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A Background Risk for Cumulative Prospect Theory Preferences

Table 2 shows the levels of background risk needed to make a decision maker with cumulative
prospect theory (CPT) preferences to accept various gambles. The specific CPT preference

pY

we consider has gain/loss probability weighting functions w*(p) = AT w(p) =

m with v = 0.61,0 = 0.69, loss aversion parameter A = 2.25 and value function
v(z) = 2% for x > 0 and v(z) = —\(—2)"® for z < 0. These parameter values are taken
from Tversky and Kahneman (1992, pages 309-312). Given this choice of parameters, the
table is constructed by computing numerically the utility of each gamble as a function of the

standard deviation of the background risk.

Gamble StDeviation of Background Risk: o
Gain/Loss | Laplace Logistic Normal

$11/%$10 o > $61 o > $46 o> %43
$55/$50 o>%306 o>%230 o >9$217
$110/$100 o>$%611 o>$460 o >$434
$550/$500 o >$3057 o >$2299 o > $2169
$1000/$1100 | 0 > $6114 o > $4598 o > $4338

Table 2: Standard deviation of background risk sufficient for a CPT deci-
sion maker to accept various fifty-fifty gambles under different distributional
assumptions on the background risk.

B Choice Between Two Gambles

In this section, we extend the analysis to situations where the decision maker faces a choice
between two bounded gambles X and Y that have distinct distributions Fx and Fy. We
say it is dominant to choose X over Y under background risk W, if W + X first-order

stochastically dominates W + Y. A result similar to Theorem 1 can be obtained if we
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consider background risks with heavy tails both on the left and on the right. For this we

define the two-sided exponential size

SY(W) = <sup J

o |9(a)

which is equal to min{S(W),S(—W)}. Then we have:
Theorem 2. The following are equivalent:
(1) E[X] > E[Y];

(ii) there exists s € (0,00) such that under any background risk W with S*(W) > s,

choosing X overY is dominant.

Proof of Theorem 2. We first show (ii) implies (i). Given any finite s, we can choose W to
have a Laplace distribution with sufficiently large variance. Then W satisfies S*(W) > s,
and by assumption W + X must first-order stochastically dominate W 4 Y. Since such a
W has finite expectation, we have E[W + X| > E[W + Y], which implies E[X] > E[Y]. The
inequality is in fact strict, for otherwise W 4+ X would have the same distribution as W +Y,
and X would have the same distribution as Y. This last claim can be proved by considering
the moment generating function in a neighborhood of 0. Since E[e!"] is finite for ¢ close to
0, both E[e/™*X)] and E[e!"*+Y)] are finite and are equal. It follows that E[e!*] = E[e!"]
for t in a neighborhood of 0, which implies X and Y have the same distribution.

To prove (i) implies (ii), we assume E[X]| > E[Y] and take s to be a large positive number
(to be determined later). Consider any background risk W with S*(W) > s, i.e. the density
g satisfies |¢'(a)/g(a)| < 1/s for all a. Let h(a) = Ing(a), then we can rewrite the condition
as

B (a)] < % for all @ € R.

We now use this to show P[W +Y <a] > P[W + X < q] for all a. Since W is independent

from both X and Y, integration by parts shows this comparison is equivalent to

/_M gla—z) - Fy(z)dz > /M gla—z) - Fx(2)dz,

M -M

where M is a large number such that [— M, M| contains the support of both X and Y. This
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in turn is equivalent to

/M =) (Fy(2) — Fx(2))dz > 0.

—-M

Dividing both sides by €% we just need to show that for all a

M
/ Ma==Ma) (B (2) — Fx(2))dz > 0.
-M
Observe that since |h'| is bounded above by 1/s, we have |h(a — z) — h(a)| < M/s for all
a € R and all z € [-M,M]. Thus if s is chosen to be sufficiently large, then the above
integral converges, uniformly across a, to the integral f_]\;\I/[(Fy(Z) — Fx(2))dz. Since this

limit integral evaluates, by integration by parts, to E[X] — E[Y] > 0, the result follows. [

If we only know that the background risk has a heavy left tail (as in Theorem 1), then
the condition E [X] > E[Y] is no longer sufficient to guarantee the dominance of X. Below
we derive the suitable condition in this case. We say that X strongly dominates Y in the

convex order, if max[X] > max[Y] and
/ (Fy(2) — Fx(2))dz > 0 for all a < max[X]. (7)

In particular, this requires E [X] > E[Y] in the limit a — —oc.

To interpret this condition, note that X dominates Y in the convex order if and only if
—Y dominates — X in second-order stochastic dominance. In other terms, X can be obtained
from Y by a combination of mean-preserving spreads and right-ward mass shifts. Conversely,
if X is obtained from Y by replacing each realization y of Y by a gamble with expectation
strictly greater than y, then X strongly dominates Y in the convex order. This is a natural
generalization of the case studied in the main text, where Y is a constant and X is any

gamble with a higher expectation.
Theorem 3. Suppose max|X| # max|Y]. Then the following are equivalent:
(i) X strongly dominates Y in the convex order;

(ii) there exists s € (0,00) such that under any background risk W with S(W') > s, choosing

X overY is dominant.
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Proof of Theorem 3. As in the proof of Theorem 1, choosing X over Y is dominant if and
only if
E[G(a — X)] <E[G(a—Y)] foralla € R.

Since we want this to hold for all background risks G with exponential size > s, and since
the exponential size is translation-invariant, it is without loss to restrict to the case of a = 0.

That is, we seek to understand the conditions under which
E[G(—X)] < E[G(-Y)] for all G with exponential size > s.

