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Online Appendix

A Background Risk for Cumulative Prospect Theory Preferences

Table 2 shows the levels of background risk needed to make a decision maker with cumulative
prospect theory (CPT) preferences to accept various gambles. The specific CPT preference
we consider has gain/loss probability weighting functions w+(p) = pγ

(pγ+(1−p)γ)1/γ
, w−(p) =

pδ

(pδ+(1−p)δ)1/δ
with γ = 0.61, δ = 0.69, loss aversion parameter λ = 2.25 and value function

v(x) = x0.88 for x ≥ 0 and v(x) = −λ(−x)0.88 for x < 0. These parameter values are taken
from Tversky and Kahneman (1992, pages 309–312). Given this choice of parameters, the
table is constructed by computing numerically the utility of each gamble as a function of the
standard deviation of the background risk.

Gamble StDeviation of Background Risk: σ

Gain/Loss Laplace Logistic Normal

$11/$10 σ ≥ $61 σ ≥ $46 σ ≥ $43

$55/$50 σ ≥ $306 σ ≥ $230 σ ≥ $217

$110/$100 σ ≥ $611 σ ≥ $460 σ ≥ $434

$550/$500 σ ≥ $3057 σ ≥ $2299 σ ≥ $2169

$1000/$1100 σ ≥ $6114 σ ≥ $4598 σ ≥ $4338

Table 2: Standard deviation of background risk sufficient for a CPT deci-
sion maker to accept various fifty-fifty gambles under different distributional
assumptions on the background risk.

B Choice Between Two Gambles

In this section, we extend the analysis to situations where the decision maker faces a choice
between two bounded gambles X and Y that have distinct distributions FX and FY . We
say it is dominant to choose X over Y under background risk W , if W + X first-order
stochastically dominates W + Y . A result similar to Theorem 1 can be obtained if we
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consider background risks with heavy tails both on the left and on the right. For this we
define the two-sided exponential size

S∗(W ) =

(
sup
a

∣∣∣∣∣g′(a)g(a)

∣∣∣∣∣
)−1

,

which is equal to min{S(W ), S(−W )}. Then we have:

Theorem 2. The following are equivalent:

(i) E[X] > E[Y ];

(ii) there exists s ∈ (0,∞) such that under any background risk W with S∗(W ) ≥ s,
choosing X over Y is dominant.

Proof of Theorem 2. We first show (ii) implies (i). Given any finite s, we can choose W to
have a Laplace distribution with sufficiently large variance. Then W satisfies S∗(W ) ≥ s,
and by assumption W + X must first-order stochastically dominate W + Y . Since such a
W has finite expectation, we have E[W +X] ≥ E[W + Y ], which implies E[X] ≥ E[Y ]. The
inequality is in fact strict, for otherwise W +X would have the same distribution as W +Y ,
and X would have the same distribution as Y . This last claim can be proved by considering
the moment generating function in a neighborhood of 0. Since E[etW ] is finite for t close to
0, both E[et(W+X)] and E[et(W+Y )] are finite and are equal. It follows that E[etX ] = E[etY ]
for t in a neighborhood of 0, which implies X and Y have the same distribution.

To prove (i) implies (ii), we assume E[X] > E[Y ] and take s to be a large positive number
(to be determined later). Consider any background risk W with S∗(W ) ≥ s, i.e. the density
g satisfies |g′(a)/g(a)| ≤ 1/s for all a. Let h(a) = ln g(a), then we can rewrite the condition
as

|h′(a)| ≤ 1

s
for all a ∈ R.

We now use this to show P [W + Y ≤ a] ≥ P [W +X ≤ a] for all a. Since W is independent
from both X and Y , integration by parts shows this comparison is equivalent to∫ M

−M

g(a− z) · FY (z) dz ≥
∫ M

−M

g(a− z) · FX(z) dz,

where M is a large number such that [−M,M ] contains the support of both X and Y . This
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in turn is equivalent to ∫ M

−M

eh(a−z) · (FY (z)− FX(z)) dz ≥ 0.

Dividing both sides by eh(a), we just need to show that for all a∫ M

−M

eh(a−z)−h(a) · (FY (z)− FX(z)) dz ≥ 0.

Observe that since |h′| is bounded above by 1/s, we have |h(a − z) − h(a)| ≤ M/s for all
a ∈ R and all z ∈ [−M,M ]. Thus if s is chosen to be sufficiently large, then the above
integral converges, uniformly across a, to the integral

∫M

−M
(FY (z) − FX(z)) dz. Since this

limit integral evaluates, by integration by parts, to E[X]− E[Y ] > 0, the result follows.

