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1 Proof of Proposition 1

Note that since Tpost = Bpost — Opost, the linearity of the expectation operator implies that E[7pst | B] =
E[Bpost | 8] — E[0post | f]. To derive the alternative form for Eldpost | f] in the proposition, we claim that

under the uninformative prior, 75, 13(post | B) = Ts,,.,16,.. (Opost | Bpre). This is because

w5800 | B) = ﬂﬁ;;((%d)

)
oc’ﬂ—lsﬂ'post (63 5post - 5post) . 1[51;7“@ = ﬂpre]
=T (5) : Wfpost\é(ﬂpost - 5post | 6) . 1[5pre = ﬂpre]

LT o5t pre (post | Bpre),

where we obtain the last line from the fact that 7. 50c1 under the uninformative prior and the definition of

the conditional density. It follows that

‘B[(spost | B] = E,B‘B[Etsposdﬂ[apost | 6] ‘ B] = EﬁpTe‘B[E(Spasdépm [§post | Bpre:l | B]

6post

where the first equality uses iterated expectations and the fact that B 1 §| B, and the second uses the fact

that 75 . 18(0post | B) = 7,15, (Opost | Bpre) as derived above.
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2 Calculations for example with Gaussian prior

We now provide detailed calculations for the posterior for 3 when § ~ A (us, Vs) and we use the uninfor-

mative prior for 7,5t Note that 7. scc1 implies that

B (B) = TBpre (ﬂpre)ﬂ-ﬁpost |Bpre (5post)
= Tpre (ﬁpre) Jﬂ'&post\&pm (6;00375 - Tpost)ﬂ'rpost (Tpost)dTpost

L 75, (Bpre)

where in the second line we use the fact that 7., 1L ¢ (since Trpost] OC 1) and in the last line we use the fact

that 7, (Tpost) o 1 and Sﬂ'éposf,\épre (Bpost — Tpost) = 1 since densities integrate to 1. Thus, we have that

p(B | B) =B | B)7s,,. (Bpre)

oc exp( (ﬁ - B)/Egl(ﬂ - B)) . exp(_%(ﬂpre - ILL(;prc)/‘/:s;Tle (ﬂpre - :ut?pre))

!

2
1 _ ~_ 15, =1 ~

o exp(—5(F(S5" + V)8 = 268/ (551 6 + Vi, L s, .,)

pre

- viloo
where V:S;je = < ‘56” 0 ) and fis,,., = ( N&Sm > We thus see that the posterior for § is normal with

mean
E[B| Bl = (S5 + Vs )M 8+ V5 L s,

pre 6p re
and variance

Var[8] ] = (35" + V5, )™

pre

A B
Corollary 4.1 in Lu and Shiou (2002) shows that for the symmetric block matrix M = ( ),

B D
-l (A—BD'B')"! —(A—-BD"'B)"'BD"! 1
D 'B'(A— BD'B/)"! (D— B'A'B)~!
and that
—D'B(A-BD'B)'=—(D-BA'B)"'B'A™! )
It follows that
Zgl + Vé;lﬁ —
LY. . -1 / -1 -1
(Zﬁpre 251"7'6’51”3“ Eépostzéz}reyﬁpost) + %p'r~e
— PN — I,\ R fl ~ R —1 /A . Tl . _ /A R T1 N R -1
(Eﬁp‘“‘t Z/@p?wﬂpust Eﬁpre Zﬁl""e’ﬁp"‘”) Zﬂpmﬁﬁpost Eﬁpre (EﬂPUSt Zﬂprevﬂpost Eﬂpre Eﬁpv'exﬁpust)

where the upper-right block is the transpose of the lower-left. Applying (1) again to the previous display,
but using the alternative formula D~' + D=!B’(A— BD~'B’)"1BD~! for the lower-right block given in Lu
and Shiou (2002), we obtain that