As before, let U(a) = e+ denote a risk-loving CARA utility function. Then G has exponential
size at least s if and only if G(a) = ¢(U(a)) for some increasing concave function ¢.'! Thus,

the above comparison can be rewritten as
E [gzﬁ (e%ﬂ <E [gzﬁ (e%ﬂ for all increasing concave functions ¢.

In other terms, the random variable Y = e should dominate X = e with respect to
second-order stochastic dominance.

Let Fyy and Fy denote the c.d.f. of X and Y, respectively. Then second-order stochastic
dominance holds if and only if (noting that X and Y are both supported on R, ):

/ (Fx(t) — Fy(t))dt > 0 for all ¢ > 0.
0

If we write t = e+, then Fx(t) = 1 — Fx(z), Fy(t) = 1 — Fy(z). Changing variables in
the above integral, and denoting a = —sIn(c), we obtain the following equivalent condition

(modulo a factor of 1/s):
/ (Fy(2) — Fx(2))-e"5dz>0 forall a € R. (8)

Below we show that when the maxima of X and Y are different, the above condition holds
for some positive s if and only if X strongly dominates Y in the convex order.

In one direction, suppose max[X| > max[Y] and (7) holds. Then intuitively (8) would also

1o be fully rigorous, we also need g(a) = ¢’ (e*/*)- %ea/ 5 to be strictly positive, continuously differentiable,
and eventually decreasing. These additional restrictions on ¢ do not affect the subsequent analysis because on
any compact domain, any increasing concave function can be uniformly approximated by another increasing
concave function with these additional properties.
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hold if s is large, in which case the integrand (Fy (z) — Fx(2))-e™* is close to Fy(2) — Fx(2).
This can be formalized by observing that we only need to prove (8) for a in the compact
interval min[X] < a < max[Y]. As s — oo the integral [™*(Fy(z)— Fx(z))-e”* dz converges
uniformly to [*(Fy(z) — Fx(z)) dz on this interval. Since this limit is a continuous function
in a and strictly positive on this interval, it is bounded away from 0. Thus by uniform
convergence, there exists some large s such that (8) holds.

For the converse, suppose (8) holds for some s. Then there cannot exist some a with
Fy(a) < 1 = Fx(a), since otherwise (8) fails at this point a. It follows that max[X] >
max|Y], and the inequality is in fact strict by the assumption that max[X] # max[Y]. As
a result, Fy(z) — Fx(z) is strictly positive for z € [max[Y], max[X]), and (8) holds with

strict inequality for a in the same interval. We now use this to prove (7). Observe that
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So from (8), we must have [ (Fy(z) — Fx(z))dz > 0. Moreover, the inequality is strict
because in the double integral on the RHS above, the term [ °(Fy(2) — Fx(z)) - e s dz is
strictly positive for any ¢ € [max[Y], max[X]). For any a < max[X], the mass of such ¢ > a

is strictly positive. Hence (7) holds with strict inequality, completing the proof. O

C Second-Order Stochastic Dominance

Our analysis can also be extended to the smaller class of risk-averse preferences. We say
that accepting X is dominant for a risk-averse decision maker if W 4+ X dominates W with
respect to second-order stochastic dominance. We also introduce a modified version of the

exponential size: for any background risk W with c.d.f. G, let

0= (s )

It is easy to show that So(W) > S(W).'2

L21f S(W) = 0 then the result is trivial. If instead S(W) > 0, then we have the inequality g(x) > g(y)-e5T7 |
Note that G(y) = ffoo g(z)dz — 0 as y — —oo. Using the previous inequality, we deduce that g(y) — 0

as y — —oo. Hence, for each a, it holds that % = % < sup, Z/((;)) = S(%/V). As a result,
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Theorem 4. Under any given background risk W with finite expectation, it is dominant for

a risk-averse decision maker to accept every gamble X with positive expectation and riskiness

R(X) < So(W).

Proof of Theorem 4. Let s = So(W) and without loss focus on s > 0. By a well-known
characterization of second-order stochastic dominance, it is dominant to accept X if and
only if . .

/ P[W+X§t]dt§/ P[W < #]dt for all a € R. ()

That the integrals in (9) are finite follows from the fact that W and W + X have finite
expectations. By Tonelli’s Theorem, the quantity ffoo P[W + X <t]dtis equal to

/_;E[G(t—X)]dt:EU_;G(t—xmt} :]E[/_:XG(t)dt}

Hence, it is second-order dominant to accept a gamble X if and only if for every a € R
Eluc(a — X)] < ug(a),

where ug(a) = [ foo G(t) dt. Therefore, as in the proof of Theorem 1, we obtain that accepting

X is dominant if
E [e_éx] <1 = Efugla— X)] <ug(a) for all a € R. (10)

Equation (10) holds whenever u is globally more risk-averse than the CARA utility function
U(a) = es. The Arrow-Pratt index for ug is —g(a)/G(a), which by assumption is weakly
larger than —1/s, the Arrow-Pratt index for U. Thus ug is indeed more risk-averse than U,

concluding the proof. [

D Additional Results

Proposition 2. For any gamble X that is supported on [—M, M| and has expectation € > 0,
its riskiness index satisfies R(X) < MTQ

Proof of Proposition 2. Let A = 35. We first show that E[e™*¥] < 1. Indeed, since ¢ =

E[X] < M, we have A < 7. As X € [—M, M| with probability one, we have —A\X € [—1,1].

So (W) > S(W) again holds.
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In this range, it always holds that e™** <1 — XX + (AX)2. Hence Ele™*] < 1 — \E[X] +
NE[X?] <1—Xe+ N2M? =1.

Now consider the function f(a) = E[e~*X], defined for a > 0. It is easy to see that
f(0) =1 and f is strictly convex. Thus, ﬁ is the unique number ¢ > 0 such that f(c) = 1.

Since we just proved that f(A) < 1, convexity implies ¢ > A. In other words ﬁ > 1= O
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