If we only know that the background risk has a heavy left tail (as in Theorem 1), then
the condition E [X] > E [Y ] is no longer sufficient to guarantee the dominance of X. Below
we derive the suitable condition in this case. We say that X strongly dominates Y in the
convex order, if max[X] > max[Y ] and∫ ∞

a

(FY (z)− FX(z)) dz > 0 for all a < max[X]. (7)

In particular, this requires E [X] > E [Y ] in the limit a → −∞.
To interpret this condition, note that X dominates Y in the convex order if and only if

−Y dominates −X in second-order stochastic dominance. In other terms, X can be obtained
from Y by a combination of mean-preserving spreads and right-ward mass shifts. Conversely,
if X is obtained from Y by replacing each realization y of Y by a gamble with expectation
strictly greater than y, then X strongly dominates Y in the convex order. This is a natural
generalization of the case studied in the main text, where Y is a constant and X is any
gamble with a higher expectation.

Theorem 3. Suppose max[X] ̸= max[Y ]. Then the following are equivalent:

(i) X strongly dominates Y in the convex order;

(ii) there exists s ∈ (0,∞) such that under any background risk W with S(W ) ≥ s, choosing
X over Y is dominant.
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Proof of Theorem 3. As in the proof of Theorem 1, choosing X over Y is dominant if and
only if

E[G(a−X)] ≤ E[G(a− Y )] for all a ∈ R .

Since we want this to hold for all background risks G with exponential size ≥ s, and since
the exponential size is translation-invariant, it is without loss to restrict to the case of a = 0.
That is, we seek to understand the conditions under which

E[G(−X)] ≤ E[G(−Y )] for all G with exponential size ≥ s.

As before, let U(a) = e
a
s denote a risk-loving CARA utility function. Then G has exponential

size at least s if and only if G(a) = ϕ(U(a)) for some increasing concave function ϕ.11 Thus,
the above comparison can be rewritten as

E
[
ϕ
(
e

−X
s

)]
≤ E

[
ϕ
(
e

−Y
s

)]
for all increasing concave functions ϕ.

In other terms, the random variable Ỹ = e
−Y
s should dominate X̃ = e

−X
s with respect to

second-order stochastic dominance.
Let F̃X and F̃Y denote the c.d.f. of X̃ and Ỹ , respectively. Then second-order stochastic

dominance holds if and only if (noting that X̃ and Ỹ are both supported on R+):∫ c

0

(F̃X(t)− F̃Y (t)) dt ≥ 0 for all c > 0.

If we write t = e−
z
s , then F̃X(t) = 1 − FX(z), F̃Y (t) = 1 − FY (z). Changing variables in

the above integral, and denoting a = −s ln(c), we obtain the following equivalent condition
(modulo a factor of 1/s):∫ ∞

a

(FY (z)− FX(z)) · e−
z
s dz ≥ 0 for all a ∈ R. (8)

Below we show that when the maxima of X and Y are different, the above condition holds
for some positive s if and only if X strongly dominates Y in the convex order.

In one direction, suppose max[X] > max[Y ] and (7) holds. Then intuitively (8) would also
11To be fully rigorous, we also need g(a) = ϕ′(ea/s)· 1se

a/s to be strictly positive, continuously differentiable,
and eventually decreasing. These additional restrictions on ϕ do not affect the subsequent analysis because on
any compact domain, any increasing concave function can be uniformly approximated by another increasing
concave function with these additional properties.
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hold if s is large, in which case the integrand (FY (z)−FX(z)) ·e−
z
s is close to FY (z)−FX(z).

This can be formalized by observing that we only need to prove (8) for a in the compact
interval min[X] ≤ a ≤ max[Y ]. As s → ∞ the integral

∫∞
a
(FY (z)−FX(z)) ·e−

z
s dz converges

uniformly to
∫∞
a
(FY (z)−FX(z)) dz on this interval. Since this limit is a continuous function

in a and strictly positive on this interval, it is bounded away from 0. Thus by uniform
convergence, there exists some large s such that (8) holds.

For the converse, suppose (8) holds for some s. Then there cannot exist some a with
FY (a) < 1 = FX(a), since otherwise (8) fails at this point a. It follows that max[X] ≥
max[Y ], and the inequality is in fact strict by the assumption that max[X] ̸= max[Y ]. As
a result, FY (z) − FX(z) is strictly positive for z ∈ [max[Y ], max[X]), and (8) holds with
strict inequality for a in the same interval. We now use this to prove (7). Observe that∫ ∞

a

(FY (z)− FX(z)) dz

= e
a
s

∫ ∞

a

(FY (z)− FX(z)) · e−
z
s dz +

∫ ∞

a

(
e

c
s

s
·
∫ ∞

c

(FY (z)− FX(z)) · e−
z
s dz

)
dc.

