Online Appendix: Repression and Repertoires
Stephen Morris and Mehdi Shadmehr
Example

Suppose B(e) = ™, 0 <m < 1, and C(e) = ¢!, | > m, and set €0, = 2 > € = 1. Then,

C'(€) = B'(é) implies (€)™ = m/l. Moreover, using integration by parts, equation (3) can be

written as: .
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If the opposition leader restricts efforts to a single effort level e, from (6), we have
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Thus, recalling that e = 1,
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First, consider the comparison between 67* and 5;;‘ from Proposition 2. Mirroring the cal-

culations leading to equation (17),
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Figure 1: #}* and 0% as a function of [ for two values of m. When [ < 1, so that C(e) is
concave, 67 > 6%, When [ > 1, so that C(e) is strictly convex, we can have 6* < 6%
Parameters: B(e) =e™, 0 <m < 1,C(e) =c, I >m, and €pep, =2 > € = 1.

Thus, recognizing that ¢ = 1,
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as prescribed by Proposition 2.

Now, consider the comparison of * and 6**. If m+1 > [, then from equations (17) and (18),
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If C(e) is concave, so that [ < 1, then 6* — 6% > 0 as prescribed by Proposition 3. This result
also reflects that even when [ > 1, when efforts are not restricted to be greater than €, convexity
is not sufficient to deliver 67 < 6%.

If m+ 1 <[, then from equations (17) and (18),
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Figure 1 illustrates.