_ »o! —1y)-1
(Etl + ‘7(-5_1 ) 1 = ( ﬂp?‘e + %p/"e)
3 pre r -1 -1 —1\—1 . . (-1 —1\-1
ZBpTeprost Zﬁpre Eﬁpre + ‘/;51’7‘6) EBPOSt‘ﬂPTS + FZ(Eﬁprﬂ + ‘/;Spre) FE
R R _ . _ / —1 R . . o . . A A _
where Eﬂpostlﬂpre = E,Bpost B st ZBore EBpT‘e»ﬁpost is the conditional variance of Bpost | Bpre, and I's, =

Egl b)) Bore fnos: DTC the coefficients in the best linear predictor of Bpost given Bp,.e.
oreDore,Bpos

It follows that

—1 —1\—17,—-1
1, -1 e (EBI,N + ‘/61)7”6) ‘/:spre. 0
(ZB + ‘/:spre) 5pre - E,» . Etl (ETl + V—l )—1‘/—1
61)7‘87/61705t ﬂprrj ﬂprc 5177“6 61)7‘9.
and thus
N LNl I— (=70 vy )ty 0
(Egl Jr ‘/6;7‘1€> Egl - I N (251 + V§;7le> ‘/5117‘6 = —E/ Eﬁj’i‘e (271p76+ V*f’)e—l‘/*l I
Bpreyﬁpost Bpre Bp'f‘e 613”'6 51’7'6

It follows that

Blpre | B = (53] + Vi 0725 Bore +(S5] + V5 )75 L,

61)7‘ pre re pr‘e pre
E[Bpost | B] = Bpost — E/Bpre,épost Eﬁ::re (EIBT:TC + V5;rlg)_1‘/;5;:g (ﬁpre - /1’5prc)

= Bpost - F/Z (Bpre - E[ﬁpre | B])

We showed in the main text that

E[TPOSt | B] = ﬁ;kost - M(spost - ‘/(Spost,ispre V;s;rl(, (ﬁ;:re - :u’(spv-e)’

where 8* = E[# | ] is the posterior for 3, which we derived above.

To get Var(Tpost | B), recall that Tpost = Bpost — Opost.- Using the law of total variance, we have that

VaT(Tpost | B) = Eﬁm[var(ﬁpost - 5post | ﬁ)] + VaTB‘B(E[Bpost - 5post ‘ ﬁ])

Note, however, that!

Var(ﬁpost - 6post | 6) = Var((spost ‘ 5) = Var(épost | 6})7‘6 = 6})7‘6) = Vépm - V/ Vil V;Sp,,ve,épwt

OpresOpost ' Opre

and

Varmé(E[(spost | B]) = Varm,é’(ﬁpost = (H6poer + Ty (Bpre — [5,,.))
= M(Z3+ Vs )M

where I'y, = V(S;Tle Vs and M = (—I',, ) is the matrix such that M S = 5,05t — '\, Bpre. Hence,

presOpost

1In what follows, we use the fact that 7r5post\6(61’05t | B) LTS g0t |6pre (8post | Bpre), which we derived in the proof to
Proposition 1.



Var(tpost | B) = Vs

post

-V Vi LV, +M(ES V)M

presOpost ' Spre ! Opre,Opost Spre

Further calculation shows that this can be simplified to

Var(tpost | B) = Voyour * 25, = Ep 5000 F Vopresnond) Cp,, T Vo) Ep a0+ Voprebpons)

_ ¥ S/ s —1 ¥
- Eposlf - Ep7‘e7postEpreEPTeJ’OSt7

where 3 := % 5t Vs with block matrix form

i _ Zpre Ep?"e,post
= ~ .
Zpre,post EPOSt

3 Informative Gaussian prior for 7,y

We now consider a modification of the Gaussian example in the main text in which there is a joint Gaussian

prior over (J, Tpost). We begin with the following lemma.