So from (8), we must have
∫∞
a
(FY (z) − FX(z)) dz ≥ 0. Moreover, the inequality is strict

because in the double integral on the RHS above, the term
∫∞
c
(FY (z) − FX(z)) · e−

z
s dz is

strictly positive for any c ∈ [max[Y ], max[X]). For any a < max[X], the mass of such c > a

is strictly positive. Hence (7) holds with strict inequality, completing the proof.

C Second-Order Stochastic Dominance

Our analysis can also be extended to the smaller class of risk-averse preferences. We say
that accepting X is dominant for a risk-averse decision maker if W +X dominates W with
respect to second-order stochastic dominance. We also introduce a modified version of the
exponential size: for any background risk W with c.d.f. G, let

S2(W ) =

(
sup
a∈R

g(a)

G(a)

)−1

.

It is easy to show that S2(W ) ≥ S(W ).12

12If S(W ) = 0 then the result is trivial. If instead S(W ) > 0, then we have the inequality g(x) ≥ g(y)·e
x−y
S(W ) .

Note that G(y) =
∫ y

−∞ g(x) dx → 0 as y → −∞. Using the previous inequality, we deduce that g(y) → 0

as y → −∞. Hence, for each a, it holds that g(a)
G(a) =

∫ a
−∞ g′(x) dx∫ a
−∞ g(x) dx

≤ supx
g′(x)
g(x) = 1

S(W ) . As a result,
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Theorem 4. Under any given background risk W with finite expectation, it is dominant for
a risk-averse decision maker to accept every gamble X with positive expectation and riskiness
R(X) ≤ S2(W ).

Proof of Theorem 4. Let s = S2(W ) and without loss focus on s > 0. By a well-known
characterization of second-order stochastic dominance, it is dominant to accept X if and
only if ∫ a

−∞
P [W +X ≤ t] dt ≤

∫ a

−∞
P [W ≤ t] dt for all a ∈ R. (9)

That the integrals in (9) are finite follows from the fact that W and W + X have finite
expectations. By Tonelli’s Theorem, the quantity

∫ a

−∞ P [W +X ≤ t] dt is equal to

∫ a

−∞
E [G(t−X)] dt = E

[∫ a

−∞
G(t−X) dt

]
= E

[∫ a−X

−∞
G(t) dt

]
.

Hence, it is second-order dominant to accept a gamble X if and only if for every a ∈ R

E [uG(a−X)] ≤ uG(a),

where uG(a) =
∫ a

−∞G(t) dt. Therefore, as in the proof of Theorem 1, we obtain that accepting
X is dominant if

E
[
e−

1
s
X
]
≤ 1 =⇒ E [uG(a−X)] ≤ uG(a) for all a ∈ R. (10)

Equation (10) holds whenever uG is globally more risk-averse than the CARA utility function
U(a) = e

a
s . The Arrow-Pratt index for uG is −g(a)/G(a), which by assumption is weakly

larger than −1/s, the Arrow-Pratt index for U . Thus uG is indeed more risk-averse than U ,
concluding the proof.

D Additional Results

Proposition 2. For any gamble X that is supported on [−M,M ] and has expectation ϵ > 0,
its riskiness index satisfies R(X) ≤ M2

ϵ
.

Proof of Proposition 2. Let λ = ϵ
M2 . We first show that E[e−λX ] ≤ 1. Indeed, since ϵ =

E[X] ≤ M , we have λ ≤ 1
M

. As X ∈ [−M,M ] with probability one, we have −λX ∈ [−1, 1].

S2(W ) ≥ S(W ) again holds.
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In this range, it always holds that e−λX ≤ 1− λX + (λX)2. Hence E[e−λX ] ≤ 1− λE[X] +

λ2E[X2] ≤ 1− λϵ+ λ2M2 = 1.
Now consider the function f(a) = E[e−aX ], defined for a ≥ 0. It is easy to see that

f(0) = 1 and f is strictly convex. Thus, 1
R(X)

is the unique number c > 0 such that f(c) = 1.
Since we just proved that f(λ) ≤ 1, convexity implies c ≥ λ. In other words 1

R(X)
≥ ϵ

M2 .
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