in a counterfactual with entry that makes the merger
exactly neutral for stage-game profit.34 We obtain (C.26) by substituting in for profit using
(12) and (A.3). Note that f(x) = 1

1−x is increasing, and as sMm,ne > sMm,e,

1

1− sMm,ne

>
1

1− sMm,e

.

Define

(1− θ∗) ≡
1

1−sMm,e

1
1−sMm,ne

.

Thus for the choice θ = θ∗, the profit inequality reduces to

θ∗
[

1

1− sMm,e

]
≥ 0,

which always holds strictly. The definition of θ∗ does not depend on TF . Thus, for θ = θ∗, the
type of the entrant does not affect whether the merger is profitable. Assuming that θ = θ∗,
we turn to consumer surplus, which weakly increases if and only if

(1− θ∗) lnHm,ne + θ∗ lnHm,e ≥ lnHnm,ne.

The only term in this inequality that depends on TF is Hm,e. Furthermore, if we send TF to

34We derive the expression for sMm,e in Proposition 2.
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infinity, then Hm,e also goes to infinity, by Lemma C.7. Therefore, for some large enough TF ,
and for θ = θ∗, the merger is profitable and consumer surplus strictly increases.

D Numerical Methods

In this appendix, we describe how a model of Bertrand competition with MNL demand can
be calibrated based on data on market shares, and then simulated to obtain the percentage
changes in markups, profit, and consumer surplus due to a merger. The NMNL is analogous
if one has knowledge of the nesting parameter. We then detail the data sources and methods
that are used in the application to the T-Mobile/Sprint merger that is presented in Section 4.

D.1 Calibration and Simulation

With MNL demand, it is possible to recover types from market shares, and vice-versa. To
implement the former—a calibration step—first obtain the market aggregator from (11), and
the ι-markups from (A.3). Firm types then are given by a rearranged (10),

T f =
sfH

exp (−µf )
.

To implement the latter—a simulation step—use a nonlinear equation solver to recover the
shares and the market aggregator, given a set of types. There are F + 1 nonlinear equations
that must be solved simultaneously. One of these is the adding-up constraint of (11), and the
others are obtained by plugging (A.3) into (10), which yields

sf =
T f

H
exp

(
− 1

1− sf

)
.

If one knows the types, and thus also the aggregator, then markups, profit, and consumer
surplus are identified up to a multiplicative constant (see (9), (12), and (13)). An implication
is that the outcomes that arise with different firm types can be meaningfully compared—the
ratio of outcomes is identified because the multiplicative constant cancels.

A full calibration also recovers the multiplicative constant—the price parameter, α. This
can be accomplished with data on one margin, for example. See also the Nocke and Schutz
(2018) Online Appendix. Then markups, profit, and consumer surplus also are obtained
(not just up to a multiplicative constant). However, these objects are not necessary for our
purposes, so we use partial calibration.

An observation is that our market shares, {sf} ∀f ∈ F , assign a positive share to the
outside good. Thus, they differ from the antitrust market shares described in the US Merger
Guidelines, which assign zero weight to products that are outside the relevant market.35

Nonetheless, it is possible to convert antitrust market shares into our market shares using
information that often is available during merger review. For example, suppose one has
information on the diversion ratio that characterizes substitution from firm k to firm j. Then,

35See the US DOJ/FTC Merger Guidelines §4.4 for a discussion of market shares.
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in the context of MNL (and CES) we have

∂sj

∂pk

∂sk

∂pk

≡ DIVk→j =
sj

1− sk
. (D.1)

Letting the relevant antitrust market comprise the products of firms f ∈ F , we have

ŝf =
sf

1− s0
, (D.2)

where ŝf is the antitrust market share and s0 is the outside good share in our context. The
system of equations in (D.1) and (D.2) identifies s0 and {sf} ∀f ∈ F from data on diversion,
DIVk→j , for some j ̸= k, and the antitrust market shares, {ŝf} ∀f ∈ F .

D.2 Application to T-Mobile/Sprint

Our primary source of data is the 2017 Annual Report of the FCC on competition in the mobile
wireless sector.36 We obtain the following information:

• Among national providers, Verizon, AT&T, T-Mobile, and Sprint account for 35.0%,
32.4%, 17.1%, and 14.3% of total connections at end-of-year 2016, respectively. See
Figure II.B.1 on page 15.

• The average revenue per user (ARPU) in 2016:Q4 for Verizon, AT&T, T-Mobile, and
Sprint is 37.52, 36.58, 33.80, and 32.03, respectively. See Figure III.A.1 on page 42.
Following common practice, we use the ARPU as a measure of price.

• The EBITDA per subscriber in 2016 for Verizon, AT&T, T-Mobile, and Sprint is 22.71,
18.30, 11.80, and 13.00, respectively. See Figure II.D.1 on page 24. We interpret the
EBITDA as providing the markup.

Finally, we obtain a market elasticity of -0.3 from regulatory filings.37 The market elasticity
is defined theoretically as ϵ = −αs0p̄, where p̄ is the weighted-average price.

The main distinction between the T-Mobile/Sprint application and our other numerical
results is that we do not observe pre-merger market shares. The reason is that the FCC data
on total connections does not incorporate the consumer option to purchase the outside good.
Thus, we use a full calibration approach with the market elasticity and a markup (specifically
that of T-Mobile) to recover the outside good share and the price coefficient. We obtain an
outside good share of 8.4%. With this in hand, the pre-merger market share for T-Mobile,
for example, is 17.1/(1− 0.084). With the pre-merger market shares, Figure 5 can be created
using the methods described above.

36Annual Report and Analysis of Competitive Market Conditions With Respect to Mobile Wireless, Including Com-
mercial Mobile Services, FCC-17-126.

37Specifically, we reference Appendix F of the 2018 Joint Opposition Filing by T-Mobile and Sprint in FCC WT
Docket No. 18-197.
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