(5) () ()

and we observe B |, 8 ~N (,6, 25)' Then the posterior for («, 8) is jointly normal with means

Lemma 3.1. Suppose that

E[B | B] = (Vﬁ_l + 251)71(2513 + VB_lug) =: ILLE

and
Ela| B] = pa + VsV ' (uh — pp) =: ph

and variances
Var(|8) = (Vs + 357" = 35

and

Var(a | B) = (Va - Vaﬂvﬁ_lvﬂa) +VQBV5_IE;§V/;1VBQ e E(";

~Var(alB)

Proof. Consider the reparametrized parameter & = o — VoéBVB_1 B. The prior for (&, ) is

~ -1 —1
O\ ([ e VsV s\ (Ve VasVi Vaa 00Y)
B Hs 0 £

so the priors for & and [ are independent. By Bayes’ rule,



where the first equality uses the fact that the likelihood doesn’t depend on «, and the second uses prior
independence. We thus see that the posteriors for 5 and & are independent, and the posterior for & is equal
to the prior. Standard results for the normal-normal model give that the posterior for 3 is normal with mean
wh = (VE1 + Egl)_l(EﬁflﬁA + Vﬁflulg) and variance X% = (Vﬁf1 + Zgl)_l. Since the linear combination of
independent normals is normal, we then see that the posterior for a = & + VDLgVB_1 is normal with mean
(e — Vagvﬁ_lug) + vaﬁvﬁ—lug and variance (V,, — VQBVB_l‘/Ba) + Vagvﬁ_lEEV[;lVga, which completes the
proof. [

Now suppose that the prior over (§, Tpost) is joint Gaussian with independence between § and 7pst,

5p7’€ Hépre V;?pre V:;pre,ﬁpost 0
6post ~ N Hép0st ) V;spost,ﬁpre ‘/;;post 0
Tpost Hrpost 0 0 Vrpost
This implies that
Bpre HSpre ‘/51)7‘5 V(Sp'rcylspost 0
Bpost ~N Hépost + Hrpost ) ‘/(Spost,vézﬂ‘e Vépost + V‘l’post V"’post
Tbost lLTpost O ‘/;post ‘/;post

Given f | 8,7 ~ N (5, 23), the posterior for 7,05 | /3 then follows directly from the formulas given in

Lemma 3.1, setting o = 7ot

4 Calibration of prior in BZ application

We now describe the calibration of the prior in our application to Benzarti and Carloni (2019). Suppose,
as in Benzarti and Carloni (2019), that units with D; = 1 come from a single industry (restaurants) while

units with D; = 0 come from many other industries. Suppose that
E[Yi(0) | Di = 0] =
and that
E[Yir(0) | Ds = 1] = e + au,

where p; represents aggregate shocks to the outcome common to all units and «; is the idiosyncratic shock

to the treated industry. Suppose that the industry-specific shock follows an AR(1),

o = pO—1 + Uy

where the u; are #4d with mean 0 and variance o2.
McGahan and Porter (1999) estimate an AR(1) for the industry-component of firm profits (measured as

a fraction of firm assets?) and obtain an estimate of p of 0.766. They estimate that SD(ay) is 0.063 (6.3

2Note this differs slightly from Benzarti and Carloni (2019), who use log profits as an outcome. Let E; and A respectively
correspond to net earnings and assets in period ¢. Note that if Fy/A; ~ 1 and A; ~ A¢_1, so that assets are stable over time,

then
E FEi_
log(Et) — log(Ei—1) ~ log(Et/At) — log(Ey—1/A¢—1) ~ — — = L
Ay A

where we use the fact that log(z) ~ z — 1 for  ~ 1, so that innovations in log profits are similar to innovations in percentage




percentage points), which using the formula Var(a;) = 02/(1 — p?) implies a value of o of \/(1 — p2)0.063 =
4/1 —0.76620.063 = 0.04.
Note that the violation of parallel trends between period 0 and period t is given by §; = oy — ag. Under

the AR(1) process described above, d; is mean-zero. To derive its variance-covariance matrix, recall that for
Ikl

an AR(1) process, the covariance is Cov(ay, u—k) = {~;0>. Hence, we have that

7P2

Cov(d,8y) = Cov(ay — g, — vg)

p‘tftll —_ p‘t‘ —_ pltll =+ ]_ 2
g
1—p2?

We calibrate the prior covariance on §, Vj, using the expression in the previous display and the calibrated

values of p and o2.
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